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mials of a knot, one appearing in an unnoticed work of the second
author in 1994 on quantum R-matrices at roots of unity obtained
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in recent work of D. Zagier and the first author on the Refined
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1. Introduction

The Jones polynomial [Jon87] is a fascinating polynomial invariant of knots
with deep connections to the topology and geometry in dimension 3. Its dis-
covery in 1984, apart from revolutionizing Knot Theory, lead to a new area
of research, Quantum Topology, with applications and challenges that we will
not attempt to summarize here. The Jones polynomial and its colored ver-
sions (a sequence of polynomials, one for every irreducible finite dimensional
representation of the Lie algebra sl2) are versatile invariants with numerous
interpretations, among them as partition functions of a 3-dimensional Chern–
Simons gauge theory [Wit89]. This sequence of Laurent polynomials with inte-
ger coefficients (the so-called colored Jones polynomials of a knot), introduced
by Kirillov–Reshetikhin [KR89] and Turaev [Tur88], is not a random sequence
of polynomials. Indeed, it was shown in [GL05] that it is q-holonomic, i.e.,
that it satisfies a nontrivial recursion relation with coefficients in Z[q, qn].
Moreover, a canonically chosen recursion is a knot invariant (the so-called Â-
polynomial of a knot) which is conjectured to determine the SL2(C)-character
variety of the knot, viewed from the boundary [Gar04]. The colored Jones
polynomial of a knot has appeared in equivalent forms in several occasions,
such as the sequence of Habiro polynomials of a knot [Hab02, Hab08] and the
sl2 Akutsu–Deguchi–Ohtsuki invariants [ADO92] which only recently were
shown to be equivalent to the colored Jones polynomials [Wil].

An unexpected connection of the colored Jones polynomials and hyper-
bolic geometry [Thu77] arose from the Volume Conjecture [Kas97] for the
Kashaev invariant of a knot whose exponential growth rate is conjectured
to be the suitably normalized Volume of a hyperbolic knot. This conjecture,
combined with the identification of the Kashaev invariant with an evaluation
of the colored Jones polynomials by Murakami–Murakami [MM01], linked the
Jones polynomials with hyperbolic geometry.

In this paper we discuss two equivalent reformulations (or rather, realiza-
tions) of the colored Jones polynomials of a knot: one is a sequence DJ(m)(q)
of elements of the Habiro ring defined in Equation (6) below and shown to
be equivalent to the colored Jones polynomial of a knot in Proposition 2.2.
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This sequence of elements of the Habiro ring defines the top row of a matrix
of knot invariants that arises in recent work of D. Zagier and the first author
regarding the Refined Quantum Modularity Conjecture [GZ, GZ23].

A second reformulation of the colored Jones polynomials comes from un-
noticed work of the second author in 1994 regarding quantum R-matrices at
roots of unity obtained from solutions of the pentagon identity [Kas96]. These
R-matrix invariants 〈K〉N,n of a knot K are defined for a primitive N -th root
of unity ζ (of strictly positive order), and for a number n ∈ Z/NZ in Theo-
rem 3.1 and are conjectured to be equivalent to the colored Jones polynomials
of a knot; see Conjecture 3.2 below.

2. The descendant colored Jones polynomials of a knot

2.1. A conjectured matrix-valued invariant from [GZ, GZ23]

We begin by explaining the most recent reappearance of the colored Jones
polynomials. An extension of the Volume Conjecture is the Quantum Mod-
ularity Conjecture of Zagier [Zag10] which, roughly speaking, discusses the
asymptotics of the Kashaev invariant at roots of unity. More recently, a Re-
fined Quantum Modularity Conjecture was proposed in [GZ] which suggests
the existence of a matrix-valued invariant defined at (and near) roots of unity.
These conjectured matrix-valued invariants (denoted by J(x) for x ∈ Q/Z)
were studied in [GZ, Sec. 5] with explicit examples given for the 41 and the
52 knots in Sections 7.1 and 7.2 of [GZ], respectively.

