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ABSTRACT. Recently Ohtsuki {Oh2), motivated by the notion of finite type knot
invariants, introduced the notion of finite type invariants for oriented, integral ho-
mology 3-spheres. In the present paper we propose another definition of finite type
invariants of integral homology 3-spheres and give equivalent reformulations of our
notion. We show that our invariants form a filtered commutative algebra. We com-
pare the two induced filtrations on the vector space on the set of integral homology
3-spheres. As an observation, we discover a new set of restrictions that finite type
invariants in the sense of Ohtsuki satisfy and give a set of axioms that characterize
the Casson invariant. Finally, we pose a set of questions relating the finite type
3-manifold invariants with the (Vassiliev) knot invariants.
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1. INTRODUCTION

1.1. History. In recent years there has been a lot of progress defining (geometrically
and combinatorially) knot and 3-manifold invariants. A unifying approach to these
invariants is the concept of a topological quantum field theory (TQFT for short) in
2+1 dimensions, [At]. Witten [Wi], using path integrals with a Chern-Simons action
(a not yet defined infinite dimensional integration) gave examples of such theories
depending on a semisimple compact Lie group and an integer.

Shortly afterwards, Reshetikhin-Turaev [RT1}, [RT2], (and simultaneously many
other authors [KM], [Koh], [Ku], [KR], [Po], [TW]); used equivalent initial data
(namely a semisimple Lie algebra and a primitive complex root of unity) as in Wit-
ten’s Chern-Simons theory and combinatorially defined TQFT in 2 + 1 dimensions.
TQFTs in 2+1 dimensions give rise to (complex valued) invariants of oriented, closed
3-manifolds, and invariants of framed colored links in 3-manifolds.

The path integral approach to topological quantum field theories suggests the exis-
tence of nonperturbative and perturbative knot and 3-manifold invariants. Examples
of nonperturbative knot invariants are the values at roots of unity of colored Jones
polynomials of knots, [RT'1]. Examples of nonperturbative 3-manifold invariants are
the Reshetikhin-Turaev invariants [RT2]. Examples of perturbative (or finite type)
knot invariants are the Vassiliev invariants, [B-N1], [BL], [Va]. For the Vassiliev
invariants of knots in S® one has:

e an axiomatic definition,
o a general existence theorem [B-N1], [BT], [Kol], [LM],
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e a comparison theorem to the above mentioned nonperturbative knot invari-
ants [B-N1], [Dr], [Ka], and to the Chern-Simons theory perturbative knot
invariants [BT], and finally

e ways of calculating them, from combinatorics of chord diagrams [B-N2].

The situation with perturbative (or finite type) 3-manifold invariants is puzzling.
On the one hand, perturbative Chern-Simons theory predicts the existence of invari-
ants of a pair (M, p) where M is a rational homology 3-sphere and p € Hom(m(M),G)
(G is a fixed compact semisimple Lie group here). In cases of acyclic p one has such
invariants [AxS1], [AxS2], [Ko2]. However, these invariants do not satisfy any of the
above mentioned properties, essentially due to the absence of surgery formulas.

1.2. A review of Ohtsuki’s definition. However, Ohtsuki [Oh2] recently intro-
duced the notion of finite type invariants for oriented integral homology 3-spheres.
His definition was inspired by the notion of finite type knot invariants. Let us review
his definition and introduce some notation. Let M denote the vector space (over
Q) on the set of oriented integral homology 3-spheres. A link L C M in an integral
homology 3-sphere sphere is called algebraically split if the linking numbers between
any two components vanish. A framing f = (fy,... , fn) for an n component link is
a sequence of integers associated to each component.

Remark 1.1. Usually a framing for a link L is a choice of a simple closed curve 7; on
the boundary of a tubular neighborhood of each component L; of L such that the
intersection number between -; and a meridian of L; is 1. Any two framings of a single
component differ by an integer number. Since the 3-manifolds that we consider are
oriented integral homology spheres, canonical (otherwise called zero) framings exist:
indeed, each component represents the trivial element in the first homology (with
integral coefficients) of the ambient manifold, hence it bounds a Seifert surface, and
we define the canonical framing to be a parallel of the component in the surface.
The result is independent of the surface chosen. The existence of canonical framings
allows us to identify the set of possible framings with the integer numbers.

