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Abstract. We prove a conjecture stated by Melvin and Morton (and elucidated
further by Rozansky) saying that the Alexander–Conway polynomial of a knot
can be read from some of the coe�cients of the Jones polynomials of cables of
that knot (i.e., coe�cients of the “colored” Jones polynomial). We �rst reduce
the problem to the level of weight systems using a general principle, which
may be of some independent interest, and which sometimes allows to deduce
equality of Vassiliev invariants from the equality of their weight systems. We
then prove the conjecture combinatorially on the level of weight systems. Fi-
nally, we prove a generalization of the Melvin–Morton–Rozansky (MMR) con-
jecture to knot invariants coming from arbitrary semi-simple Lie algebras. As
side bene�ts we discuss a relation between the Conway polynomial and im-
manants and a curious formula for the weight system of the colored Jones
polynomial.
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1. Introduction

1.1. The conjecture. In this paper, we will mostly be concerned with proving
and explaining some of the motivation for the following conjecture, due to
Melvin and Morton [MM,Mo]:

Conjecture 1. Let Ĵsl(2); �(K) ∈ Q(q) be the “framing independent colored
Jones polynomial” of the knot K; i.e.; the framing independent Reshetikhin–
Turaev invariant1 [RT] of K colored by the (d = �+1)-dimensional represen-
tation of sl(2). Let ˜ be a formal parameter; let q = e˜; and let [d] denote
the “quantum integer d ”:

[d] =
qd=2 − q−d=2

q1=2 − q−1=2
=

e d˜=2 − e−d˜=2

e˜=2 − e−˜=2
:

Then; expanding Ĵ =[d] in powers of d and ˜ (this is possible by [MM]),

Ĵsl(2); �(K)(e˜)
[d]

=
∑

j;m=0
ajm(K)dj˜m ;

we have:
(1) “Above diagonal ” coe�cients vanish: ajm(K) = 0 if j ¿ m.
(2) “On diagonal ” coe�cients give the inverse of the Alexander–Conway

polynomial:
MM (K)(˜) · A(K)(e˜) = 1 ; (1)

where A(q) is the Alexander–Conway polynomial (in its “Conway ” normaliza-
tion; as in example 2:8) and MM is de�ned by

MM (K)(˜) =
∞∑
m=0

amm(K)˜m :

Notice that the colored Jones polynomial of a knot can be read from the
Jones polynomials of cables of that knot (see, e.g. [MS]), and thus the above
conjecture implies that the Alexander polynomial can be computed from the
Jones polynomial and cabling operations.
Melvin and Morton arrived at (the rather unexpected) Conjecture 1 after

noticing it in some special cases, and by noticing that the two sides of (1)
seem to behave in the same way when acted on by the ‘Adams operations’ of
[B-N2]. In his visit to Cambridge in November 1993, we informed L. Rozansky
of the conjecture, and he was able [Ro1] to �nd a non-rigorous path integral
“proof” of it, which easily leads to a generalization to other Lie algebras, as
shown in Sect. 5. At the end of this introduction we will brie
y review the
main ideas of Rozansky’s work on the MMR conjecture.

1I.e., Ĵ is obtained from the framing-dependent J either by multiplication of q−C·writhe where C
is the quadratic Casimir number of V�, or by evaluating J on K with its zero framing. We take
the metric on sl(2) to be the trace in the 2-dimensional representation.
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1.2. Preliminaries. Before we can sketch our proof of the MMR conjecture,
let us recall some facts about Vassiliev invariants and chord diagrams, which
are the main tools used in the proof. We follow the notation of [B-N2]; see
also [Val, Va2, BL,Ko1]. A Vassiliev invariant of type m is a knot invariant V
which vanishes whenever it is evaluated on a knot with more than m double
points, where the de�nition of V is extended to knots with double points via
the formula

The algebra V of all Vassiliev invariants (with values in some �xed ring)
is �ltered, with the type m subspace FmV containing all type m Vassiliev
invariants. The associated graded space of V is isomorphic to the space W
of all weight systems. A degree m weight system is a homogeneous linear
functional of degree m on the graded vector space Ar of chord diagrams like
in Fig. 1 divided by the 4T and framing independence relations explained in
Figs. 2 and 3.
Ar is graded by the number of chords in a chord diagram. It is a commu-

tative and co-commutative Hopf algebra with multiplication de�ned by juxta-
position, and with co-multiplication � de�end as the sum of all possible ways
of ‘splitting’ a diagram. The co-algebra structure of Ar de�nes an algebra
structure on W. The Hopf algebra A is de�ned in the same way as Ar , only
without imposing the framing independence relation.
There are natural maps Wm : FmV → GmW = GmA

r∗, where Gm obj
denotes the degree m piece of a graded object obj. For a type m Vassiliev

Fig. 1. A chord diagram.

Fig. 2. To get the 4T relations, add an arbitrary number of chords in arbitrary positions (only
avoiding the short intervals marked by a ‘no-entry’ sign �) to all six diagrams in exactly
the same way.

Fig. 3. The framing independence relation: any diagram containing a chord whose endpoints
are not separated by the endpoints of other chords is equal to 0.
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invariant V it is natural to think of Wm(V ) as “the m’th derivative of V ”.
The maps Wm are compatible with the products of the spaces involved. Similar
de�nitions can be made for framed knots, and the image of the corresponding
map Wm will be GmA

∗.

1.3. Plan of the proof. It is well known [Gou, B-N1, B-N2, BL, Lin] that the
coe�cients of both the Conway and the Jones polynomials are Vassiliev invari-
ants. Normally, Vassiliev invariants are not determined by their weight systems.
However, in Sect. 2 we explain (following Kassel [Kas] and Le and Murakami
[LM]) that when an invariant comes (in an appropriate sense) from a Lie al-
gebra, it is in fact determined by its weight system. As this is the case for
all the invariants appearing in Conjecture 1 (or rather, in the version of it that
we actually prove Theorem 1), it is enough to prove Conjecture 1 (that is,
Theorem 1) on the level of weight systems.
To do this, we analyze the weight systems of the Conway polynomial and

of the invariant MM . In Sect. 3 we analyze the weight system WC of the
Conway polynomial. We �nd a simple characterization (Theorem 2) of it, and
then we use this characterization to show that WC(D) is the determinant of the
intersection matrix IM(D) (De�nition 3.4) of the chord diagram D. In Sect. 4
we go through a rather complicated analysis of the weight system of MM ,
�nding that it is given by the permanent of the intersection matrix. We then
conclude the proof of the conjecture by showing that, in the sense of weight
systems,

log det IM + log per IM = 0 ; (2)

and thus the two weight systems are inverses of each other. Equation (2) is
proven in the ends of Sects. 3 and 4, where the logarithm of the two weight
systems involved are given in terms of explicit formulas.
In Sect. 5 we use similar techniques to generalize Conjecture 1 to arbitrary

semi-simple Lie algebras. In Sect. 6.1 we discuss a curious relation between
immanants and the algebra generated by the coe�cients of the Conway poly-
nomial, in Sect. 6.2 we sketch how the techniques of Sect. 4 can be used to
get a formula for the weight system of the colored Jones polynomial, and in
Sect. 6.3 we conjecture a generalization of Conjecture 1 beyond the realm of
Lie algebras.
As noted before, we actually prove a variation of Conjecture 1 in which

the normalizations are somewhat ‘better’ from the point of view of Sects. 2
and 5:

Theorem 1. Expanding Ĵ =d in powers of � = d− 1 and ˜;

Ĵ sl(2); �(K)(e˜)
d

=
∑

j;m=0
bjm(K)�j˜m ; (3)

we have:
(1) “Above diagonal ” coe�cients vanish: bjm(K) = 0 if j ¿ m:
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(2) Up to a constant, “on diagonal ” coe�cients give the inverse of the
Alexander–Conway polynomial:

JJ (K)(˜) · ˜
e˜=2 − e−˜=2

A(K)(e˜) = 1 ; (4)

where JJ is de�ned by

JJ (K)(˜) =
∞∑
m=0

bmm(K)˜m :

Claim 1.1. Conjecture 1 and Theorem 1 are equivalent.

