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Knots and tropical curves

Stavros Garoufalidis

Abstract. A sequence of rational functions in a variable q is q-holonomic
if it satisfies a linear recursion with coefficients polynomials in q and qn. In
the paper, we assign a tropical curve to every q-holonomic sequence, which is
closely related to the degree of the sequence with respect to q. In particular,
we assign a tropical curve to every knot which is determined by the Jones

polynomial of the knot and its parallels. The topical curve explains the relation
between the AJ Conjecture and the Slope Conjecture (which relate the Jones
polynomial of a knot and its parallels to the SL(2,C) character variety and to
slopes of incompressible surfaces). Our discussion predicts that the tropical
curve is dual to a Newton subdivision of the A-polynomial of the knot. We
compute explicitly the tropical curve for the 41, 52 and 61 knots and verify
the above prediction.

1. Introduction

1.1. What is a q-holonomic sequence? A sequence of rational functions
fn(q) ∈ Q(q) in a variable q is q-holonomic if it satisfies a linear recursion with
coefficients polynomials in q and qn. In other words, we have

(1)

d∑

i=0

ai(q
n, q)fn+i(q) = 0

where the coefficients ai(M, q) ∈ Z[M, q] are polynomials for i = 0, . . . , d where
ad(M, q) �= 0. The term was coined by Zeilberger in [Z] and further studied in
[WZ]. q-holonomic sequences appear in abundance in Enumerative Combinatorics;
[PWZ, St]. The fundamental theorem of Wilf-Zeilberger states that a multi-
dimensional finite sum of a (proper) q-hyper-geometric term is always q-holonomic;
see [WZ, Z, PWZ]. Given this result, one can easily construct q-holonomic se-
quences. Combining this fundamental theorem with the fact that many state-sum
invariants in Quantum Topology are multi-dimensional sums of the above shape,
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2 STAVROS GAROUFALIDIS

it follows that Quantum Topology provides us with a plethora of q-holonomic se-
quences of natural origin; [GL]. For example, the sequence of Jones polynomials of
a knot and its parallels which we will study below (technically, the colored Jones
function) is q-holonomic.

The goal of our paper is to assign a tropical curve to a q-holonomic sequence.
To motivate the connection between q-holonomic sequences and tropical curves, we
will write Equation (1) in operator form using the operators M,L which act on a
sequence fn(q) ∈ Q(q) by

(Mf)n(q) = qnfn(q), (Lf)n(q) = fn+1(q).

It is easy to see that LM = qML generate the q-Weyl algebra

(2) W = Z[q±1]〈M,L〉/(LM − qML)

Equation (1) becomes

(3) Pf = 0

where

(4) P =
d∑

i=0

ai(M, q)Li ∈ W.

In other words, Equation (4) says that P annihilates f . Although a q-holonomic
sequence f is annihilated by many operators P ∈ W , it was observed in [Ga2] that it
is possible to canonically choose an operator Pf with coefficients ai(M, q) ∈ Z[M, q].
Likewise, there is a unique non-homogeneous linear recursion relation of the form
Pff = bf where bf ∈ Z[M, q]. For a detailed definition, see Section 2 below.

Definition 1.1. We call Pf and (Pnh
f , bf ) the homogeneous and the non-

homogeneous annihilator of the q-holonomic sequence f .

1.2. What is a tropical curve? In this section we will recall the definition
of a tropical curve. For a survey on tropical curves, see [RGST, SS]. With those
conventions, a tropical polynomial P : R2 −→ R is a function of the form:

(5) P (x, y) = min{a1x+ b1y + c1, . . . , arx+ bry + cr}
where ai, b,ci are rational numbers for i = 1, . . . , r. P is convex and piecewise
linear. The tropical curve T (P ) of the tropical polynomial P is the set of points
(x, y) ∈ R

2 such that P is not linear at (x, y). Equivalently, T (P ) is the set of
points where the minimum is attained at two or more linear functions. A rational
graph Γ is a finite union of rays and segments whose endpoints and directions
are rational numbers, and each ray has a positive integer multiplicity. A balanced
rational graph is defined in [RGST, Eqn.10]: at every vertex the sum of the slope
vectors with multiplicities adds to zero. Every tropical curve is a balanced rational
graph and vice-versa; see [RGST, Thm.3.6]. Tropical curves are very computable
objects. For example, the vertices of a rational curve are the points (x, y) where
the minimum in (5) is attained at least three times. The coordinates of such points
can be solved by solving a system of linear equations. An explicit algorithm to
compute the vertices and the slopes of a tropical curve is given in [RGST, Sec.3],
and a computer implementation in Singular is available from [Ma]. This allows
us to compute the tropical curves of the 41, 52 and 61 knots in Sections 5.1-5.4
below. In the case of the 61 knot, the non-homogeneous tropical curve is defined
by an explicit polynomial with r = 346 terms.
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KNOTS AND TROPICAL CURVES 3

Tropical curves arise from 2-variable polynomials Pt(x, y) whose coefficients
depend on an additional parameter t as follows. Consider

(6) Pt(x, y) =
r∑

i=1

γi(t)x
aiybi

where γi(t) are algebraic functions of t with order at t = 0 equal to ci. Then, the
corresponding tropical polynomial is given by (5). Pt(x, y) gives rise to two Newton
polytopes:

• The 3-dimensional Newton polytope NP , i.e., the convex hull of the ex-
ponents of (x, y, t) in Pt(x, y).

• The 2-dimensional Newton polygon NP,0, i.e., the convex hull of the ex-
ponents of (x, y) in Pt(x, y).

In fact, NP,0 is the image of NP under the projection map (x, y, t) −→ (x, y). The
lower faces of NP give rise to a Newton subdivision of NP,0 which is combinatorially
dual to the tropical curve T (P ); see [RGST].

