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function of a complex parameter u. This gives rise to a vector of factorially divergent
perturbative formal power series whose Stokes rays form a peacock-like pattern in the
complex plane. We conjecture that these perturbative series are resurgent, their
trans-series involve two non-perturbative variables, their Stokes automorphism satisfies
a unique factorization property and that it is given explicitly in terms of a fundamental
matrix solution to a (dual) linear g-difference equation. We further conjecture that a
distinguished entry of the Stokes automorphism matrix is the 3D-index of
Dimofte-Gaiotto-Gukov. We provide proofs of our statements regarding the
g-difference equations and their properties of their fundamental solutions and illustrate
our conjectures regarding the Stokes matrices with numerical calculations for the two
simplest hyperbolic 47 and 5; knots.
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1 Introduction

1.1 Chern-Simons theory with compact and complex gauge group

Chern-Simons gauge theory, introduced by Witten in his seminal paper [68] as a quantum
field theory proposal of the Jones polynomial [47], remains one of the most fascinating
quantum field theories. It gives a powerful framework to study the quantum topology of
knots and three-manifolds, and at the same time it provides a rich yet tractable model to
explore general aspects of quantum field theories.

In [68], Witten analyzed in detail Chern—Simons gauge theory with a compact gauge
group (such as SU(2)). Its partition function on a 3-manifold M with torus boundary com-
ponents depends on a quantized version k € Z of Planck’s constant (or equivalently, on
a complex root of unity e27X), as well as a discrete color (a finite-dimensional irreducible
representation of SU(2)) per boundary component of M. A more powerful Chern—Simons
theory with complex gauge group (such as SL(2, C)) was introduced by Witten [69] and
developed extensively by Gukov [42]. A key feature of complex Chern—Simons theory is
that the partition function Zy(u; t) for a 3-manifold M with torus boundary components
depends analytically on a complex parameter v (where 7 = 1/k in the Chern—Simons the-
ory with compact gauge group) as well as on a complex parameter u per each boundary
component of M that plays the role of the holonomy of a peripheral curve. The analytic
dependence of Z;(u; T) on the parameters u and 7 allows one to formulate questions of
complex analysis and complex geometry which would be difficult, or impossible, to do in
Chern-Simons theory with compact gauge group.

There is a key difference between Chern—Simons theory with compact versus complex
gauge group: The former is an exactly solvable theory, meaning that the partition function
can be computed by a finite state-sum, a consequence of the fact that it is a TQFT in 3
dimensions. On the other hand, the situation with complex Chern—Simons theory is
more mysterious. For reasons that are not entirely understood, the partition function
Z(u; ) for manifolds with torus boundary components reduces to a finite-dimensional
integral (the so-called state-integral) whose integrand is a product of Faddeev’s quantum
dilogarithm functions [24], assembled out of an ideal triangulation of the manifold. This
was the approach taken by Andersen-Kashaev [3,4] and Dimofte [21] following prior
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ideas of [19,46]. Focusing for simplicity on the case of a 3-manifold with a single torus
boundary component (such as the complement of a hyperbolic knot in S3), the state-
integral Z;(u; 7) is a holomorphic function of T € €' = C\(—00,0] and u € C that
satisfies a pair of linear g-difference equations. The existence of these equations for a
state-integral follows from the closure properties of Zeilberger’s theory of g-holonomic
functions and the quasi-periodicity properties of Faddeev’s quantum dilogarithm, in much
the same way as the g-holonomicity of the colored Jones polynomial of a knot follows from
a state-sum formula [34]. In fact, it is conjectured that the linear g-difference equation
satisfied by the colored Jones polynomial of a knot coincides with the linear g-difference
equations of Zy;(u; T) (see, e.g., [5] and Sects. 5 and 6 for examples).

1.2 Resurgence and the Stokes automorphism

The global function Z1(u; 7) gives rise to a vector ®(x; 7) of perturbative series in T whose
coefficients are meromorphic functions of u. These series are typically factorially divergent
and a key question is a description of the analytic continuation of their Borel transform in
Borel plane, their trans-series and their Stokes automorphisms. This is a typical question in
perturbative quantum field theory where resurgence aims to reproduce analytic functions
from factorially divergent series (for an introduction to resurgence, see, for instance, [1,
57,58,60]), and where Chern—Simons theory with a compact or complex gauge group is
an excellent case to analyze. Some aspects of resurgence in Chern—Simons theory were
studied in [12,27,30,40,44,45,57]. The multi-valuedness of the complex Chern—Simons
action dictates that the trans-series are assembled out of monomials in # and § where

q _ e—2ﬂi/r u/r.

andX =e
Our discoveries are summarized as follows:

« The singularities of the series ®(x; ) in Borel plane are arranged in horizontal lines
2mi apart, and within these lines in finitely many points logx apart. This defines a
collection of Stokes lines in a peacock-like pattern (see Fig. 1) whose corresponding
Stokes automorphisms satisfy a unique factorization property with integer Stokes
constants.

+ The Stokes automorphism S(x; q) along a half plane is a fundamental matrix solution
to a (dual) linear g-difference equation, hence fully computable.

« The function Z(u; ) is one entry of a matrix-valued collection of descendant par-
tition functions which are a fundamental solution to a g-holonomic system in two
variables.

The arrangement of the singularities in Borel plane is reminiscent of a “stability datum”
of Kontsevich-Soibelman [53—-55] where the corresponding integers are often called DT-
invariants or BPS degeneracies. The Stokes automorphisms along half planes are anal-
ogous to the spectrum generators in Gaiotto-Moore-Neitzke [37-39]. Our integers are
locally constant functions of a complex parameter x and their jumping along a wall-
crossing will be the topic of a subsequent publication.

Our paper gives a concrete realization of these abstract ideas of perturbative series and
their resurgence, Stokes automorphisms and their wall-crossing formulas for the case of
complex Chern—Simons theory and illustrates our results with the 3-manifolds of the two
simplest hyperbolic knot complements, the complements of the 4; and the 5; knots.
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Fig. 1 A peacock arrangement of Stokes rays in the complex Borel plane

1.3 A g-holonomic module of the partition function and its descendants
In this section, we discuss a g-holonomic module associated with the partition function
and its descendants. This module and its fundamental solutions are crucial to our exact
computation of the Stokes matrices in Sect. 1.4. One advantage of introducing this module
before we discuss resurgence of perturbative series is that the former has been established
mathematically in many cases, whereas the latter remains a mathematical challenge.

We begin our discussion with a factorization of the state-integral

Zy(up; T) = BE ¢ 1) T A()B(%; ), (r e C\R) (1)
where
up = 5 )

(this rescaling is dictated by the asymptotics of Faddeev’s quantum dilogarithm), A(z) is
a diagonal matrix with diagonal entries a 24-th root of unity times an integer power of
e%(”fl), B(x;q) = (BY (x; q));=1 is a vector of holomorphic blocks, and

q= e27‘[i‘[’ q — e—Zﬂi/r, x = eu, %= eu/r, = b2. (3)

The above notation is consistent with the literature in modular forms and Jacobi forms [23]
and indicates that u € C can be thought of as a Jacobi variable. The factorization (1) was
first noted in a related context in [62] and further developed in complex Chern—Simons
theory in [7,20]. We find that this factorization persists to descendant state-integrals
parameterized by a pair of (Jacobi-like) variables m and p (see Equations (125) and (240)
for the definition of descendant state-integrals for the knots 44, 52)

Zamp (s T) = (1) g 2G" 2B (%4 )T A(T)Bu(xiq),  (mueZ) (4)

where Zy100 = Zy. The holomorphic blocks determine a matrix Wy, (x; g) defined by

BS,P xq) ... Bﬁf,) (% 9)
Winx; q) = : (5)
1
By, () ... By, (x:4)

with the following properties
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(a) The entries of W, (x; q) are holomorphic functions of |g| # 1, meromorphic func-
tions of x € C* with poles in x € g% of order at most , and have Taylor series
expansions in (1 — x)_’Z[xi][[q%]] whose monomials xkq”/z satisfy n = O(k?).

In other words, the support of the monomials in x and g in (1 — x)" W, (x; ¢) is similar to
the one of Jacobi forms (in their holomorphic version of Eichler-Zagier [23, Eqn.(3)] or the
meromorphic version from Zwegers thesis [74, Chpt.3]) and of the admissible functions
of Kontsevich-Soibelman [54].

(b) The matrix
Wi (37) = W_p (85§ DA Win(x; q) " (6)

defined for t = C \ IR, extends to a holomorphic function of 7 € C’ and u € C for
all integers m and .

More precisely, if we define the normalized descendant integral

2amu(157) = (1) g 2T Za 5 7), 7)
then Wi, (; T) = (Zimtiptj (s T)):j_:10' The above statement is remarkable in two ways:
(i) Win(x; q) is a holomorphic function of T € C \ R that cannot be extended holomor-
phically over the positive reals, yet W, ,,(1; r) holomorphically extends over the positive
reals, and (ii) W}, (x; g) is a meromorphic function of u with singularities, yet W}, , (u; 7) is
an entire function of u. Property (ii) is common in quantum mechanics, where the wave
function is often entire, whereas its WKB expansion is singular at the turning points. The
same behavior is also observed in the case of open topological strings in [59].

(c) We have an orthogonality relation
W_1(x;q) W-1(xsqg )" € GL(r ZIx™]). ®)

(d) The columns of Wy, (x; ), as functions of (x, m), form a g-holonomic module of rank
r.

The factorization (4) and (d) implies that the annihilator Zas of zagm,, (#p; T) as a func-
tion of (x, m) coincides with the annihilator of W, (x; ). The latter is a left ideal in the
Weyl algebra W over Qg% generated by the pairs (Sy, x) and (S;,, ¢™) of g-commuting
operators which act on a function f (x, m; q) by

(Sxf ) (%, m; q) = f (qx, m; q) of)(x, m; q) = xf (x, m; q) )
(Suf) % m; q) = f (%, m + 1;q) (@")x m;q) = q"f (x, m; q). (10)

Properties (a)-(d) above define meromorphic quantum Jacobi forms, a concept which
is further studied in [41]. Although the above statements are largely conjectural for the
partition function of complex Chern-Simons theory, we have the following result (see
Theorems 14, 16, 22, 24).

Theorem 1 The above statements hold for the 4, and 5, knots.
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We also study the Taylor series expansion of Equations (4), (6) and (8) at # = 0 noting
that the left-hand side of the above equations are entire functions of #, whereas the right-
hand side are a priori meromorphic functions of u with a pole of order r at zero. More
precisely, in Sects. 3.1 and 3.2 we prove the following.

Theorem 2 For the 41 and 5 knots, Equations (4), (6) and (8) can be expanded in Taylor
series at u = 0 whose constant terms are expressed in terms of the q-series of [29].

1.4 Perturbative series and their resurgence

We now discuss the resurgence properties of the asymptotic expansion of the state-
integral Zy;(u; t). Once we fix an integral presentation of Zys(u; t), the critical points of
the integrand are described by an affine curve S defined by a polynomial equation

S:pxy) =0. 1)

We denote by P the labeling set of the branches y = y, (x) of S. The perturbative expansion
of the state-integral has the form

V(u,v)

O y;1) =erm o y;1), e yT) € %Q[xi,yi,é‘ll[[hir]] 12)

where V' : §* — C/(2ri), S* is the exponentiated defined by p(x, y) = 0 with x = €%,
y = —e” and § € Q(x, y) is the so-called 1-loop invariant. The asymptotic series ¢(x, y; T)
satisfies ¢ (x, y;0) = 1. The 8-th root of unity that appears as a prefactor in ¢(x, y; 7) exactly
matches with one appearing in the asymptotics of the Kashaev invariant noticed in [45,
Sec.1]. After choosing local branches, we define the vector ¢(x;7) = (¢5(*;7))oep =
(@(x, ¥5(x); T))oep of asymptotic series. Recall the vector of holomorphic blocks B(x; ¢)
from (4). We now discuss the relation between the asymptotics of B(x; g) when g = ™%
and t approaches zero (in sectors) and the Borel resummation s(®) of the vector of power
series ®(x; 7).

The next conjecture summarizes the singularities of ®(x; t) in the Borel plane, the
relation between the asymptotics of the holomorphic blocks with the Borel resummation
59 (®)(x; 7) as well as the properties of the Stokes automorphism matrices S, whose detailed
definition is given in Sect. 2.

Conjecture 3 (a) The singularities of @, (x; T) in the Borel plane are a subset of
W 6" eP, kel k=02 (13)

where

V(o) — V(o'
Lff’f? = M + 2mik 4 £logx (0,06 €P, ktel). (14)
g i

In particular, the set of trans-series is labeled by three indices, 0 € P and &k ¢ € Z, and
they are of the form @, (r)g*zt.

(b) On each ray p in the complement of the singularities of ®(x; r) in Borel plane, there
exist a matrix M, (%; §) with entries in Z[%%1[[4]] such that

A(T)B(x; T) = My(%; §)s, (P)(x; 7). (15)
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(c) The Stokes matrices S*(x, g), S~ (%, g~1) are given by

Stsq) = Woate g D) Woils )t STg ) =Woilsg) - Woie g HT
(16)

where = means equality up to multiplication on the left and on the right by a matrix in
GL(r, Zlx™)).

(d) The Stokes matrix S uniquely determines the Stokes matrices at each Stokes ray, and
the Stokes constants are integers corresponding to the Donaldson—Thomas invariants in
[53-55] and the BPS degeneracies in [37,39].

(e) The Stokes matrices satisfy the inversion relation

ST s (g =1. (17)

The Stokes automorphism matrix has an interesting connection to physics which we
now discuss. Given a hyperbolic knot K in S, one can construct a three-dimensional
N = 2 supersymmetric theory T associated with the knot complement M = S3\K [18]
(see also [66]), whose BPS invariants are conjectured to coincide with the Stokes constants
of s(®)(x; T). This conjecture can be made more precise in the following manner. The BPS
invariants of Ty are encoded in the 3D-index Zg (m, e)(q) labeled by two integers (1, e)
called magnetic and electric fluxes, respectively [18]. One can further define the 3D-index
in the fugacity basis (also known as the rotated index) by [17]

Indie*m, £3q) = Y _ T (m, €)(q)t". (18)
ec

The 3D-index is a topological invariant of hyperbolic 3-manifolds with at least one cusp
(see [31]). And it can be evaluated using holomorphic blocks B% (x; q) by [7]

Ind'(m, £5q) = Y Bi(q"*¢;q)BE (g™ g7 ). (19)

We have observed the following relation between the Stokes matrix and the rotated 3D-
index and have proven it for the case of the 4; and 5; knots using the explicit formulas
for the Stokes matrices.

Conjecture 4 For every hyperbolic knot K, we have

St(x;q) = (Indﬁ?t i — i, q%x; q)) ol (20)
i,j=0,1,...

where = means equality up to multiplication on the left and on the right by a matrix in
GL(r, Z(x, q)). In particular, we find

S;lm (xq) = Ind;?t(of %q), (21)

where the equality is exact. This holds true for the 41 and the 5; knots.
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We comment that the 3D-index itself also has asymptotic expansions which are studied
in [43].

One consequence of (15) is that (after multiplying both terms of (15) by the inverse of
Mp(%; 7)), we can express the Borel resummation of the factorially divergent series ®(7)
in terms of descendant state-integrals which are holomorphic functions in the cut plane
C' = C\(—o0, 0].

Another consequence of the g-holonomic module defined by the annihilation ideal Z; is
a refinement of the A-polynomial of a knot as well as a new B-polynomial whose classical
limit is new. The refinement comes in the form of a new variable g where m is the
descendant variable, whose geometric meaning is not understood but might be related to
some kind of quantum K-theory, or perhaps related to the Weil-Gelfand—Zak transform
of [2]. This refinement does not seem to be directly related to other refinements of the
Z—polynomial, as those considered in [6,25,36]. At any rate, the g-holonomic ideal Zy;
contains unique polynomials ZM (Sx % g™, q) € Wand EM (Sm> g™ %, q) (of lowest degree,
content-free) that annihilate the functions zy . x (&; T) in the variables (1, x).

Conjecture 5 When M = §3 \ K is the complement of a knot K, then

(a) ZM(S,C, %, 1, q) is the homogeneous X—polynomial of the knot [26] and ZM(Sx, % 1,1)
is the A-polynomial of the knot with meridian variable x*> and longitude variable
Sy [11]

(b) EMQ/, x, 1, 1) is the defining polynomial of the curve S.

In Theorems 17 and 25, we prove the following.

Theorem 6 Conjecture 5 holds for the 41 and 59 knots.

1.5 Disclaimers
We end this introduction with some comments and disclaimers.

The first is that that there is no canonical labeling of holomorphic blocks by P. Instead,
the holomorphic blocks B(x; g) is an r x 1 vector, Mg are r x P matrices for all R, W, (x; q)
are r X r matrices and S are P x P matrices and where r is the cardinality of P.