Proof. Let b′jm be the coe�cients of the expansion of Ĵ =d in powers of d and
˜. It is clear that Theorem 1 restated with b′jm replacing bjm is equivalent to
the original Theorem 1. We have:

∑
ajmdj˜m =

Ĵ
[d]

=
d
[d]

· Ĵ
d
=

e˜=2 − e−˜=2

˜
· d˜
ed˜=2 − e−d˜=2 · ∑ b′jm dj˜m

(5)
The �rst factor in the right hand side of (5) is a power series in ˜ alone in
which the coe�cient of ˜0 is 1, and thus it (or its inverse) cannot take below-
or on-diagonal terms to go above the diagonal, and it does not change the
coe�cients on the diagonal. The second factor lives entirely on the diagonal and
thus the �rst part of Conjecture 1 is equivalent to the �rst part of Theorem 1.
Restricted to the diagonal, (5) becomes

∑
ammdm˜m =

d˜
ed˜=2 − e−d˜=2 ·∑ b′mmd

m˜m :

At d = 1, we get

MM =
˜

e˜=2 − e−˜=2
· JJ ;

and it is clear that (1) and (4) are equivalent.

1.4. Rozansky’s work. Rozansky arrives at the MMR conjecture using the
path integral interpretation of the Jones polynomial given in Witten’s seminal
paper [Wi]. Needless to say, path integrals have not yet been mathematically
de�ned, but they can be used as a rich source of motivation. In our case they
do in fact lead to the correct conjecture, though our proof of the conjecture
is not a translation of the path integral argument to rigorous math, and we
don’t know how to translate the path integral argument into rigorous math.
For the convenience of the reader we outline Rozansky’s argument below. The
reader may �nd our account somewhat more readable than Rozansky’s [Ro1],
as we have isolated the parts relevant to Conjecture 1 from his (much broader)
paper, and skipped some of the details. We heartily recommend consulting
with [Ro1] (as well as [Ro2, Ro3]) for the missing details and for many other
related results.
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Let us recall Witten’s interpretation of the Jones polynomial. For a framed,
oriented knot K in S3, a choice V� of an irreducible SU (2) representation of
highest weight � and an integer k, Witten introduces the following de�nition:

Z(K; V�; k) =
∫
A

DAe2�ik CS(A)OK;V�(A)

where the (ill de�ned) path integral is over the space A of all SU (2) connec-
tions on the trivial SU (2) bundle over S3; CS :A→ R=Z is the Chern–Simons
action

CS(A) =
1
8�2

∫
S3
tr(A ∧ dA+ 2

3A ∧ A ∧ A) ;

and OK;V� : A → R is the trace in the representation V� of the holonomy of
the connection A along the knot K .
Using non-rigorous quantum �eld theory reasoning, Witten computed

Z(K; V�; k) and found that

Z(K; V�; k) =

√
2

k + 2
sin
(

�
k + 2

)
Jsl(2); V�(K)

(
exp

2�i
k + 2

)
;

where Jsl(2); V� is the framing dependent colored Jones polynomial.
Now take a rational number 0 ¡ a � 1 (so that ka is a weight for many

large integers k). Following Rozansky [Ro1], the path integral Z(K; Vka; k)
(for such k) can be split into an integral over connections on a tubular neigh-
borhood Tub(K) of the knot K and over connections on the complement
S3\Tub(K) with certain boundary conditions on the boundary T 2 = @Tub(K),
followed by an integral over these boundary conditions. With the appropriate
boundary conditions of [EMSS], the integral over the connections on Tub(K)
can be restricted to an integral over 
at connections, and on those it is propor-
tional to �(I1 − e 2�ia) independently of k, where I1 is the holonomy along a
meridian of K in @Tub(K) and e 2�ia is considered in SU (2) in the usual way.
Therefore

Z(K; Vka; k) =
∫

A[S3\Tub(K)]a
DAe 2�ikCS′(A) (6)

where the integral is over the connections on S3\Tub(K) with holonomy e 2�ia

along any meridian of K . Here CS ′ is a modi�ed Chern–Simons action dictated
by the boundary conditions.
Rozansky now applies stationary phase approximation to calculate the large

k limit of Z(K; Vka; k). The critical points of CS ′ are the 
at SU (2) connec-
tions on the knot complement with holonomy e 2�ia around a meridian. Modulo
gauge equivalence, the moduli space of such connections consists of only one
connection Aa, for su�ciently small values of a.

By the stationary phase approximation, the leading order term of the path
integral is proportional to

1√
8�

(
4�2

k

)1
2

(
h0(Aa)−h1(Aa)

)√
�RS(Aa) · e 2�ikCS′(Aa)
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where hj(Aa) is the dimension of the j’th cohomology of S3\Tub(K) with
coe�cients twisted by Aa, and �RS(Aa) is the SU (2) Ray–Singer torsion
of S3\Tub(K) twisted by Aa. Furthermore one can check that h1(Aa) = 0;
h0(Aa) = 1, and CS ′(Aa) = 0. The Ray–Singer torsion splits into three factors,
one for each algebra component of SU (2). The torsion in the Cartan direction
is 1, and in the remaining two directions the torsions are equal, and each con-
tributes the square root of the U (1) ⊂ SU (2) torsion using the representation
of �1(S3\Tub(K)) sending the meridian to e 2�ia ∈ U (1). Summarizing, we get√

2
k + 2

sin
(

�
k + 2

)
Jsl(2); Vka(K)

(
exp

2�i
k + 2

)
∼

k→∞
1√
2k

�RS(S3\Tub(K); e 2�ia) :

Cheeger [Ch] and M�uller [M�u] proved that the Ray–Singer torsion is equal
to the Reidemeister torsion, which by Milnor [Mi] and Turaev [Tu] was shown
to be proportional to the inverse of the Alexander polynomial A(K) of K ,
evaluated at e 2�ia. With the correct constant of proportionality (2 sin �a) in
place and ignoring factors that converge to 1 as k →∞, we get

�
k
Jsl(2); Vka(K)

(
exp

2�i
k

)
−→
k→∞

sin �a
A(K)(e 2�ia)

:

See [Ro1, (2.8) and following paragraph] for an explanation why the J com-
puted here is ‘in zero framing’. Thus J = Ĵ and

� a
∑

j;m=0
bjm(K)(2�i)majkj−m −→

k→∞
sin � a

A(K)(e 2�ia)
:

This proves (on the level of rigor of path integrals) that bjm = 0 if j−m ¿ 0,
and, taking a = ˜=2�i and disregarding all strictly positive powers of k, it also
proves Theorem 1 (on the same level of rigor).

2. A reduction to weight systems

Let us start with some generalities that (sometimes) allow us to deduce equality
of invariants from the equality of their weight systems. In this section, we
mostly interpret and adapt to our needs the deep results of Kassel [Kas] and
Le and Murakami [LM], who followed Kohno [Koh] and Drinfel’d [Dr1, Dr2].

2.1. Canonical Vassiliev invariants. A fundamental (and not too surprising)
result in the theory of Vassiliev invariants is that every degree m weight sys-
tem comes from a type m Vassiliev invariant, and that the resulting Vassiliev
invariant is well-de�ned up to Vassiliev invariants of lower types (see e.g.
[Ko1] and [B-N2]); in other words, the sequence

0→Fm−1V→FmV→ GmAr? → 0 ; (7)

is exact. The standard way of proving this fact is to construct a splitting
Vm : GmAr? → FmV for each m. These splittings can be assembled together
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in a unique way to form a universal Vassiliev invariant Z with values in the
graded completion of Ar , satisfying

Vm(W ) = W ◦ Z (8)

for each degree m weight system W . In fact, usually Z is �rst constructed, and
only then the splittings Vm are de�ned from it via (8).
A-priori, there appears to be no knot theoretic reason to expect that there

would be a preferred choice for the splittings Vm, or, equivalently, for Z . How-
ever, rather surprisingly, it seems that such a preferred choice for Z does exist.
Indeed, for reasons discovered by Drinfel’d [Dr1, Dr2] and elucidated further
by Kassel [Kas] and Le and Murakami [LM], many of the known construc-
tions [B-N3, Ca, Kas, Ko1, LM] of a universal Vassiliev invariant give the same
(hard to compute but rather well behaved) answer.2 Let us call this preferred
universal Vassiliev invariant ZK.