The conjectured matrix-valued knot invariant J (defined as a 1-periodic
function at the rationals, or alternatively as a function at the complex roots
of unity), has many interesting analytic, arithmetic properties and geometric
properties which are listed in detail in the introduction (Part 0) of [GZ]. The
rows and columns of the matrix J are parametrized by the set of bound-
ary parabolic SL2(C)-representations of the knot (assuming the latter set
is finite), and this set always contains two distinguished elements, the triv-
ial representation σ0, and the geometric representation σ1 of a hyperbolic
knot. The σ0-column of J is (1, 0, . . . , 0)t but the σ0-row is very interesting.
Its (σ0, σ1)-entry is the Kashaev invariant of a knot, whereas the remaining
entries are expected to be elements of the Habiro ring (whose definition is
recalled below), tensored with the rational numbers. Moreover, the entries
of each row of the matrix are expected to extend to sequences that satisfy
a homogeneous recursion relation (if not the σ0-row), or an inhomogeneous
recursion (if the σ0-row). In other words, the matrix J is expected to be a
fundamental matrix solution of a q-holonomic module.
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In [Zag10, Sec. 7.3,7.4] a method was proposed for defining all but the
first row of this matrix, given a suitable ideal triangulation of the knot. But
the first row of the above matrix remained elusive. The goal of this paper is
to propose a definition for this first row and verify some of its conjectured
properties. After a linear change of variables, the first row of the matrix J is
conjecturally equal to one of the best-known quantum knot invariants, namely
the colored Jones polynomials; see Conjecture 2.4 below.

2.2. Definition of the descendants

In this section we extend the 2-parameter colored Jones function Jn(q) of a
knot in 3-space into a 3-parameter descendant colored Jones function DJ(m)

n (q)
for n ≥ 0, m ∈ Z, which

• specializes to the colored Jones polynomials Jn(q) when m = 0 and
n ≥ 1;

• specializes to a sequence of elements of the Habiro ring DJ(m)(q) when
n = 0;

• is determined by either of the above specializations;
• is determined by a 3-parameter function DJ(m)(x, q) by DJ(m)

n (q) =
DJ(m)(qn, q) for all n ≥ 1.

In other words, we have a commutative diagram

(1)

DJ(m)
n (q)

Jn(q) DJ(m)(q)

DJ(m)(x, q)

�
�

�
��

m=0 �
�

���

n=0�

x=qn

�
�

�
��

�
�

���

To define the functions appearing in this diagram, we start with the colored
Jones polynomials JKn (q) ∈ Z[q±] of a knot K (mostly omitted from the
notation), colored by the n-dimensional irreducible representation of sl2 for
n ≥ 1 and normalized to be 1 at the unknot [Tur94]. In [Hab08] Habiro proved
that the colored Jones polynomials can be written in the form

(2) Jn(q) =
∞∑
k=0

cn,k(q)Hk(q), cn,k(q) = q−kn(qn+1; q)k(qn−1; q−1)k
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where Hk(q) ∈ Z[q±] for all k ≥ 0 and cn,k(q) is the cyclotomic kernel which
is independent of the knot and vanishes when k ≥ n ≥ 1. Equation (2) can
be inverted [Hab08, Lem. 6.1]

Hk(q) =
k+1∑
n=1

γk,n(q)Jn(q),

γk,n(q) = (−1)k−n−1 q
k(k+3)+n(n−3)

2 +1(1 − qn)(1 − q2n)
(q; q)k+n+1(q; q)k−n+1

(3)

where γk,n(q) = 0 for n ≥ k+2 and k ≥ 0. There are three important features
in Habiro’s expansion (2) of the colored Jones polynomials.

(i) The Habiro polynomials Hk(q) which a priori lie in Q(q) (as follows
from (3)), actually lie in Z[q±].

(ii) Setting n = 0 in the right hand side of (2) gives a well-defined element
of the Habiro ring Ẑ[q] = lim←−n

Z[q]/((q; q)n).
(ii) The dependence on the color comes only through the cyclotomic kernel

cn,k(q). Thus, one can replace qn by a variable x and define an element
J(x, q) of the colored Habiro ring Λ = lim←−n

Z[q±][x+x−1−2]/(cn(x, q)),
so that J(qn, q) = Jn(q) for n ≥ 1, where

J(x, q) =
∞∑
k=0

ck(x, q)Hk(q), ck(x, q) = x−k(qx; q)k(q−1x; q−1)k.(4)

We now have all the ingredients to define the descendant colored Jones
function.

Definition 2.1. For an integer m and for n ≥ 0, we define

DJ(m)
n (q) =

∞∑
k=0

cn,k(q)Hk(q) qkm, DJ(m)(x, q) =
∞∑
k=0

ck(x, q)Hk(q)qkm(5)

and

(6) DJ(m)(q) =
∞∑
k=0

(q; q)k(q−1; q−1)kHk(q) qkm.