The second is that the entries of the matrix W, (x; g) are holomorphic functions of g/~
for |g| # 1, where N is a natural number (the “level” of the knot) being one for the 4
and 57 knots, but being 2 for the (-2, 3, 7)-pretzel knot. For instance, the entries of the
matrix Wo(x; ¢) are power series in g'/2 [45]. This phenomenon was observed first in [45]
in a related matrix-valued Kashaev invariant of the knot as well as in [44] in a matrix
of g-series associated with the three simplest hyperbolic knots and replaces the modular
group SL(2, Z) by its congruence subgroup SL(2, N). In our current paper, we will assume
that N = 1.

The third comment involves the crucial question of topological invariance. Strictly
speaking, the curve S in Equation (11) and the vector of power series ®(x; 7) depend
on an integral representation of Zs(u; 7), determined, for instance, by a suitable ideal
triangulation of M as was done in [3]. On the other hand, the vector of power series ®(x; 7),
its Stokes matrix S(x; g) and the g-holonomic module generated by the matrix W, (x; 7)
are expected to be topological invariants of M. Even if we fix an ideal triangulation, and
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we fix the g-holonomic module, the fundamental solution matrix Wy, (x; t) in general has
a potential ambiguity, which we now discuss.

Lemma 7 Suppose that a matrix W, (x; q) satisfies the following properties:

o It factorizes the state-integral (4),
o It is a fundamental solution matrix to a q-holonomic module,
o It satisfies the orthogonality equation (8)

-

It satisfies the analytic conditions of (a) above.

Then, Wy, (x; q) is uniquely determined up to right multiplication by a diagonal matrix of
signs.

Proof Any two fundamental solutions of a g-holonomic system differ by multiplication
by a diagonal matrix diag(E(x; g)). If both fundamental solutions satisfy (4) and (8), it
follows that each E(x; q) satisfies

E&g YEwq) =1  E@xqEMxqg ) =1. (22)

Thus, E(x; ¢~ 1) = E(%; ¢~ !) and after replacing b by b~1, it implies that E(x; ) = E(%; §).
It follows that E(gx;q) = E(x;q) and E(G%;§) = E(X;G). In other words, E is elliptic.
Condition (a) implies that the poles of E(x; g) are a subset of ibZ + ib~'7Z for |q| # 1.1t
follows from E(x; q)E(x; g ') = 1 that both the poles and the zeros of E(x; q) are a subset
of ibZ + ib=17Z and each pole and zero has order at most r. Thus, E(x;¢) and 1/E(x; q)
are a polynomial in the Weierstrass polynomial p(x; ) with coefficients independent of
x, and this implies that E(x; q) = g(g) is independent of x, where g is a modular function
with no zeros in the upper half plane, and hence, g is a modular unit [48]. There is none
for SL(2, Z) (see [48]), and hence, g(q) = £1. Hence, W,,(g; x) is well defined up to right
multiplication by a diagonal matrix of signs. O

1.6 Further directions

In this short section, we make some comments about future directions. The factorization
of the state-integral (1) and its descendant version (4) into a matrix points toward a TQFT
in 4 dimensions where the vector space associated with a 3-manifold is labeled by P.

In another direction, as shown in [39,49], in N/ = 2 theories in four dimensions, the
BPS invariants can be studied by applying WKB methods to their Seiberg—Witten curve.
Since, in complex Chern—Simons theory, the A-polynomial curve plays in a sense the
role of a Seiberg—Witten curve [42], one could study it with the techniques of [39,49],
further extended in [8,9,22] to curves in exponentiated variables. It would be interesting
to see one can obtain in this way the BPS invariants directly from the A-polynomial of the
hyperbolic knot.

Peacock patterns of Borel singularities, with integer Stokes constants, are likely to appear
in problems controlled by a quantum curve in exponentiated variables. An important
example is topological string theory on Calabi—Yau threefold, and indeed, peacock pat-
terns can be observed in, e.g., [15]. It would be very interesting to understand the resurgent
structure in these examples and work along this direction is in progress.
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2 Borel resummation and Stokes automorphisms
2.1 Borel resummation
In this section, we briefly review the process of Borel resummation of a factorially divergent
series, its Laplace integral along rays and the corresponding Stokes automorphism across
a Stokes ray. The material in this section is classical and well known and is explained
in detail in the books [14,56,60], and in the references therein. We will be following the
physics convention of Borel resummation as found, for example, in [58, Sec. 3.2] and [73,
Sec.42.5], which differs by a factor of v from the Borel resummation found in the math
literature.

Borel resummation is a 2-step process to pass from a factorially divergent series F(t) to
the analytic function s(F)(t) defined in the right half plane Re(r) > 0 summarized in the
following diagram

-~

F(t) ~ F(Z) ~ s(F)(7). (23)

Here, one starts with a Gevrey-1 a formal power series F(t)
o
Fr)=)Y fit", fu=0(C"n) (24)
n=0
and defines its Borel transform f({) by
—
~ fo .
Foy=) ¢ (25)
n=0

It follows that F is the germ of an analytic function at ¢ = 0. If it analytically continues to
an L!-analytic function along the ray py := el R where § = arg 7, we define its Laplace
transform by

o)) = [ Feoetac = - [ Foeiirag (26)
0o

The function s(F)(t) is often called the Borel resummation of the formal power series F,
and we often suppress the subscript & = 0 when 7 is real and positive. If we vary 6 = arg t
and we do not encounter singularities of F, the function so(F)(7) is locally analytic. Thus,
the problem is to understand the analytic continuation of Fand to analyze what happens
to the Borel resummation sp(F)(t) when 6 = arg(r) crosses a Stokes ray, i.e., a ray in
Borel plane that contains one or more singularities of F. This is described by a Stokes
automorphism.

2.2 Stokes automorphism

We will specialize our discussion to the series of interest, namely to the Borel transform
a;(x; ¢) of the vector of series ®(x; 7). The singularities of ®(x; r) are conjectured to be in
the set (13) that generates a set of Stokes rays whose complement is a countable union

of open cones in Borel plane. When 6 is in a fixed such cone C, the Laplace transform
59(P)(x; 7) depends on C but not on 6. To compare two adjacent such cones, let L((f(];?

denote one of the singularities of @, (x; ), 0 denote its argument and p = e?IR, denote
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the corresponding Stokes ray. When x is generic, a Stokes ray contains a single singularity
and the Laplace integrals to the right and the left of p are related by

5+ (6) (85 7) = 55- (Po) (@5 7) + SN gKs9- (@) (33 7), (27)

where S((f i is the Stokes constant. In matrix form, the above formula reads

5o+ (P) (x5 ) = G (%; @)sp— (P)(x; T) (28)
where
So®q) =1+ 2 7 E, o (29)

where E, , is the elementary matrix with (o, 0’)-entry 1 and all other entries zero.
More generally, consider two non-Stokes rays pg+ and py- whose arguments satisfy
0 < 6% — 6~ < 7. Then, the Laplace integrals are related by

sg+ (D)% T) = Sp—— 0+ (& 7)s9- (P) (x; T) (30)

where the Stokes matrices satisfy the factorization property

So—or®) = [] Gv&2) (31)
0-<6<0t

where the ordered product is taken over the Stokes rays in the cone generated by py- and
pg+. This factorization is well known in the classical literature on WKB (see, for instance,
Voros [67, p.228] who called it the “radar method” for obvious visual reasons). In our case,
there are four special non-Stokes rays denoted by

I=eRy, H=€eT9R,, 1I=eT9R,, V=@ 9R, (32

(for € > 0 and sufficiently small) that belong to the four distinguished cones (labeled
LI I, 1V) adjacent to the real axis and free of Stokes lines. The corresponding Stokes
matrices

ST#:q) = S1-u®q) Srv—1(® ), ST(#q) = Cm—1v®q§) SusmEg) (33)

that swap two complementary and nearly horizontal half planes separated by a line L are
the ones that appear in Conjecture 3. They are related to the matrices M, in the second
part of that conjecture by

Sr-u®q) = My@E) ™" - Mi(%q), 13 <1
Su—wE&g =My &g ) Mg "), gl <1
Sv-1x%q) =M I(x:q» My (% q),
Su—m(®q) = Mum(%4) ™" - My (% 7). (34)

We now come to an important feature of our resurgent series, a unique factoriza-
tion property for the Stokes matrices reminiscent of the “stability data” description of
DT-invariants in Kontsevich-Soibelman [53-55]), and of the properties of BPS spectrum
generators in Gaiotto-Moore-Neitzke [37-39].
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Lemma 8 S uniquely determines Gy for all 6.

Proof Without loss of generality, we will show that ST uniquely determines the Stokes
matrices Gy for all 6 such that —¢ < 6 < 7w — ¢ for ¢ > 0 and sufficiently small. We have

St q) = ]_[ (U + 8803 4y ) (35)
0,0,k

where the product is over all the singularities above the line L. The entries of the above
matrices are in the ring Z[%%][[7]]. For each fixed natural number N, there are only finitely
many horizontal lines of singularities in Borel plane, of height at most N and within those,
there are finitely many #-dots. It follows by induction on & that the finite collection {Sl(f’: ) }e
is uniquely determined from S™(%; §). O

It follows that we can repackage the information of the Stokes constants in two matrices
St and S~ defined by

®q) = }}ﬁﬁfkg (36)

where the sum in ST (resp. S7) is over the singularities above (resp., below) L. The
matrices S*(#; §) appear to have some positivity properties; see Sects. 5.4 and 6.4 for the
47 and the 5; knots.

3 A summary of the story whenu =0
In this section, we recall briefly the results from [29] for our two sample hyperbolic knots,
the 44 and the 5, knot.

3.1 The 47 knotwhenu =0
The state-integral of the 4; at u = 0 is given by

Za,(0;7) = / Dp(v)2e ™V dy. (37)
R-+i0
The critical points of the integrand are the logarithms of the solutions £ = €7/ and
& = e~ 271/% of the polynomial equation
1=y -y =1 (38)

The labeling set P = {01, 02}, where o7 corresponds to the geometric representation of
the 41 and o7 to the complex conjugate of the geometric representation. Observe that &;
(resp., &) lie in the trace field (Q(v/—3) (resp., its complex conjugate) of the 4; knot, where
Q(+/—3) is a subfield of the complex numbers with /—3 taken to have positive imaginary
part.

The first ingredient is a vector of formal power series

®(1) = (q"’l (’)) (39)

by, (1)
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defined by the asymptotic expansion of the state-integral (37) at each of the two critical
points, and which has the form

Py () = exp (V(f’)) 00(2), (40)

2wit

satisfies the symmetry @, (t) = i®,, (—7), where
V(01) = iVol(41) = i 2Im Lip(e/3) = 12.029883. .. . (41)

with Vol(41) being the hyperbolic volume of 4; and the first few terms of ¢, (t/(271)) €
3-1/4Q(v/=3)[[]] are given by

T 1 11t 69772 72435113
%1( )— ( ) (42)

=B\t S T sy 3002v 3

2mi

The second ingredient is a vector G(g) = (g?$> of g-series defined for |g| < 1 by

n(n+1)/2

G°(g) = Z( 1)”"( " (432)
n(n+1)/2 J

Gl =Y -1 e q)+221+" , (43b)

n=0

where Ei(q) =1 —4) 72, q"/(1 — q") is the Eisenstein series, and extended to |g| > 1
by G%(g!) = G%(g) and G'(g7!) = —G'(q). These series are motivated by, and appear
in, the factorization of the state-integral of the 4; knot given in [33, Cor.1.7]

200 = (4)" (Ve w6 0 - =we' @), weT\R) @y
q VT
where
q= eZnir’ G = 672ni/t‘ (45)

The above factorization follows by applying the residue theorem to the integrand of (37),
a meromorphic function of v with prescribed zeros and poles. In particular, the integrand
of (37) determines the g-hypergeometric formula for the vector G(g) of g-series. Below,
given a g-series H(q) defined on |g| # 1, we denote by /(1) = H(e*"'¥) the corresponding
holomorphic function in C \ R.

The vector G(q) of g-series and the vector of asymptotic series ®(t) come together when
we consider the asymptotics of diag(%, 4/T)g(7)inthe T-plane (as was studied in [44]) and
compare them with the Borel summed vector ®. Recall that when the Borel transform
of an asymptotic series has singular points ¢; in the Borel plane, the rays (Stokes rays)
emanating from the origin with angle 6 = arg; divide the complex plane into different
sectors. When one crosses into neighboring sectors, the Borel sum of the asymptotic series
undergoes Stokes automorphism. In the case of the vector of asymptotic series ®(t), the
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Poy (1) 9902(7)

112 = Vol(4,) /7 oy = —Vol(4y)/m

Fig.2 The singularities in the Borel plane for the series ¢, (0; ) forj = 1,2 of knot 4,

singularities of the Borel transforms of its two component asymptotic series are located

at

Li,jzw, Lj=12 1i#}j (46)
as well as

2mik, 1+ 2mik, k€ Zxo, (47)

forming vertical towers as illustrated in Fig. 2. In particular, the two singularities t1,2, t21
are on the positive and the negative real axis. We pick out four sectors which separate
the two singularities on the real axis and all the others, and label them by I, II, II, IV, as
illustrated in Fig. 3. The relation between the vector G(g) and the Borel summed vector
®(7) depend on the sector R. In [29], we found out that we do not get an agreement, but
rather both sides agree up to powers of the exponentially small quantity g, and what is
more, several coefficients of those powers were numerically recognized to be integers. In
other words, we found that

1

NG V1)g(v) = MRr(G) sr(®)(7). (48)

diag(
where diag(v) denotes the diagonal matrix with diagonal given by v and Mg(g) is a matrix
of g-series with integer coefficients.
To identify the matrices Mg, we used the third ingredient, namely the linear g-difference
equation

Ym+1q) — 2 = g"m(q) + ym-1(g) =0  (m € Z). (49)

It has a fundamental solution set given by the columns of the following matrix

G Gl

Wiu(q) =
@ <G9n+1(‘1) Gr1n+1(q)

), (lq] # 1) (50)
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Fig.3 Four different sectors in the 7-plane for ®(0; ) of knot 4,

where G,,(q) = (g%EZ; ), and an(q) and G,ln(q) are defined by

n(n+1)/2+mn

G%q) = (-2

_— (51a)
. 7)2
s CR
00 n(n+1)/2+mn n 14+ J
Gh@ =Y T — [2m+ B +2). L |, (51b)
n=0 (q’q)n j=1 1 —q

for |q| < 1andextendedto|gq| > 1by G’,}, g\ = (—1)/G{,,(q). Observe that Go(g) = G(q),
the vector that appears in the factorization (44) of the state-integral Z4, (0; 7). The matrix
W, (g) of holomorphic functions in |g| # 1 satisfies several properties summarized in the
following theorem.

Theorem 9 W, (q) is a fundamental solution of the linear q-difference equation (49) that
has constant determinant

det(W;,(q)) = 2, (52)

satisfying the symmetry

Worlg ™) = Won(q) (; _01) , (53)
the orthogonality property

1 01 r_ (01

5 V(@) (_1 0) Winlg)" = (_1 O) (54)
as well as

1 01

5 Wm(@) (_1 0) Wel)" € SL(2 Zlg™]) (55)

for all integers m, £ and for |q| # 1.
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Conjecture 10 Equation (48) holds where the matrices Mg(g) are given in terms of
W_1(q) as follows

Mi(q) = Woa(g)” <(1) :1) a1 <1, (56a)
My(q) = (3 _°1> Woi(@)" (i _01) lal < 1, (56b)
M (q) = W-1(g™ )" (1 ?) lal > 1, (560)
My (q) = (é _°1> Woalg ! (i’ 1) gl > 1. (564)

Assuming the above conjecture, we can now describe completely the resurgent structure
of ®(7). The Stokes matrices are given by

ST(q) = G- u(q)S1v-1 ST (q) = G- @S-, (57)
where

Gr-1u(q) = Mu(q) " Mi(q) Gur—1v(q) = M (g ) "M (qg™") (58a)

Srv—1 = Mi(q) " My (q) Su—m = Mui(q) " M (q). (58b)

(Compare with Equations (33) and (34) after we set ¥ = 1 and replace g by g). Note that

1

since M;(q), M1(q) and My (q), Myv(q) are given, respectively, as g-series and g~ -series

in (56a),(56b) and (56¢),(56d), analytic continuation as discussed below (51b) is needed
when one computes Sy, 1, Sy 1 in (58b). Using (52)—(55) we can express the answer
in terms of W_;(g). Explicitly, the Stokes matrices are given by

S*(q) = % ((1) ‘f) W_1(g) (j) 3) W_(g)" (i’ ‘21>, gl <1, (59)

(@) = 5 (‘01 ‘11) ) (;’ ;) W) (_12 ;’) gl<1.  (5%)

In the g — 0 limit,

ST0) = ((1) i) S(0) = (_13 (1)) (60)

whose off-diagonal entries —3, +3 are Stokes constants associated with the singularities
15,1 and ¢12 on the negative and positive real axis, respectively, and they agree with the
matrix of integers obtained numerically in [30,45]. In addition, we can assemble the Stokes
constants into the matrix S of Equation (36) (after we set ¥ = 1 and replace g by g). The
resulting matrix S*(q) has entries in gZ[[g]], and we find

St (@) =ST(q)11 — 1
= —8q — 9¢° + 184" + 464" + 904° + 624° + O(q"), (61)
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St on(@ =S (@)12/5T (@11 — S,

=9q + 75¢* + 6424° + 5580q" + 485584° + 422865¢° + O(q’), (62)
St o @) =ST(@)21/5T (@11

= —9q — 754> — 6424° — 5580q* — 48558¢° — 4228654° + O(q”),  (63)
St on@ =5T(@)22 — 1 = ST (@125 (@)21/5T (@11

=8¢ + 73¢* + 6384° + 5571q" + 485384° + 4228194° + O(q"). (64)

We notice the symmetry

S = —8N, fork e Z-o, (65)

,2

which is due to the reflection property ¢q, (—7*) = ¢4, (7)* of the asymptotic series. Also
experimentally it appears that the entries of the matrix S*(g) = (S&ZG/ (q)) (except the
upper-left one) are (up to a sign) in N[[g]]. Similarly, we can extract the Stokes constants
Sf{g/) associated with the singularities in the lower half planes and collect them in g~ -

series S;l_,(,/_ (g~1) accordingly, and we find

SER = _stHh i i and TR = 8RN SCH — SR for k € Zo,

0,0 U, ,0; 7 01,01 02,02’ 02,02 01,01

(66)

A non-trivial consistency check in the above calculation is that the matrices &/—1(g)
and &;_, ;7(g) should come out to be independent of g and coincide with S~(0) and S*(0).
That is exactly what we find.

