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ABSTRACT
The loop invariants of Dimofte–Garoufalidis is a formal power series with arithmetically interesting
coefficients that conjecturally appears in the asymptotics of the Kashaev invariant of a knot to all
orders in 1/N. We develop methods implemented in SnapPy that compute the first six coefficients
of the formal power series of a knot. We give examples that illustrate our method and its results.

1. Introduction

1.1. The volume conjecture to all orders in 1/N

The best known quantum invariant of a knot in 3-space
is the Jones polynomial [Jones 87]. The Kashaev invari-
ant 〈K〉N of a knot K (for N = 1, 2, …) [Kashaev
95] coincides with the evaluation of the Jones polyno-
mial of a knot and its parallels at complex roots of
unity [Murakami andMurakami 01]. The volume conjec-
ture of Kashaev [Kashaev 97] states that for a hyperbolic
knot K,

lim
N→∞

1
N

log |〈K〉N | = Vol(K)

2π
,

where Vol(K) is the hyperbolic volume ofK. An extension
of the volume conjecture to all orders in 1/Nwas proposed
independently by Gukov and the first author [Gukov 05,
Garoufalidis 08]. Namely, for every hyperbolic knot K,
there exists a formal power series φK (�) ∈ C[[�]] such
that

〈K〉N ∼ N3/2eCKNφK (2π i/N), (1-1)

where CK is the complexified volume of K divided by 2π i,

φK (�) = τ
− 1

2
K φ+

K,1(�), (1-2a)
φ+
K (�) ∈ 1 + �FK[[�]], (1-2b)

τK ∈ FK, (1-2c)

and FK is the trace field of K.
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, USA.

1.2. Ideal triangulations, shapes, and the loop
invariants

The left-hand side of equation (1-1) is concretely defined
given a planar projection or an ideal triangulation of a
knot and is typically given by a finite state-sum where the
summand is a ratio of quantum factorials. Examples of
state-sum formulas for the Kashaev invariant of the 41, 52,
and 61 knots are given in [Kashaev 97, (2.2)–(2.4)].

On the other hand, the power series φK(�) that
conjecturally appears in the right-hand side is not an
explicit function of the knot. Numerical computations
of the Kashaev invariant were performed by Zagier and
G., and using numerical interpolation and a variety
of guessing methods, it was possible to recognize the
first few coefficients of the power series φK for several
knots [Garoufalidis and Zagier 13].

The main result of Dimofte-G. [Dimofte and Garoufa-
lidis 13] was the construction of a power series φγ (�) that
depends on an ideal triangulation of a knot complement.
For a detailed discussion on ideal triangulations and their
gluing equations, see [Thurston 77, Neumann and Zagier
85] and also [Dimofte and Garoufalidis 13, Section 1.2].
Explicitly, an ideal triangulationT withN tetrahedra gives
rise to a vector z = (z1, …, zN) of shapes that satisfy the
Neumann–Zagier equations

N∏
j=1

zAi j
j (z′′

j )
Bi j = (−1)νi
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Figure . An ideal tetrahedron and its shape assignment.

for i= 1, …,Nwhere z′′
j = 1 − 1/z j. These equations are

obtained as follows. Fix an edge of the ideal triangulation
T , and set the product of the shape parameters of all
tetrahedra that go around the edge e equal to 1. If z is
the shape of a tetrahedron that contains the fixed edge,
then its contribution to the above product is z or z′ or z′′

according to the convention of Figure 1. Finally, replace
z′ = −(zz′′)−1 using the relation zz′z′′ = −1. This gives
rise to the equations (1-2), one for each edge of T .
Likewise, there is an equation of the same type for each
peripheral curve.