For a framed link (L, f) in M we denote by M*/ the result of doing Dehn surgery
on L in M, [Ro]. A framed link (L, f) in an integral homology 3-sphere M is called
unimodular if f; = +1 for all . A framed link (L, f) is called AS-admissible if it is
algebraically split and unimodular. Ohtsuki [Oh2] noted that if (L, f) is a framed
link in an integral homology 3-sphere M then M%'/lv’ is a integral homology 3-sphere
for every sublink L' of L (with the restriction f|. of the framing f of L to L') if and
only if (L, f) is AS-admissible. This is the reason for our interest in AS-admissible
framed links.

For a framed link (L, f) in M we denote

(1) (M, L, f) == 3 (-1)FIME Sl € M

L'cL
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Let us define a decreasing filtration F°* on the vector space M as follows: FO*M
is the subspace spanned by (M, L, f) for all AS-admissible links of m components.
We can now state the following definition, due to Ohtsuki [Oh2]:

Definition 1.2. [Oh2] A (rationally valued) invariant A of integral homology 3-
spheres is of type m if A(Foh M) = 0, i.e., if for every AS-admissible link L of
m + 1 components in an integral homology 3-sphere M, we have that

@) T (-1)FIAMESe) = 0

L'cL

Let 7O denote the vector space of type m invariants and let O be their union
Um>0FmO. It is easy to show that O is a filtered commutative algebra (with pointwise
multiplication). Let G,O (and more generally G,Obj) denote the associated graded
algebra of O (or more generally, of a filtered object F,0bj).

1.3. Variations for finite type 3-manifold invariants. In the present paper we
introduce another notion of finite type invariants of integral homology 3-spheres.
We compare our filtration with Ohtsuki’s, (theorem 2) and with the finite type knot
invariants (corollary 1.4). As an observation, we discover a new set of restrictions that
Ohtsuki’s invariants satisfy (theorem 4). As an application, we deduce a nonexistence
theorem for 3-manifold invariants (proposition 1.5) and a characterization for the
Casson invariant (theorem 5).

We begin with a few definitions and some notation: A link L in an integral ho-
mology 3-sphere M is called boundary if each component bounds a Seifert surface,
and the Seifert surfaces are disjoint from each other. A framed link (L, f) is called
B-admissible if it is boundary and unimodular. Our interest in B-admissible links
comes from the fact that such links lie as separating curves in embedded surfaces
in the ambient 3-manifold M, see theorem 1. Note that B-admissible links are AS-
admissible. Let us also define a decreasing filtration 2 on the vector space M as
follows: FEM is the subspace spanned by (M, L, f) for all B-admissible links of m
components.

If ¥ < M is an embedded surface and v C I is an oriented, simple closed curve, we
denote by M (~™) the 3-manifold obtained by cutting M across £, performing n Dehn
twists along <y and gluing & back. Note that the resulting manifold depends only on
v and not on the surface chosen. We can now introduce the following definition.

Definition 1.3. Let F,,@” denote the set of all invariants A (with values in a field,
assumed to be Q) of integral homology 3-spheres satisfying the following property:

¢ For every oriented embedded surface £ < M in an integral homology 3-sphere
M and every choice 7, ... ,Ym41 Of oriented, separating, nonintersecting sim-
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ple closed curves on ¥ we have
&) Y HEDEMMR, ... i) =
e€{0,1} i
We call such A B-type m invariants of integral homology 3-spheres.
Let OF denote the union Um»FnOF of B-type invariants of integral homology
3-spheres. OF has an increasing filtration F, and a pointwise multiplication that

respects the increasing filtration and gives OF the structure of a filtered commutative
algebra.

1.4. Statement of the results. We begin by giving an equivalent definition of
B-type m invariants of integral homology 3-spheres.

Theorem 1. The following are equivalent:

(1) X € FnOB (i.e., it satisfies the property of definition 1.3),

(2) X satisfies the property of definition 1.3 with the ectra assumption that ToM
is @ surface of a Heegaard splitting,

(3) with the notation of section 1.2, for every B-admissible link L C M ofm+1
components we have

4) ¥ (-1)F(MEAey =0
rer

ie, MFauM)=

As far as comparing the two notions of finite type invariants of integral homology
3-spheres, we have the following theorem:

Theorem 2. o The two filtrations F2 and FO" on M are related as follows:
Fiz m > 3. Then for every n > 4m we have:

() FRAMC FaM+ FoAM
e We have an inclusion map:
(6) FnOP N O o FinisO

We now introduce a map from knots to (linear combinations of) 3-manifolds defined
by K — (K, 8%) = ((8%)%:*1)—(5%). Dually this map induces a map from 3-manifold
invariants to knot invariants. This map allows us to compare finite type 3-manifold
invariants and knot invariants as follows:

Proposition 1.4. The above mentioned map descends to a map ¢ : Frn©O — Fpi V.
where F,,V is the space of type m knot invariants (see section 2).