The fourth and last ingredient, which makes a full circle of ideas, is the descendant
state-integral of the 47 knot

Zlh,m,u(oﬁ') — / q>b(V)2 efniv2+2n(mbfp,b—1)v dv (m, 1 € 7). (67)
D

The integration contour D asymptotes at infinity to the horizontal line Imv = vy with
vo > |Re(mb — ub~1)| but is deformed near the origin so that all the poles of the quantum
dilogarithm located at

cp +ibr +ib7ls, 15 € Zsg, (68)

are above the contour. The integral Zy, ,, ,,(0; ) is a holomorphic function of T € C’ that
coincides with Zy, (0; 7) when m = u = 0 and can be expressed bilinearly in G,,(g) and
G.(g) as follows
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_ .om_pn (g %1 . 1 -
Zaymp(0;7) = (1) #Flig2 g2 (5) 3 (ﬁGﬂ(q)G,lﬂ(q) — fG}L(q)G&(qO :
(69)
It follows that the matrix-valued function
o1 (/T 0
Winu(T) = (W@ )™ ( 0 ﬁ> Wonlg)" (70)

defined for r = C \ R has entries given by the descendant state-integrals (up to multipli-
cation by a prefactor of (69)) and hence extends to a holomorphic function of t € €’ for
all integers m and p. Using this for m = —1 and i = 0 and the orthogonality relation (54),
it follows that we can express the Borel sums of ®(7) in a region R in terms of descendant
state-integrals and hence, as holomorphic functions of T € €’ as follows. For instance, in
the region  we have

s(@)(r) = My ()" (%gé’(f)) . (z)‘;‘* <Z41,o,o(0:r> - 511/2241,0,_1<o;r>>

V78 () q Z41,0,0(0;7)
(71)
This completes the discussion of # = 0 for the 4; knot.
3.2 The 5; knotwhenu =0
The state-integral of the 55 at u = 0 is given by
Z5,(0;7) = / Dp(v)3 e 2Ty, 72)
R+i0

The critical points of the integrand are the logarithms of the solutions &; ~ 0.78492 +
1.30714i, & &~ 0.78492 — 1.30714i and &3 ~ 0.43016 of the polynomial equation

1—-y?° =5 (73)

The trace field of the 55 knot is Q(&;), the cubic field of discriminant —23, which has
three complex embeddings labeled by oj for j = 1,2, 3 corresponding to the x;, and the
labeling set is P = {01, 02, 03}, where o1 corresponds to the geometric representation of
the 5, knot, oy to the complex conjugate of the geometric representation and o3 for the
corresponding real representation.

The first ingredient is a vector of formal power series

d)(T] (T)
O(7) = | Py, (1) (74)
Doy (1)
where

Im V(o1) = —Im V(03) = Vol(5,) = 2.82812.. .. (75)
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is the hyperbolic volume of the knot 5; and the first few terms of (pg/.(r/ (27i)) €
8/._1/2(@(5]-)[[1']] are given by

. ~387 +35 -2\ /"
$oj (ﬁ) - 23

( —242E% 4 209¢ — 454 12643£2 — 22668¢ + 25400 9
x 1+ + T

T
22932 25 . 233
3544387052 + 856427615 — 164659509 5
). 76
+ 2735235 T (76)

The second ingredient is two vectors H(gq) = (HJ ) H1+ 4) H;r (@)T and H™ (q) =
(Hy (q), Hy (q), Hy (@)T of g-series defined for |q| < 1 by

Hi =Y T (772)
q) = ’ 77a
° = (g:9);
+ o " (n)
H{(q) = Z GaP (1 + 2n — 3E} (q)) , (77b)
n=0 ‘1’1/n
+ o gt M 2 apd L
=Y (<1+2n—3E1 (@) — 3E (q)—gmq)), (770
n=0 ’1/n
and
o Ln(n+1)
_ q?
Hy(q)= ) (=1)" ; (78a)
° n;) (:9)3
o Lutn+1)
— nq? 1 (n)
Hi(g)=) (-1) (— +n—3E (61)) , (78b)
! ,12:(:) (@95 \2 '

oo q%n(n+1) 1 " 9 " 1
— _ n
Hy @) = S0 (G =38 @) <360 - Ri), (80
= @9
where
© -1 ,s(n+1)
() s 'q
El (6]) = Z 1— qs (79)
s=1

The two sets of g-series can be extended to |g| > 1 and are in fact related by H, ,j' (@ " =
(—l)kH]: (9), and define a g-series Hy(q) for |q| # 1 by

H{ (q) gl <1
Hp) =y " (80)
(=D)*H (g7 lq] > 1.
Likewise, we define holomorphic functions /g (z) in C \ R by
H+ 2mit , 1 0
ey = L€ mo) >0 o0, (81)

(—DFH (e7277),  Im(z) <0
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©oy(T)

l12

L21

Pay(T)

03

L23

13,1

* g003(7')

432

Fig.4 The singularities in the Borel plane for the series Po; (0;7) forj = 1,2, 3 of knot 5,

These series appear in the factorization of the state-integral of the 5, knot given in [33,
Cor.1.8]

Z5,(0;7) = —? (Z) ’ (tH, (§)H, (q) — 2H; (§)H;' (9)

+t7 Hy (Hy (9)), (€ C\R). (82)

The above factorization follows by applying the residue theorem to the integrand of (72),
a meromorphic function of v with prescribed zeros and poles. In particular, the integrand
of (72) determines the g-hypergeometric formula for the vectors H(g), H ™ (q) of g-series.

As in the case of the 4; knot, multiplying the vector 4(t)T = (ho(t), h1(t), ha(7))T by
the automorphy factors diag(z ~1, 1, 7) (dictated by (82)), and looking at the asymptotics
as T approaches zero in sectors, we found that

e’ diag(r ™1, 1, 1)h(r) = Mp(@) se(®)(), (83)

where the right-hand side depends on the sectors of Borel resummation. The Borel plane
singularities of the component series of the vector ®(r) are similarly located at

_ Vl(oi) = V(o))

Li’j - T) l)] = 1) 2} 3;l 7&]; (84)
as well as
2mik, j +2mik, k€ Zxo, (85)

which form vertical towers as illustrated in Fig. 4. In particular, the two singularities t12, (21
are on the positive and negative real axis. We pick out the four sectors which separate
the two singularities on the real axis and all the others and label them by I, II, III, IV, as
illustrated in Fig. 5.

To identify the matrices Mg, we consider the third ingredient, the linear g-difference
equation

(@) = 39m41@) + B — @ Ymi2(@) — Yma3l@) =0 (m e Z), (86)
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~ I

ur NS v

Fig.5 Four different sectors in the 7-plane for ®(0; ) of knot 5, and the line L that divides the t-plane

They have fundamental solution sets given by the columns of the following matrix

Wi (q), lql <1
001 100
Wm(Q)= _ 1 (87)
010|WZ, 5(¢)]o-10]|, Igql>1.
100 001

where the matrices W, (g) with ¢ = = are, respectively,

Hg,.(q) Hi,(q@) H;,(q)
W@ = | HS i1 (@) H (@) HS @) | (gl # 1) (88)
Hg,m+2(q) Him+2(q) H28,m+2(q)

with entries the g-series

o0 qn(n+1)+nm

Hi @) =) ——=—, (89a)
0,m ~ (q; q)i;l
X n(n+1)+nm
q (n)
HT (q) = 1+ 2n+m—3E"(q), (89b)
1Lm —~ (q; q)i ( 1 )
0 qn(n+1)+nm " ) " 1
Hi @) =) —F——5— ((1 +2n+m—3E"(q))" —3E; (q) — —E2(q) |, (89¢)
’ = @D 6
and
o lrt(;/l-l—l)-i—;/lm
_ qz2
Hy, (@) =) (-1)'"——m—, (90a)
0 ,,X:(:) (@3
1
g a(n+1)+nm 1
Hipl@) =Y (1T (— +ntm— 3E§”)(q)) : (90b)
’ = @a)y \2
S Lyu(n+1)+nm
- q? 1 M W2 _ 2p) 1
H;,(q) = (—1)“—( ~4ntm=3E"(q) —3E"(q) ~ —E:Aq) ),

(90c)
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for |g| < 1 and extended to |g| > 1 by the relation H,jm(q’l) = (—l)ka__m(q). Observe
that H; ,(q) = H} (). The matrix W}, (q) of holomorphic functions in |q| # 1 satisfies
several properties summarized in the following theorem.

Theorem 11 W,,,(q) is a fundamental solution of the linear q-difference equation (86)
that has constant determinant

det(W,(q)) = 2, (91)

satisfying the orthogonality property

1 001 10 0
5 Wm-1l@) [ 020 Womoi(@HT =00 1 |. (92)
100 013—g™
as well as
1 001
5 Wmla) {020 We(g™h)T e SL(3, ZIg™)) (93)
100

for all integers m, £ and for |q| # 1.

Conjecture 12 Equation (83) holds where the matrices Mg(g) are given in terms of
W_1(q) as follows

0 01
Mi(q)=W_i@" | -1 3 o], lg| < 1, (94a)
0 -10
100 0 01
Myg@=]o-10] W@t | 3 -10], lq] <1, (94b)
001 100
0 01
Mu(q) = W_i(@' | -1-10], lq] > 1, (94c)
100
100 0 01
M) =|o-10| woi(@)T | -1-10], Iq] > 1. (94d)
001 0 -10

Assuming the above conjecture, we can now describe completely the resurgent struc-
ture of ®(7), following the same computation as in the case of the 49 knot. The Stokes
matrices are given by (57)—(58b). Note that since M;(q), My (g) and My (q), Mry(q) are
given, respectively, as g-series and g~ !-series in (94a),(94b) and (94c),(94d), analytic con-
tinuation as discussed below (79) is needed when one computes &y, S 7 in (58b).
Using (91)—(93), we can express the answer in terms of W_;(g). Once again, we find
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that the Stokes matrices &y 1(q) and &y ;;7(q) are independent of ¢, consistent with
semiclassical asymptotics. The Stokes matrices are given by

1 010 001 00 -1
s+(q)=E 0o11|woi@Hlo—20|wWoi@F |11 0|, Ig<1 (95a)
—100 100 01 0
1 03 -1 001 0 01
S@=5|0-10 [Wa@[o-20 w_oi@ HT| 3 —10]|, 1g9l<1
10 O 100 -1 00

(95b)

These Stokes matrices completely describe the resurgent structure of ®(t). They also
satisfy other statements in Conjectures 3 and 4 whenx = 1. The ¢ — 0 limit of the Stokes

matrices factorizes

1 00\ {100\ (140
ST(0) =803,0,6065,0,801,0,=| 0 10| ]010]]010], (96)
-301/ \0o31/ \oo1

103\ (10 0 100
$7(0) =60,,05600,058000, = |010] 01 3| | -410], (97)
001/ \oo 1 001

where the non-vanishing off-diagonal entry of &4, is the Stokes constant associated with
the Borel singularity ¢;;. Assembling these off-diagonal entries in a matrix, we obtain the

matrix

043
-4 0 -3 (98)
-33 0

that was found numerically in [45, Sec.3.3]. In addition, we can assemble the Stokes
constants into the matrix S of Equation (36) (after we set ¥ = 1 and replace g by ¢). The
resulting matrix S*(q) has entries in gZ[[g]], and we find

Sihon =S (@11 -1

o101

= — 12q + 3¢° + 74¢° + 904" + 33¢4° + O(¢°), (99a)
S 5, =129 + 141¢* + 15204° + 17397¢* + 1919704° + O(q°), (99b)
S} oy =4 +3¢% + 9¢° + 304" + 994° + 0(¢°), (99¢)
S o =—12q — 141¢* — 15204° — 173974* — 1919704° + O(¢°), (99d)
S 4, =12q + 141q” + 15824° + 175834* + 194703¢° + O(¢°), (99e)
S 5y = — 21q — 235q° — 25864° — 285934* — 3161044° + O(q°), (99f)
Sty =—4a — 34" —99° —30q" —99¢° + O(¢°), (99g)
S 5, =21q + 235q> + 25864° + 28593¢" + 3161049° + O(¢°), (99h)
St . =0. (99i)

03,03
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The Stokes constants enjoy the symmetry

0i,0j T0(i) Tp(j)’

Sk _ _gk) i#j, forkeZso, (100)

with ¢(1) = 2,¢(2) = 1, ¢(3) = 3. We notice that the entries of the matrix ST(g) =
(S

(7,',(7]'

(q)) (except the upper-left one) are (up to a sign) in N[[g]]. Similarly, we can extract

the Stokes constants S((,l_(],:) associated with the singularities in the lower half plane, and

we find
S((,l—(’;/) = _Sé;:lr(i)’ i #j, and S‘(’,_tl;:) = Sé:(]i()?%(i)’ fork € Z-o. (101)

The fourth and last ingredient, which makes a full circle of ideas, is the descendant
state-integral of the 55 knot

ZSz,m,M(O; T) — / (Db(l/)g e—2niv2+27'r(mb—ll.b_1)v dv (WZ, e Z) (102)
D

Here, the same contour D as in (67) is used. It is a holomorphic function of T € C’ that
coincides with Zs, (0; ) when m = u = 0 and can be expressed bilinearly in H ]:Lm(q) and
H,_ M(c”]) as follows

%i m 8
Zspmul037) =11 E g g (z)
q

(7 Hop @H3, (@ = 2Hy, @HS,,(@) + 7~ Hy (@HG, (@) - (103)
It follows that the matrix-valued function

=100
Winu(t) = (W@ 0 10| Wl (104)
0 0t

defined for = C \ R has entries given by the descendant state-integrals (up to multipli-
cation by a prefactor of (103)) and hence extends to a holomorphic function of t € C’ for
all integers 7 and . Using this for m = —1 and & = 0 and the orthogonality relation (92),
it follows that we can express the Borel sums of ®(7) in a region R in terms of descendant
state-integrals and hence, as holomorphic functions of 7 € €’ as follows. For instance, in
the region / we have

. T ho(7) q —1 (Z5,,00(0;T) — §"/*Z5,,0,-1(0; 7)
a@@) = Fm@ | m@ | =i (—) Z5,00(0:7)
Thy(7) 1 G Y?Z5,01(0;7)
(105)

This completes the discussion of # = 0 for the 5; knot.
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4 Holonomic and elliptic functions inside and outside the unit disk
An important property for the functions of a complex variable g in our paper (such as the
holomorphic blocks considered below) is that they can be defined both inside (|g| < 1)
and outside (|g| > 1) the unit disk, in such a way that they have the same annihilator ideal.
Recall that if L and M denote the operators that act on functions f(x; g) by (Lf)(x;q) =
f(gx; q) and (Mf)(x;q) = xf (x;q), then LM = gML, and hence, L™'M = ¢ 'ML~. It
follows that if P(L, M, q)f (x;q) = 0, then P(L~Y, M, g )f (x;q~') = 0 where P(L, M, q)
denotes a polynomial in L with coefficients polynomials in M and q.

A first example of a function to consider is (x; ¢) oo = ]_[19'20(1 —¢/x), which is well defined
for |g| < 1 and x € C and satisfies the linear g-difference equation

1-%)(g% Do = @ P (gl <1). (106)

We can extend it to a meromorphic function of x when |g| > 1 (by a slight abuse of
notation) by defining

(g oo = (@mq)ss (gl < 1), (107)
so that Equation (106) holds for |g| # 1. Our second example is the theta function

05q) = (~* 5 oo~ L) (gl < 1) (108)
which satisfies the linear g-difference equation

0lqxiq) =q 2 '0(sq) (gl <D (109)

and can be extended to 6(x; g~ ') = 6(x;4) ! when |g| > 1 so that Equation (109) holds
for |q| # 1. 6(x; q) is a meromorphic function of x € C* with the following (simple) zeros
and (simple) poles

1
347Z

gl <1 zeros(f) = —q poles(0) = ¢

lq] > 1 zeros(0) = 0 poles(9) = —q%+Z. (110)

An important property of the theta functions is that they factorize the exponentials of
a quadratic and linear form of u. This fact is a consequence of the modular invariance of
the theta function and was used extensively in the study of holomorphic blocks [7].