In the above equations, we have removed one edge
equation and replaced it with themeridian cusp equation.
Neumann–Zagier [Neumann and Zagier 85] prove that
(A|B) is the upper part of a symplectic matrix. It follows
that (A|B) has rank N and ABT is symmetric, where BT

is the transpose of B. We will assume that B has nonva-
nishing determinant. Furthermore, we will assume that
our triangulation T is such that there exists a solution
to the gluing equations in (C \ {0, 1})N that recovers
the complete hyperbolic structure of the hyperbolic knot
K. In that case, z is a vector of algebraic numbers and
Q(z1, . . . , zN ) is a number field (the shape field) which
coincides with the invariant trace field and with the
trace field of the knot [Neumann and Reid 92, Theo-
rems 2.2 and 2.4]. Finally, one can choose a flattening (f,
f′′), which is an integer solution of the linear equation
A f + B f ′′ = ν. This determines a Neumann–Zagier
datum γ = (A, B, ν, f, f′′, z), which in turn defines the
power series φγ (�). Of course, different ideal triangula-
tions give rise to different Neumann–Zagier data, hence
to potentially different formal power series φγ (�). On the
other hand, the left-hand side of equation (1-1) depends
only on the hyperbolic knot K. Although the topological
invariance ofφγ (�) is not known, from the computational
point of view, this gives an excellent consistency check of
correctness of the code.

Equations (1-2a)–(1-2c) are manifest by the definition
of φγ (�). In [Dimofte and Garoufalidis 13], it was shown
that τ γ is a topological invariant, defined up to a sign. We
may call τ γ the 1-loop invariant. If we write

φ+
γ (�) = exp

( ∞∑
n=2

Sγ ,n�
n−1

)
,

then Sγ , n are the n-loop invariants of the γ . In [Dimofte
and Garoufalidis 13], it was conjectured that Sγ , 2 is well-
defined up to addition of an integer multiple of 1/24, and
that Sγ , n are topological invariants for n � 3.

The definition of φ+
γ (�) is given explicitly by formal

Gaussian integration. It follows that Sγ , n is a weighted
sum of a finite set of Feynman diagrams with Feyn-
man loop number at most n. The Feynman rules were
explained in detail in [Dimofte and Garoufalidis 13, Sec-
tions 1.6–1.8], and the contributing Feynman diagrams
for n = 2 and n = 3 were explicitly drawn. For n > 3, the
number of Feynman diagrams gets large and drawings-
by-hand is not advisable.

For the benefit of the reader, we recall the Feyn-
man rules from [Dimofte and Garoufalidis 13, Sections
1.6–1.8]. By connected Feynman diagram G, we mean a
connected multigraph, possibly with loops and multiple
edges. If G is a Feynman diagram, its Feynman loop num-
ber L(G) is given by

L(G) = |V1(G)| + |V2(G)| + b1(G)

where |Vk(G)| is the number of k-valent vertices of G and
b1(G) is the first betti number (also known as the number
of holes) of G. It is easy to see that a connected Feynman
diagram with loop number at most n has at most 2n − 2
vertices and atmostnholes.Hence, there are finitelymany
Feynman diagrams of loop number at most n.

Fix a Neumann–Zagier datum γ = (A,B, ν, f , f ′′, z)
whichwe assume is non-degenerate, that is the propagator
(defined below) makes sense. In each Feynman diagram
G, the edges represent an N × N propagator

� = �
(−B−1A + diag(1/(1 − z))

)−1

while each k-vertex comes with an N-vector of factors
�

(k)
i ,

�
(k)
i = (−1)k

αk+n−L(D)∑
p= αk

�p−1(−1)pBp

p!
Li2−p−k(z−1

i )

+
{− 1

2 (B
−1ν)i k = 1

0 k ≥ 2 ,

where αk = 1 (resp., 0) if k = 1, 2 (resp., k � 3). Here
Bk is the k-th Bernoulli number (B1 = −1/2, B2 = 1/6)
and Lis(z) = ∑∞

m=1 z
m/ms ∈ Q(z) is the s-polylogarithm

function for s a nonpositive integer. The diagramG is then
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evaluated by contracting the vertex factors�(k)
i with prop-

agators, multiplying by a standard symmetry factor, and
taking the �n − 1 part of the answer. In the end, Sγ , n is
the sum of evaluated diagrams, plus an additional vacuum
contribution

�(0) = Bn

n!

N∑
i=1

Li2−n(z−1
i ) +

{ 1
8 f · B−1A f n = 2
0 n ≥ 3 .

1.3. Our code

Our goal is to give an exact computation for the n-loop
invariants for n = 1, …, 6 of a Neumann–Zagier datum
of a SnapPy triangulation. Our method is implemented
in SnapPy. We accomplished this in three steps.