The polynomials Pt(x, y) appear frequently in numerical problems of Path Ho-
motopy Continuation where one is interested to connect P0(x, y) to P1(x, y). They
also appear in Quantization problems in Physics, where t (or log t) plays the role
of Planck’s constant. We will explain below that they also appear in Quantum
Topology, and they are a natural companion of the AJ and the Slope Conjecture.

1.3. The tropical curve of a q-holonomic sequence. In this section we
associate a tropical surve to a q-holonomic sequence. The main observation is that
an element of the q-Weyl algebra is a polynomial in 3 variables M,L, q. Two of
those q-commute (i.e., satisfy LM = qML) but we can always sort the powers of
L to the right and the powers of M to the left. In other words, there is an additive
map

(7) Z[q±1]〈M,L〉/(LM − qML) −→ Z[M,L, q±1]

Let us change variables (x, y, 1/t) = (L,M, q) and ignore the coefficients of the
monomials of xiyjtk, and record only their exponents. They give rise to a tropical
curve. Explicitly, let

(8) P =
∑

(i,j,k)∈A
ai,j,k q

kM jLi ∈ W

denote an element of the q-Weyl elgebra, where A is a finite set and ai,j,k ∈ Z \ {0}
for all (i, j, k) ∈ A.

Definition 1.2. There is a map

(9) W −→ {Tropical Curves in R
2}, P �→ ΓP

which assigns to P in (9) the tropical polynomial Pt(x, y) given by:

Pt(x, y) = min
(i,j,k)∈A

{ix+ jy − k}

ΓP is the tropical curve of Pt(x, y).

Combining Definitions 1.1 and 1.2 allows us to assign a tropical curve to a
q-holonomic sequence f .
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4 STAVROS GAROUFALIDIS

Definition 1.3. (a) If f is a q-holonomic sequence, let Γf and Γnh
f denote the

tropical curves of Pf (y, x, 1/t) and Pnh
f (y, x, 1/t) respectively, where Pf (M,L, q)

and Pnh
f (M,L, q) are given in Definition 1.1.

The tropical curve Γf of a q-holonomic sequence f is closely related to the
degree (with respect to q) of the sequence of rational functions fn(q). If δn =
degq(fn(q)) denotes this degree, then it was shown in [Ga4] that for large enough
n, δn is a quadratic quasi-polynomial with slope recorded by the rays of the tropical
curve Γf .

1.4. 3 polytopes of a q-holonomic sequence. In this section we assign 3
polytopes to a q-holonomic sequence.

Definition 1.4. (a) If P ∈ W is given by Equation (8), it defines 3 polytopes:

• NP is the convex hull of the exponents of the polynomial P (M,L, q) with
respect to the variables (M,L, q).

• NP,0 is the projection of NP under the projection map (M,L, q) −→
(L,M).

• NP,1 is the convex hull of the exponents of the polynomial P (L,M, 1).

(b) If f is a q-holonomic sequence, its annihilator Pf gives rise to the polytopes
NPf

, NPf ,0 and NPf ,1.

Note that NP is a 3-dimensional convex lattice polytope, and NP,0, NP,1 are
2-dimensional convex lattice polygons. Since every exponent of P (M,L, 1) comes
from some exponents of P (M,L, q), it follows that

(10) NP,1 ⊂ NP,0

Remark 1.1. It follows by [RGST] that the tropical curve ΓP is dual to a
Newton subdivision of NP,0.

We will say that P (M,L, q) is good if NP,1 = NP,0. It is easy to see that
goodness is a generic property.

1.5. The slopes of a q-holonomic sequence. In this section we discuss the
slopes of a q-holonomic sequence and their relation with its tropical curve. The
proof of the following theorem uses differential Galois theory and the Lech-Mahler-
Skolem theorem from number theory.

Theorem 1.5. [Ga4] The degree with respect to q of a q-holonomic sequence
fn(q) ∈ Q(q) is given (for large values of n) by a quadratic quasi-polynomial.

Recall that a quadratic quasi-polynomial is a function of the form:

(11) p : N −→ N, p(n) = γ2(n)

(
n

2

)
+ γ1(n)n+ γ0(n)

where γj(n) are rational-valued periodic functions of n. Quasi-polynomials appear
in lattice point counting problems, and also in Enumerative Combinatorics; see
[BP, BR, Eh, St] and references therein.

The set of slopes s(p) of a quadratic quasi-polynomial is the finite set of values
of the periodic function γ2(n). These are essentially the quadratic growth rates
of the quasi-polynomial. More precisely, recall that x ∈ R is a cluster point of a
sequence (xn) of real numbers if for every ε > 0 there are infinitely many indices
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KNOTS AND TROPICAL CURVES 5

n ∈ N such that |x−xn| < ε. Let {xn}′ denote the set of cluster points of a sequence
(xn). It is easy to show that for every quadratic quasi-polynomial p we have:

(12) s(p) = { 2

n2
p(n) |n ∈ N}′ ⊂ Q

Given a q-holonomic sequence fn(q) ∈ Q(q), let s(f) denote the slopes of the
quadratic quasi-polynomial degqfn(q). Let s(N) denote the set of slopes of the
edges of a convex polygon N in the plane. The next proposition relates the slopes
of a q-holonomic sequence with its tropical curve. See also [Ga4, Prop.4.4].

Proposition 1.2. If f is q-holonomic, then s(f) ⊂ −s(NPf ,0).

Proof. Let δ(n) = degqfn(q) denote the degree of fn(q) with respect to q,
and let P denote the annihilator of f . We expand P in terms of monomials as in
Equation (8). For every monomial qkM jLi and every n we have

degq((q
kM jLi)fn(q)) = k + jn+ δ(n+ i).