Lemma 13 For integers r and s we have:

erittren)” — B Vo (—q 1Y @0 (—7 2w ) (1112)

wiru? +2mwiscyu )

e — iselz(?)s—r)(r-i-r*l)e(x; q)r—sg(_q%x; q)s x Q(x;q—l)r—SQ(_q—%x; q—l)s
(11

for integers r and. s.

Note that we the above factorization formulas are by no means unique, and this is a
reflection of the dependence of the above formulas on a theta divisor.
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Proof When x = 2™, 4 = e(r), § = e(—1/7) and |¢| < 1, then we claim
e~ mr(08x) — o7it? _ @ (0) "2 () Dp(—1) = e 2T (i )05 Y).  (112)

The first equality is easy, the second one follows from the inversion formula of Fad-
deev’s quantum dilogarithm, and the third one follows from the product expansion
of Faddeev’s quantum dilogarithm or from the modular invariance of the theta func-
tion. Note also that ®,(0)? = (q/q)ﬁ — eh@+rh), Equation (111a) follows eas-
ily from the above, and Equation (111b) follows from the above using, for example,
eniru2+2niscbu — e(rfs)zriu2 esni(qucb)Zefsnic%. O
5 The 4,4 knot

5.1 Asymptotic series

Our starting point will be the state-integral for the 4; knot [3, Eqn.38] (after removing a

prefactor that depends on « alone)
Za (u57) = e~ 2rin? / D (v) Dp(u +v) e i ) g, (113)
R-+i0

The above state-integral (and all the subsequent ones) is a holomorphic function of t € C’
and z when |Im ()| < |b+b~1|/2 and extends to an entire function of # (see Theorem 14).

After a change of variables u +— u/(27b) (see Equation (2)) and v + v/(27b), the
asymptotic expansion of the quantum dilogarithm (see, for instance, [3, Prop.6]) implies

V(uv)/(2rit)

that the integrand of Zy, (up; 7) has a leading term given by e where

1
V (4, v) = Lis(—e") + Lig(—e*") + E(1/)2 + 2uv. (114)
Taking derivative with respect to v gives the equation for the critical point
2u+v—log(l+e") —log(l1+e“™) =0 (115)

which implies that (x, y) = (e, —e") is a complex point points of the affine curve S given
by

S:—a’y=(1-y1—xy (116)

and (&, v) is a point of the exponentiated curve S* given by the above equation where
(% y) = (e%, —e"). Moreover, we have

V (4, v) = Lia(y) + Lia(xy) + %(log(—y))2 + 2logxlog(—y). (117)

Note that (115) has more information than (116) since it chooses the logarithms of 1 + e”
and 1 + e*™ such that (115) holds. This ultimately implies that V is a holomorphic
C /2 Z-valued function on the exponentiated curve S*. Note that when # = 0, Equa-
tion (116) becomes (38).



S. Garoufalidis et al. Res Math Sci (2023)10:29 Page 27 of 67 29

The constant term of the asymptotic expansion is given by the Hessian of V (4, v) at a
critical point (i, v), and it is a rational function of x and y is given by

1—xy?
Sxy) = — xzyy .

(118)

Note that §(x, y) = 0 on S if and only if x is a root of the discriminant of S with respect to

y, i.e.,
(1-3x+x>)1+x+x>) =0. (119)

In other words, § vanishes precisely when two branches of y = y(x) coincide.
Beyond the leading asymptotic expansion and its constant term, the asymptotic series
has the form ®(x, y; v) where

V(u,v)
2mwit

®(x, y;7) = exp ( ) o 5 T), oy T) € %Q[xi,yi, s~ [[2rit]]

(120)

where § is given in (118) and Vis p(x, 9;0) = 1. In other words, the coefficient of every
power of 2rit in +/8 ¢(x, y; 7) is a rational function on S. There is a natural projection
S — C* given by (x,5) — x, and we denote by y,(x) the choice of a local section (an
algebraic function of x), for 0 € P = {01, 02}. We denote the corresponding series
D(x, y5 (x); T) simply by &4 (x; 7). Note that

i\/(l—x—x—1)2—4

305 712(0) = _ (121)
and that the two series are related by
Dy(x;7) = iP1(x; —7). (122)

The power series v/i8¢, (x; T) can be computed by applying Gaussian expansion to the
state-integral (113). One can compute up to 20 terms in a few minutes, and the first few
terms agree with an independent computation using the WKB method (see [19, Eqn.(4.39)]
as well as [28]), and given by Vidpo (x;7)

1
Vis (x;L)zl——x_g—x_2—2x_1+15—2x—x2+x3t
P12\ o 24y13:2(x) ( )
L1
1152yfz(x)
— 606x2 — 12105~ + 3117

— 1210x — 606x” + 610x° — 3x* — 2x° +2%) 7% + O(73),

(x7¢ —2x¢7° — 3% + 61043

(123)

where

Y1) = x8(5, y1,2(x) = £V — 201 — 1 — 2% + 2. (124)

sets x to numerical values, one can compute 300 terms of this power series.
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5.2 Holomorphic blocks
In this section, we give the definition of the holomorphic blocks (and their descendants)
which factorize the state-integral (and its descendants) and discuss their analytic proper-
ties, and their linear g-difference equations. Note that in this section, as well as in Sect. 5.3,
all the statements are theorems, whose proofs we provide.

Motivated by the state-integral Z4, (; 7) of the 4; knot given in (113), and by the descen-
dant state-integral Z4, ,, ;. (0; T) given in (67), we introduce the descendant state-integral
of the 41 knot

Z41,m,/t (u; ‘L’) — e727'riu2 / d)b(V) (Db(u + V) efn'i(v2+4uv)+2n(mbfub_1)v dv (125)
D

for integers m and u, which agrees with the Andersen-Kashaev invariant of the 4; knot
when m = u = 0. Here, the contour D was introduced in (67). It is expressed in terms of
two descendant holomorphic blocks, which we denote by A, and B,, instead of BY} and
B;?, in order to simplify the notation. For |g| # 1, A,,(x; ¢) and B,,(x; q) are given by

1
A% q) = 0(—q2%,q) %" (q"%%, %), (126a)

B(x:q) = 9(—(17%96; x"J(q"x% x5 q), (126b)

where J (%, y; ¢°) .= J(x, ; q) for |q| < 1 and ¢ = = is the g-Hahn Bessel function

0 Lu(n+1),.n
o) = (@i e Y~ L F 127
J % :9) = (qv;9) ;( ) PN (127a)
1
B 1 & qgn(n+1)xny—n
J (xyq) = —— -y 127b
i) 5 @)oo ,12:(:)( : (@ Dnlay™ @) (1270)

The next theorem expresses the descendant state-integrals bilinearly in terms of descen-

dant holomorphic blocks.

Theorem 14 (a) The descendant state-integral can be expressed in terms of the descendant

holomorphic blocks by

Zay i 1) =(=1)" g2 2 (R A, A g (128)
3ri

L THEETR (x q)B— . (%; 51_1)>‘ (129)

(b) The functions A, (x; q), By (x; q) are holomorphic functions of |q| # 1 and meromorphic
functions of x € C* with poles in x € q” of order at most 1.
(c) Let

W) = ( Anlx:q)  Bulsiq)

1). 130
Am+1(x;q)Bm+1(x;q)> (lal# D 150

For all integers m and |, the state-integral Zy, ;, , (u; T) and the matrix-valued function

Wi (57) = W_ (& 7 HA@) Win(xs q) T (131)
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where

e—%—%i(r%r_l) 0
Alr) = 0 e%+%i(r+r_l) g (132)

are holomorphic functions of T € C' and entire functions of u € C.

Proof Part (a) follows by applying the residue theorem to the state-integral (125), along
the lines of the proof of Theorem 1.1 in [33]. A similar result was stated in [20].

Part (b) follows from the fact that when |g| < 1, the ratio test implies that /" (x, y; ) is
an entire function of (x,y) € C? and J~(x, y;q) is a meromorphic function of (x, y) with
polesiny € g%.

For part (c), one uses parts (a) and (b) to deduce that W, ,(&; 7) is holomorphic of
7 € C’ and meromorphic in z with potential simple poles at ibZ + ib~17Z. An expansion
at these points, done by the method of Sect. 5.3, demonstrates that the function is analytic
at the points ibZ + ib~17Z. O

Note that the summand of /™ (a proper g-hypergeometric function) is equal to that
of ]~ after replacing g by ¢~!. This implies that /¥ have a common annihilating ideal
7y with respect to x, y which can be computed (rigorously, along with a provided cer-
tificate) using the creative telescoping method of Zeilberger [63] implemented in the
HolonomicFunctions package of Koutschan [51,52]. Below, we will abbreviate this
package by HF.

Lemma 15 The annihilating ideal of Ij of J* is given by
Iy = ((—x+3) + &Sy — ¥Sx, 1+ (=1 —x + q)Sy +S) (133)

where Sy and Sy are the shifts x to qx and y to qy.

The next theorem concerns the properties of the linear g-difference equations satisfied
by the descendant holomorphic blocks.

Theorem 16 (a) The pair A, (x; q) and By, (x; q) are g-holonomic functions in the variables
(m, x) with a common annihilating ideal

Tay = (q" + (=" +q" ") S+ S (1=27 )1 —x"2S) +q' Sy} (134)
where Sy, is the shift of m to m + 1 and Sy is the shift of x to qx. 14, has rank 2 and the two
functions form a basis of solutions of the corresponding system of linear equations.
(b) As functions of an integer m, A, (x; q) and By, (x; q) form a basis of solutions of the linear
q-difference equation §41 (S % g™, Q)fm(x;9) = 0 for |q| # 1 where

Bay(Sm% g™ q) = (1= 7" Su)(L = 272S,) + 4" S (135)

(¢c) The Wronskian W, (x; q) of (135), defined in (130), satisfies

det(W,,(x;q)) = >3 (me 7). (136)
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(d) The Wronskian satisfies the orthogonality relation

10 g [ P+xl-11
W_1(x; W_1(x; = . 137
1) (O _1> 1w ( o, (137)
It follows that for all integers m and £
Lo —I\T + .+
Win(x; q) 0_1 Welx;q— )" € GL(2, Z[g™, x™]). (138)

(e) As functions of x, Ay (x; q) and B, (x; q) form a basis of a linear q-difference equation
Agy (Se % @, @)fn(x;q) = O where

2

Ay S g™ q) =Y Gx g™ Sk, (139)
j=0

Sx is the operator that shifts x to qx and

Co =2P3"x2(—1 + Fx?) (140a)
Cr=—q"(—1+¢*""x*)(1 — gx — g%

— PR — S 4 g hrm (140Db)
Cy :q2x2(—1 + q1+mx2)- (140c)

(f) The Wronskian of (139)

v [ Amxg) Bu(xq)
nlia) = (Am<qx; ? Bm(qx;q)>’ a1 (140
satisfies
detWin(x; ) = q"5*"(1 — "% (m € 7). (142)

Proof Since A, (x; q) and By, (x; q) are given in terms of g-proper hypergeometric mul-
tisums, it follows from the fundamental theorem of Zeilberger [63,71,72] (see also [35])
that they are g-holonomic functions in both variables m and . Part (a) follows from an
application of the HF package of Koutschan [51,52].

Part (b) follows from the HF package. The fact that they are a basis follows from (c).

For part (c), Equation (135) implies that the determinant of the Wronskian satisfies
the first-order equation det(W,,,1(x; 9)) = x> det(W,,.(x; q)) (see [32, Lem.4.7]). It follows
that det(W,,(x; q)) = x3" det(Wy(x; q)) with initial condition a function of x given by
Swarttouw [64]

det(Wo(x; q) =+>  (lq] #1). (143)

We recall the details of the proof which will be useful in the case of the 5, knot. When
|g] < 1, the g-Hahn Bessel function J(x, y; ) satisfies the recursion relation

g y;iq) — A +y— )% 9 +7(q % y;9) =0. (144)
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This follows from [64], and can also be proved using the HF package. It then follows that

Jzq) =](q"%q), Tz =z"]4q " "zq "q) (145)
are two independent solutions to

7'Jazq) — U +q" — 0T (@) +T(q 'zq) =0. (146)
The corresponding Wronskian

W (zs ) = ( Toa(zq) T2z q) ) (147)

Tv1az;q) Jv2(qz; )

satisfies the recursion relation (see [32, Lem.4.7])

det Wy (z;:9) = g~ det Wy (g 'z;q) (148)

which implies that the determinant of U(z; q) = z"W,(z; q) is an elliptic function
det U(gz; q) = det U(z; q). (149)
It can be computed by the following limit
det U(z;q) = lim det Ll(qkz; q) = lim det U(z; q)
k— 00 z—0
= lim (q“’](z, ;)@ " 5q9) —Ja 59 (a5 q”;q)>
=g — D@ 9oo (@ "5 9)oos (150)

where in the last step we just used the g-expansion definition of the g-Hahn Bessel func-
tion. We thus have

2" det Wy(z;9) = —(99"; 9)oo(q " @)oo (151)
Using the substitution
2> x4 2« (152)

in the above equation and cancelling with the 0-prefactors of A,,(x; ¢) and B, (x; q), we
obtain Equation (143) for |g| < 1. The case of |g| > 1 can be obtained by analytic
continuation on both sides of (143).

For part (d), Equation (135) implies that

0 1

W, x;q) =
Wl+1( q) (_xg xz + x — q

meB) Win(x;q). (153)

Hence, Equation (138) follows from (137). The latter is a direct consequence of the analytic
continuation formula

Jxy:9) = 0(—q"*y; ] 'y g7 (154)
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which one easily sees by comparing (127a) and (127b).
Part (e) follows from the HF package. The fact that they are a basis follows from (f).
For part (f), since A,,(x;q) (as well as B, (x; g)) are annihilated by the first generator
of (134), it follows that

4" Am(x9) — ¢"(1 — @ x) A1 (5.q) + £ Ap(qu; @) = 0. (155)

After solving for the above for A,,(gx; q) (and same for B,,(gx; q)) and substituting into
the Wronskian (141), it follows that the two Wronskians are related by

Win(x; q) = <_q,ix_1 3 Equxz)) W% q). (156)
After taking determinants, it follows that

detWp(x: @) = q"x>(1 — " "%%) det(Win(%; q)). (157)
This, together with (136) concludes the proof of (142). |

We now come to Conjecture 5 concerning a refinement of the Z-polynomial. Combining
Theorems 14 and 16, we obtain explicit linear g-difference equations for the descendant
integrals with respect to the # and the m variables. To simplify our presentation keeping an
eye on Equation (129), let us define a normalized version of the descendant state-integral
by

Zay (5 T) = (1) TG g2 7y (5 T). (158)

Theorem 17 z4, . (tip; T) is a q-holonomic function of (m, u) with annihilator ideal 14,
given in (134). As a function of u (resp., m) it is annihilated by the operators 241 Swx g™ q)
and §41 (Suw %, g™, q) (given, respectively, by (139) and (135)), whose classical limit is

241 (Sx; ) qm; 1)

(159)
— (_1 +qu2)(x253 _ qm(l —x— 2qu2 _qu?) +q2mx4)sx +q3mx2)

and
Bay (S %, ¢, 1) = (1 — x718,) (1 — x728,) + ¢S (160)

241 (Sx %, 1, 1) is the A-polynomial of the knot, 241 (Sx %, 1, q) is the (homogeneous part) of
the Z—polynomial of the knot and §41 (x2y, x, 1, 1) is the defining equation of the curve (116).

Note that although the two equations (135) and (139) look quite different, they come
from the common annihilating ideal (134) of rank 2. This explains their common order,
assuming that the ideal is generic. The annihilating ideal is easier to describe than the S,,;-
free element (139) of it. In fact, the first generator of 74, expresses S, as a polynomial in
Sm, and eliminating S,,,, one obtains equation (139) from (135). The characteristic variety
of T4, is a complex is a two-dimensional complex surface in (C*)* and its intersection
with a complex 3-torus contains two special curves, namely the A-polynomial and the

B-polynomial of the 41 knot.
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5.3 Taylor series expansionatu =0
The descendant state-integral is a meromorphic function of u which is analytic at u =
0 and factorizes in terms of descendant holomorphic blocks (129). In this section, we
compute the Taylor series of the holomorphic blocks and of the state-integral at u = 0
and show how the factorization of the descendant state-integral (129) reproduces (69).
We begin with some general comments valid for descendant holomorphic blocks and
state-integrals. Since the descendant holomorphic blocks are products of theta functions
times g-hypergeometric sums, we need to compute the Taylor expansion of each piece.
For Taylor expansion of the g-hypergeometric sums, we use

(@"e" @)oo N N
n(u) = ————— =exp|— ) —E " (qu (161a)
@ @)oo =
~ @G Do @5 Hn SN PN
(n) = ———— - - =ex —E;"(q)u (161b)
o (G @)oo (71" 1)y P El! 0
from [33, Prop.2.2], where
00 -1 _s(n+1)
(n) s q
E = _ 162
" (q) ; o (162)
and
—n+E" (@) =1
E'@) = {E" @) I>1odd (163)

ZEI(O)(EI) — El(”)(q) [ > 1 even.