De�nition 2.1. A Canonical type m Vassiliev invariant V is a type m
Vassiliev invariant lying in the image of the splitting of (7) de�ned by ZK.
In a simpler language, let ZKm be the projection of ZK into GmA

r . V is a
canonical type m Vassiliev invariant i�

V = Wm(V ) ◦ ZKm :

De�nition 2.2. Let ˜ be a formal parameter. A Vassiliev power series is an
element

V ∈
∞∑
m=0

(FmV)˜m :

That is to say, it is a power series V = V0 +V1˜+ : : : in which the coe�cient
Vm of ˜m is a Vassiliev invariant of type m. The weight system W (V ) of V
will be the sum of the weight systems of the coe�cients of V (which makes
sense in the graded completion �W of W):

W (V ) =
∞∑
m=0

Wm(Vm) ∈ �W :

De�nition 2.3. A Vassiliev power series V =
∑

Vm˜m is called canonical if
each of its coe�cients Vm is canonical. Equivalently, if ˜deg is the operator
that multiplies every degree m diagram by ˜m and ZK˜

def= ˜deg ◦ZK; then V is
canonical i�

V = W (V ) ◦ ZK˜ :

Obviously, two canonical Vassiliev power series (or canonical Vassiliev
invariants) are equal i� their weight systems are equal. Sometimes, as is the
case in this paper, it is easier to verify equality of weight systems and then

2[B-N2, Pi2] di�er only by a normalization, and the incomplete perturbative Chern–Simons con-
structions [AS1, AS2, B-N1,Ko2] are conjectured to also give the same answer.
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use it to deduce the equality of the corresponding canonical invariants rather
than proving the equality of the invariants directly.

2.2. Examples of canonical Vassiliev power series. In this section we will
establish, through a sequence of examples, that the invariants appearing in
Theorem 1 are canonical.

Example 2.4. The type 0 invariant 1, whose value on all knots (having no dou-
ble points) is 1, is both a canonical type 0 Vassiliev invariant and a canonical
Vassiliev power series. Its weight system � is de�ned by

�(D) =
{
1 if degD = 0 (namely, if D = −→ is the empty diagram) ;

0 otherwise :

Kassel [Kas, Theorem 8.3, Chapter XX] and Le and Murakami [LM, The-
orem 10], using the techniques of Kohno [Koh] and Drinfel’d [Dr1, Dr2], have
shown that the Reshetikhin–Turaev [RT] invariant associated with a semi-
simple Lie algebra g and a representation V (and a metric t on g) is a canonical
Vassiliev power series when evaluated at q = e˜ and expanded in powers of
˜.3 (Both the framed version Jg; V and unframed version Ĵ g; V are canonical; for
the framed version, A has to replace Ar in the de�nitions of this section. For
the unframed version (at least when V is irreducible), simply notice that it can
always be obtained from the framed version by multiplying the Lie algebra by
an Abelian Lie algebra). We will use this crucial result twice, in Example 2.5
and in Example 2.6.

Example 2.5. By [Kas, LM], the invariant Ĵsl(2); � of Conjecture 1 is a canonical
Vassiliev power series, and hence the invariants bjm of Theorem 1 are canonical
of type m, and JJ is a canonical Vassiliev power series. The invariants ajm and
MM are not canonical as [d] depends on ˜.

Example 2.6. The HOMFLY polynomial, de�ned by the relations

H (c-component unlink) =
(
eN˜=2 − e−N˜=2

e˜=2 − e−˜=2

)c

;

is a canonical Vassiliev power series, as it is the Reshetikhin–Turaev invariant
associated with the Lie algebra sl(N ) in its de�ning representation.

Example 2.7. Divide the HOMFLY polynomial by N and take the limit N → 0.
The limit exists because the limit

lim
N→0

eN˜=2 − e−N˜=2

N
= ˜

3Thus they gave an a�rmative answer to problem 4.9 of [B-N2].
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exists. The result is a canonical Vassiliev power series C̃ satisfying

(9)

C̃ (c-component unlink) =

{
˜

e˜=2 −e−˜=2
if c = 1

0 otherwise :

Recall that the Conway polynomial C [Co, Kau] (considered as a polynomial
in ˜) is de�ned by the relations:

(10)

C (c-component unlink) =
{
1 if c = 1

0 otherwise :

Comparing (9) and (10), we see that the Conway polynomial itself is not a
canonical Vassiliev power series, but its renormalized reparametrized version

C̃(˜) =
˜

e˜=2 − e−˜=2
C(e˜=2 − e−˜=2)

is a canonical Vassiliev power series.

Example 2.8. The Alexander polynomial, de�ned by A(z) = C(z1=2 − z−1=2),
is not a canonical Vassiliev power series, but it becomes canonical when mul-
tiplied by ˜

e˜=2−e−˜=2 and evaluated at z = e˜ (as this product is C̃).

2.3. Products. The product (in the natural sense) of two Vassiliev power series
is a Vassiliev power series, and the weight system of such a product is the
product of the weight systems of the factors.

Proposition 2.9. The product of any two canonical Vassiliev power series is
a canonical Vassiliev power series.

Proof. It can be shown that the universal Vassiliev invariant ZK is ‘group-like’;
it satis�es �ZK(K) = ZK(K) ⊗ ZK(K) for any knot K . This property is an
immediate consequence of the Kontsevich integral formula for ZK described in
[Ko1, B-N2]4. Now, if V1;2 are canonical, then

(W (V1V2) ◦ ZK˜ )(K)
= (W (V1)W (V2))(ZK˜ (K)) [B-N2, exercise 3.10]

= (W (V1)⊗W (V2))(�ZK˜ (K)) Ar is a Hopf algebra

= (W (V1)⊗W (V2))(ZK˜ (K)⊗ ZK˜ (K)) ZK is group-like

= (W (V1) ◦ ZK˜ )(K)(W (V2) ◦ ZK˜ )(K)
= V1(K)V2(K) ;

and thus V1 · V2 is also canonical.
4A similar but di�erent statement is [LM, Theorem 4].
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It follows from Examples 2.4, 2.5, and 2.8 and from Proposition 2.9 that
both sides of equation (4) are canonical Vassiliev power series, and thus it is
enough to prove (4) (as well as the vanishing of bjm for j ¿ m) on the level
of weight systems. That is, we need to show that

WJJ · WC = � ; (11)

where WJJ is the weight system of JJ; WC is the weight system of C̃ (which
is equal to the weight system of C), and � is as in Example 2.4.

3. The Conway polynomial

3.1. The Conway weight system. The de�ning relations (10) of C, become
the following relations on the level of WC :

In other words, to compute WC of a given chord diagram D, “thicken” all chords
in D into bands, and count the number of cycles in the resulting diagram; if
it is greater than 0; WC(D) is 0, and otherwise it is 1. For example,

These two examples can be combined as in the following de�nition:

De�nition 3.1. An (m1; m2)-caravan or simply a caravan is the chord diagram
�m1Xm2 made of m1 single-hump-camels and m2 double-hump-camels, as in
Fig. 4. It is a chord diagram of degree m = m1 + 2m2.

Proposition 3.2.

WC(an(m1; m2)-caravan) =
{
1 if m1 = 0
0 otherwise .

3.2. The 2T relation. It is clear that WC is invariant under the “2T” or “slide”
relations shown in Fig.5. Indeed, after thickening the chords l and r, it is clear

Fig. 4. An (m1; m2)-caravan.
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Fig. 5. The 2T relations. In these �gures, ellipsis denote possible other chords, while a ‘no-
entry’ sign (	) means that no chords can end in the corresponding interval. For de�niteness,
we drew the ‘far’ end of the chord l left of the chord r, but it can be anywhere else in the
diagram.

Fig. 6. Deriving the relation 2T ′ by sliding l over r.

that it is possible to ‘slide’ l over r as in Fig. 6 without changing the topology
of the resulting diagram.
Let GmD be the set of all chord diagrams of degree m. The following

theorem5 is a characterization of the Conway weight system:

Theorem 2. If a map W : GmD → Z satis�es the 2T relations and the
same ‘initial condition’ as in proposition 3.2, then it is the Conway weight
system WC .