2.3. Properties of the descendants

From their very definition, the 0-th descendants DJ(0)
n (q) and DJ(0)(q) are

nothing but the colored Jones polynomial Jn(q) and the Kashaev invariant of



2312 Stavros Garoufalidis and Rinat Kashaev

the knot. Thus, one may call DJ(m)
n (q) and DJ(m)(q) the descendant colored

Jones and the descendant Kashaev invariant of a knot, respectively.
Note further that for all integers m, the 3-variable invariant DJ(m)(x, q)

is an element of the colored Habiro ring, and, for all n ≥ 0, it satisfies
DJ(m)(qn, q) = DJ(m)

n (q).
Note moreover that DJ(m)

n (q) ∈ Z[q±] for n ≥ 1 whereas DJ(m)(q) ∈ Ẑ[q].
In a sense, DJ(m)(q) is a twisted Fourier transform of Jn(q).

The next proposition describes the equivalence among these knot invari-
ants. Let μ denote the set of complex roots of unity.

Proposition 2.2. Each family of invariants {Jn(q)|n ∈ Z≥0}, {DJ(m)
n (q)|n ∈

Z≥0,m ∈ Z}, {DJ(m)(x, q)|m ∈ Z}, {DJ(m)(q)|m ∈ Z}, {Jn(ζ)|n ∈ Z≥0, ζ ∈
μ}, {DJ(m)

n (ζ)|n ∈ Z≥0, ζ ∈ μ}, {DJ(m)(x, ζ)m ∈ Z, ζ ∈ μ}, {DJ(m)(ζ)|m ∈
Z, ζ ∈ μ} determines all other families.

Proof. We first discuss the equivalence of invariants in the left triangle of
Diagram (1). Clearly, the descendant colored Jones polynomials DJ(m)

n (q)
specialize to the colored Jones polynomials Jn(q) when m = 0. Conversely,
Jn(q) determines Hk(q) by Equation (2) and hence determines DJ(m)

n (q) by
Equation (5).

The evaluation maps Λ → Ẑ[q] given by x �→ qn for all n give an injection
of Λ to Ẑ[q]

N
as was shown in [Hab08]. It follows that DJ(m)

n (q) determines
DJ(m)(x, q).

This shows that each one of the invariants Jn(q), DJ(m)
n (q), DJ(m)(x, q) de-

termines all others. Moreover, since the collection of evaluation maps Ẑ[q] →
Q given by q �→ ζ uniquely determines an element of the Habiro ring [Hab04],
and the same holds for the colored Habiro ring [Hab08], it follows that each
one of the invariants Jn(q), DJ(m)

n (q), DJ(m)(x, q), Jn(ζ), DJ(m)
n (ζ), DJ(m)(x, ζ)

determines all others.
We now discuss the equivalence of invariants in the right triangle of Di-

agram (1). The descendant colored Jones polynomials DJ(m)
n (q) specialize to

DJ(m)(q) when n = 0, which specialize to DJ(m)(ζ) for any complex root of
unity ζ. Moreover, by Equation (5) and the inversion of the discrete Fourier
transform, it follows that DJ(m)(ζ) determines (ζ; ζ)k(ζ−1; ζ−1)k Hk(ζ), and
hence, (q; q)k(q−1; q−1)k Hk(q) (since the latter are in Z[q±]), and hence Hk(q),
and hence DJ(m)

n (q).

The next proposition concerns the q-holonomic properties of the descen-
dant colored Jones functions. For a detailed definition of q-holonomic func-
tions in several variables and their closure properties, we refer the reader to
[Zei90, PWZ96] and also to [Sab93, GL16]. Roughly speaking, q-holonomic
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functions have annihilating ideals (i.e., ideals of linear q-difference equations)
of maximal dimension.

Proposition 2.3. DJ(m)
n (q), DJ(m)(x, q) and DJ(m)(q) are q-holonomic func-

tions of (m,n), (m,x) and m, respectively. Linear q-difference equations for
these functions can be obtained from one for the Habiro polynomials Hk(q).