Since P annihilates f , for every n the following maximum is attained at least twice
(from now on, twice will mean at least twice as is common in Tropical Geometry):

(13) max
(i,j,k)

{jn+ k + δ(n+ i)}

Subtracting δ(n), it follows that the maximum is obtained twice:

(14) max
(i,j,k)

{jn+ k + δ(n+ i)− δ(n)}

Now δ(n) is a quadratic quasi-polynomial given by

δ(n) = γ2(n)

(
n

2

)
+ γ1(n)n+ γ0(n)

Theorem 1.5 implies that for large enough n, in a fixed arithmetic progression, we
have γi(n) = γ̂i for i = 1, 2, thus

δ(n+ i)− δ(n) = γ̂2 i n+ γ̂2

(
i

2

)
+ γ̂1 i

Substituting into (14), it follows that for large enough n in an arithmetic progres-
sion, the max is obtained twice:

(15) max
(i,j,k)

{jn+ k + γ̂2 i n+ γ̂2

(
i

2

)
+ γ̂1 i}

It follows that there exists (i′, j′) �= (i, j) such that

(16) γ̂2 = −j − j′

i− i′
.

This proves Proposition 1.2. �
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6 STAVROS GAROUFALIDIS

2. The q-Weyl alegbra and its localization

In this section we will discuss some algebraic properties of the q-Weyl algebra
and its localization, which will justify Definition 1.1.

Recall the q-Weyl algebra from (2). We will say that an element P of W is
reduced if it has the form (4) where ai(M, q) ∈ Z[M, q] for all i, and the greatest
common divisor of ai(M, q) ∈ Z[M, q] is 1.

Consider the localized q-Weyl algebra Wloc given by

(17) Wloc = Q(M, q)〈L〉/(Lf(M, q)− f(Mq, q)L)

It was observed in [Ga2] that W is not a principal left-ideal domain, but becomes
so after localization; see [Cou]. If f is a sequence of rational functions, consider
the left ideal Mf

Mf = {P ∈ Wloc |Pf = 0}
Mf is a principal ideal, which is nonzero if f is q-holonomic. Let P ′ denote the
monic generator of Mf . Left multiply it by a polynomial in M, q so as to obtain a
reduced annihilator Pf of f .

Now, we discuss non-homogeneous recursion relations of the form

d∑

i=0

ai(q
n, q)fn+i(q) = b(qn, q)

where ai(M, q), b(M, q) ∈ Q(M, q) for all i. In operator form, we can write the
above recursion as

Pf = b.

Consider the left ideal

(18) Mnh
f = {P ∈ Wloc |∃b ∈ Q(M, q) : Pf = b}

It is easy to see that Mnh
f is a left ideal. If f is q-holonomic, Mnh

f �= 0. Let P ′′

denote the monic generator of Mnh
f . There exists b′′ ∈ Q(M, q) such that

P ′′f = b′′

There are two cases: b′′ �= 0 or b′′ = 0. If b′′ �= 0, then dividing by b′′ we obtain
that 1/b · P ′′f = 1. We left multiply both sides by a polynomial in M, q so as to
obtain Pnh

f f = bf where Pnh is reduced. If b′′ = 0 then multiply by a polynomial

in M, q so as to obtain Pnh
f f = 0 and define bf = 0 in tha case. This concludes

Definition 1.1.
The next lemma relates the homogeneous and the non-homogeneous annihi-

lator of a q-holonomic sequence. It is well-known that one can convert an non-
homogeneous recursion relation Pf = b where b �= 0 into a homogeneous recursion
relation of order one more. Indeed, Pf = b where b �= 0 is equivalent to

(L− 1)b−1Pf = 0

This implies the following conversion between (Pnh
f , bf ) and Pf . Fix a q-holonomic

sequence fn(q) ∈ Q(q).

Lemma 2.1. (a) If bf = 0 then Pnh
f = Pf . If bf �= 0, then Pnh

f is obtained by

clearing denominators of (L− 1)b−1
f Pf by putting the powers of L on the right and

the elements of Q(M, q) on the left.
(b) If Pf is not left divisible by L−1 in W , then Pf = Pnh

f and bf = 0. If Pf is left
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KNOTS AND TROPICAL CURVES 7

divisible by L− 1 in W , then Pf = (L− 1)Qf and if d is the common denominator
of Qf , then (dQf , d) = (Pnh

f , bf ).

Definition 2.2. We say that a q-holonomic sequence f is homogeneous if
bf = 0–else f is non-homogeneous.

In other words, a q-holonomic sequence f is homogeneous if and only if Pf is
left-divisible by L− 1 in W .

3. Quantum Topology

3.1. The tropical curve of a knot. Quantum Topology is a source of q-
holonomic sequences attached to knotted 3-dimensional objects. Let JK,n(q) ∈
Z[q±1] denote the colored Jones polynomial of a knot K in 3-space, colored by the
(n+ 1)-dimensional irreducible representation of sl2 and normalized to be 1 at the
unknot; [Jo, Tu]. The sequence JK,n(q) for n = 0, 1, . . . essentially encodes the
Jones polynomial of a knot and all of its parallels; see [Tu]. In [GL, Thm.1] it
was shown that the sequence JK,n(q) of colored Jones polynomials of a knot K is
q-holonomic.

Definition 3.1. (a) IfK is a knot, we denote byAK(M,L, q) and (Anh
K (M,L, q),

BK(M, q)) the homogeneous and the non-homogeneous annihilator of the q-holono-
mic sequence JK,n(q). These are the non-commutative and the non-homogeneous
non-commutative A-polynomials of the knot.
(b) If K is a knot, let ΓK and Γnh

K denote the tropical curves of AK and Anh
K

respectively.