Proof. It is enough to show that modulo 2T relations, every chord diagram D
is equivalent to a caravan. If D has a pair of intersecting chords r1 and r2,
thicken both of them and slide all other chords out and to the left as in Fig. 7.
The result is that a double-hump-camel (an X diagram) is factored out. Use
induction to simplify the rest. If D has no pairs of intersecting chords, than it
must have a ‘small’ chord r, a chord whose endpoints are not separated by the
endpoints of any other chords. Thicken r, and slide all other chords over it and
to the left. The result is that a single-hump-camel (a � diagram) is factored
out. Again, use induction to simplify the rest.

Fig. 7. Factoring out a double-hump-camel. Slide all other chords out following the path
marked by a dotted line.

5P.M. Melvin commented that this is simply the classi�cation theorem for surfaces presented as
‘a box with handles’.
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Exercise 3.3. Show that the space of maps W : GmD → Z satisfying the
2T relations is spanned by the coe�cients of various powers of N in D 7→
Wgl(N );VN (D), where Wgl(N );VN (D) is the weight assigned to D using the Lie
algebra gl(N ) in its de�ning representation VN as in Sect. 4.1 below. Show
that such a map that also satis�es the framing independence relations has to
be proportional to WC .

3.3. The intersection graph and the intersection matrix. In this section, we
will use Theorem 2 to �nd a determinant formula for WC .

De�nition 3.4 (See also [CDL1, CDL2, CDL3]). Let D be a degree m chord
diagram. The labeled intersection graph LIG(D) of D will be the graph whose
vertices are the chords of D; numbered from 1 to m by the order in which they
appear along the ‘base line’ of D from left to right; and in which two vertices
are connected by an edge i� the corresponding two chords in D intersect. The
intersection matrix IM(D) of D is the anti-symmetric variant of the m × m
adjacency matrix of LIG(D) de�ned by

IM(D)ij =

 sign(i − j)
if chords i and j of D intersect (where chords
of D are numbered from left to right),

0 otherwise.

Example 3.5.

Example 3.6. The labeled intersection graph of an (m1; m2)-caravan is the dis-
connected union of m1 single vertices and m2 graphs like •—-•. Its intersection
matrix is block diagonal, with the blocks on the diagonal being m1 copies of
the 1× 1 zero matrix and m2 copies of the matrix ( 0 −1

1 0 ).

Exercise 3.7. Show that if the labeled intersection graph of a chord diagram is
connected, then the diagram is determined by its intersection matrix. Deduce
that in general the intersection matrix determines the class of diagram modulo
4T relations.

Hint 3.8. Start from a connected labeled intersection graph of a chord dia-
gram, remove one vertex so that the resulting graph is still connected (this is
possible!), use induction, and show that there is a unique way to re-install the
missing chord.

In the light of the above exercise, it is not surprising that one can �nd
a formula for the weight system of the Conway polynomial in terms of the
intersection matrix, as found in the theorem below. A mild generalization of
this theorem is in Sect. 6.1. Even though the exercise suggests it should be
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possible, we have not been able to �nd nice formulae for other weight systems
(beyond those of Sect. 6.1) in terms of the intersection matrix.

Theorem 3. For any chord diagram D;

WC(D) = det IM(D)

Proof. Let W : GmD → Z be de�ned by W (D) = det IM(D). By Theorem 2,
it is enough to prove that W satis�es the 2T relations and the initial conditions
of Proposition 3.2. The latter fact is trivial; simply compute the determinant of
the block diagonal matrix in Example 3.6. Let us now prove that W satis�es
the 2T relations. First, notice that W is ‘independent of the basepoint of D’.
That is, if the diagram D2 is obtained from the diagram D1 by moving the
left-most vertex of D1 to the right end,

then W (D1) = W (D2). Indeed, except for the labeling the intersection graphs of
D1 and D2 are the same, and so IM(D2) is obtained from IM(D1) by reversing
all the signs in the �rst row of IM(D1), re-installing it as row number j for
some j, and then doing exactly the same to the �rst column of IM(D1). The
e�ect of the row operations is to multiply det IM(D1) by some sign, and then
the column operations multiply by the same sign once again. The end result is
that det IM(D1) = det IM(D2), as required.

By repeating the above process a few times, we may assume that the chord
l in the 2T ′ relation is chord number 1, and so we need to prove that W (D1) =
W (D2) where D1(D2) is the diagram obtained by ignoring l2(l1) in the
�gure

In this �gure, it is clear that any other chord can intersect either none of
the chords l1; l1 and r, or exactly two of them. Using this and some case-
checking, it is clear that IM(D2) is obtained from IM(D1) by adding its jth
rows to its �rst row, and then doing the same column operation. Therefore
det IM(D1) = det IM(D2), as required. The same argument also proves the
2T ′′ relation.

In the following two exercises, we outline two alternative proofs of
Theorem 3:

Exercise 3.9. (Melvin) Let F be the surface obtained by thickening a chord
diagram D (that is, thicken all chords and the base line), and let @F be its
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boundary. WC(D) = 1 if H0(@F) = Z, and otherwise, WC(D) = 0. Now con-
sider the following long exact sequence:

H1(F)
p?−→ H1(F; @F)

�−→ H0(@F)
i?−→ H0(F) = Z −→ 0y 


(
Poincar�e
duality

)
H 1(F)

We are interested in knowing when H0(@F) = Z, which is when p? is an
epimorphism, which is when 
 ◦ p? is an epimorphism. Show that in the
basis suggested by the chords of D, 
 ◦ p? is given by the matrix IM(D),
and use this to deduce Theorem 3. (We wish to thank C. Kassel for re-
minding us that the determinant of an anti-symmetric matrix is always non-
negative).

Exercise 3.10. Deduce theorem 3 from the fact (see e.g. [Kau, Chapter 7]) that
the Alexander polynomial of a knot K is given by det(z−1�− z�T ), where � is
Seifert pairing matrix for some Seifert surface for K , and �T is its transpose.

Hint 3.11. First, take the ‘pre-Seifert surface’ of a speci�c singular embedding
of a chord diagram as in:

Then resolve all the double points to overcrossings and undercrossings, while
extending the ‘pre-Seifert surface’ to a Seifert surface as in:

It is now easy to compute the 2m×2m Seifert pairing matrices of the resulting
surfaces in terms of the m×m intersection matrix of the original chord diagram
and the over/under choices at the double points.

3.4. The logarithm of the Conway weight system. Expanding det IM(D) as
a sum over permutations, we only need to consider those permutations of
chords(D) which map any chord to a di�erent chord intersecting it. Such
permutations can be considered as ‘walks’ on LIG(D). Let us introduce the
relevant terminology:

De�nition 3.12. A Hamilton cycle in LIG(D) is a directed cycle H of length
¿ 1 in LIG(D) containing no repeated vertices. For example; the graph in
example 3.5 has two Hamilton cycles of length 4, four of length 2, and none
of any other length. The descent d(H) of a Hamilton cycle H is the number



118 D. Bar-Natan, S. Garoufalidis

of label-decreases along the cycle. For example; the cycle 1→ 2→ 4 ?→3 ?→1
in Example 3.5 has descent 2, corresponding to the two stared label-decreases.
A cycle decompositions H = ·∪H� is a cover of the vertex set of LIG(D) by
a collection of unordered disjoint Hamilton cycle; and the descent d(H) of H
is de�ned by d(H) =

∑
d(H�).

Expanding det IM(D), and taking account of signs, we �nd that

WC(D) =
∑

H= ·∪�H�

(−1)�H (−1)d(H) ; (12)

where �H is the permutation of the vertices of LIG(D) underlying H . Notice
that if H contains a cycle of odd length, then (−1)d(H) is odd under reversing
the orientation of that cycle, while (−1)�H does not change under that opera-
tion. Therefore, summation can be restricted to cycle decompositions containing
no odd cycles. For such cycle decompositions, (−1)�H = (−1)|H |, where |H |
is the number of cycles in H , and thus

WC(D) =
∑

H= ·∪�H�

(−1)|H |(−1)d(H) : (13)

Recall (see. e.g. [B-N2]) that the algebra structure on weight systems is
de�ned by

(W1 · W2)(D) =
∑

splittings
D=D1 ·∪D2

W1(D1) · W2(D2) : (14)

Using the power series expansion of the exponential function, we �nd that

(expW )(D) =
∑

unordered splittings
D= ·∪D�

∏
�
W (D�) ;

and if W depends on D only through LIG(D), we �nd

(expW )(D) =
∑

unordered splittings
LIG D= ·∪G�

∏
�
W (G�) ;

using the obvious de�nition for a splitting of a labeled graph.