In particular, for m = 1,2 we can compare finite type invariants of integral homol-
ogy 3-spheres and knots as follows:
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Theorem 3. Fizm € {1,2}.
e For every n > 3m — 2 we have:

(7) FOAMC FEM+ FoBM
o The map FrnOP N O — Fymi3O of theorem 2 factors through a map
(8) FrnOBNO - 7,0

e Furthermore, using proposition 1.4 the associated composite m_(g; FrnOBNO —
FsmO = FE |V factors through a map FnOB N O = V522 yhere VSpecial
is the space of special type m Vassiliev invariants i.e., those whose degree m
part is a product of derivatives of the Alezander-Conway polynomial. For more
information on special Vassiliev invariants see section 2.

Ohtsuki [Oh2] gave the following dimensions for the graded vector spaces G,O:
m 0j1]2}3
dimG,O|110]0]1

We give a new set of restrictions that the type m invariants of Ohtsuki satisfy thus
deducing the following:

Theorem 4. Every type 4 Ohtsuki invariant is of type 3, i.e. G,O = 0.

Proposition 1.5. IfV is a type 3 knot invariant which can be extended to a invariant
of integral homology 3-spheres so that it satisfies the following property:

(9) V(K) = V(($})**)
(for all knots K in S3), then V is a type 2 knot invariant.
Theorem 4 in turn proves the following characterization of the Casson invariant:

Theorem 5. For a finite type invariant A € O of integral homology 3-spheres the
following are equivalent:

(1) X € FLOB of definition 1.3.

(2) With the notation of sections 1.2 and 1.3 A\(FFM) = 0.

(3) X € 0.

(4) A e F,0.

(5) There are constants a,b such that A = a+bAcqsson Where Acasson 15 the Casson

invariant [AM].

Remark 1.6. Ohtsuki [Oh2] had previously proved that (3) is equivalent to (5).
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1.5. Plan of the proof. In section 2 we review the definition and a few properties
of finite type knot invariants, otherwise known as Vassiliev invariants. In section 3.1
we prove proposition 1.4, thus giving a map from finite type invariants of integral
homology 3-spheres to (finite type) invariants of knots in S°. In section 3.2 we prove
theorem 2. In section 4.1 we show surgery properties that our and Ohtsuki’s finite
type 3-manifold invariants satisfy, and in section 4.2 we prove theorem 1 that restates
our definition 1.3. In section 5 we pose a set of questions relating the finite type knot
and 3-manifold invariants. In section 6.1 we partially answer our questions and prove
theorem 3 and in section 6.2 we give a new set of restrictions that Ohtsuki’s invariants
satisfy, thus showing theorem 4 and proposition 1.5. Finally, in section 7 we show
theorem 5.

1.6. Acknowledgment. We wish to thank D. Auckly, L. Kauffman, R. Kirby, E.
Lerman, J. Levine, K. Millett and J. Roberts for many useful comments. Especially
we wish to thank D. Bar-Natan for many enlightening conversations and for his
critical reading of an earlier draft of the present paper, and the anonymous referee
for many useful comments.

2. FINITE TYPE KNOT INVARIANTS

In this section we review finite type knot invariants, otherwise known as Vassiliev
invariants [B-N1], [BL}], [Va]. A standard reference for the next definitions and nota-
tion is [B-N1J.

A Vassiliev invariant of type m is a knot invariant V' which vanishes whenever it
is evaluated on a knot with more than m double points, where the definition of V is
extended to knots with double points via the formula

()= () -+ (%)

The algebra V of all Vassiliev invariants (with values in Q) is filtered, with the type
m subspace F,,,V containing all type m Vassiliev invariants. The associated graded
space of V is isomorphic to the space W of all weight systems. A degree m weight
system is a homogeneous linear functional of degree m on the graded vector space
A" of chord diagrams as in figure 1 divided by the 4T and framing independence
relations explained in figures 2 and 3.

Figure 1. A chord diagram with 4 chords: m

A" is graded by the number of chords in a chord diagram. It is a commutative and
co-commutative Hopf algebra with multiplication defined by juxtaposition, and with
co-multiplication A defined as the sum of all possible ways of ‘splitting’ a diagram.
The co-algebra structure of A" defines an algebra structure on W.
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Figure 2. To get the 4T relations, add an arbitrary number of chords in arbitrary positions
(only avoiding the short intervals marked by a ‘no-entry’ sign ©) to all six diagrams in exactly

the same way.
Figure 3. The framing independence relation: any dia- m
gram containing a chord whose endpoints are not separated N =0

by the endpoints of other chords is equal to 0.