(a) We wrote a Python method gener-
ate_feynman_diagrams.py that generates
all Feynman diagrams that contribute to the n-loop
invariant. The Feynman diagrams were generated
by first generating trees, and then adding to them
multiple edges or loops. The number of such diagrams
is shown in Table 1. Observe that if G is a multigraph
with corresponding simple graph S(G), then S(G) has
at most 2n − 2 vertices and at most n holes, and L(G)
can be obtained from S(G) by adding at most n −
L(S(G)) + |V1(S(G))| + |V2(S(G))| edges. Thus, all
Feynman diagrams with Feynman loop number at
most n can thus be generated by first generating all
trees with at most 2n − 2 vertices, then iteratively
adding edges between pairs of vertices. Every edge
added also adds an additional hole. If multigraph G
has more than n − |V1(G)| − |V2(G)| holes, it cannot
be the subgraph of a Feynman diagram with Feynman
loop number at most n.

(b) We wrote a Python class NeumannZagierDatum
which gives the
Neumann–Zagier matrices and the exact value of the
shape parameters that recover the geometric represen-
tation of an ideal triangulation. The exact computation
of the shape parameters was done using the Ptolemy
module [Garoufalidis et al. 15a, Culler et al. 09], and
the numerical computation is already implemented in
SnapPy.

(c) We wrote Python classes nloop_exact.py and
nloop_num.py which give a Neumann–Zagier
datum γ and a natural number n = 1, …, 6 computes

Table . The number gn of graphs that contribute to the n-loop
invariant for n= , …, .

n     

gn     ,

Sγ , n exactly (as an element of the trace field) or numer-
ically to arbitrary precision.

To verify the correctness of our code, we computed the
n-loop invariants for n = 1, …, 5 for different triangula-
tions of each of a fixed knot, such as 52, ( − 2, 3, 7) pret-
zel, 61, and 62. In all cases, the results agreed (up to a sign
when n = 1 and up to addition of 1/24 times an integer
when n = 2). This illustrates both the topological invari-
ance of the n-loop invariants and the correctness of our
code.

1.4. Usage

The essence of our code lies in two Python classes Neu-
mannZagierDatum and nloop. The former takes as
input a manifold and generates the Neumann–Zagier
datum γ = (A, B, ν, f, f′′, z), and the latter takes as input
Neumann–Zagier datum, an integer n, and a list of Feyn-
man diagrams and returns the n-th loop invariant Sγ , n.

The NeumannZagierDatum class has three
optional arguments engine, verbose, and
file_name, which are set to None, False, and None,
respectively, by default. The engine variable is passed
as an option into the Ptolemy module and controls the
method in which solutions to the Ptolemy variety are
found. The preferred value for this variable for mani-
folds in CensusKnots is engine=”magma”, which
refers to the Sage interface to the Magma Computa-
tional Algebra System [Bosma et al. 97]. If Magma is not
available, engine=”None” will attempt to compute
solutions of the Ptolemy variety using Sage. Solutions
for manifolds in HTLinkExteriors and LinkEx-
teriors have been precomputed and are available with
the Ptolemy module using engine=”retrieve”,
[Garoufalidis et al. 15a]. This option requires an internet
connection, but will automatically switch to recomputing
locally if the download is unsuccessful. The output of the
Ptolemy module including the retrieve option are
suppressed with verbose=False and are displayed
with verbose=True.

To utilize the NeumannZagierDatum class use
a terminal to navigate to the directory containing
nloop_exact.py, available at [Garoufalidis et al.
15b], and load Sage. Once loaded, the class must first be
initiated via

sage: attach(’nloop_exact.py’)
sage: M = Manifold(’6_1’)

sage: D = NeumannZagierDatum(M,
engine=”retrieve”).

To generate the Neumann–Zagier datum, use
sage: D.generate_nz_data().
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This will assign a Python list [A, B, ν, f, f′′, z, embed-
ding] consisting of the