Proposition 3.13.
(logWC)(D) = −∑

H
(−1)d(H) ;

where the sum extends over all Hamilton cycles H covering all the vertices
of LIG(D) (i.e., all cycle decompositions into a single cycle).

Proof. Simply exponentiate both sides of this equation and use the discussion
in the preceeding paragraph to recover (13).

4. Understanding WJJ

The purpose of this section is to understand WJJ , the weight system underlying
the invariant JJ . The invariant JJ , as de�ned in the statement of Theorem 1,
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has to do with the Lie algebra sl(2). So let us start by recalling the relation
between Lie algebras and weight systems.

4.1. Lie algebras and weight systems. Let g be a Lie algebra over some ground
�eld F, let t be a metric (ad-invariant symmetric non-degenerate quadratic
form) on g, and let V be a representation of g. Given this information,
one can construct a weight system [B-N1, B-N2]. Let us recall how this is
done.
Choose some basis {ga}dim g

a=1 of g. Let (tab) be the matrix corresponding to
the metric t in the basis {ga}; that is, tab = t(ga; gb). Let the matrix (tab) be
the inverse of the matrix (tab), and let B ∈ (V?⊗V )⊗(V?⊗V ) = End(V⊗V )
be given by

B =
dim g∑
a;b=1

tabga ⊗ gb :

We will represent B symbolically by the diagram

(15)

With this notation for B, one can view a chord diagram of degree m as a recipe
for how to contract m copies of B and get a tensor T(D) ∈ End V . This is
best explained by an example; see Fig. 8.
One can show (see [B-N1, B-N2]) that the resulting tensor T(D) is inde-

pendent of the choice of the basis of g (indeed, already B is independent of
that choice), is an intertwinner, and that the map D 7→ trT(D) satis�es the 4T
relation, and hence it descends to a map Wg; V :A→ F (the metric t is usually
suppressed from the notation). If V is an irreducible representation and C is

Ŵg; V = Wg⊕u (1); V̂ ;

where V̂ = V⊗√−C and
√−C denotes the 1-dimensional representation of the

1-dimensional Lie algebra u(1), in which the unit norm generator acts by
multiplication by

√−C. Notice that the representations V and V̂ are in the same
vector space, and that Ŵg; V (D) can be computed using the same procedure as
in Fig. 8, only everywhere replacing B by B̂, where B̂ = B− C · I .

Fig. 8. The construction of T(D). The B components are as in (15), and pairs of spaces
surrounded by a box should be contracted. The two un-boxed spaces are V? and V , and
thus the result is a tensor in V? ⊗ V = End V .
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Recall from Sect. 2.2 that Jg; V (q) is the (framing dependent) Reshetikhin–
Turaev knot invariant associated with the algebra g and the representation V
(and the metric t), and that (when V is irreducible) Ĵg; V (q) = q−C ·writhe· Jg; V (q)
is its framing independent version. Consider both invariants as Vassiliev power
series in the formal parameter ˜ by substituting q = e˜.

Proposition 4.1. The weight system (in the sense of De�nition 2:2) of Jg; V is
Wg; V and (when V is irreducible) the weight system of Ĵ g; V is Ŵg; V .

Proof. The framing dependent part is in [Pi1]; it follows easily from the
relation R − (R21)−1 = ˜B + o(˜) satis�ed by the quantum Yang–Baxter
matrix R. The framing independent part follows from the fact [B-N2, Exercise
6.33] that the weight system corresponding to a direct sum of Lie algebras (and
tensor products of representations) is the product of the weight systems of the
algebras (and representations) involved, and from a direct (and very simple)
analysis of the weight system of exp(−˜C · writhe) and of the weight system
Wu (1);

√−C (see [B-N2, Exercise 6.34]).

Let us now switch from general consideration to the particular case of
g = sl(2) and V = V�.

4.2. Understanding B̂. In one of the standard models6 of the representation V�,
it is spanned by vectors v0; : : : ; v�, satisfying

hvk = (�− 2k)vk ;

yvk = (k + 1)vk+1; and xvk = (�− k + 1)vk−1 ;

where

h =
(
1 0
0 −1

)
; x =

(
0 1
0 0

)
; and y =

(
0 0
1 0

)
(16)

is the standard basis of sl(2). Using the standard scalar product on sl(2)
(〈M1; M2〉 = tr (M1M2)), we have 1

2 〈h; h〉 = 〈x; y〉 = 〈y; x〉 = 1, with all other
scalar products between h; x, and y vanishing.
Therefore,

B̂ = y ⊗ x + x ⊗ y + 1
2h⊗ h− C · I ;

where C, the quadratic Casimir number of V�, is given by C = �(�+2)=2 (see
e.g. [Hu, Exercise 4 in Sect. 23]).

6Here and later in this paper, we follow the notation of [Hu] for Lie algebras and their
representations.
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By an explicit computation, we �nd that

B̂(vk ⊗ vk′) = (k + 1)(�− k ′ + 1)vk+1 ⊗ vk′−1

+ (�− k + 1)(k ′ + 1)vk−1 ⊗ vk′+1

+ 1
2 ((�− 2k)(�− 2k ′)− �(�+ 2))vk ⊗ vk′ (17)

= �(B+ + B− + I)(vk ⊗ vk′) + (terms of degree 0 in �) ; (18)

where

B+ =
∑

�=0;1
(−1)�B+� ; B+� (vk ⊗ vk′) = −(k + 1)vk+� ⊗ vk′−� ;

and

B− =
∑

�=0;1
(−1)�B−� ; B−� (vk ⊗ vk′) = −(k ′ + 1)vk−� ⊗ vk′+� :

Proof of part 1 of Theorem 1. Recall that B̂ = B̂(�) depends on �. We wish
to study this � dependence. The di�erent B̂(�)’s lie in di�erent spaces, but this
is not a serious problem: Let V̂∞ be the vector space spanned by in�nitely
many basis vectors {vk}∞k=0, and extend B̂(�) for all � to be elements of
End (V̂∞ ⊗ V̂∞) using the explicit formula (17). For a chord diagram D;
T(D) ∈ End (V̂∞) can be constructed as before as in Fig. 8 (no in�nite sums
occur!), and when restricted to V̂�, the new de�nition generalizes the old one.

Now that the di�erent B̂(�)’s can be compared, equation (18) shows that
B̂(�) is at most linear in � and thus T(D) is at most of degree m in �, where
m = degD. Taking the trace of an intertwinner (back again in V̂�!) multiplies
by �+ 1, the dimension of V̂�, and that factor is canceled by the denominator
in (3). Finally, by the general considerations of Sect. 2, the result on the level
of knot invariants follows from the level of weight systems.

4.3. Understanding WJJ . Clearly, in computing WJJ (D) for some degree m
chord diagram D, it is enough to consider B+ + B− + I , the coe�cient of
� in B̂. So let T (D) be the operator constructed as in Fig. 8, only with B+

+B−+I replacing B. As T(D) is an intertwinner, T(D) = WJJ (D)I . Similarly,
let T ′(D) be the same, only with B++B− replacing B, and let W ′

JJ (D)I satisfy
T ′(D) = W ′

JJ (D)I . It is easy to verify that WJJ = W ′
JJ · W1, where the product

is taken using the coproduct on A (the space spanned by chord diagrams),
and W1 ∈A? satis�es W1(D) = 1 for any chord diagram D.
Let D be a degree m chord diagram, and let (C
)m
=1 be the chords of D,

numbered from left to right as in de�nition 3.4. We are interested in computing
T (D)vk(1), or, almost equivalently, T ′(D)vk(1), for some non-negative integer
k(1). Looking again at Fig. 8 and at (18), we see that T ′(D)vk(1) can be
computed as follows:
• Sum over the 4m possible ways of marking the chords (C
)m
=1 of D by
signs s(
) ∈ {+;−} and numbers �(
) ∈ {0; 1}, corresponding to the choice
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between {B+0 ; B+1 ; B−0 ; B−1 }. Take the term marked by (s; �) with a sign∏

(−1)�(
).