There are natural maps Wy, : F,V — GnW = G, A™. For a type m Vassiliev
invariant V it is natural to think of Wy,(V) as “the m'th derivative of V*. Wy, is
not an isomorphism, however its kernel is F,,_1V. It therefore follows that 7,V is a
finite dimensional vector space for every m.

In the present paper we are primarily interested in type 5 knot invariants about
which much more is known.

We can summarize the results in the following proposition [B-N1}:

Proposition 2.1. The dimensions of the spaces of type m Vassiliev invariants of
knots are given in the following table

m 01112(314]5
dimG,W|1]011]|1]3|4

Let us denote by A™(K) := £Z |40 A(K)(e") the m™ derivative of the Alexander-
Conway polynomial A(K) of a knot K [Ro] with the normalization as in [B-NG],
example 2.8. It is clear that A™ € F,, V.

We also need the following lemma:

Lemma 2.2. If a degree 4 weight system W € G W vanishes on the chord diagram
CD[4,1] of figure 4 then W = aW (AW) + bW (AR - AD) for some constants a, b.

Proof. A proof can be given using computer calculations of D. Bar-Natan [B-N2J.
Here is a sketch of the argument. We begin by noting that there are 7 degree 4
chord diagrams without isolated chords. The vector space G4 A" is 3 dimensional, as
follows by the program CDReduceData.m of {B-N2]. Therefore, its dual space GsW is 3
dimensional. Moreover, W(A®) W(A® . A@) € G,W. Since W is an algebra map,
we have that W(A® - A®) = W(AP) . W(A®). The Alexander-Conway weight
system has been analysed in [B-NG]. Let us recall from [B-NG], section 2.3 that
every diagram of m chords can be thickened to a surface and the value of W (A™)
on a chord diagram is 1 (respectively, 0) if the associated thickened surface has one
(respectively, more than one) component. Using CDReduceData.m of [B-N2] we can
calculate the values of W(A®W), W(A® - A®) on a basis of GoA" and show that
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the intersection of the kernels of W(A®), W(A® . A®) is a one dimensional space
spanned by the chord diagram of figure 4. 0O

IaN

CD[4,1]

Figure 4. A chord diagram with 4 chords

Lemma 2.3. If a degree 5 weight system W € W vanishes on the chord diagrams of
figure 5 then W = 0.

Proof. A proof can be given using the subprogram CDReduce of the program NAT.m of
[B-N2J]. CDReduceData.m of [B-N2] shows that the space of degree 5 chord diagrams
without isolated chords is 36 dimensional, and that the quotient of it, Gs.A" is 4
dimensional. CDReduce shows that the chord diagrams in figure 5 form a basis for

(.. (.

CD[5,1] CD5,2)
CD[5,3) CDJ5,4]

Figure 5. Some degree 5 chord diargams which form a basis for G5.A"

3. COMPARISON WITH OTHER APPROACHES

3.1. From knots to 3-manifolds. In this section we prove proposition 1.4. We
begin by recalling the map from (framed) links to (linear combinations of) 3-manifolds
of equation (1). We can compose this map with the one that sends algebraically split
links L in S to a pair (93, L, f) where f denotes the +1 framing on every component
of L. In the following lemma all links drawn will be algebraically split (in S®) and
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will have framing +1 on each component. With this notation we have the following
lemma:

Lemma 3.1. With the notation of section 1.2 the following identities hold in GO* M:

(10) X-04 = Y ege M

(11) L -OX) = 0egom
(12) (CoUL) = 0€GoM

where CoUL is the disjoint union of L with an unknot Cy. In the above equations, the
left hand side represents links of m components. In the first equation, both strands
belong to the same component, and in the second equation two strands of the same
component go over/under the two strands of another component.

it

Proof. A proof was first given by Ohtsuki in [Oh2]. It is a simple consequence of Kirby
moves and the definition of the map (.). Note that we could also give a formula in
FOh M, rather than in the graded space GZ"M, however, the above form of the
lemma suffices for our purposes. [

Proposition 1.4 now follows immediately by the first equation in (10). In the
remaining part of the paper, it will be useful to describe the associated weight system
of the the finite type knot invariant of proposition 1.4. This can be done as follows:

Remark 3.2. Let A € F,O, and let 1, denote the associated knot invariant () of
proposition 1.4. Let Wy -€ G,,_;W be the associated degree m — 1 weight system.
One way to calculate the value of W on a chord diagram CD of m — 1 chords is as
follows: represent the chord diagram in a circle, resolve the crossing points between
chords in any way and replace each chord with an unknot as in figure 6. This way
we get an algebraically split m component link L(CD) each component of which is
an unknot. By definition and using lemma 3.1 we see that

(13) Wi(CD) = ¥x(L(CD))

Note that even though L(CD) depends on the way we choose to resolve the crossing
points between the chords of the chord diagram, the value of 4, is independent of
that choice as follows by lemma 3.1.