The non-homogeneous non-commutative A-polynomial of a knot appeared first
in [GS].

3.2. The AJ Conjecture. The AJ Conjecture (resp. the Slope Conjecture)
relates the Jones polynomial of a knot and its parallels to the SL(2,C) character
variety (resp. to slopes of incompressible surfaces) of the knot complement. We
will relate the two conjectures using elementary ideas from Tropical Geometry.

The A-polynomial of a knot is a polynomial in two commuting variables M
and L that essentially encodes the image of the SL(2,C) character variety of K,
projected in C∗ × C∗ by the eigenvalues of a meridian and longitude of K. It was
defined in [CCGLS].

Conjecture 3.1. [Ga2] The AJ Conjecture states that

(19) AK(M,L, 1) = BK(M)AK(M1/2, L)

where AK(M,L) is the A-polynomial of K and BK(M) ∈ Z[M ] is a polynomial
that depends on M and of course K.

The AJ Conjecture is known for infinitely many 2-bridge knots; see [Le].
It is natural to ask whether the q-holonomic sequence JK,n(q) is of non-homoge-

neous type or not. Based on geometric information (the so-called loop expansion of
the colored Jones polynomial, see [Ga1]), as well as experimental evidence for all
knots whose non-commutative A-polynomial is known (these are the torus knots in
[Hi] and the twist knots in [GS]) we propose the following conjecture.

Conjecture 3.2. For every knot K, JK,n(q) is non-homogeneous.
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8 STAVROS GAROUFALIDIS

The above conjecture implies that BK(M, q) ∈ Z[M, q] \ {0} is an invariant
which is independent and invisible from the classical A-polynomial of the knot.
There is a close connection between the BK(M, q) invariant of a knot and the
torsion polynomial of the knot introduced in [DbG]. We will discuss this in a
future publication.

3.3. The Slope Conjecture. The Slope Conjecture of [Ga3] relates the
degree of the colored Jones polynomial of a knot and its parallels to slopes of
incompressible surfaces in the knot complement. To recall the conjecture, let
δK(n) = degqJK,n(q) (resp. δ∗K(n) = deg∗qJK,n(q)) denote the maximum (resp.

minimum) degree of the polynomial JK,n(q) ∈ Z[q±1] (or more generally, of a ratio-
nal function) with respect to q.

For a knot K, define the Jones slopes jsK by:

(20) jsK = { 2

n2
δK(n) |n ∈ N}′

(b) Let bsK ⊂ Q ∪ {1/0} denote the set of boundary slopes of incompressible
surfaces of K; [Ha, HO].

Conjecture 3.3. [Ga3] The Slope Conjecture states that for every knot K
we have

(21) 2jsK ⊂ bsK .

Note that the Slope Conjecture applied to the mirror of K implies that 2js∗K ⊂
bsK . The Slope Conjecture is known for alternating knots and torus knots (see
[Ga3]), for adequate knots (which include all alternating knots; see [FKP]), for
(−2, 3, n) pretzel knots (see [Ga3]), and for 2-fusion knots; see [DnG]. A general
method for verifying the Slope Conjecture is discussed in [Ga5, DnG].

3.4. The AJ Conjecture and the Slope Conjecture. In this section we
will see how the AJ Conjecture relates to the Slope Conjecture, expanding a com-
ment of [Ga3, Sec.2]. We will specialize Definition 1.4 to knot theory when P = AK

is the non-commutative A-polynomial of a knot K, and we will denote by NK , NK,0

and NK,1 the three polytopes associated to AK . Proposition 1.2 implies that

(22) jsK ⊂ −NK,0

Let bsAK denote the slopes of the A-polynomial of K. The AJ Conjecture implies
that up to possibly excluding the slope 1/0 from 2NK,1, we have:

(23) 2NK,1 = bsAK .

For a careful proof, see Proposition 3.4 and Remark 3.5 below. Culler and Shalen
show that edges of the Newton polygon of the A-polynomial of K give rise to ideal
points of the SL(2,C) character variety ofK; see [CS, CGLS, CCGLS]. For every
ideal point, Culler and Shalen construct an incompressible surface whose slope is a
boundary slope of K; see [CS, CCGLS]. bsAK is the set of the so-called strongly
detected boundary slopes of K, and satisfies the inclusion:

(24) bsAK ⊂ bsK .

If AK(M,L, q) is good, then

(25) NK,0 = NK,1.
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KNOTS AND TROPICAL CURVES 9

If K∗ denotes the mirror of K, then JK∗,n(q) = KK,n(q
−1) which implies that

−NK,0 = NK∗,0. Combining Equations (22)-(25), it follows that

2jsK ⊂ bsK∗

which is the Slope Conjecture, up to a harmless mirror image. This derivation also
explains two independent factors of 2, one in Equation (20) and another one in
Equation (19).

Proposition 3.4. If the non-commutative A-polynomial of K is good, and
if the AJ Conjecture holds, then ΓK is dual to the Newton subdivision of the A-
polynomial of K (multiplied by a polynomial in M).