For the Taylor series of the theta functions, we use the well-known identity that expresses
them in terms of quasi-modular forms (see, e.g., [13, Sec.8, Eqn(76)]), or alternatively
observe that the theta functions that appear in the bilinear expressions of the holomorphic
blocks are exponentials of quadratic and linear forms in u; see, for instance, (111a)—(111b).
Yet alternatively (and this is the method that we will use below), when r and s are nonzero
integers with r odd and positive, we can use the identity

4l 21 s(r+)

0(—q2x%q) = (~1)T g 5 a7 2 (1 —x")olsu)po(—su) (164)

, whereas when 7 is odd and negative, we can use the g-difference equation (109) to bring
it to the case of r odd and positive.

One last comment is that the descendant holomorphic blocks are in general meromor-
phic functions of u. However, their bilinear combination that appears in the descendant
state-integrals is regular at u# = 0.

We now give the details of the Taylor series expansion of Z4, ,, ;, (4; T) and of the descen-
dant holomorphic blocks for the 49 knot. Using the definition of J(x, y;¢) and (161a)—
(161b), we find
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Am(e’;q) = (1 — ™) 2g;9) 2 do() do(—u) >

VIWI

2n+2m)u
Z(61»(1);1(61‘1 )(Mu)e
g0 (0”@ + ue" (@) + 06?)) (165)
where
" (g) = G2 (q), (1662)
g =Y a 1+ 21 +2m — E"(g)), 166b
A0 =2 g T, 2 - @) (166b)
and
Biu(e";q) = (1 — )(q; )3 o () po(— u)2m¢n<—u)e<"+m>"
= —u(g; @)% (8" (@) + up!" (@) + Os)) (167)
where
B (@) = Go(a), (168a)
(m) q"" 1 (n) )
A" (q) = Z(q,q),,(q—l = <2+n+m+E1 @) ). (168b)
We notice that
B(q) — " (q) = - G1<) (169)

Similarly, using the definition of J(x, ;¢ !), we find

—nm

Am(e"q7 ) = (1 — e*)(q; )2 o) do(—u)* ,; (qq)n?q—)nan(u)e(znﬂm)“
= —ulq; )% < Y (q) + ud@\™ (q) + Ou 2)) (170)
where
~g"’)(m:GO (9) (171a)
& —m 2 4 B ) b
a (q) = Z(q,q)n N ( +n+2m+E"(q) (171b)
and
-1 )1 X —nm N
By(e"; q_l) = bol)”_dol—w) 1 ¢n(_u)e(n+m)u

(1 —e g3 = (@ Dna a7 n
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= g0 (B @+ uB™ @) + 0w?) (172)
where
By a) = G°,(q), (173a)
B () = Z m(l +2n+m—E"(q)). (173b)
We also notice
B () - @ (g) = -G, (q). (174)

Applying these results to the right-hand side of (129), we find the O(1/u) contributions
from (170) and (172) cancel, and the O(«°) contributions reproduce exactly (69). Notice
that the /7 terms that appear in (69) come from expanding in terms of 2rb z and 2rb~! 1
in (129).

As an application of the above computations, we obtain proof of a simplified formula
for the g-series G1(gq) from (43b) which was found experimentally in [44].

Proposition 18 For |q| < 1, we have:

n(n+1)/2

Gl(g) = Z(— )""( 7

n=0

(6n+1). (175)

Proof We first show that the definition (43b) can equally be written as

n(n+1)/2
Gl(g) = Z(— )"q " (1421 —4£0(@)). (176)
By definition
X s(n+1)
EP @)=Y ‘i —, (177)
s=1 9

they satisfy the recursion relation

EVq) - E" Vg = - : 1 -, (178)
—q
and therefore,
E9(g) = E%g) Z (179)

Using the identification E1(g) = 1 — 4E§0) (q), one can then easily show that (176) is the
same as (43b).
(175) follows from (176) thanks to the non-trivial identity

o0

n+E"(q)

T W o 9l <1, (180)
@ Dnla 5a s 1

n=

Page350f67 29
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which now we prove. The crucial fact we use is that when |g| < 1, J(x, y; ) is symmetric
between x and y (see a proof in [7]). Let us consider the following expansion in small

) =3 g S = (S Pne
Jleteha) ;f‘f ) T, (q’q)wg,(q;qmq—l;q—l)n
© 4 (n)
P St Gl S LT (181)

=0 (61; q)n(q_l$ q_l)n

Since J(e7%, e%; q) = J(e*, e™¥; q), the coeflicient of u (and in fact, of any odd power of u)
in the expansion above vanishes, which leads to (180). O

As a second application, we demonstrate that Theorem 9, especially the identities (52),
(55), as well as the recursion relation (49), can be proved by taking the # = 0 limit of the
analogue identities in Theorem 16.

Using the expansion formulas of holomorphic blocks (165), (167), (170), (172), the
Wronskians can be expanded as

Wia(e; q) = @) +ud™@)  Gq) + uB™(q)
o GO 1 (q) + ua " (q) Gy (@) + uB!" V(@)
g9 0
- < 0 —ul(g; q)io) ’ (182)
G+ @) Gla)+ ufy” @)
Win u; by = m 1 m Nl
(e q ) (Goml(q) + u&"§m+1)(q) Ggmfl(q) + uﬁ§m+1)(q)

—ulgq), 0
X( 0 uz(q;q)oo?’)' 183

Taking the determinant of (182), we find
1
det W, (% q) = 5 det W,,,(q) + O(u) (184)

which together with the u-expansion of the right-hand side of (136) leads to the determi-
nant identity (52). Furthermore, by substituting (182), (183) into the Wronskian relation
(137), the latter also reduces in the leading order to the determinant identity (52). On the
other hand, the Wronskian relation (54) is equivalent to

. fo-1 (01
Wm(q)—z(l 0>(Wm(q> ) (_10> (185)

which can be proved directly by expressing the inverse matrix on the right-hand side by
minors and determinant, using the explicit value of the determinant given by the identity
(52).

Finally, from the expression (166a),(168a) of the leading-order coefficients a(()m) (),
ﬁ(()m)(q) of A,,(e%; q), B;y(€%; q) in the expansion of u, one concludes that the recursion
relation (49) should be the # = 0 limit of the recursion relation (135) in m, and one can
easily check it is indeed the case.
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‘,901(7') 9002(7)
Fig.6 The singularities in the Borel plane for the series g, (x; T) with j = 1,2 of knot 41 where x is close to 1.
The shortest vertical spacing between singularities is 27ri, and the horizontal spacing between neighboring
singularities in each cluster is log x

11 I

117 v

Fig.7 Four different sectors in the 7-plane for ®(u; 7) of knot 4; with u close to zero

5.4 Stokes matricesnearu =10

In this section, we conjecture a formula for the Stokes matrices of the asymptotic series
@(x; 7). When we turn on the non-vanishing deformation parameter u, the resurgent
structure discussed in Sect. 3.1 undergoes significant changes. Compared to Fig. 2, there
are many more singular points in the Borel plane whose positions depend on u in addition
to 7, and the Stokes matrices also become u-dependent. However, if we focus on the case
when u is not far away from zero, equivalent to x not far away from 1, the resurgent data
are holomorphic in # and reduce to those in Sect.3.1 in the ¥ = 0 limit. For instance,
each singular point in Fig. 2 splits to a cluster of neighboring singular points separated
with distance log x as shown in Fig. 6. In particular, each singular point ¢;; on the real axis
splits to a cluster of three, in accord with the oftf-diagonal entries 3 in (60), and if we
choose real x, the split singularities still lie on the real axis. As in Sect. 3.1, we label the four
regions separating singularities on real axis and all the others by [, I, I, IV (see Fig.7). In
each of the four regions, we have the following the results.
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Conjecture 19 The asymptotic series and the holomorphic blocks are related by (15)
with the diagonal matrix A(r) as in (132), where matrices Mz(x; q) are given in terms of
the matrices W_1 (x; g) as follows

10 rf 0 1
Mi(x;q) = W_1(x; , 1, 186
1(%; q) (0 _1> 1(x; q) (—x‘l 1) lq] < (186a)
-1 T —x_l 0
My (x;q) =W_1(x" "5 q) 1) lgl <1,  (186b)
-1 T —x’l 0
My (x;q) =W_1(x™ 5 q) , lgl > 1,  (186¢)
14+x1
10 o O 1
My (x;q) = W_1(x; , 1. 186d
(% q) (0 _1> 1(%;9) (—x‘l L —x_z) lg| > (186d)

The above conjecture completely determines the resurgent structure of ®(t). Indeed, it
implies that the Stokes matrices, defined in Equations (34) and (33), are explicitly given
by:

S+(x;q)=< % 71_196) SWoale g Waasg)" (81 7 ) lgl <1, (187a)

X 1—x71

-1
S (xq) = <g f1> W) Woale g (x—l i)l>, lgl<1. (187b)

X

We remark that since s(®g )(x; 7) for o = 1, 2 transform under the reflection 7w : x > x~!

uniformly by (210) (see the comment below), the Stokes matrices should be invariant
under 77, and we have checked that (187a),(187b) indeed satisfy this consistency condition.
In the g > 0 limit,

—1
S""(x; 0) = <3) X +11 +x> , ST(x;0) = (—xl i I — (1)> (188)

A curious corollary of our computation is that the matrices of integers (60) from [30,45]
which relates the asymptotics of the coefficients of ¢(t) to the coefficients themselves
spread out to the matrices (188) with entries in Z[x*1].

Using the unique factorization Lemma 8 and the Stokes matrix S from above, we can
compute the Stokes constants and the corresponding matrix S of Equation (36) to arbitrary

order in ¢, and we find that

Sho5q) =St (g1 — 1
=(—2—x2—2x 1 —2x — xz)q

+ (=3 —x2 =2 — 2 — 2N + O(¢), (189)
St @ q) =S (x9)1,2/ST (% 9)11 — (3{(,11’,9,)296 + 3((,?’,?,)2 + 5((,;,1;20)96_1)

=@ +a 242 2 +x%)g
+ 17+t Fda3 4 9x72
+ 15871 + 15x + 9x% + 4x> + xHg? + O(4°), (190)
Sy 51 (:9) =ST(%:9)2,1/5F (%5 9)1,1
=(-3—x2—2'—2x—x%)q
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+ (=17 —x* —4x3 —9x 2 — 15571
— 15x — 9x% — 4a® — ac4)q2 + O(q3), (191)
St @ @) =ST(%9)22 — 1 — ST (59)1,25" (65 9)2,1/5T (%5 9)1,1
=Q+x 2+ 2+ 2 +x%)g
+ (A7 407+ a3 4972 4 140!

+ 14% 4 9x% + 44 + xM)q? + O(4®). (192)
They enjoy the symmetry
+
St owq) =81 . (xq), (193)

and experimentally, it appears that the entries of the matrix ST (x;q) = (S;;,U},(x; q))

(except the upper-left one) are (up to a sign) in N[x*!][[¢]]. Similarly, we can extract

k)

the Stokes constants S((,f;, associated with the singularities in the lower half plane, and

assemble into g~ ! -series SU_W, (x;g71). We find they are related to S;:,a, (%; q) by

Santi) = Shalsa 1)
01 o1 (x5 !I) 02 o2 € !I) crz o9 (x5 4) = S;;,oj (5 Q)' (194)

Let us now verify Conjecture 4. From (187a), we find that indeed
Stq) = Wor(e 97 - Woilwsg)T. (195)

Using the recursion relation (153) and the relation between two Wronskians (156), we
further find

ST q) = Wolx™ 547" - Wolxiq)" (196)
If we use the uniform notation for all holomorphic blocks
B3 9))a=1,2 = (Ao; q), Bo(x; q)), (197)

the right-hand side of (196) reads
Wolx 5471 - Wolns q (ZB (@xq)BY, (g%~ ;q_l)) . (198)
ij=0,1

which is precisely the right-hand side of (20) in Conjecture 4 following (19).! In addition,
the forms of the accompanying matrices on the left and on the right are such that the

!Note that because the form of the state-integral in [7] is slightly different from that in [3], which we adopt, our
convention for holomorphic blocks is also different from [7]. As a result, the entries of (198) equate the DGG indices
computed in [7] up to a prefactor

(Mob™hq™h) - Wolw)”) | = (a" IndgiG—iq 7w, 1j=01 (199)
i+1,j+1

If we take this into account, Conjecture 4 should be modified slightly by stating the accompanying matrices on the left
and on the right are in GL(2, Z(x, '/?)).
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(1, 1) entry of ST(x; g) equates exactly the DGG index with no magnetic flux. By explicit
calculation,

SO IR (ORI ) (ORI B B (CRE ) (G !
=1-(2x 24+x 1 +24+x+22%g
—( 2+ 20 34 20+ 4%)g% + O(4°), (200)

which is the Indfﬁt(o, x;q) given in [7].

5.5 The Borel resummations of the asymptotic series ®
In this section, we explain how Conjecture 19 identifies the Borel resummations of the
factorially divergent series ®(x;7) with the descendant state-integrals, thus lifting the
Borel resummation to holomorphic functions on the cut-plane €’. This is interesting
theoretically, but also practically in the numerical computation of Borel resummations.
After multiplying the inverse of Mr(%, ) from the left on both sides of (15), we can also
express the Borel sums sg(®)(x; T) in each region in terms of holomorphic functions of
7 € C\R as follows

Corollary 20 (of Conjecture 19) We have

a1l
s1(®) (x5 7) = ( Ox ! *f‘ ) W1 (%4 HA()B#q), (201a)
11 (@) (x5 7) = <‘1) _;‘xz) WG ((1) _°1> A()B(35 ), (201b)
(@) 7) = (‘1) _f) WG (g _01) A)B(x5 ), (201¢)
s (@) 7) = (‘0’? _f) W13 )A(D)Bs ). (201d)

where the right-hand side of (201a)—(201d) are holomorphic functions of T € C/, as they
are linear combinations of the descendants (129).

The asymptotic series of the 41 knot have the symmetry (122) due to the fact that it is
an amphichiral knot. This gives a symmetry of the state-integral.

Proposition 21 (Assuming Conjecture 19) We have:

Zay (3 7) = OO Uz (). (202)
Proof The second line of (201a) indicates that in region /

Za, (3 7) = s1(P2)(x; T). (203)

Recall the structure of ®(x; t) from (120)

Vise(x, y2(x); 7). (204)

Dy(x;7) = exp (V(x,yz(x))) 1

2mic 15 12)
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Here, Vi8¢ (x; 7) := /ido(x, y2(x); T) is an asymptotic series in 7 with Viso(x;0) = 1.
The coefficients of the series /i8¢, (x; 7) are invariant under the transformation x — 1/x
(see, for instance, (123); this is also true for /i8¢; (x; T) = Vis@(x, ¥1(x); 7)), and thus,

s(Vibpa)(1/x;7) = s(v/i82) (; T). (205)
On the other hand, from definition (121) of §;(x) := 8(x, y2(x)), it is clear that
85(1/x) = x%85(x). (206)

Finally, to study the behavior of V(x) := V(x, y2(x)) under the transformation x > 1/x,
it is convenient to do the change of variables y = x~! + 7, so that Equation (116) satisfied
by y becomes

1—-(1—x—xYj+57 =0 (207)

which is manifestly invariant under this transformation, and thus, j(1/x) = ¥(x). Expressed
in terms of this variable

b4 1 _
Va(x) = — Liz(—x~2) — Lig(—xj2) — 373 log?(x7; 1)
+log(1 + x7; ') log(—x, ) — log(1 + x72) log(—x72)

1 1
— S log*(=1 =5, ") + - log?(—x ! —52) +2logxlog(—+~" — ),
(208)

and it has the property that
Volx™h) = Va(x) — 27iw. (209)

This can be proven by differentiating both sides with respect to x, and reducing it to an
identity of rational functions on the curve S. Combining (205),(206),(209), we have

si(@2) (1) = 2t s (D) (x5 7) (210)

which implies (202). We comment in the passing that the identity (210) is true for both
5(®1,2)(x; T) for any v € C whenever the asymptotic series is Borel summable.

Once we have established the identity (202) in region I, it can be extended to T € C’ by
the holomorphicity of (129). O

5.6 Stokes matrices for real u

In Sect.5.4, we only considered the resurgent structure for x near 1, or equivalently,
u = logx near 0. When «x is arbitrary, the resurgent structure of the vector @, (x; 1)
could be very different. According to the Picard—Lefschetz theory (for review, see, for
instance, [70]), when a set of asymptotic series originates from a (path) integral, the Borel
sum of each asymptotic series is the evaluation of the integral along a Lefschetz thimble
anchored to a critical point. In the x-plane, there are walls of marginal stability which
start from the roots to the discriminant (119) and which end at infinity. When we cross
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Fig.8 The singularities in the Borel plane for the series g, (u; T) with j = 1,2 of knot 4; for x = e?™bU in the
first or the third interval of the positive axis

Fig.9 Four different sectors in the t-plane for ®(u; 7) of knot 4; with x = 27 in the first or the third
interval of the positive axis

such a Stokes line, Lefschetz thimbles jump leading to linear transformations of the Borel
summed asymptotic series. In this section we extend slightly the discussion of Sect. 5.4 by
considering the resurgent structure of ®, (x; ) for generic positive x (see [7] for a similar
discussion in complex Chern—Simons theory). The positive real axis is divided by the two
real solutions to (119)

1
Xp = 5(3:&\/5) (211)
to three intervals
0,x-), (x—,x4), (x4, 00). (212)

The middle interval is covered by Sect. 5.4, while the first (labeled by <) and third (labeled
by >) intervals are discussed below.