D — £
~ N

/7(7?\**(C
<

Figure 6. Reconstructing algebraically split m component links from linear chord diagrams
of m — 1 chords. Here we take m = 4.
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We believe that it is an interesting question (both for the sake of knot invariants,
but also for the sake of 3-manifold invariants) to study the map of proposition 1.4.

3.2. A comparison theorem. In this section we prove theorem 2. Fix an integer
m > 3. We begin with some preliminaries. In his fundamental paper [Oh2] Ohtsuki
described a (finite) generating set of the vector space GO* M. Let us introduce some
more notation before we recall his result. For m € N, let G[m] denote the set of
(possibly empty or diconnected) graphs with no © components,! whose vertices are
either trivalent and oriented (i.e., one of the two possible cyclic orderings of the
edges emanating from such a vertex is specified) or univalent. In analogy with the
theory of Vassiliev invariants of knots [B-N1], we call such graphs chinese manifold
characters. We denote by v (') the number of k-valent vertices, e(I"), v(I") the number
of edges and vertices of such a graph I'. Let NI(I") denote the maximum number
of nonintersecting edges, i.e., edges with no common vertices. For such a graph
' € G[m], Ohtsuki constructs an algebraically split link L(T') in S® of m components
(and framing +1 on each component) as follows: each edge is represented by an
unknot, and each trivalent vertex is represented by a Borromean link. We denote
by [L()] the element of M from equation (1) (note that L(I') is considered with
framing +1 on each component). With the notation of section 3.1, we can now state
the following theorem of Ohtsuki:

Theorem 6. [Oh2] GO*M is generated (as a vector space) by the set {{L(T')]}recim)-
We need the following two lemmas:

Lemma 3.3. e For a connected® chinese manifold character I' one has the fol-
lowing lower bounds for NI(T'):
- IfT € G[3k+ 1] then NI(T) > k + 1.
— IfT"' € G[3k + 2] then NI(I') > k.
— IfT € G[3k + 3] then NI(T') > k.
e Let m > 3. For anyn > 4m and for any chinese manifold character I’ € Gin]
we have that NI{T') > m.

Lemma 3.4. For every chinese manifold character I' we have that
(14) [(L(D))] € FRimM

Proof. (of lemma 3.3) In order to show the first part, let I’ be a2 connected chinese
manifold character with e(I") edges and let T be a spanning tree of it. Obviously
we have that e(T') = v(T) — 1 = v (') + v3(T") — 1. Moreover, since T has at most

'a © component is a graph with 2 vertices and 3 edges, as in the greek letter ©.
2we thank the referee for pointing out the assumption of connectivity that was missing in a
previous draft of this paper



J. Knot Theory Ramifications 1996.05:441-461. Downloaded from www.worldscientific.com
by MAX-PLANCK-INSTITUTE FOR MATHEMATICS LIBRARY on 03/17/20. Re-use and distribution is strictly not permitted, except for Open Access articles.

452 S. Garoufalidis

trivalent vertices, an easy induction shows that NI(T) > [5-(.?] (where [z] is the
greatest integer smaller than or equal to z) and therefore that

(15) NIT) > NI(T) > [e(;l")] - [vl(l“) + 12:3(I‘) - 1]

We need to show that [Mrl""z’sm'l] > [e(r§—1] + e(e(T)) where €(3k +1) = 1,

€(3k +2) = €(3k) = 0. Since I’ € G[n] we have that 2¢(T) = v;(I") + 3v3(I") therefore
it suffices to show that

(16) [m(l‘) + v3(T") — 1] > [(vl(l") + 3u3(I))/2 - 1] +e(e(T))

2 3

Now a case by case argument for each class of e(I') mod 3 shows the result. The
second part follows by applying the first part to each connected component of a
chinese manifold character.

Proof. (of lemma 3.4) We claim that the sublink L' of L(T") that corresponds to a set
of nonintersecting edges is a boundary sublink. In fact, we can attach discs with one
handle to each unknot that corresponds to a set of nonintersecting edges, in such a
way that each component of L' bounds a genus 1 or 2 surface and that every two
surfaces are disjoint from each other. O

Proof. (of theorem 2) Using theorem 6 and lemmas 3.3 and 3.4 we deduce that for
fixed m > 3 and for every n > 4m equation (5) holds.