Proof. Let P denote the non-commutative A-polynomial of a knot K. ΓK is
dual to NP,0. If P is good, then NP,0 = NP,1. With the notation of Conjecture 3.1,
the AJ Conjecture implies that

P (M,L, 1) = AK(M1/2, L)BK(M)

where BK(M) is a polynomial ofM , and AK is the A-polynomial of A. The Newton
polygon of of the product of two polynomials is the Minkowski sum of their Newton
polygons. Moreover, the Newton polygon of BK(M) is a vertical line segment in
the (L,M)-plane. It follows that the Newton polygon of AK(M1/2, L)BK(M) is
the Newton polygon of the A-polynomial of K and its translation by a vertical
segment. On the other hand, the Newton polygon of P (M,L, 1) is NP,1. The result
follows. �

Remark 3.5. Note that the Newton polygon of AK(M1/2, L)BK(M) is the
Newton polygon of AK(M1/2, L) and its shift by a vertical line segment. It follows
that the slopes of the Newton polygon of AK(M1/2, L)BK(M) are the slopes of
AK(M1/2, L) plus the slope of a vertical segment (i.e., 1/0). For concrete examples,
see Section 5 where the Newton polygons of the non-homogeneous A-polynomials of
41, 52, 61, 81 is shown and it differs from the Newton polygon of the A-polynomial
by a shift by a vertical segment.

The only knots with explicitly known non-commutative A-polynomials (ho-
mogeneous and non-homogeneous) are the handful of twist knots Kp of [GS] for
p = −8, . . . , 11. An explicit check shows that these non-commutative A-polynomials
(both the homogeneous and the non-homogeneous) are good. For details, see Sec-
tion 5.

4. Quantization and Tropicalization

Quantization is the process of producing the non-commutative A-polynomial
of a knot from the usual A-polynomial. In other words, Quantization starts with
P1(x, y) and produces Pt(x, y) as in Equation (6). On the other hand, Tropical
Geometry expands Pt(x, y) at t = 0 (or equivalently at q = ∞) and produces a
tropical curve. Schematically, we have a diagram:

(
A-polynomial

q = 1

)
Classical limit←−

⎛
⎝ non-commutative

A-polynomial
q

⎞
⎠ Tropicalization−→

(
Tropical curve

q = ∞

)

Quantization is a map reverse to the Classical Limit map in the above diagram.
Both sides of the above diagram (i.e., the limits at q = 1 and q = ∞) are classical
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10 STAVROS GAROUFALIDIS

dual invariants of the knot. Indeed, the tropical curve ought to be dual to a Newton
subdivision of the A-polynomial of K. This duality is highly nontrivial, even for
the simple case of the 41 knot, computed in Section 5.1 below.

This conjectured duality may be related to the duality between Chern-Simons
theory (i.e., colored U(N) polynomials of a knot) and Enumerative Geometry (i.e.,
BPS states) of the corresponding Calabi-Yau 3-fold. For a discussion of the latter
duality, see [ADKMV, DGKV, LMV, DV] and references therein.

Physics principles concerning Quantization of complex Lagrangians in Chern-
Simons theory suggest that the A-polynomial of a knot should determine the non-
commutative A-polynomial. In particular, it should determine the polynomial in-
variant BK(M, q) of Definition 1.1, and it should determine the tropical curves ΓK

and Γhn
K .

Aside from duality conjectures, let us concentrate on a concrete question. It is
well-known that the A-polynomial of a knot is a triangulated curve in the sense of
algebraic K-theory. In other words, if X is the curve of zeros AK(M,L) = 0 of the
A-polynomial then there exist nonzero rational functions z1, . . . , zr ∈ C(X)∗ in X
such that

(26) M ∧ L = 2
r∑

i=1

zi ∧ (1− zi) ∈ ∧2
Z
(C(X)∗)

where C(X) is the field of rational functions of X and M, L ∈ C(X)∗ are the
eigenvalues of the meridian and the longitude. For a proof of (26) (which uses the
symplectic nature of the so-called Neumann-Zagier matrices), see [Ch, Lem.10.1].
For an excellent discussion of triangulated curves X and for a plethora of examples
and computations, see [BRVD]. Geometrically, a triangulation of X comes from
an ideal triangulation of the knot complement with r ideal tetrahedra with shape
parameters z1, . . . , zr which satisfy some gluing equations. The symplectic nature
of these gluing equations, introduced and studied by Neumann and Zagier in [NZ],
implies (26). The triangulation of X has important arithmetic consequences re-
garding the volume of the knot complement and its Dehn fillings, and it is closely
related to the Bloch group of the complex numbers. It is important to realize that
X has infinitely many triangulations, and in general it is not possible to choose a
canonical one. In addition, triangulations tend to work well with hyperbolic knots.
On the contrary, the non-commutative A-polynomial and its corresponding tropical
curve exist for every knot in 3-space, hyperbolic or not. Let us end with some ques-
tions, which aside from its theoretical interest, may play a role in the Quantization
of the A-polynomial.

Question 4.1. Is the tropical curve ΓK of a hyperbolic knot K related to a
triangulation of its A-polynomial curve?

To formulate our next question, recall that the tropical curve ΓK is dual to
a Newton subdivision of the 2-dimensional Newton polytope of the polynomial
AK(M,L, q) with respect to the variables L and M . Assuming that AK(M,L, q)
is good, and assuming the AJ Conjecture, it follows that ΓK is dual to the Newton
polygon of the A-polynomial of K. ΓK is a balanced rational graph that consists
or edges and rays, and the above assumptions imply that the slopes of the rays
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KNOTS AND TROPICAL CURVES 11

are negative inverses of the slopes of the A-polynomial of K. Consequently, Culler-
Shalen theory (see [CS]) implies that the slopes of the rays of ΓK are negative
inverses of boundary slopes of K, appropriately normalized by a factor of 2.

Question 4.2. What is the geometric meaning of the vertices of ΓK (those are
points in Q2) and of the slopes of the edges of ΓK?