First of all, we notice that the first and third intervals are related by the reflection
x > x~ L. In fact, due to the property (205) of the asymptotic series, the Borel plane
singularities for ®, (x; 7) and ®, (x~!; ) are identical, and we illustrate them uniformly in
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Fig. 8. The positions of singularities are still described by (14). However, the difference of
action (V(01)—V(02))/(27i) is now imaginary and it describes the vertical spacing between
neighboring singularities. The shortest horizontal spacing is log x. Finally, all singularities
are repeated vertically by the spacing 2i. Similar to the discussion in Sect. 5.4, we label
in the t-plane by [ II, III, IV the four sectors which separate the 12 singularities close to
the real axis and other singularities along the imaginary axis or away from the real axis,
as in Fig. 9. In each of the four sectors, the Borel summed vector sf(cb)(x; 7) is a linear
transformation of the Borel summed vector sg(®)(x; 7) in the middle interval, as per the
Picard—Lefschetz theory

52 (@) 7) = T (%) - s(@)(w 7). (213)

It is most convenient to compute the transformation matrix TR2 by comparing the left-
hand side with the holomorphic lifts of sg(®)(x; T) summarized in Corollary 20. By doing
so, we find in the first interval

I (%) = ( 56~ 0) ) T (%)= ( 0~ 1) (214)
—x1 —x1
x 1 x 1
Tj5 (&) = (_xx o)’ Tji (%) = (’(: 1), (215)
while in the third interval
- 1o o 0 1
7 (&) = (—92_1 1) s T (&) = (—9?_1 1) (216)
o #1 1 o 11
T (%) = (—a'cl 0) ) T (%) = ( 0 1). (217)

They are indeed related by
Ty (®) = Tp &Y. (218)

Once the linear combinations are known, the Stokes matrices can be computed using
the Stokes matrices in the middle interval given in Sect. 5.4

= > > -1
S0 = T ) Groplna) (To) (219)
We find
0 1 x0
&7 5q) = -G q) - 220
]%]](‘x ‘I) (—xl 1) 111 (% ‘Z) (1 1) ( )

—x—x2 14x+x%

51

1 X —x
NGY/ AN 5 q) - 222
e 0) m—1v(%; q) (0 1 ) (222)

Sh_nwxq) =

- 1—x—x> x4+
Si—m®) = ( 2 > (221)
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14+x14+x2 x14x2
GF4 x) = , 223
1) ( —xl—x2 1—xt—x2 (223)
and thanks to (218),
Gr g9 =65 ="l q). (224)

Note that &7, , ;(x) and &j;_, ;;,(x) encode all the 12 singularities near the real axis
illustrated in Fig. 9, as well as the Stokes constants associated with them. Furthermore,
the Stokes matrices also have the property

Srm ) =6 ), (225)

in accord with Conjecture 5.

5.7 Numerical verification

In this section, we explain the numerical verification of Conjecture 19. This involves, on
the one hand, a numerical computation of the asymptotics of the holomorphic blocks and
on the other hand, a numerical computation of the Borel resummation by the Laplace
integral of a Padé approximation. Taking the two computations into account, we found
out numerically, integers appearing at two exponentially small scales, namely g and %, and
guessing these integers eventually led to Conjecture 19.

We found ample numerical evidence for the resurgent data (186a)—(186d). First of
all, due to the symmetry ®;(x; —7) = —i®Pa(x;7), Pa(x; —7) = iD1(x; 7), the resurgent
behavior of s(®)(x; 7) for 7 in the lower half plane can be deduced from that for t in the
upper half plane. We only have to numerically test the resurgent data for 7 in regions I, II
in the upper half plane.

The first piece of evidence comes from analyzing the radial asymptotics of the left-hand
side of (15). Note that the matrix A(r) = diag(As (7)) is always diagonal, and each row of
(15) is

Ag(T)B%(%3q) = ) MR )g,075R(Por) (55 T). (226)

If we take T = e'*/k with the argument o depending on a ray in the region R and k
V(o)
2mit

a very large integer, the difference between exp ( ) associated with different critical
points is greatly magnified, and the right-hand side of (226) is dominated by a single series.
Furthermore, when 7 is in the upper (lower) half plane, § (1/g) is exponentially suppressed
and the correction Mg (%, §)s,o as a series in ¢ (1/g) is dominated by the leading term.

(226) thus becomes

V(6)+ws
2mriel

o0
Ag(T)B’ (%3q) ~ exp ( k—1log(i(x, ys))+ D _ Sul yﬁ)e”i"k‘”) , k>

n=1

(227)

where w; is possible contribution from the leading term of Mg(%, §)s,;, and the series in
k~1islog ¢(x, ys; 7). As pointed out in [44], this equation can be tested numerically with
the help of Richardson transformations (see, for instance, [10]).



S. Garoufalidis et al. Res Math Sci (2023)10:29

Page 45 of 67

Table1 Numerical tests of holomorphic lifts of Borel sums of asymptotic series for knot4
(A) Region I: T = ioe%

| 2t — 1] | aiog — | (o)l %0 7l
o 3.2 x 107% 9.7 x 107% 83 x 1073 0.05
o) 1.9 x 107 52 % 107%
(B) Region Il: T = zioe%

| T — 1 | o — 1! ()| %00 T
o 1.9 x 107 52 x 107 83 x 1073 0.05
o) 3.2 x 107% 9.7 x 107%
(O) Region lll: T = 2]7067%

4T o] " oo
o 1.9 x 107 52 x 107% 83 x 1073 0.05
o) 32 x 107% 9.7 x 107%
(D) Region IV: T = %e’%‘

| e 1] | Horg — 1l | %06 0|
o 32 x 107% 9.7 x 107% 83 x 1073 0.05
o) 1.9 x 107 52 % 107%

We perform the Borel-Padé resummation on ®(x; t) with 280 terms atx = 6/5 and t in four different regions, and compute
the relative difference between them and the right-hand side of (201a)-(201d), which we denote by Pr(x; 7). They are within
the error margins of Borel-Padé resummation, which are estimated by redo the resummation with 276 terms, denoted by
si(e) in the tables. The relative errors are much smaller than 1%, |+, possible sources of additional corrections

Next, we can test (226) directly. One way of doing this is to compute Borel-Padé resum-
mation sp(®P,/)(x; 7) for various values of x € R and 7 in the same region R, and by com-
paring with the left-hand side extract terms of Mg(%, )5, order by order. To facilitate
this operation, instead of Mg(X; §) we consider

~ o (0= PEg) 0 -
Mg(%; q) = 0 0(—g1/% 7)1 Mg(%; ) (228)

whose entries are G-series with coefficients in Z[%*!] instead of in Z(%). Using 280 terms
of @, (x; 7), we find the results for 7 in the upper half plane

My q) = x4+ @ +x)g+ P +a3)g? 11— (x+x%+x3)g — (x +x2)q>
PEO=\_y 4 El4x)g+ T +)g? 11— 1 +x)g — (@ +x)g?
+ 0(g®) (229a)

—x+1 + a2 M 2)g+0 + 2 g 1 — (v a2 g— (71 + x72)g?
I+ + 14+ g+ +aHg?  1-(x+xg—(x +x"Hg?

+0(g%) (229b)

My (x;9) =

and they agree with (186a), (186b). Another more decisive way is to compute both sides
of (226) numerically assuming (186a), (186b) and compare them. Alternatively, we can
compare two sides of the equations of holomorphic lift (201a), (201b). We find that

the difference between the two sides is always within the error margin of Borel-Padé

resummation, and much smaller than g%, #*1, i.e., possible additional corrections. We

. . . . mi i,
illustrate this comparison by one example withx = 6/5 and t = %ei 5, %ei 5 in four

regions in Table 1.

29
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A final way to test these results is to see that in the x +— 1 limit, the resurgent data as well
as the Stokes matrices (187a)—(187b) are compatible with the results in Sect. 3.1 where
x = 1. This is a non-trivial test since the matrix W_;(x 1,47 1) (|g] < 1) in (187a)—(187b)
is divergent in the limit x — 1.

6 The 5; knot

6.1 Asymptotic series

Our second example that we discuss in detail will be the case of the 55 knot. The state-
integral for the 5; knot [3, Eqn.(39)] (after removing a prefactor that depends on u alone)

Zs,(u;7) = / Dp(v) Pp(v + u) Pp(v — u) e 2TV gy, (230)
RA+i0

After a change of variables u — u/(2mb) (see Equation (2)) and v + v/(27b), it follows
that the integrand of Zs, (up; 7) has a leading term given by " %")/(27i7) ywhere

V (1, v) = Lig(—e”) + Liz(—e**") + Lig(—e ™) + (v)2. (231)

Taking derivative with respect to v gives the equation for the critical point

2v — log(1 +e") — log(1 + e**") —log(1 + e ") =0 (232)
which implies that x = 27 and y = —e?"®" are points of the affine curve S given by
S:yt=(1—y)(1—xp)(1 —x"ly) (233)

and (i, v) are points of the exponentiated curve S* given by the above equation with
(%, y) = (e%, —e"). Moreover,

V(u, v) = Liz(y) + Liz(xy) + Liz(x"'y) + (log(—))* (234)
is a holomorphic € /272 Z-valued function on the exponentiated curve S*. Note that when
u = 0, Equation (233) becomes (73).

The constant term of the asymptotic expansion is given by the Hessian of V' (u, v) at a
critical point (&, v), and it is a rational function of x and y is given by

S(y)=y— A 4+x+x )y 142972, (235)

Note that 5(x, y) = 0 on S if and only if x is a root of the discriminant of S with respect to

y, i.e,
1—6x+ 11x% — 122% — 11a% — 124° + 114° — 6x” + 4% = 0. (236)

This happens at two points in the real line given approximately by x ~ 0.235344 and
x ~ 4.24909. Moreover, when x is a root of (236), exactly two out of the three branches
of y = y(x) collide, and the corresponding branch point is simple.
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Beyond the leading asymptotic expansion and its constant term, the asymptotic series
has the form ®(x, y; T) where

V(u,v)
2mit

)w(x»y;f), P y;7) € %Q[xi,yims_l][[%if]]

D(x, y;T) = exp ( NG

(237)

where § is given in (235) and Vi ¢(x, y;0) = 1. In other words, the coefficient of every
power of 277iT in /8 ¢(x, y; T) is a rational function on S. There is a natural projection S —
C* given by (x, y) — x and we denote by y, (x) the choice of a local section (an algebraic
function of x), for 0 € P = {01, 09, 03}. We denote the corresponding series ¢(x, y, (x); T)
simply by ¢ (x; 7). When « is close to 1, we order P so that o1, 09, 03 correspond to small
deformations away from geometric, conjugate and real connections at x = 1. Note for
03, we only keep the real part of V. The power series /i8¢, (x; T) can be computed by
applying Gaussian expansion on the state-integral (230), and one can compute up to 15
terms in a few minutes. Let us write down the first few terms of ¢, (x; T)
T

o)
+ (138 — 2545 + 127> + 44s® — 89s* + 385> — 55°) ,,

00 (%; %) -1+ (81 4 1125 — 7852 — 70> + 945t — 3855 + 55°
JT1

+ (135 — 1015 — 115 + 615° — 335" + 55%)52 ) + O(z?), (238)
where
s=sx) =x"14+1+x. (239)

On the other hand, if one sets x to numerical values, the power series can be computed to
200 terms.

6.2 Holomorphic blocks
Motivated by the case of the 41 knot, we define the descendant state-integral of the 5,
knot by

Zsy (15 T) = / (V) Dp (v + 1) Oy (v — 1) e~ 2TV +2x(mb—pb ™y g, (240)
D

for integers m and , which agrees with the Andersen-Kashaev invariant of the 5, knot
when m = p = 0. Here the contour D was introduced in (67). It is expressed in terms of
three descendant holomorphic blocks, which we denote by A,,,, B,,, and C,, instead of B
forj =1,2,3.For |q| # 1, Au(x; q), Bu(x; q) and C,,(x; q) are given by

A q) = Hxx™Y ¢ q) (241a)
B(x; q) = 0(—q"*x;q) 22" H (% 5% 5% q) (241b)
Cn(xsq) = 0(—q u;q) 2 "H(x ™, 272, "5 % q) (241¢)

where H(x, ¥, z; %) := H%(x, %, z; q) for || < 1and ¢ = &+ and

n(n+1) n
7 = (242a)

+ Y — (e .
H 2 24) (qx'q)OO(qy'q)w};)(q;q)n(qx;q)n(qy;q)n
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B 1 00 q%n(rwl)x—n —nyn
H (53254) = ———— Y (= ?

. b
(% @)oo 0 D)oo = ) @ Dnlax™ @@y n (2420)

Note that the summand of H* (a proper g-hypergeometric function) is equal to that of
H~ after replacing ¢ by ¢~ '. This implies that H* have a common annihilating ideal Ty
with respect to x, y, z which can be computed as in the case of Lemma 15.

The next theorem expresses the descendant state-integrals bilinearly in terms of descen-
dant holomorphic blocks.

Theorem 22 (a) The descendant state-integral can be expressed in terms of the descendant
holomorphic blocks by

3mi  5mi -1 o
Zsympu(up; T) =(—1)"HH g2 g2 (e PR TAL (AL (® g
+e” THRETIB, (6 B (5 47
+ e TR, )0 e ). (243)
(b) The functions A, (x; q), B (x; q) and Cy,(x; q) are holomorphic functions of |q| # 1 and

meromorphic functions of x € C* with poles in x € g% of order at most 2.
(c) Let

Anxq) Bmxig)  Culx;q)
Winx;:q) = | Ams1(65q) Bry1(% q) Crug1(%5 q) (Ig] #1). (244)
Amt2(x q) Bur2(x;q) Crra(x;q)

For all integers m and |, state-integral Zs, ,, , (u; T) and the matrix-valued function

Wi (37) = W_p (85§ DA Win(xs q) (245)
where
ed tE et 0 0
AlT) = 0 e ZEHH T 0 , (246)
0 0 e*%”r%i(ﬂrf*l)

are holomorphic functions of T € C' and entire functions of u € C.

Proof Part (a) follows by applying the residue theorem, just as in the proof of part (a) of
Theorem 14. A similar result was stated in [20].

Part (b) follows from the fact that when |g| < 1, the ratio test implies that H™ (x, , z; q)
is an entire function of (x,7,z) € C2 and /(% %,2;¢q) is a meromorphic function of
(%, 9,2) € C? x C with poles at x = g% and y € g%.

For part (c), one uses parts (a) and (b) to deduce that W, ,(#; 7) is holomorphic of
7 € €’ and meromorphic in « with possible poles of second order at ibZ + ib~17Z. An
expansion at these points, done by the method of Sect. 6.3, demonstrates that the function
is analytic at the points ibZ + ib='7Z. ]
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Note that the holomorphic blocks have the symmetry
Anq) = An(xq), Bulx'3q) = Culx;q), (247)
which implies the symmetry of the matrix Wy, (x; q)

100
Winx 5 q) = Winsq) ool . (248)
010

Consequently, Wy, . (4; T) is invariant under the reflection u — —u.

Lemma 23 (a) The annihilating ideal of Tr; of H is given by

Ty =(yzSx — x2Sy + (xzy — xyz)SZ + (—x2y + xy2 + xz — yz),
— xS + zSy + O? +x* — qy2)S, + (= — 2), —qySyS; + Sy — 1,
28 + (—x + gy + gxy — 4°y* — 2 — q2)Sy + qyS; + (& — qy — g2y + q2))

(249)

where Sy, Sy and S, are the shifts x to qx, y to qy and z to qz, respectively.

(b) When |q| < 1, we have

det Hx L x Yy, 2722 9) Hy Ly %y 22q)
e
. *H L a Yy, g W 2z9) yH L,y g 1y 22;q)
Hyz,q ") = — — — .
¥0(=q"2%,9)0(—q " 25;9)0(—q 25y~ q)

(250)

Proof Part (a) follows as in the proof of Lemma 15.