• For each �xed choice of (s; �), add a term determined as follows: Set
k = k(1). ‘Feed’ the marked diagram D(s; �) with the vector vk on the left, and
push it right passing it through the vertices of D. Each vertex corresponds to
some simple operation, dictated by the marking on the chord C
 connected
to it. The operation is to add or subtract �(
) to k, and to multiply by either
1 or −(k + 1), using the current value of k for the multiplication. The end
result, as read at the right end of D(s; �), is proportional to the original vk(1);
our term is the corresponding constant of proportionality.
To make the above algorithm more precise and write the result in a closed

form, we need to make some de�nitions. First, number the vertices of D from
left to right, beginning with 1 and ending with 2m. Let i+
 (i

−

 ) be the number

of the left (right) end of the chord C
, and let the domain of C
 be

domC
 = (i+
 ; i
−

 ] = {i ∈ N : i+
 5 i ¡ i−
 } :

Let k(i) be the value of k before passing the i’th vertex. It is easy to check
that

k(i) = k(1) +
∑

{
 : i∈dom C
}
s(
)�(
) :

Our notation is summarized by the following example:

(19)

Using this notation, the algorithm becomes the following formula:

W ′
JJ (D) = (−1)m

∑
s∈{+;−}m
�∈{0;1}m

m∏

=1
(−1)�(
)(1 + k(i s(
)
 ))

De�ne the ‘di�erence’ operators �=��(
) on polynomials P in the variables �(
),

 = 1; : : : ; m by

�P
��(
)

= P|�(
)=1 − P|�(
)=0 : (20)

With this de�nition,

W ′
JJ (D) = (−1)m

∑
s∈{+;−}m

(
m∏


=1

�
��(
)

)
×
(

m∏

=1

(
1 + k(1) +

∑
{� : i s(
)
 ∈dom C�}

s(�)�(�)
))
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Notice that in the above formula we take the m’th partial di�erence (with
respect to �(1); : : : ; �(m)) of a polynomial of degree at most m in these vari-
ables. By an easy to prove partial di�erence analog of Taylor’s theorem, the
result is the coe�cient of �(1) · · · �(m) in

(−1)m ∑
s∈{+;−}m

m∏

=1

(
1 + k(1) +

∑
{� : i s(
)
 ∈dom C�}

s(�)�(�)
)

:

As only one �(�) can be picked up from any factor in the product over

 = 1; : : : ; m, this coe�cient is the (properly signed) number of choices of
an �(�) for each of these 
’s, or, in other words,

W ′
JJ (D) = (−1)m

∑
s∈{+;−}m

∑
{�∈Sm:∀
 i s(
)
 ∈dom C�(
)}

m∏

=1

s(�(
)) :

The condition in the summation over the permutation � can be made a little
stronger. Notice that if for a given 
 both i+
 ∈ domC�(
) and i−
 ∈ domC�(
)

(that is, both ends of the chord C
 are within the domain of the chord �(
)),
then the terms with s(
) = (+) cancel the terms with s(
) = (−) in the above
sum, and thus summation can be restricted to the cases where this does not
happen. In these cases, for each � there is a unique choice for the s(
)’s for
which ∀
 i s(
)
 ∈ domC�(
). Denote this choice by s(�; 
) and get

W ′
JJ (D) =

∑
{�∈Sm :∀
 C
 intersects or equals C�(
)}

m∏

=1
(−s(�; 
)) :

Finally, if 
 = �(
), then necessarily s(
) = (+) and thus s(�; 
) = (+).
This means that the possibility ‘C
 equals C�(
)’ can be removed from the
above equation by multiplying it by W1. Thus,

WJJ (D) =
∑

{�∈Sm :∀
 C
 intersects C�(
)}

m∏

=1
(−s(�; 
)) :

A moment’s re
ection shows that this formula proves the following propo-
sition:

Proposition 4.2. WJJ (D) is the permanent per IM(D) of the intersection matrix
IM(D) of D. (Recall that the permanent of a matrix is de�ned as a sum over
permutations in exactly the same way as the determinant; only without the
signs).

4.4. The logarithm of the JJ weight system

Proposition 4.3.
(log WJJ )(D) =

∑
H
(−1)d(H) ;

where the sum extends over all cycle decompositions of LIG(D) into a single
cycle.
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Proof. Expand per IM(D) as a sum over permutations just as in (12), and get

WJJ (D) =
∑

H=∪�H�

(−1)d(H) :

Now take the logarithm as in Proposition 3.13.

Comparing this with proposition 3.13, we �nd that log WC + log WJJ = 0,
proving equation (11) and concluding the proof of the Melvin–Morton–
Rozansky conjecture.

5. The MMR conjecture for general semi-simple Lie algebras

Let Ĵ = Ĵg; V�(K) ∈ Q(q) be the framing-independent Reshetikhin–Turaev
invariant of the knot K for the semi-simple Lie algebra g and the irreducible
representation V� of g of highest weight �. (The metric on g will be the Killing
form 〈 · ; · 〉). In this section we will prove an analog of Theorem 1 (and thus
of Conjecture 1) for Ĵ .
Choose a Cartan subalgebra h of g, denote by � the set of all roots of g in

h?, and by �+ the set of all positive roots. Let 〈 · ; · 〉 also denote the scalar
product on h? induced by the Killing form.
The following theorem is suggested by the same reasoning as in Sect. 1.4,

only replacing SU (2) by g. The main di�erence is that �RS(Aa) splits into a
product of dim g Abelian torsions, rather than just 3. The torsions along the
Cartan directions are still 1, while those along the negative roots pair with those
along the positive roots to give a product of Alexander polynomials (appearing
under the alias C̃, discussed in Examples 2.7 and 2.8):

Theorem 4. (Proven in Sects.5:1–5:4). Regarding Ĵ (K)(e˜)=dim V� as a power
series in ˜ whose coe�cients are polynomials in �; we have:
(1) The coe�cient Ĵm of ˜m is of degree at most m in �.
(2) If JJg is the power series in ˜ whose degree m coe�cient is the

homogeneous degree m piece of Ĵm; then

JJg(K)(˜) · ∏
�∈�+

C̃(K)(〈�; �〉˜) = 1 : (21)

(Since on a simple Lie algebra every invariant scalar product is a multiple
of the Killing form and the left-hand-side of (21) is clearly multiplicative
under taking the direct sum of Lie algebras, it follows that (21) still holds
when 〈 · ; · 〉 is replaced by an arbitrary invariant scalar product on g, in both
the C̃ part of the equation and in the de�nition of Ĵ .)

As in Sect. 2, it is enough to prove Theorem 4 on the level of weight
systems. Furthermore, in the light of Theorem 1, in order to prove (21) it is
enough to prove that

WJJ;g =
∏

�∈�+
WJJ ◦ 〈�; �〉deg ; (22)

where 〈�; �〉deg is de�ned as in De�nition 2.3.
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5.1. Lie-algebraic preliminaries. Let g = h ⊕ (⊕�∈�L�) be the root space
decomposition of g. Recall (e.g. [Hu]) that h is orthogonal to all the L�’s, that
L� is orthogonal to L� unless �+� = 0 and that one can �nd x� ∈ L�; y� ∈ L−�,
for all � ∈ � so that

Setting h� = [x�; y�], the triple {x�; y�; h�} spans a subalgebra of g iso-
morphic to sl(2) via the map (x�; y�; h�) 7→ (x; y; h), where {x; y; h} are
as in (16). (23)

〈x�; y�〉 = 2=〈�; �〉 : (24)

For any � ∈ h? and � ∈ � ⊂ h?, one has �(h�) = 2〈�; �〉=〈�; �〉. (25)

An additional property worth recalling is

For any �; � ∈ �; [L�; L�] ⊂ L�+� : (26)

Choose a total ordering ¡ of �+ for which �; � ¡ �+� for any �; � ∈ �+.
(For example, you can order the roots by the lengths of their projections on
some generic vector in the fundamental Weyl chamber). Let v0 ∈ V� be a high-
est weight vector; that is, a vector satisfying hv0 = �(h)v0 for all h ∈ h and
x�v0 = 0 for all � ∈ �+. Let Z+�+ = {∑�∈�+ k� �� : ∀� k� ∈ Z+} be the
semi-group of formal linear combinations of symbols ��, one for each � ∈ �+,
with non-negative integer coe�cients. De�ne a map { · } : Z+�+ → h?

by {∑ k� ��} =
∑

k��. Order Z+�+ lexicographically, that is, declare that∑
k� �� ¡

∑
k ′� �� i� for some �; k� ¡ k ′� and k� = k ′� for all � ¡ �. For any

k ∈ Z+�+, set
vk =

( ∏
�∈�+

yk�
�

k�!