5. Computations of tropical curves of knots

5.1. The homogeneous tropical curve of the 41 knot. The non-commutative
A-polynomial A41(M,L, q) of 41 was computed in [GL, Sec.6.2] and also [Ga2,
Sec.3.2] using the WZ method of [WZ, Z] implemented by [PR] in Mathematica.
The non-commutative A-polynomial is given by

A41(y, x, 1/t) =
x3

(
t2 − y

) (
t3 − y

)
y2(t+ y)

(
t− y2

) (
t3 − y2

)
t14

+

(
t2 − y

)
(−1 + y)y2

(
t2 + y

) (
t3 − y2

) (
t5 − y2

)
t15

− 1

t18
x2 (t2 − y

)2 (
t2 + y

) (
t− y2) (t3 − y2)

·
(
t8 − 2t6y + t7y − t3y2 + t4y2 − t5y2 + ty3 − 2t2y3 + y4)

+
1

t17
x(t− y)

(
t2 − y

)
(t+ y)

(
t3 − y2) (t5 − y2)

·
(
t4 + y4 − t3y(2 + y)− ty2(1 + 2y) + t2y

(
1 + y + y2))

Notice that

A41(x, y, 1) = (−1 + x)(−1 + y)4(1 + y)3(−x+ xy+ y2 + 2xy2 + x2y2 + xy3 − xy4)

confirms the AJ Conjecture, since the last factor is the geometric component of the
A-polynomial of 41, the first term is the abelian component of the A-polynomial,
and the remaining second and third terms depend only on y = M . Expanding out
the terms, we obtain that:

A41(y, x, 1/t) =
1
t18 ·x2y11+ −1

t14 ·x3y9+ 1−3·t
t17 ·x2y10+ −1

t17 ·xy11+
−1+t+t2

t13 ·x3y8+
−1−3·t2+2·t3−t4

t17 · x2y9 + 2
t16 · xy10 + 1+2·t2+t3−t4

t13 · x3y7 + −1+3·t−t2+3·t3+2·t5
t16 · x2y8 +

1+t3+t4

t16 ·xy9 + 1−t−t3−2·t4
t12 ·x3y6 + 3−2·t+3·t2+t4

t14 ·x2y7 + −1−t−t2−t3−2·t4
t15 ·xy8 + 1

t15 ·
y9 + −2−t−t3+t4

t10 · x3y5 + 1−3·t−2·t3−t4−2·t6
t13 · x2y6 + −1−t2−t3−t4−t6

t14 · xy7 + −1
t15 · y8 +

−1+t+2·t2+t4

t9 · x3y4 + −2−t2−2·t3−3·t5+t6

t11 · x2y5 + 1+t2+t3+2·t4+t5+t6

t13 · xy6 + −1−t−t2

t12 ·
y7+ 1+t−t2

t7 ·x3y3+ 1+3·t2−2·t3+3·t4
t8 ·x2y4+ 1+t+2·t2+t3+t4+t6

t11 ·xy5+ 1+t+t2

t12 ·y6+ −1
t4 ·

x3y2 + 2+3·t2−t3+3·t4−t5

t7 · x2y3 + −1−t2−t3−t4−t6

t10 · xy4 + 1+t+t2

t8 · y5 + −1+2·t−3·t2−t4

t5 ·
x2y2+ −2−t−t2−t3−t4

t7 ·xy3+ −1−t−t2

t8 · y4 + −3+t
t2 ·x2y+ 1+t+t4

t6 ·xy2+ −1
t3 · y3+x2+

2
t2 · xy + 1

t3 · y2 + −1
t · x

Inspection of the above formula shows that A41(y, x, 1/t) is good. Using the
drawing polymake program of [Ma] implemented in Singular one can compute
the vertices of the tropical curve:

(3,−1/2), (−1,−1/3), (−3/4,−1/2), (−2, 0), (2,−1), (−1/2,−1), (1,−3/2),

(0,−3/2), (−1/2,−5/4), (1/2,−7/4), (−1,−3/2), (1/2,−2), (2,−3), (3/4,−5/2),

(1,−8/3), (−2,−2), (−3,−5/2)
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12 STAVROS GAROUFALIDIS

The tropical curve (with the convention that unmarked edges or rays have
multiplicity 1) is:

2

2

2
2

2

2
2

2

2

2

2

2

The Newton subdivision of the Newton polygon is:

The reader may observe that the above Newton polygon is the Minkowski sum of
the Newton polygon of the A-polynomial of 41 with a vertical segment.

5.2. The non-homogeneous tropical curve of the 41 knot. The non-
homogeneous A-polynomial of the 41 knot was computed in Theorem 1 of [GS]
(with the notation A−1(E,Q, q) where E = L and Q = M). It has 22 terms and it
is given by:

Anh
41 (M,L, q) = L2M2q2

(
−1 +M2q

) (
−1 +Mq2

)
+ (−1 +M)M2q2

(
−1 +M2q3

)
−L(−1 +Mq)2(1 +Mq)

(
1−Mq −M2q −M2q3 −M3q3 +M4q4

)
B41(M,L) = Mq(1 +Mq)

(
−1 +M2q

) (
−1 +M2q3

)
It follows that:

Anh
41 (y, x, 1/t) =

−1
t7 · xy7 + 1

t5 · x2y5 + 2
t6 · xy6 + −1

t3 · x2y4 + 1+t2

t6 · xy5 + −1
t4 ·

x2y3 + −1−t−t2

t5 · xy4 + 1
t5 · y5 +

1
t2 · x2y2 + −1−t−t2

t4 ·xy3 + −1
t5 · y4 + 1+t2

t3 · xy2 + −1
t2 ·

y3 + 2
t · xy +

1
t2 · y2 − x
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KNOTS AND TROPICAL CURVES 13

It is easy to see that the above polynomial is good. The vertices of the corresponding
tropical curve are:

(1,−1/2), (−1/2,−1/2), (−2, 0), (0,−1), (2,−2), (1/2,−3/2), (−1,−3/2)

The tropical curve is:

2

2

2

2

The Newton subdivision of the Newton polygon is:

This example exhibits that the non-homogeneous tropical curve is much simpler
than the homogeneous one.