For part (b), observe that both sides of the equation are power series in z and g-
holonomic functions of z. Using the HF package, we find that the (i, j)-entry of the deter-
minant is annihilated by the operator r;; given by

= —yS2 + (v +y +xy — ¢%2)S? + (—x — x> — x)S; + #°
ri2 = —aS2 4+ (@ +y +xy — ¢22)S2 + (—y — xy — y))S, + 5
a1 = —yS3 + (x +y+xy — q2)S? + (—x — x> — x)S; + x>

12 = —xS3 + (x +y +xy — q2)S2 + (—y — xy — ¥1)S; + 57,

whereas the left-hand side of (250), after being multiplied by the denominator of the
right-hand side, is annihilated by the operator

r:Sf—i—(—l—x—y)SZZ+(x+y+xy—qz)Sz—xy. (251)

Using the commands DFiniteTimes and DFiniteTimes from the HF package, we
computed a 9th-order operator R (which is too long to type here) that annihilates the deter-
minant, and using the command OreReduce, we proved that it is a left multiple of 7. It
follows that both sides of (250) satisfy the same 9th-order recursion with respect to z, with
non-vanishing leading term. Thus, the identity follows once we prove that the coefficient

29
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of zX in both sides agree, fork = 0, . .., 8. When |g| < 1, the coefficient of z¥ in H(x, y, z; q)
(resp., H(x,,z;q7 1)) is in (g% 9)oo (g3 )00 R 3, q) (resp., (6 9)5 (0 ) R 3, 9)), and
this implies that the equality of the coefficient of zX in the above identity reduces to an
equality on the field Q(x, y, g) of rational functions in three variables. The latter is easy to
check for k =0, ..., 8. This completes the proof of (250). O

The next theorem concerns the properties of the linear g-difference equations satisfied
by the descendant holomorphic blocks.

Theorem 24 (a) They are g-holonomic functions in the variables (m, x) with a common

annihilating ideal
Is5, = (Py, P, P3) (252)
where

Py =x(1 — quZ)(l _ qu _ q2x2 _ q3+mx3 +q3x4)
— (1 —gx)(1 + g0)(1 — gx*)(1 — ¢*x*)Spm
— x(1 — gx)(1 + gx)(1 — gx — gx”

— PR PP 4 gt — TR — gt

+gtx* — g°x°)S, — g1 - qxz)S,% (253a)
Py =x—S,, — xS + qx2SxSm (253b)
Py =x(1 — """ — qx?) — (1 — g7 + % — qx® + ¢* 7" — gx®)S,n

+ (1 — gx?)S2, + g8, . (253c)

15, has rank 3 and the three functions form a basis of solutions of the corresponding system

of linear equations.

(b) As functions of an integer m, Au,(x%; q), Bm(x; q) and Cy(x; q) form a basis of solutions

of the linear q-difference equation §52 (S % g @)fim(x;q) = 0 for |q| # 1 where
Bs,(Sm% g™ @) = (1= Su)(L = xSm)(L =2~ 'S) — **S},. (254)

(c) The Wronskian W, (x; q) of (254), defined in (244), satisfies

det(Wy(x:9) = —0(—q 2x9) 20(—q 5% q) (g # 1). (255)

(d) The Wronskian satisfies the orthogonality relation

10 0
W_i(q) Woilsg HT =00 1 . (256)
01x+ x~1

It follows that for all integers m, £

W% q) We(x; g~ 1T € PSL(3, Z[g™T, xF). (257)
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(e) As functions of x, they form a basis of a linear q-difference equation As, (Sx, %, ¢, @)fm(%; q) =
0 where

3
As,(Swq" @) =Y G q", )k, (258)
j=0
Sx is the operator that shifts x to qx and
Co = — > (1 — ¢°x)(1 + ¢*x)(1 — g°x?) (259a)
C1 =(1 — gx)(1 + qx)(1 — g°%%)

(1- gx — qu _ q4x2 +q2+mx2 +q3+mx2

+q2x3 +q5x3 +q5x4 +q5+mx4 _ q6x5) (259b)
Cy =qx(1 — *%)(1 + ¢*x)(1 — qx*)x

(1 _ qzx _ q2+mx _ q2x2 _ q5x2 +q4x3 +q7x3

_ q5+’”x3 _ q6+m %3+ q7 2 q9 xs) (259¢)
C3 =¢*""x*(1 — qx)(1 + gx)(1 — gu?) (259d)

(f) The Wronskian of Equation (258)

Auxq)  Bmxig)  Culx;q)
Winlxsq) = | Amlgx;q) Bumlgxsq) Culgxsq) |, (Iq] #1) (260)
Am(q*% @) Bu(q*x;q) Culg*x; q)

satisfies

_5_ _ _1 _ _1
det Wyu(x;9) = ¢ > x> (1—g*x*) (1 —gx*) (1 —¢°x*)0(—q 2x;9) 20(—q 2x% q).
(261)

Proof Since Ay, (x;9), Biu(x;q) and Cy(x;q) are given in terms of g-proper hypergeo-
metric multisums, it follows from the fundamental theorem of Zeilberger [63,71,72] (see
also [35]) that they are g-holonomic functions in both variables 7 and x. Part (a) follows
from an application of the HF package of Koutschan [51,52].

Part (b) follows from the HF package. The fact that they are a basis follows from (c).

For part (c), Equation (254) implies that the determinant of the Wronskian satisfies the
first-order equation det(W,,+1(x; q)) = det(W,,(x; q)) (see [32, Lem.4.7]). It follows that
det(W,,(x; q)) = det(Wo(x; ¢)) with initial condition a function of x given by

det(Wo(x;q) = —0(—q 2x9) 20(—q 2% q)  (lq] # 1), (262)

which can be proved in a manner similar to Sect. 5.2. Using Lemma 23 and the HF package,
we find the following recursion relation for the g-function H(x, y, z; g) when |q| < 1
xyH(x, 3, qz;q) — (x +y +xy — 2)H (%, 3, 2 q)
+A+x+9)H& Y q ' 2z9) + Hxy q *zq) =0. (263)

It then follows that

Huvi(z:q) = Hg", 4",z q), (264)
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Hyuvo(z:9) =2 “H(g ™" q" ", g 2z q), (265)
Huns(z:9) =2 "Hig™", q" ", q >z q), (266)

are three independent solutions to
7" H(qz; )~ (q" +q"+q" " —2)H(z:9)+(1+q" +q")H(q 'z, 9)+H(q *z:9) = 0.
(267)

The corresponding Wronskian

Hu,v,l(q_IZ; 61) Hu,v,Z(q_lz} q) Hu,v,S(q_IZ; 61)
Wp,,v(Z; 61) = Hp,,v,l(ZJ LI) H//.,V,Z(Z; 4) H,u,v,?:(Z; &I) (268)
Huv1@z9)  Huv2(gz9)  Huvs(gz q)

satisfies the recursion relation (see [32, Lem.4.7])
det W, ,(z:9) = g " det W, (g 2 q) (269)

which implies that the determinant of U(z;q) = z*""W,,,(z; ) is invariant under the
shift z > gz. We can thus identify it with the limit z — 0, which is easy to compute.
Since

lim H(x, 3, z;q) = (4% q)oo(qY; 4) 0 (270)
z—>0
we have
lim det U(z; q)
z—0
(H 4" q" a 'zq) ¢"Hqg " q" " g g %q) " H(q ", q" ", g *qz q))

H(q" q", % q) H(g™" q" ™", q *zq) H(q™,q" ", g% zq)
H(q" €' qz;q) q "H(q " q" " q *qzq) q "Hq ", q" " 4> qzq)

= lim det
z—0

1 g ¢
= (49" 0)oo(a9"; Do (qq ™" D)oo (@q" ™" Do (qq™"; Doo(qq" ;@)oo det [1 1 1
lg"q™”
=q "1 -g")1-4g")q" —q")
x (99" @)oo(@q"; D)oo (@™ D)oo(@q" ™" D)oo (@q ™" D)oo (@q" ™" @) co- (271)

We thus have

2"V det Wy (z:9) = — (4" 9)00 (@9 "5 0)0(@q" @)oo (@ "3 000 (@™ ™" @)oo (@ "5 @) sc-
(272)

Using the substitution
q“ =x, qg =x z=1 (273)

in the above equation and cancelling with the 8-prefactors of B, (x; q) and Cy,(x; q), we
obtain Equation (262) for |g| < 1. The case for |g| > 1 can be obtained by analytic
continuation on both sides of (262).
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For part (d), Equation (256) follows from (250). To see this, let us introduce

Hxx™ % 9™ q) X" H (%, %2, ¢""%%; q) x"Hx L x72 g™

q"x"%q)
Wn(x; q) = (H(x,xl,qm“;q) *" L H (x, %, ¢"%%; q) x’”lH(xl,xZ,qm“acz;q))-
q

H(x, x—l, qm+2; q) xm+2H(x’ x2’ qm+2x2; q) x—m—ZH(x—l, x—Z’ m+2x—2; q)
(274)
Then, Equation (256) can equally be written as
10 0 1 0 0
~ ~ T
Woig =100 1 |(Woamwg™) [ox20], (275)
01x+x? 0 0 «?

consisting of 9 scalar equations. Each of these equations is a specialization of (250), some-
times after applying the recursion relation (254).
Observe that Equation (254) written in matrix form implies that

0 1 0

Wint1;9) =10 0 1 Win(x; q) (276)

1 —s(x) s(x) — g>™™

where
sr) =x+ax L4+ 1. (277)

Equation (257) follows from (256) together with (276).
Part (e) follows from the HF package. The fact that they are a basis follows from (f).
For part (f), the first and third generators of the annihilating ideal (252), which anni-
hilate A,,(x;q), Bim(x;q), Cm(x;q), allow expressing A,,(qx; q), Am(q*x;q) in terms of
A (% q), Ap1 (%65 @)y Aia (x; q), and similarly for B, (¢/x; q), Co(q/x;q) (G = 1,2). It fol-
lows that the Wronskian (260) and the Wronskian (244) are related

Win(%; @) = M (x5 q) Win(x; q) (278)
where M, (x; q) is a 3 x 3 matrix with entries

Mt 9)1,1 =1, Ml g)1,2 =0, (Myu(x9)1,3 =0,

Mn@39)21 =—q "1 —q't" — gx®)

M 9))22 =g~ "2 (1 — g + x4+ (—q + T — gx?)

(Mu(%9))2,3 = —q "5 (1 — qx?)

Mn(x:9))31 =q > "5 31+ (=g + ¢*")x — (q + ¢* + ¢°)x>
+(q2 + qS + q4 _ q3+m _ 2q4+m _ q5+m + q5+2m)x3
+(q3 +q4 +q5)x4 + (_q4 _qS _q6 +q5+m

+ q6+m +q7+m)x5 _ q6x6 +q7x7)
M q)32 =—q > "5 (1 —g)1 + g0)(1+ 1 — g+ ¢*")x
+ (=29 — ¢° + """

29
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+(_q +q2 _ 6]3 +q4 _ 2q3+m _ q4+m _ q5+m +q4+2m +q5+27r1)x3

P +2g — P — g S (gt — g 4 g5 — g5
Mu(x: )33 =g 2% 41 — qu)(1 + gx) (1 — g — (q + 4°)%>

H@? 4 gt — @ — g 1 gt — 5 (279)

After taking determinants on both sides, one finds that
detWin(x: @) = —q~°2"x™>(1—qw) (1+gx) (1 —qx*) (1 —¢°x?) det(W;n(x; 9)) (280)

This, together with (255) concludes the proof of (261). O

We now come to Conjecture 5 concerning a refinement of the Z—polynomial. As in
Sect. 5.2, we can use Theorems 22 and 24 to obtain explicit linear g-difference equations
for the descendant integrals with respect to the # and the m variables, and in doing so, we
will obtain a refinement of the Z-polynomial. To simplify Equation (129), let us define a
normalized version of the descendant state-integral

Z52,m,u(u; 7) = (_1)m+uqu/2q7;4/2252’m)”‘(u; 7). (281)

Our next theorem confirms Conjecture 5 for the 5 knot.

Theorem 25 zs, ,,, x (uup; T) is a q-holonomic function of (m, u) with annihilator ideal s,
given in (252). As a function of u (resp., m), it is annihilated by the opemtors;ig2 (Sx%9™ q)
(resp., Esg (Suw %, @™, q)) given by (254) and (258), whose classical limit is

;{52(590 ) qm; 1) =
—(1-x%1+ 9c)2(q”’x2 —(1—x—21—g™x> + 22>+ (1 + g™x* — x°)S,

—x(1— (14 qg™x—2x> + 20 — g™+t — x5)5§ — qu4552’>,
(282)

and
Bs, (S % 4™, 1) = (1 — $,)(1 — xSp)(1 — x71S,) — g2, (283)

252 (Sx» %, 1, 1) is the A-polynomial of the knot, 252 (Sx» %, 1, q) is the (homogeneous part) of
the z—polynomial of the knot, and §52 (9 %, 1, 1) is the defining equation of the curve (233).

6.3 Taylor series expansionatu =0
In this section, we discuss the Taylor expansion of the descendant holomorphic blocks
and descendant state-integral of the 55 knots at # = 0. Using the definition of H(x, ¥, z; q)
and (161a)—(161b), we find

X n(n+1)+nm

2 q

Am(e;q) = (4:9)% W¢n(”)¢n(_”)

n=0

= @ 0% (af” @) + el (@) + 0s)) (284)
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where
i (q) = Hg,,(q), (285)
X n(n+1)+nm
(m)(Q) q(.—)?,(—Eén)(q)), (286)
—~ (g9}
and

Cm(e™;q) = Bu(e%;q)
=(1—e ) 2(q; q)2¢o(u) *po(—u) 2

o qn(n+1)+nm (ma2m)
()P (2u)e T
= (@9

= u g )2 (" (@) + 1B @) + 12" (@) + 004 (287)

where the coefficients satisfy

B (@) = Hy,, (@), (288)

B q) = Hi, (@) (289)
1

£y (@) = SHy, (@) + 05" (q). (290)

Similarly, using the definition of H (x, y, z;¢g~1), we find

Am(e'sq™h) = Z S JP
G e”)(l—e Ntk = (@) e
= @32 (3" (@) + 8" (@) + 06s)) (291)
where
0" (q) = Hy (@) (292)
o) B o (_l)nq%n(n+1)—nm (__ © ) )
&"(q) —;) Ga? o T26 @ -E"@ (293)
and

Cm(e_u;q_l) = Bm(eu§ q_l)
= (1 —e")(1 — )X (g 9) % o () o (—11)?

oo (_l)nq%n(rH»l)fnm _

n ~n 2 (2n+m)u
n=0 (g q)f; On(1)pn(2u)e
1 X B, _|. 9 ~
2 " (ﬂgm (@) + uB)" (@) + " (@) + O(u3)) (294)

where the coefficients satisfy

By (q) = Hy (@), (295)



29 Page 56 of 67 S. Garoufalidis et al. Res Math Sci(2023)10:29

B"q) = —H;_,,(@) (296)

B @) = SHy ) +37a) (297

Applying these results to the right-hand side of (243), as well as using the trick

=B - T E@), (299
we find the O(1/%?) and O(1/u) contributions from (291) and (294) cancel, and the O(u°)
contributions reproduce (103).

As an application of the above computations, we demonstrate that Theorem 11, espe-
cially (91), (93), as well as the recursion relation (86), can be proved by taking the # = 0
limit of the analogue identities in Theorem 24-.

Using the expansion formulas of holomorphic blocks (284), (287), (291), (294), the
Wronskians can be expanded as

G930 0
Winlesq) = | D_ W () 0 Wi gd 0 : (299)
j=0 0 0 u‘z(q; q)go2
—u g 9> 0 0
We"sq ) = D W,, (@ 0 3@ 0 (300)
j=0 0 0 s@ai

where

g (ayp

Wy (@) = | o™ gD (—1y g | (g)

a](m+2) ﬂj(m+2) (—l)j ﬂ]§m+2)

B

W, (@) = | @™ By -1y | (@) (301)
~(m+2) E(m+2)( lyg(wrz)

Note that a;m) (q) = a; (q) = 0ifj is odd. Taking the determinant of (299), we find
det Win(e"; q) = u™*(g;q)s2 det Wi(q) + O(u°) (302)
which together with the u-expansion of the right-hand side of (255) leads to the determi-

nant identity (91). Furthermore, by substituting (299), (300) into the Wronskian relation
(256), we find the left-hand side reduces to

. 001 001
5W_l(q) 020|W_i(gHlo1o]|+o@h, (303)
100 100

which together with the u-expansion of the right-hand side leads in the leading order to
(92) for m = 1. The more general case follows from the identity of m = 1 by applying the
recursion relations (86) on the Wronskians.
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Fig. 10 The singularities in the Borel plane for the series @0, (u;T) withj = 1,2, 3 of knot 5, where u is close
to zero
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:;m/ o
111 _ ~V

Fig. 11 Four different sectors (and additional two auxiliary regions) in the t-plane for ®(u; 7) of knot 5, with
u close to zero

Finally, from the expression (285),(288) of the leading-order coefficients a(()m) (q), ﬂém) (q),
of A, (e%; q), Bu(e%; q), Cin(e%; q) in the expansion of u, one concludes that the recursion
relation (86) should be the # = 0 limit of the recursion relation (254) in 7, and one can

easily check it is indeed the case.