To show the second part of theorem 2, let A € F,OF N O. Equation (5) implies
that FOPM C FB M + FO% M for all n > 4m +4. Since A € F,OP it follows
that M(FOPM) C AMFOM) for all n > 4m + 4. Since A € O, it follows that
MFOH M) = 0 for large enough 7, and therefore, A(FO2 , M) = 0, i.e., A € Fim+30.
The proof of theorem 2 is complete. O

Remark 3.5. In fact, the proof of lemma 3.3 shows a bit more namely, that if " is a
connected chinese manifold character, then

o if ' € G[3m + 2] satisfies v, (") # 1 then NI(I') > m + 1, and

e if ' € G[3m + 3] satisfies v;(I") # 0 then NI(I') > m+1
These lower bounds are sharp. For example the graph I' of figure 7 shows that
' € G[15] but NI(T') = 4 (and not 5).

4. PROPERTIES OF FINITE TYPE 3-MANIFOLD INVARIANTS

4.1. A surgery formula. In this section we prove a surgery formula for the invari-
ants A € F,,OB. Let K be a knot in an integral homology 3-sphere M, and n € N.
Let K((n)) denote the (0,7n) cable of K i.e., a link of n components parallel to K with
linking numbers zero. We now have the following:
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Figure 7. An annoying graph

Proposition 4.1. If A € F,OZ, K a knot in an integral homology 3-sphere M as
above and n € N, then with the notation of sections 1.2 and 1.3 we have that

(17) AR = é(—l)j (?) (M, K(iy)

where Ya(M, L) is defined to be A((M, L, {+1,...,+1})) i.e,
UA(M, L) = Lpcp (=) EINMYAF1-+1Y) (this is the analogue for links of the map
1) of proposition 1.4. In proposition 1.4 we used the value of ¥y for knots only).

Proof. Figure 8 shows that M*:1/* and MXm{l+1} are diffeomorphic manifolds.
Furthermore, for every j > 0 it follows by the definition of ¢, that

(18) A(M, Kigy) = i(—l)" (l) A(MEoLEy

k=0

Furthermore K((;y is a boundary link of j components, therefore (M, K(;y)) = 0
for 7 > m. The result now follows by solving for A from equation (18). [

1/n 1
2
~ 0.0
@ Tt
2 : 2
1l =~

Figure 8. Some Kirby moves relating 1/n surgery on K
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Ezercise 4.2. Show that if A € 7,0, K a knot in an integral homology 3-sphere M
and n € N then

3Im
(19) Ay = 331y (79 0, K

=0
4.2. A restatement of definition 1.3. In this section we prove theorem 1.

Proof. (of theorem 1) Obviously, (3) implies (1) which implies (2). We will show that
(2) implies (3). Let L C M be a boundary link of m + 1 components in an integral
homology 3-sphere M. Let E be an embedded orientable surface in M of m + 1
components such that 3E = L. Fix an identification of E x I with a bicollar of E
in M. Let v := (1,--. ,Ym+1) be a collar of F in E. Then E x I is a (possibly
disconnected) handlebody, but M \ E x I need not be. In any case, attach 1-handles
on E x I away from « x I to construct W such that W, M \ W are both (connected)
handlebodies. Let £ <+ M be the boundary of W. Note that v x I is a disjoint union
of separating annuli in Z, and 1/1 surgery on each component of L corresponds to
cutting M along ¥, performing 1 left-handed Dehn twist along each component of
v x I, and glueing back. Therefore (2) of theorem 1 implies (3). O

5. QUESTIONS

5.1. A few questions. In this section we pose some questions relating our notion of
B-type 3-manifold invariants with that of Ohtsuki (for 3-manifolds) and of Vassiliev
(for knots).

Question 1. With the notation of section 1.2 is it true that FEM = FZIM?

Remark 5.1. Note that if the above question had a positive answer, it would imply
that FEM D F2"M and that GO"M = 0 for m not a multiple of 3.
Question 2. Does the map ¢ : 73,0 = FapmrV
e actually factor through a map
(20) f3m0 - fzmv

preserving the filtration?
e If so, is it true that the graded map

(21) G3mO = GomV

is one-to-one?
o Is it true that the image of (20) is in the space
invariants?

Question 3. Is it true for the invariants A, defined in [Oh2] that A, € FmOB? Also
that A, € F3, O?

vSpccial

% of special Vassiliev
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Question 4. Do (either of the two versions of) finite type invariants of integral
homology 3-spheres separate integral homology 3-spheres?