5.3. The non-homogeneous tropical curve of the 52 knot. The non-
homogeneous non-commutative A-polynomial Anh

52 (M,L, q) has 98 terms, and it is

given by [GS] (with the notation Anh
2 (E,Q, q) where E = L, Q = M):

Anh
52 (y, x, 1/t) = −1

t19 · xy12 + 1
t17 · x2y10 + 3

t18 · xy11 + 1
t18 · y12 + −2

t15 · x2y9 +
1−t+t3+t4

t18 ·xy10 + −1
t18 · y11 +

−1−t+t2+t3−t4

t16 ·x2y8 + −2−2·t+t2−2·t3−3·t4
t17 ·xy9 + −1−t

t14 ·
y10+ 2+2·t−t2+t3+2·t4

t14 ·x2y7+ 1−2·t−t2+t3−t5

t15 ·xy8+ 1+t
t14 ·y9+

1
t6 ·x3y5+ 1−t−t2+t3+t4−2·t5

t14 ·
x2y6+ 2−t+t2+4·t3+2·t4−t5+2·t6

t15 ·xy7 + 1
t9 · y8 +

−1
t3 ·x3y4+ −2+t−t2−4·t3−2·t4+t5−2·t6

t12 ·
x2y5 + −1+t+t2−t3−t4+2·t5

t14 · xy6 + −1
t9 · y7 + −1−t

t5 · x3y3 + −1+2·t+t2−t3+t5

t9 · x2y4 +
−2−2·t+t2−t3−2·t4

t11 · xy5 + 1+t
t2 · x3y2 + 2+2·t−t2+2·t3+3·t4

t8 · x2y3 + 1+t−t2−t3+t4

t10 · xy4 +
1
t3 · x3y + −1+t−t3−t4

t6 · x2y2 + 2
t6 · xy3 − x3 + −3

t3 · x2y + −1
t5 · xy2 + 1

t · x2

The vertices of the tropical curve are:

(1,−1/2), (−1, 0), (−1/2,−1/2), (17/2,−1/2), (−1,−1), (0,−1), (−6,−2),
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14 STAVROS GAROUFALIDIS

(6,−1), (−17/2,−5/2), (0,−2), (1,−2), (−1,−5/2), (1/2,−5/2), (1,−3)

The Newton subdivision of the tropical curve is:

The tropical curve is:

2 2
2

4 2

2
2

2

2
2 4

2

5.4. The non-homogeneous tropical curve of the 61 knot. The non-
homogeneous non-commutative A-polynomial Anh

61 (M,L, q) has 346 terms, and it

is given by [GS] (with the notation Anh
−2(E,Q, q) where E = L, Q = M):

Anh
61 (y, x, 1/t) =

1
t31 · x2y15 + −1−t

t28 · x3y13 + −1−3·t
t30 · x2y14 + −1

t30 · xy15 + 1
t22 ·

x4y11 + 1+3·t+t2

t26 · x3y12 + −1−t+2·t2+2·t3−t4−t5−t6

t30 · x2y13 + 2
t29 · xy14 + −1

t18 · x4y10 +
1+2·t+2·t2+t3−t4−2·t5+2·t6+t7

t27 · x3y11 + 1+4·t+3·t2−t3+2·t5+4·t6+3·t7
t29 · x2y12 +

1−t−t2+t4+t5+t6

t29 · xy13 + −1−t−t2

t21 · x4y9 + −1−4·t−4·t2−3·t3−2·t6−3·t7−t8

t25 · x3y10 +
1−2·t−3·t2+3·t4+3·t5+t6−4·t7−t8+t9+t10

t28 · x2y11 + −2+2·t2−2·t4−2·t5−2·t6
t28 · xy12 + 1+t+t2

t17 ·
x4y8 + −1−2·t−2·t2+3·t4−2·t6−4·t7−t8+3·t9+t10−t11

t25 · x3y9 +
−1−3·t+t2−3·t4−6·t5−6·t6−4·t7+t8−t9−2·t10−3·t11

t27 ·x2y10+ 1+2·t−t3+t5+2·t6+t7−t8−t9−t10

t27 ·
xy11 + 1+t+t2

t19 · x4y7 + 1+3·t+3·t2+2·t3+2·t5+5·t6+5·t7+3·t8−t10+t11+t12

t23 · x3y8 +
1+t−2·t2−2·t3−2·t4+2·t5−t7−3·t8−3·t9+2·t11−t12

t25 · x2y9 +
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KNOTS AND TROPICAL CURVES 15