Neumann–Zagier datum plus the embedding of the
something in the something to the class variable nz. If
the optional argument file_name is used, this variable
will be saved as a Sage object file (*.sobj) in the current
directory. To view the data, simply use

sage: D.nz.
The shape equations z and field embedding may be

computed separately via
asage: D.exact_shapes_via_ptolemy_
lifted()
and
sage: D.compute_ptolemy_field_and_
embedding(),
respectively.
Once theNeumann–Zagier datumhas been computed,

one may use it to compute the n-loop invariants Sγ , n.
First, load the Feynman diagrams you wish to use and
choose an invariant you wish to calculate,

sage: n = 2
sage: diagrams = load(’6diagrams.
sobj’)
sage: E = nloop(D.nz, n, diagrams).
Here, we have chosen to calculate Sγ , 2 using Feynman

diagrams up to six loops. Note that the manifold M is not
directly used when initiating the nloop class, as all the
information about themanifold we need is encoded in the
Neumann–Zagier datumD.nz. To compute the invariant
use

sage: E.one_loop()
if n = 1 or
sage: E.nloop_invariant()
otherwise. To do this using a precomputed Neumann–

Zagier datum Sage object file instead of defining D as
above use

sage: nz = load(’nz_exact_6_1.sobj’)
sage: E = nloop(nz, n, diagrams).
The entire process described above has been stream-

lined into two automated functions for convenience.
For example, to start with a specified manifold M
and diagrams list, compute the Neumann–Zagier
datum, and then compute the n-loop invariant, simply
use

sage: nloop_from_manifold(M, n,
diagrams, engine=”retrieve”).

The NeumannZagierDatum optional arguments
described above may be entered here as seen in the exam-
ple. On the other hand, to start with a precomputed
Neumann–Zagier datum Sage object file (loaded as nz)
and a diagrams list, then compute the n-loop invariant,
simply use

sage: nloop_from_nzdatum(nz, n,
diagrams, engine=”retrieve”).

Also available at [Garoufalidis et al. 15b] is an almost
identical version of our code, nloop_num.py, which
produces numerical results to arbitrary precision instead
of exact computations. The usage for this file is the same.

1.5. Sample computations

The results of our computations are available from
[Garoufalidis et al. 15b], alongwith the code anddata files.

To illustrate our method, consider the 61 =
K41 knot with trace field F61 = Q(x), where x =
−1.50410836415074… + i1.22685163774658… is a
root of

x4 + 2x3 + x2 − 3x + 1 = 0.

F61 is a number field of type [0, 2] with discriminant 257,
a prime number. It follows that the Bloch group B(F61 )
is a finitely generated abelian group of rank 2 [Suslin 90,
Zickert 09]. The default SnapPy triangulation for K41
uses four ideal tetrahedra with shapes

z =
(
3
2
x3 + 7

2
x2 + 3x − 5

2
, 2x3 + 5x2 + 5x − 3, −1

2
x3

− 3
2
x2 − x + 3

2
,
1
2
x3 + 3

2
x2 + 2x + 1

2

)
.

A Neumann–Zagier datum γ = (A, B, ν, f, f′′, z) is given
by

A =

⎛
⎜⎜⎝

1 0 −1 0
−1 1 1 1
−1 1 1 0
−1 1 0 1

⎞
⎟⎟⎠ , B =

⎛
⎜⎜⎝
1 0 0 1
0 1 0 1
0 0 1 0
0 0 0 2

⎞
⎟⎟⎠ ,

ν =

⎛
⎜⎜⎝
1
2
1
2

⎞
⎟⎟⎠ , f =

⎛
⎜⎜⎝
1
2
0
1

⎞
⎟⎟⎠ , f ′′ =

⎛
⎜⎜⎝
0
0
0
0

⎞
⎟⎟⎠ .

The n-loop invariants for n = 1, …, 6 are given by:

τ = −7
2
x3 − 17

2
x2 − 17

2
x + 6

S2 = 46490
198147

x3 + 231209
396294

x2 + 473191
792588

x − 62777
264196

S3 = 570416
16974593

x3 + 2833463
33949186

x2 + 1122215
16974593

x

− 1386486
16974593

S4 = − 2255130587026
50451970187565

x3 − 91695358340911
807231523001040

x2
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− 85651263871967
807231523001040

x + 1596902056811
20180788075026

S5 = − 37040877003091
1728820845093894

x3 − 330280282463219
6915283380375576

x2

− 53499149965837
1728820845093894

x + 72838757049049
1152547230062596

S6 = 1449319256564305241317
17984434859623040256945

x3

+ 23592842410230239076799
115100383101587457644448

x2

+110567432832899754708187
575501915507937288222240

x

− 20008494585620168748319
143875478876984322055560
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