5.2. A general comment. We believe that the above mentioned questions will be
helpful in understanding knot invariants as well as 3-manifold invariants. One feature
of these questions is that they are (in principle) testable on a computer, which can
decide about the fate of some of them. The experimental knowledge is small so far.
Much remains to be done in analogy with the rather well developed theory of finite
type knot invariants.

Remark 5.2. Shortly after the present paper was finished, there was a lot of progress
in answering the above questions: in [GL2] it is shown that FEM C FQ'M. In
[GO1], [GL1] a positive answer to remark 5.1 was given. In [Ha}, [GL2] a positive
answer to the first part of question 2 was given.

6. CALCULATIONS

6.1. Questions 1, 2 for m = 1,2. In this section we partially answer questions 1,
2 in the case of m = 1,2 and prove theorem 3.
Fix m = 1,2. We begin with the following two claims:

Claim 6.1. For every I’ € G[3m + 3] with v;(T") = 0 we have NI(T') > m + 1.

Proof. For m = 1 it is easy to list all elements in G[6] (see [Oh2]) and check it by
hand. For m = 2 we could also list the relevant elements in G[9] and check them
by hand. Instead we prefer to give an alternative argument as follows: Let I' € G[9)
with v;(T') = 0. Without loss of generality we may assume that I is connected. Then
v3(T") = 6 and every spanning tree T of it has 5 edges. The possibilities for a spanning

tree are shown in figure 9.

Case 1 Case 3
Case 2 Case 4

Figure 9. Al possible trees with 5 edges

We now distinguish cases:
Case 1 It is immediate since NI(I') > NI(T) = 3.
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Case 2 It is easy to see that I has a subdiagram of the form Iy, or 'z as in figure
10. Therefore we can choose a spanning tree of the form T3, or T3 and in both cases

we are reduced to case 1 and the result holds.
Pz,l P—w—ﬁ—— Tz,l P—v—v——
Fz,z % T2,2 ;

Figure 10. Subgraphs of I and alternative spanning trees

Case 3 It is easy to see that I' has a subdiagram of the form I3, or I's > as in figure
11. Therefore we can choose a spanning tree of the form T3, or T3, which reduces

us to case 2 or 1 and the result holds.
s H Ty M
I32 R T3z ; z
. Figure 11, Subgraphs of I' and alternative spanning trees

Case 4 It is immediate since NI(T') > NI(T) = 3. The proof of claim 6.1 is
complete. [

Claim 6.2. For every I' € G[3m + 2] with v;([') = 1 we have NI(T') 2 m +1

Proof. The proof is analogous to claim 6.1. m = 1 is easy. f m = 2 and T € GI[8]
with v, (') = 1, then v3([') = 5 and a spanning tree T has 5 edges. The possibilities
are shown in figure 9 and the cases are shown in figures 10, 11, 12. The proof of
claim 6.2 is complete. 0O

Proof. (of theorem 3) Claims 6.1, 6.2, theorem 6 and lemma 3.4 imply (7). Indeed,
GO" M is generated by [L(I')] for chinese manifold characters I with n edges. Claims
6.1, 6.2 and lemma 3.4 imply that for n > 3m — 2, we have that [L(T')] € G9" M.

The second part of the theorem 3 follows from the first the same way as in theorem
2.
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Ty

Figure 12. Subgraphs of I and alternative spanning trees

For the third part, if m = 1 it is obvious. If m = 2, let A € 7,0F N O < F0,
let ¥, € F5V be the associated knot invariant and let W), be the associated degree 5
weight system, (see remark 3.2). Using remark 3.2 we see that W) vanishes on the
chord diagrams of figure 5, since the associated 5 component links of remark 3.2 have
boundary sublinks of 3 components. Therefore by lemma 2.3 we see that W) = 0,
ie., ¥y € F4V. Now letting W), be the associated degree 4 weight system, arguing
as above, we see that it vanishes on the chord diagram of figure 4 and therefore by
lemma 2.2 we see that the image of 1, is in the space Vf"""‘l of special type 4 knot
invariants. (O

6.2. A new set of restrictions for Ohtsuki’s invariants. In this section we
prove theorem 4 and proposition 1.5 by introducing a new set of restrictions that the
finite type invariants of Ohtsuki have to satisfy. The main idea is to study the map
3 of proposition 1.4.