)
v0 ; (27)

where the k�’s are the coe�cients of k and the product is taken using a
decreasing order for the y�’s, so that, for example, if �¿�, then

vk =

· · · yk�
�

k�!
· · · y

k�
�

k�!
· · ·
 v0 : (28)

The action of g on V� is given by the following

Lemma 5.1. With the notation as above we have that

hvk = (�− {k})(h)vk ; (29)

y�vk = (k� + 1)vk+ �� +
∑

j∈Z+�+

j¿k+ ��

c1(�; k; j)vj (30)

x�vk =
2

〈�; �〉 〈�; �〉vk− �� +
∑

j∈Z+�+

j¿k− ��

c2(�; �; k; j)vj + O(1) ; (31)

where c1 does not depend on �; c2 is linear in �; and here and in the next
few paragraphs O(1) means terms independent of �.
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The importance of the precise form of the ‘remainder terms’ in the above
lemma will be better understood after reading the proof of Lemma 5.2. We
therefore postpone the proof of Lemma 5.1 to Sect. 5.4.

5.2. Understanding B̂. As in Sect. 4, the key to understanding WJJ;g is to �rst
understand B̂ ∈ End(V̂� ⊗ V̂�), where V̂� = V� ⊗

√−C and
√−C denotes the

1-dimensional representation of the 1-dimensional Lie algebra u(1), in which
the unit norm generator acts by multiplication by

√−C, and C is the quadratic
Casimir number of V�.

Let {hi}ri=1 be the arbitrary 〈 · ; · 〉-orthonormal basis of h. Using (24), we
�nd that

B̂ =
∑

�∈�+

〈�; �〉
2
(x� ⊗ y� + y� ⊗ x�) +

r∑
i=1

hi ⊗ hi − C · I :

Since the quadratic Casimir number C of the representation V� is 〈� + 2�; �〉,
where � = 1=2

∑
�∈�+ � is half the sum of the positive roots [Hu, Exercise 4

in Sect. 23], we also have that(
4∑

i=1
hi ⊗ hi − C

)
vk ⊗ vk′

= (((�− {k})⊗ (�− {k ′})) (∑ hi ⊗ hi)− C)vk ⊗ vk′ by Lemma 5.1

= (〈�− {k}; �− {k ′}〉 − 〈�; �+ 2�〉)vk ⊗ vk′ by Pythagoras’ Theorem

= −〈�; 2�+ {k}+ {k ′}〉vk ⊗ vk′ + O(1)

= − ∑
�∈�+

〈�; �〉(1 + k� + k ′�)vk ⊗ vk′ + O(1) expanding �; {k}; {k ′} :

Using the above formula and Lemma 5.1 we get that

B̂ =
∑

�∈�+
〈�; �〉(B+� + B−� + I) + Brest + O(1) (32)

where
B+� (vk ⊗ vk′) = −(k� + 1)

∑
�=0;1

(−1)�vk+� �� ⊗ vk′−� ��

B−� (vk ⊗ vk′) = −(k ′� + 1)
∑

�=0;1
(−1)�vk−� �� ⊗ vk′+� ��

Brest(vk ⊗ vk′) =
∑

j; j′∈Z+�+

j+j′¿k+k′

c3(�; k; k ′; j; j′)vj ⊗ vj′ ;

and where c3 (which is a simple combination of c1;2) is linear in �.
Since B̂ is at most linear in � we conclude the �rst part of Theorem 4 as

in Sect. 4.2.

5.3. Understanding WJJ;g. Reading Sect. 4.3 once again and looking at Fig. 8,
we see that WJJ;g(D) is a certain summation over all the possible ways of
labeling the chords of D by I; B+� ; B

−
� , or Brest.
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Lemma 5.2. In the summation making WJJ;g(D); terms containing a chord
labeled by Brest can be ignored.

Proof. This statement is best proven by an example. Let k(i) be the value of
k before passing the i’s vertex of D, as in (19) (but notice that now k(i) is in
Z+�+ rather than in Z+). Similarly, let k(7) be the value of k after passing
the sixth vertex (assuming, for the sake for this example, that D is the diagram
in (19)). As T(D) is an intertwinner, it has to be a multiple of the identity
and thus k(7) = k(1). On the other hand, by (32) (and remembering that in as
much as WJJ;g is concerned, we need not care about the O(1) term), we �nd
that

k(1) + k(3)= k(2) + k(4) ;

k(2) + k(5)= k(3) + k(6) ;

k(4) + k(6)= k(5) + k(7) :

Adding these inequalities, we get k(1) = k(7), and this inequality becomes
strict if any of the previous ones is strict. As we know that k(1)= k(7) cannot
be strict, we learn that none of the previous ones is, and thus we can ignore
Brest (as it would correspond to a strict inequality).

Therefore, in computing WJJ;g(D), it is enough to consider∑
�∈�+

〈�; �〉(B+� + B−� + I) : (33)

Nicely enough, the di�erent summands in (33) are ‘decoupled’. For each �; B±�
cares only about the � components of the k(i)’s, and changes only these com-
ponents. This amounts to saying that WJJ;g is the product of the weight systems
corresponding to the di�erent summands. Comparing the de�nition of B±� with
the de�nition of B± in Sect. 4, we �nd that we’ve proven (22) and hence
we’ve proven Theorem 4.

5.4. Proof of Lemma 5.1. (29) is just the well known statement that the
y�’s act as ‘lowering operators’. To prove (30), let us compute y�

∏
�(y

k�
� =k�!)

(using the same convention as in (28) for the ordering of products). To bring
this expression to the form of (27), we need to commute y� to its place, next
to the term yk�

� =k�!. This done, the result is

· · ·y�
yk�
�

k�!
· · · = · · · (k� + 1) yk�+1

�

(k� + 1)!
· · · ;

explaining the �rst term in (30). However, en route to its place, we needed to
commute y� with various y�’s for which � ¿ �. By (26) and the choice of
the order¡, such commutators are proportional to y
’s with even bigger 
’s,
explaining the remainder term in (30). To be fair, the resulting y
’s also need
to be taken to their respective places, at the cost of some more commutators
proportional to even bigger y�’s, but that doesn’t disturb (30). A complete
argument can be given using the PBW theorem for the subalgebra of g gener-
ated by {y� : � ¿ �}, but we don’t feel this is necessary.
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The proof of (31) is a little harder, but goes along similar lines. Consider

an expression like x�
∏

�(y
k�
� =k�!). Commuting x� all the way to the right, we

get a product that kills the highest weight vector v0. Along the way, we pick
up three kinds of commutators:
(1) First, we pick some [x�; y�]’s, with � ¿ �. By (26), if � ¿ �; [x�; y�]

is proportional to some y
, resulting in terms which are products of y’s, and
thus they fall into the third summand of (31), O(1).
(2) We then pick the term containing [x�; yk�

� ], which, using (23), gives

∏
�¿�

y
k�
�

k�!
· 1
k�!

(
k�∑
i=1

yi−1
� h�yk�−i

�

)
· ∏

�¡�

y
k�
�

k�!
:

By (29), applied to v0 this is �(h�)vk− �� + O(1), and by (25), this is

2
〈�; �〉 〈�; �〉vk− �� + O(1) ;

explaining the �rst term in (31).
(3) Finally, we get terms containing [x�; y�]’s, with � ¡ �. By (26), if

�¡�, [x�; y�] is proportional to some x
 with 
¡�. Such x
 are pushed to the
right recursively using the same procedure we’ve used so far, at the cost of
(at most) terms independent of � and terms linear in �, as in case (2) above,
but with vk− �
 (or vk− �� for even smaller �) replacing vk− ��. Such terms fall into
the middle term of (31).