1−3·t−t2+3·t3+3·t4+t5−2·t6−2·t7+2·t8+2·t9+2·t10
t26 · xy10 + 1

t26 · y11 + −1−t−t2

t15 · x4y6 +
1+t−t2−2·t3+t4+3·t5+4·t6−2·t7−4·t8−2·t9+t10+2·t11−2·t13

t22 · x3y7 +
1+2·t+2·t2+3·t3+t4+3·t5+3·t6+3·t7+3·t8+t9+t11

t22 · x2y8 +
−2−2·t3−4·t4−4·t5−2·t6+t7−t9−2·t10−t11+t13

t25 · xy9 + −1
t26 · y10 + −1

t16 · x4y5 +
−2−2·t3−4·t4−4·t5−2·t6+t7−t9−2·t10−t11+t13

t19 · x3y6 +
1+2·t+2·t2+3·t3+t4+3·t5+3·t6+3·t7+3·t8+t9+t11

t20 · x2y7 +
1+t−t2−2·t3+t4+3·t5+4·t6−2·t7−4·t8−2·t9+t10+2·t11−2·t13

t24 · xy8 + −1−t−t2

t21 · y9 + 1
t12 ·

x4y4 + 1−3·t−t2+3·t3+3·t4+t5−2·t6−2·t7+2·t8+2·t9+2·t10
t16 · x3y5 +

1+t−2·t2−2·t3−2·t4+2·t5−t7−3·t8−3·t9+2·t11−t12

t19 · x2y6 +
1+3·t+3·t2+2·t3+2·t5+5·t6+5·t7+3·t8−t10+t11+t12

t21 · xy7 + 1+t+t2

t21 · y8 +
1+2·t−t3+t5+2·t6+t7−t8−t9−t10

t13 · x3y4 + −1−3·t+t2−3·t4−6·t5−6·t6−4·t7+t8−t9−2·t10−3·t11
t17 ·

x2y5 + −1−2·t−2·t2+3·t4−2·t6−4·t7−t8+3·t9+t10−t11

t19 · xy6 + 1+t+t2

t15 · y7 +
−2+2·t2−2·t4−2·t5−2·t6

t10 · x3y3 + 1−2·t−3·t2+3·t4+3·t5+t6−4·t7−t8+t9+t10

t14 · x2y4 +
−1−4·t−4·t2−3·t3−2·t6−3·t7−t8

t15 · xy5 + −1−t−t2

t15 · y6 + 1−t−t2+t4+t5+t6

t7 · x3y2 +
1+4·t+3·t2−t3+2·t5+4·t6+3·t7

t11 · x2y3 + 1+2·t+2·t2+t3−t4−2·t5+2·t6+t7

t13 · xy4 + −1
t8 · y5 + 2

t3 ·
x3y + −1−t+2·t2+2·t3−t4−t5−t6

t8 · x2y2 + 1+3·t+t2

t8 · xy3 + 1
t8 · y4 − x3 + −1−3·t

t4 · x2y +
−1−t
t6 · xy2 + 1

t · x2

The vertices of the tropical curve are:

(2,−1/2), (−1,−1/2), (5,−1/2), (−3/2,−1/2), (−4, 0), (1,−1), (−1/2,−1),

(−1,−2/3), (4,−1), (1/2,−3/2), (3,−3/2), (1/5,−8/5), (−1/2,−5/4),

(1/2,−11/4), (−1/5,−12/5), (−3,−5/2), (4,−4), (1/2,−3), (1,−10/3),

(3/2,−7/2), (−1/2,−5/2), (−4,−3), (−1,−3),

(−5,−7/2), (1,−7/2), (−2,−7/2)

The tropical curve is:

2 22

2

3 22

2

2

2

2
2

2

3
2

2

2

2

2

2
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The Newton subdivision of the tropical curve is:

5.5. The non-homogeneous tropical curve of the 81 knot. The non-
homogeneous non-commutative A-polynomial Anh

81
(M,L, q) has 2112 terms, which

we not present here. The vertices of the tropical curve are:

(3,−1/2), (−1,−1/2), (6,−1/2), (−2,−1/2), (9,−1/2), (2,−1), (−1,−1),

(−5/2,−1/2), (−6, 0), (5,−1), (−2,−3/5), (8,−1), (3/2,−3/2), (4,−3/2),

(−1/2,−3/2), (−3/4,−11/8), (7,−3/2), (1,−2), (3,−2), (0,−2), (6,−2),

(0,−5/2), (5/2,−5/2), (5,−5/2), (1,−3), (0,−3), (−5,−7/2), (0,−7/2),

(−1,−3), (−5/2,−7/2), (3/4,−37/8), (0,−4), (1/2,−9/2), (−6,−4), (6,−6),

(1,−5), (2,−27/5), (5/2,−11/2), (−3,−4), (−1,−4), (−7,−9/2), (−4,−9/2),

(−3/2,−9/2), (−8,−5), (−5,−5), (−2,−5), (−9,−11/2), (2,−11/2),

(−6,−11/2), (1,−11/2), (−3,−11/2)

The tropical curve is:

2 22 22

2

3 2 2

2

22 222

2

32 22

2

2 2

2

22

2

2
22

2
2

2

2

3
2

3
2

2

2
2

2

2
2

2

22 2
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The Newton subdivision of the tropical curve is:

5.6. The number of terms of the non-homogeneous A-polynomial of
twist knots. In [GS] we explicitly computed the non-homogeneous A-polynomial
(Anh

Kp
, BKp

) of the twist knots Kp for p = −15, . . . , 15. Kp is the knot obtained by

1/p surgery on one component of the Whitehead link. This includes the following
knots in the Rolfsen notation:

K1 = 31 K2 = 52 K3 = 72 K4 = 92

K−1 = 41 K−2 = 61 K−3 = 81 K−4 = 101

The computations reveal that for p = 1, . . . , 15, Anh
Kp

has (L,M, q) degree equal to

(
2p− 1, 8p− 4,

17

2
p(p− 1) + 2

)

The total number of terms of the 3-variable polynomial Anh
Kp

is given by

139976, 80252, 41996, 19402, 7406, 2112, 346, 22

for p = −8, . . . ,−1, and by

4, 98, 908, 4100, 12236, 28978, 58668, 106800, 179814, 284998, 430652

for p = 1, . . . , 11. Using the data from [GS], the author has computed the tropical
curves (homogeneous or not) of all twist knots Kp with p = −15, . . . , 15. Needless
to say, the output of the computations it too large to be displayed in the paper.
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