Proof. (of theorem 4) Let us assume that A € G4O. Let 1) be the associated type
3 knot invariant as in remark 3.2 and in proposition 1.4. It follows from the main
result of Ohtsuki [Oh2] (quoted as theorem 6 in the present paper) that A € G4O is
determined by its value on the graph —()— (with the two possible vertex orienta-
tions). Choosing the counter clockwise orientation on each vertex of it, and recalling
the discussion of section 3.2 (in particular, chinese manifold characters correspond
to algebraically split links in $® which correspond to linear combinations of integral
homology 3-spheres, using +1 framing on each component) we obtain that A(—{—)
is a sum of 16 terms, each of which is the image under v, of an appropriate link.
Since all links containing an unlinked unknot have zero image under v, the sum
simplifies to the following equation:

(22) A=) = Ua(Ko) — 29 (Ty)
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where Ky denotes the knot (in S*) obtained by blowing down the three components
—vof —=O— and T, denotes the knot in S® obtained by blowing down (with +1

framing) any two components of —< Here blowing down refers to the first Kirby

move [Ro], i.e., the result of erasing an unknotted component of a link (with framing
+1) and replacing the rest of the components of the link by a full twist around a
disc that the unknotted component bounds. Note that each component of —)— is
unknotted (with linking numbers zero with the other components and with framing
+1) and remains unknotted after blowing down the other components. This shows
that T exists. In fact, T, is the right handed trefoil.

In other words, ) is determined by the type 3 knot invariant 5. We can now finish
the proof of theorem 4 as follows: A basis for type 3 knot invariants is 1, J®, J@)
(where J™(K) := £ |n=0J(K)(e") is the m* derivative of the Jones polynomial).
A calculation shows that J™ (K,) = 2J™(T,.) for m = 2,33

Therefore, »(—(—) = 0. Similarly, had we chosen a different vertex orientation

of the graph —O—, Ko and T, would be replaced by their mirror image and still
¥A(——) = 0. Therefore, G,L%* =0. O

Proof. (of proposition 1.5) Let V = aJ® + bJ® € F3V be a type 3 knot invariant
satisfying the assumptions of proposition 1.5. Figure 14 shows two knots K3 and K}
with the property that —1 surgery on them gives diffeomorphic integral homology
3-spheres. The knots appear in [Li] as an example of distinct knots in S whose
—1 surgery gives diffeomorphic integral homology 3-spheres. For convenience of the
reader, the proof that the above mentioned integral homology 3-spheres are diffeo-
morphic is included in figure 13, taken from [Li]. We are indebted to R. Kirby for
pointing out this reference to us. Since (S%)¥*~! and (S%)¥+~! are diffeomorphic in-
tegral homology 3-spheres, after a change of the orientation we obtain that (53)7s*1
and (S®)7K«+1 are diffeomorphic integral homology 3-spheres, where 7K is the mirror
image of a knot K in S3. Therefore we have that

(23) aJD(1K3) + bJ® (1 K3) = aJP(1K,) + b (T K,y)
The Jones polynomials of them are given as follows:
(24) JrKs)(g) = —q 3 +200 -2 +3-2+2¢ ¢

(25) J(TK4)(q) g —g g +1+ P+ -+ -

from which we can deduce that J®(K;) = J®(K,) = —6 (this is not a surprise,
since the Casson invariant exists!) but J®(K3) = 0 # J®(K,) = —180. Therefore,

3There are various programs [B-N2], [EM], [Och] that calculate the Jones polynomial of knots.
As a check, we used all of the above mentioned and got the same results. We thank D. Dar-Natan,
L. Kauffman, K. Millet and M. Ochiai for their help in distributing and running the programs.
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b=0and V is a type 2 knot invariant. Needless to say, we do not understand why
this happens. O

Remark 6.3. Note that proposition 1.5 implies in order to show theorem 4 it suffices
to check that J® (K;) = 2J@(T,).

Ezercise 6.4. (after a conversation with L. Kauffman) Show that K3 = 7Kj3, which
actually explains why J(7K3)(g) = J(7K3)(g™?) and therefore that J®)(7Kj;) = 0.

Kz/\
K.
e
2 X
Figure 13. Two different views of the same two component link

K4 @ K3
Figure 14. The result of figure 13 after blowing down K (left) or K (right)

7. UNIQUENESS OF THE CASSON INVARIANT

In this section we collect our results to show theorem 5. The first statement (1) is
equivalent to (2) because of theorem 1. (2) implies (3) (by theorem 3) which implies
(4). (4) implies (5) (by theorem 4) and finally (5) implies (1) by Casson, [AM].

Remark 7.1. It is surprising that we only used nonintersecting, bounding, simply
closed curves in surfaces to characterize the Casson invariant.
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