6. Odds and ends

6.1. Immanants and the Conway polynomial. Theorem 3 and Proposition 4.2
show (in particular) that both the map D 7→ det IM(D) and the map D 7→
per IM(D) are weight systems. It is tempting to look for common general-
izations of these two weight systems. In this section, which may be of some
independent interest, we sketch just such a generalization. The basic idea is
that just where the character of the alternating representation of the symmet-
ric group Sm is used in the de�nition of det and the character of the trivial
representation is used in the de�nition of per, one can put the character of an
arbitrary representation of Sm:

De�nition 6.1. Let [�] denote the conjugacy class of permutation �. Let ZSm

be the free Z-module generated by the conjugacy classes of Sm. Let ZS? be
the graded Z-module whose degree m piece is ZSm. The natural embedding � :
Sm× Sn → Sm+n makes ZS? an algebra by setting [�][�] = [�(�; �)]: Identifying
ZS? with its dual by declaring each individual conjugacy class [�] to be of
unit norm, the product on ZX? becomes a co-product on ZS?

? = ZS?.

Exercise 6.2. Verify that with the above product and co-product ZS? becomes
a graded commutative and co-commutative Hopf algebra, and that the primitive
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elements of ZS? are exactly the classes of cyclic permutations (and thus ZS?

has exactly one generator in each degree).

De�nition 6.3. (Compare with [Lit]) Let M be an m×m matrix. The universal
immanant imm M of M is de�ned by

immM =
∑

�∈Sm
[�]

m∏
i=1

Mi�i ∈ ZSm :

(Exactly the same as the de�nition of det M , only with [�] replacing (−1)�).
Composing the universal immanant with characters of arbitrary representa-

tions of Sm, one gets speci�c complex valued “immanants”. Taking the repre-
sentation to be the alternating representations, one gets det M . Taking it to be
the trivial representation, one gets per M . Much is known about many other
immanants; see e.g. [GJ, St1, St2].
In our context, we will be interested in the universal immanant of the

intersection matrix of a chord diagram. By abuse of notation, we will write
imm D for imm IM(D).

Theorem 5. (1) The map imm: {chord diagrams} → ZS? descends to a well
de�ned map imm: Ar → ZS?.

(2) The thus de�ned imm: Ar → ZS? is a morphism of Hopf algebras.
(3) The image of adjoint map imm? : ZS?

? = ZS? → Ar? = W is the
subalgebra of W generated by the weight systems of the coe�cients of the
Conway polynomial.

Proof. (sketch) Let Lm be the degree of m piece of logWC , and let Cm ∈ Sm

be a cyclic permuation. Re-interpreted in our new language, Proposition 3.13
is simply the statement imm?[Cm] = −Lm and equation (14) becomes the
multiplicativity of imm?. It follows that the image of imm? is equal to the
subalgebra of the algebra of functionals on chord diagrams generated by the
Lm’s. As Lm is known to be a weight system and the product of two weight
systems is again a weight system, it follows that the image of imm? is in W
and thus imm descends to Ar . Finally notice that the algebra generated by the
Lm’s is equal to the algebra generated by the weight systems of the coe�cients
of the Conway polynomial.

It is easy to check (or deduce from Theorem 5) the imm?[�] = 0 if � has
a cycle of an odd length. By evaluating imm?[�] on chord diagrams whose
intersection graph is a union of polygons of an even number of sides, one
can see that imm? restricted to permutations with no cycles or odd length is
injective.

Exercise 6.4. Check that if IM(D) is replaced by IM(D)+�I for any non-zero
constant � and Ar and W are replaced by A and A? in the statement of
theorem 5, the theorem remains valid, with the unique element of G1A?

adjoined to the generators of the image of imm?.
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6.2. A curious formula for the weight system of the colored Jones polyno-
mial. (A sketch). The key to the understanding of WJJ in Sect. 4.3 was to
rewrite (17) in a nicer form, equation (18). There is an even nicer form,
however, that also includes the terms independent of �: (suppressing ‘⊗’
symbols)

B̂(vkvk′) = �
(
(k + 1) (vk+1vk′−1 − vkvk′)︸ ︷︷ ︸

part 1

− (k ′ + 1)× (vkvk′ − vk−1vk′+1)︸ ︷︷ ︸
part 2

+vkvk′
)

+ (k − k ′) (vk+1vk′−1 − vk−1vk′+1)︸ ︷︷ ︸
part 3

+vk+1vk′−1 + vk−1vk′+1

− kk ′ (vk+1vk′−1 − 2vkvk′ + vk−1vk′+1)︸ ︷︷ ︸
part 4

:

Following roughly the same steps as in Sect. 4.3, parts 1 and 2 of the above
equation become ‘derivatives’ like in (20). Part 3 also becomes a derivative,
but with an additional factor of 2 as in it ‘�k = 2’. Part 4 becomes a ‘sec-
ond derivative’, and all other parts remain ‘0th order’. These ‘di�erentiations’
mean that we want to look at the coe�cients of certain monomials in the
�’s of Sect. 4.3, and when all the dust settles we remain with the following
(completely self-contained) formula:

Theorem 6. Let D be a chord diagram of degree m; and let i±
 and domC


be as in Sect. 4:3. Let �(
) be commuting indeterminates; and let

k(i) =
∑

{
:i∈dom C
}
�(
) :

Then WĴ (D) (the weight of D in the weight system of the framing-independent
Reshetikhin–Turaev invariant of sl(2) in the (�+1)st dimensional representa-
tion) is the term independent of all the �(
)’s in

(�+ 1)
m∏


=1

(
(�+ 2)

(
1 +

k(i+
 )− k(i−
 )
�(
)

)
− 2 k(i+
 )k(i

−

 )

�(
)2

)
:

Exercise 6.5. Deduce the equality WJJ (D) = per IM(D) from the above
theorem.

Arguing similarly but starting from the ‘framed’ B = x⊗y+y⊗x+h⊗h=2,
one �nds that the weight of D in the weight system of the framing-dependent
Reshetikhin–Turaev invariant of sl(2) in the (�+1)st dimensional representation
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is the term independent of all the �(
)’s in

(�+ 1)
m∏


=1

(
(�+ 2)

(
1 +

�
2
+

k(i+
 )− k(i−
 )
�(
)

)
− 2 k(i+
 )k(i

−

 )

�(
)2

)
:

Remark 6.6. Experimentally (on a computer) we found that the above formulas
appear to be (by far) the best method for computing the corresponding weight
systems. But, in some sense, we do not understand them very well:
(1) Our only proof that the above formulas satisfy the 4T relation is by

tracing them back to sl(2). It would be interesting to �nd a direct proof.
(2) We do not know how to generalize these formulas to other Lie algebras.
(3) We do not know how to view these formulas in the context of

Rozansky’s work. More speci�cally, it should be possible to push exer-
cise 6.5 a little further and get formulas for the ‘sub-diagonal’ invariants
JJn = �mbm−n;m˜m (for small n), and it should be possible to expand (6)
in powers of 1=k using Feynman diagrams. The 1=kn term in (6) should equal
JJn. In this paper we dealt with the case n = 0 but we don’t know how to
deal with higher values of n.

6.3. A further generalization. If, as conjectured in [B-N2], all weight systems
come from Lie algebras, then there should be a way of stating and proving
Theorem 4 without any reference to Lie algebras. We do not have a pre-
cise analog of the statement; without a Lie algebra, it is not clear what � is
and in which space it should be. However, on the level of group representa-
tions,  nV� = Vn�+ (representations of a smaller highest weight), and thus the
Adams operations  n, which have a generalization to arbitrary weight systems
[B-N2], can play a role similar to ‘scaling �’. We thus arrive at the following
conjecture7:

Conjecture 2. Let W be an arbitrary weight system; let n be an integer; and
let Ŵ n = ̂ n?W be the deframed version (as in [B-N2, Exercise 3.16]) of
W ◦  n; where  n is the nth Adams operation on chord diagrams. Then
(1) For any �xed chord diagram D of degree m; Ŵ n(D) is a polynomial

in n of degree at most m.
(2) Let Ŵ n;m(D) be the degree m piece of Ŵ n(D). Then the weight system

Ŵ n;m is in the algebra generated by the coe�cients of the Conway polynomial.

A similar statement should hold on the level of knot invariants, using the
‘0-framing’ of a knot for the Adams operations.

Acknowledgement. We wish to thank N. Bergeron, P. Diaconis, C. Kassel, R.C. Kirby,
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7Added in proof: This conjecture was proven in November 1995 by A. Kricher, B. Spence, and
I. Aitchison. See their Melbourne University and Queen Marry and West�eld College preprint,
Cabling the Vassiliev Invariants.
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