6.4 Stokes matricesnearu =0
In this section, we give a conjecture for the Stokes matrices of the asymptotic series ¢(x; 7).
We only consider the case when u is not far away from zero, or equivalently x not far
away from 1. To be more precise, we focus on real x and constrain x to be in the interval
containing 1 between the two real solutions to the discriminant (236). In this case, there
are mild changes to the resurgent structure discussed in Sect. 3.2. Each singular point in
Fig. 4 splits to a cluster of neighboring singular points as shown in Fig. 10. In particular,
each of the six singular points ¢;; (i # j) splits to a cluster of neighboring three separated
from each other by log x. We label the four regions separating singularities on positive
and negative real axis and the other singularities by 7, I1, III, IV (see Fig. 11). In each of the
four regions, we have the following the results.
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Conjecture 26 The asymptotic series and the holomorphic blocks are related by (15)
with the diagonal matrix A(x) as in (246) where the matrices Mz(x; g) are given in terms
of the W_1(x; q) as follows

0 0 -1
Mi(x; q) =W,1(x;q)T 1-six) 0], lql <1, (304a)
01 0
0 0-1
My q) =W_1x"5¢)7 | =sx)1 0 |, gl <1, (304b)
1 00
00 -1
Mu(xq) =W ST |11 0 |, gl > 1, (304c)
100
00—1
My q) =W_iq9)T |11 0 |, gl > 1, (304d)
01 0

and where s(x) is given in (277).

Just as in the case of the 41 knot, the above conjecture completely determines the resurgent
structure of ®(r). Indeed, it implies that the Stokes matrices given by Equations (34)
and (33) are explicitly given by:

010 00-—1

St =] 0 11| Woix S HYWaasg)T [11 0 |, (305a)
-100 01 0
0 —s(x)1 0 0-1

Swo=[0 1 o|WalsgW_ix g HT | —sx) 1 0 (305b)
-1 0 0 1 00

for |g| < 1. Note that Equations (233), (234), (235), (238) imply that (one can also see this
from (230))

$(®p) (1) = s(Pp) (%5 7) (306)

for any 7 € C whenever the asymptotic series is Borel summable. It follows that the Stokes
matrices must be invariant under the reflection 7 : x > x~!. Using the property (248)
of Wi, (x; q), it is easy to show that the Stokes matrices (305a),(305b) indeed satisfy this
consistency condition.

The g +— 0 limit of the Stokes matrices factorizes

St (x;0) = 60’3,0’1 (x)603,02 (x)Gm,az ()

1 00 1 00 1s(x)+10
= 0 10 010 0 1 o1, (307)
—s(x) 01 0s(x) 1 0o 0 1

ST (x;0) = 601,03 (x)Gcz,ag (x)602,01 (%)
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10sx))\ (10 0 1 00
=101 0 01 —s(x) —s(x)—110], (308)
00 1 00 1 0 01

where the non-vanishing off-diagonal entries of S5, (x) encode the Stokes constants asso-
ciated with the Borel singularities split from ¢;;. Using the unique factorization Lemma 8
and the Stokes matrix S from above, we can compute the Stokes constants and the corre-
sponding matrix S of Equation (36) to arbitrary order in ¢, and we find that
S =ST (@11 -1
=(—4—x2 =31 —3x—aN)g+ (-1 +x3 +x 2+ 22 +x%)q% + 0(g%),
(309a)

St =(@4+x2+3x 1 +3x+a%)g

01,02

+B7 4+ x4 + 5873 + 16672 4 300 + 30x + 16x% + 5x° + x1)g? + O(4°),

(309b)
S o =a+ 1 +x +x)g* + 0(g), (309¢)
St =—@+x2 437 +3x+a%)q

—(37 + a7 + 5573 + 16572 + 305! + 30x + 16x% + 5x° + x*)g? + O(¢%),
(309d)

S(fzm =4 +x2+3x 1 +3x+ xz)q
+(37 + 2% + 5573 + 16572 4 30x + 30x + 16x2 + 55> + xh)g? + O(4>),

(309¢)
St oy=—0T+ 2072 + 57! + 5x + 2x%)g
—(59 +2x 4 + 10673 + 27572
+ 49x 71 4 49x + 27x% + 1043 + 241 g% + O(¢%), (309f)
Ston=—q—1+x""+x)q" + 0% (309g)
Sfron =(7 42672 + 557" + 5x + 2x%)q
+(59 4+ 2 4+ 10073 + 27472
+ 49x 71 + 49x 4 27x% 4 1043 + 2x%)g® + O(4>), (309h)
St =o. (309i)

03,03

Note that the series S} ,, and S  are different, even though their first few terms are
coincidental. They differ in higher orders, as one can already see in the # = 0 limit in

Sect. 3.2. The matrix § satisfies the symmetry
+ cq) — Gt . ; ;
SO'Z‘,O'I‘ (x’ q) - Saw(i),aw(j) (x’ q)’ l 7& ]’ (310)

with ¢(1) = 2, ¢(2) = 1, ¢(3) = 3, and they display the familiar feature that the entries
of the matrixS*(x;q) = (S(‘,:Ui (x;q)) (except the upper-left one) are (up to a sign) in
N[x*1][[g]]. Similarly, we can extract the Stokes constants Sk (k < 0) associated with
the singularities below ¢;; in the lower half plane and assemble into g~

We find the relation

S0, (:9) = _S;;—'m (q), i#j and S, ;. (xq) = +S(;;(i)"7<ﬂ(i) (% q). (311)

-series S;’,ygj (g7 D).
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Let us now verify Conjecture 4 for the 55 knot. The same logic presented at the end of
Sect. 5.4 also holds here. From the form of the Stokes matrix (305a) as well as (276),(278),
we immediately conclude that

Stg) = Wolx g™ - Wolg). (312)
Using the uniform notation for all holomorphic blocks

(B3, (% 4))a=1,23 = (Ao(x;q), Bo(x; q), Co(x; q)), (313)

the right-hand side of (312) reads?

VVO(JC_1 )Wox, (ZB qx, Bgz(q %~ ;q_l))

£j=0,1,2

= (Indg' — 4% q))l,j_m, (315)

reproducing the right-hand side of (20) in Conjecture 4. Furthermore, the forms of the
accompanying matrices on the left and on the right are such that the (1, 1) entry of S*(x; ¢)
equates exactly the DGG index with no magnetic flux. By explicit calculation,

ST(x;q)11 =H(x, x LLHE L g )+ Hx 2% 2% H L 2 %5 %97Y)
—|—H(x_1,x VX ,q)H(x,x x2 5q 1)
=1— (243 ' +4+3x+ )q
+ @3 a2 -1+ 22+ 5% + 0. (316)

The right-hand side of the first two lines in (316) is the formula for the DGG index given
in [7].

6.5 The Borel resummations of the asymptotic series ®

As in the case of the 41 knot, Conjecture 26 identifies the Borel resummations of the
factorially divergent series ®(x;7) with the descendant state-integrals, thus lifting the
Borel resummation to holomorphic functions on the cut-plane C'.

Corollary 27 (of Conjecture 26) We have

011
si(@)xt)=] 0 10| Woi(E g H)A()Bx; ), (317a)
—-100
010
sy @)= 0 11| Wor @ 53 )AG@)B® ), (317b)
—-100

2Note that if we compare with the DGG indices computed in [7], we have to modify the last line in (315) slightly due
to different conventions for holomorphic blocks

_ _ 322y —3(j—i A & ..
(Wo(x Lq 1)~W0(x:q)T)l_+1i+l = g1 T30 ’)Ind?;t(/—t,q TxLg), ij=01,2 (314)

The right-hand side of (20) should be modified accordingly. This, however, does not affect (21).
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0 1 0

s(®@) ) =| 0 —s@® 1| Woa(x 54 HA(T)B&;q), (317¢)
-1 0 O
0 —s(x) 1

sv@@T)=[ 0 1 0|W_1(%4g HA(T)B®q). (317d)
-1 0 O

where the right-hand side of (317a)—(317d) are holomorphic functions of t € C/, as they
are linear combinations of the descendants (243).

6.6 Numerical verification

In this section, we explain the numerical verification of Conjecture 26, which involves a
richer resurgent structure than that of the 4; knot. We found ample numerical evidence
for the resurgent data (304a)—(304d). These numerical tests are parallel to those performed
for knot 44, so we will be sketchy here. Besides, we will mostly focus on 7 in the upper half
plane, while the lower half plane is similar.

The first test is the analysis of radial asymptotics of the left-hand side of (226), which
can be easily done. The second test is to compute the Borel resummation sp(®.)(x; 7)
and by comparing with the left-hand side extract terms of Mz (%, )5, order by order. To
expediate the operation of extraction, instead of Mg(%; §) we consider

1 0 0
Mr(Eq) = | 00(—g%% ) 0 Mg(%; @) (318)
0 0 0(—q"*%4)*

whose entries are g-series with coefficients in Z[%*!] instead of in Z(#). Using 180 terms
of @, (x; T) at various values of x and 7, we find entries of M 111(%; @) up to O(q?) following
results

My gy =1— (' +2)g — 67" =2+ 2)q” + 0(g%),

Mi(%; q)10=—x""—x+(x 2 42+a2)g+(x 2 =25 +1-2x + x%)g* + O(¢°),
Mg =—1+@"—1+x)g+ @' =2+ + 0(g?),

Mi(x;9)21 =2 — (& + &M)q — (2 — 2°)g® + O(g?),

Mi(x;q)a0 = —x — 2% + (62 4+ 24% + aHg + (6% + 2% — 2% — 22°)¢% + 0(¢%),
Mi(x;9)23 = — 5+ 5°q + (> — x*)g* + O(4%),

M q)31 =2 — (6 + 273+ (v ° — 272 + 0(4%),

Mi(x;q)30=—a 2= (20 3 a2)g— (20 a3 a2+ 0(gP),
M(x;q)33 =—x' +a2qg— (" —x2g> + 0(g?), (319)

and

My @)1i=—x—x"+ (42 + 2 g + (% — 26+ 1 — 26" + 27 2)g*+0(q%),
My =1— (x+x g — (x —2+x7)g* + 0(g%),
Muxq)is=—1+E—1+xg+ @& —-24+2"1g> + 0%,
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Table2 Numerical tests of holomorphic lifts of Borel sums of asymptotic series for knot 5,

1 pual

(A)Region : T = jgem
| L — 1 | aiog — | 130l % )7
o 1.1 x 10738 1.1x107% 1.9% 10713 0.042
o) 22 % 1076 1.7 x 10762
o3 27 x 1074 25 % 10748
(B)Region Il:t = 5’7"
|4 1| g — I (o) %0 )|
o 22 %1076 1.7 x 10762 19% 10713 0.042
o) 1.1 x 10738 1.1x1073%
o3 27 x 10748 25x 1074

We perform the Borel-Padé resummation on ®(x; t) with 180 terms atx = 6/5 and t in regions I, Il and compute the
relative difference between them and the right-hand side of (317a)-(317b), which we denote by Pr(x; 7). They are within
the error margins of Borel-Padé resummation, which are estimated by redo the resummation with 276 terms, denoted by
sp(e) in the tables. The relative errors are much smaller than 1%, |+, possible sources of additional corrections

My (x; ghi1=—x—-14+0+ w4 g+ A+t —x2 =273 + 0(g%),
My q)a2 =1— (" +572)g — ! =237 + 0(%),

My(x;q)as =—x+q+ 1 —x 27> + 0(),

Mp(sq)s1 =—1—2"+ @ + 20+ g — (2¢° + 22 —x — 1)g* + 0(¢%),
My(xq)32 =1 — (5> + x)q + (=* — 2)q* + 0(6®),

My q)3s = — 2 +q— (> = 1)g* + 0(g%). (320)

They are in agreement with (304a),(304b). More decisively, we can compare the numerical
evaluation of both sides of the equations of holomorphic lifts (317a),(317b). We find the
relative difference between the two sides is always within the error margin of Borel-Padé
resummation, and much smaller than g, #*1, possible sources of additional corrections.
We illustrate this by one example withx = 6/5 and t = %e%, %e% in regions 1, II in
Table 2. Finally, we can test the resurgent data by checking that in the x — 1 limit the
Stokes matrices (305a), (305b) reduce properly to (95a), (95b). This is a non-trivial test as

W_1(x;q71) (Ig] < 1) in (305a), (305b) itself diverges in the limit x > 1.

7 One-dimensional state-integrals and their descendants
In a sense, the results of our paper are not about the asymptotics and resurgence of com-
plex Chern-Simons theory, but rather involve power series and g-difference equations
that arise from K>-Lagrangians (clearly advocated in Kontsevich’s talks [50]), or from sym-
plectic matrices (advocated in [45, Sec.7]). The connection with complex Chern-Simons
theory comes via ideal triangulations of a 3-manifold with torus boundary components, a
concept introduced by Thurston for the study of complete hyperbolic structures and their
deformations [65]. The gluing equations of such triangulations are encoded by matrices
which are the upper half of a symplectic matrix (see Neumann-Zagier [61]). The upper
half of these symplectic matrices define state-integrals, as well as the asymptotic series
®(x; T) (this was the approach taken in [16]) and the 3D-index (see [18]).

In this section, we discuss briefly general one-dimensional state-integrals and their
descendants, and their asymptotic series. We will not aim for maximum generality, but



S. Garoufalidis et al. Res Math Sci (2023)10:29 Page 63 of 67 29

instead consider the one-dimensional state-integral

r
Zar(ut;t) = / H Dy (v + u)) efA”i‘ﬂﬂm"tdv, (321)

R+i0 \ ;)

where u = (uy,...,u,) € C" with |Imu;| < [Imcp| (this ensures that all poles of the
integrand are above the real axis), ¢ € Cand A and r integers withr > A > 0. (This ensures
that the integrand decays exponentially at infinity, and hence, the integral is absolutely
convergent.) We have already encountered two special cases in Equations (125) and (240):

4, : (A, r)=(1,2), (4, u2) = (1, 0), w=—2u, (322)
59:(A,r)=(2,3), (u, us, u3) = (0,4, —u), w=0. (323)

We are interested in the descendants of Z defined by
St 57) = (1) 2 G 2y (¢ — i + pib ) (324)

for integers m and u, where the extra factor was inserted to simplify the formulas below.
We will express the factorization of the state-integral (324) in terms of the auxiliary

function
1 o 4 r
Gar(2:9) = > (=02 [Ty oo (325)
4 D)o = i

for y = (y1, ..., yr) and its specialization

1 1 A —
by,j)(x, w;q) = —.Gar (—x, xkAw 1q”’;q) q (326)
xk Xk

for x = (x1, ..., x,) and its renormalization
BW @ wiq) = 0(—q x5 q) 4 0(—qPaw; )70 (ws )b (w3 ) (327)

fork=1,...,r.

Theorem 28 (a) The descendant state-integral can be expressed in terms of the descendant

holomorphic blocks by

ZAnmu (6 t;T) = B_ (% w34 )T A@)Bu(x wiq),  (m € Z) (328)
where

X = 2bu;. %= Q2rbThy g2t g 2abTle (329)
and

ir | (A=-2)ir -1
Ar) =e at T (7)) (330)
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and By(x,w;q) = (Bg,l,)(x, wiq), ..., B%) (x, w;q))T. Consider the matrix W, (x, w;q)
defined by

Bg,?(x, wiq) ... Bgf,) (% w; q)
Win(x, wiq) = : : (331)

Bgrlllrril(x, wiq) ... Bi;)wq(x’ w;q)

(b) The entries of Wi(x, w; q) are holomorphic functions of |q| # 1 and meromorphic
Sunctions of (x, w) € (C*)" x C* with poles in xj € g% (forj = 1,...,r) and w € q% of
order at most r.

(¢c) The columns of Wy, (x, w; q) are a basis of solutions of the linear q-difference equation
B(Sm q™ xw, q)fm(x;q) = 0 for |q| # 1 and m € 7 where

,
B(Sm " xw q) = [ [ = xiSw) — (—@)*w'q"Spy. (332)
k=1

In particular, m — za,5,m (4, t; ) is annihilated by the operator B(Sm q™, xw, q).

Proof For part (a), summing up all the residues of the integrand of (321) in the upper half
plane as in [33], we find that

. r
ZA,mu (Wt 55T) = e h+amic+2micyt Z e‘A”i(”k_Cb)z_Z”i”ktb%) (%, w; q)bﬁf)(fc, w;q )
k=1
(333)

_ 7z

r
= e RHITGHHA-DE+T > B wsq)BY (% w71 (334)
k=1

The last equation follows from (111a) (which takes care of e =47 it ’cb)z) and (111b) (which
takes care of the ¢-terms under the assumption that uxt = pru and ¢ = pu for integers p
and py)

For part (b), note that G4 (), z; ) is symmetric with respect to permutation of the
coordinates of y and that the specialization to y, = 1 is given by

0 q%n(n—ﬁ—l) r—1
Gar0zly=1 = Y (D" ——2"[[@" " D)oo (lal #1). (335)
n=0

@D 5
It follows that G4 (3, z; q)|y,=1 is holomorphic for (y, z) € C" 1 x {1} x Cwhen |g| < 1
and meromorphic in (y,z) € (C*)"~! x {1} x C* with poles in yj € gNforj=1,...,7.
Since bﬁ,’;) (x, w; q) are expressed in terms of a specialization of Ga,(3, z; 4)ly,—1, part (b)
follows.

Part (c) follows from Equation (326) and the fact (proven by a standard creative tele-
scoping argument) that the function z — Gy, (3, z; q) is annihilated by the operator

r

[1a = L) — (—g)*zL? (336)
k=1

where L, shifts z to gz. O
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