Proof. The first part follows from the closure properties of q-holonomic func-
tions explained in detail in [GL16], and the fact that the colored Jones polyno-
mial (and hence, the sequence of Habiro polynomials) is q-holonomic [GL05]
and cn,k(q) and gk,n(q) are q-holonomic (in fact q-proper hypergeometric)
functions. Using a computer implementation given by Koutschan [Kou09,
Kou10], we can obtain a linear q-difference equation for DJ(m)(q) given one
for Hk(q). The obtained linear q-difference equations may not be of the small-
est order.

The above proposition implies that the annihilating ideal of the 3-variable
invariant DJ(m)(x, q) is a knot invariant, and so is a minimal recursion of
DJ(m)(x, q) with respect to x or m. Moreover, a minimal recursion with re-
spect to m can be computed from a recursion for the Habiro polynomials Hk

as well as some of their initial values. This is illustrated in Section 2.5 below.
The annihilating polynomial of DJ(m)(x, q) with respect to m has an ex-

cess degree whose relation to the character variety of SL2(C)-representations
is a challenging question discussed in Section 2.5 below.

To effectively apply Proposition 2.3 we need to know a recursion for the
Habiro polynomials of a knot. Such a recursion can be obtained from a q-
hypergeometric formula for the Habiro polynomials, as was done in [GS06] for
all twist knots using a formula for the Habiro polynomials given in [Hab02,
Mas03]. Alternatively, one can use a recursion for Jn(q), Equation (3) and
the methods of [Kou10] to obtain a recursion for the Habiro polynomials.
Although the above mentioned computer implementation in theory succeeds
(and does so with a certified computation), in practice it may not termi-
nate. As a concrete example, the colored Jones polynomials of the (−2, 3, 7)
pretzel knot satisfy a guessed inhomogeneous sixth order q-difference equa-
tion [GK12], but a direct attempt to find a recursion for its Habiro polyno-
mials did not terminate. Instead, one can use the recursion for the colored
Jones to compute several thousand values of them (modulo a prime) and
Equation (3) to do the same for the Habiro polynomials, and with some hints
for the shape of the Newton polygon to guess a recursion for the Habiro
polynomials. This is explained in detail for the (−2, 3, 7) pretzel knot and for
several other knots in forthcoming work [GK].
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Let us comment on the chirality properties of the descendant colored
Jones functions. It is well-known that the Jones polynomial (and its colored
versions) are chiral invariants of knots. Explicitly, if K∗ denotes the mirror of
a knot K, then JK∗

n (q) = Jn(q−1) which implies that HK∗
k (q) = Hk(q−1) and

DJK∗,(m)(x, q) = DJK,(−m)(x−1, q−1).

2.4. A conjecture

We end this section with a conjecture. Let us denote by r + 1 the size of the
matrix J.

Conjecture 2.4. The top row of the matrix J of the conjectured knot in-
variants [GZ] is a rational linear combination of r + 1 consecutive terms of
the descendant invariant DJ(m)(q).

2.5. Examples

In this section we give explicit formulas for the descendant colored Jones
polynomials and their recursions for the trefoil (a non-hyperbolic knot) and
for the two simplest hyperbolic knots, the 41 and 52 knots.

For the 31 knot, we have H31
k (q) = (−1)kq 1

2k(k+3) for all k ≥ 0 [Hab02,
Mas03]. It follows from Equation (5) that the descendant colored Jones poly-
nomials DJ31,(m)(x, q) satisfy the inhomogeneous linear q-difference equation

−qm+3 DJ31,(m+2)(x, q) + (x + x−1)qm+2 DJ31,(m+1)(x, q)(7)
+ (1 − qm+1) DJ31,(m)(x, q) = 1

for m ∈ Z. We can write the above q-difference equation in operator form by
introducing the operators Sm and Qm which act on f(m) by (Smf)(m) =
f(m + 1), (Qmf)(m) = qmf(m) and satisfy the q-commutation relation
SmQm = qQmSm. Then, Equation (7) takes the form B31DJ31,(m) = 1 where

(8) B31(Sm, Qm, x, q) = −q3QmS
2
m + (x + x−1)q2QmSm + (1 − qQm).

We next consider the 41 knot, whose Habiro polynomials are given by
H41

k (q) = 1 for all k ≥ 0, hence

(9) DJ41,(m)(x, q) =
∞∑
k=0

x−k(qx; q)k(q−1x; q−1)k qkm.
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When x = 1, these coincide (after a suitable Q[q±] linear combination) with
the elements in the top row of an experimentally found matrix in [GZ]. The
descendants satisfy the inhomogeneous linear q-difference equation

qm+1 DJ41,(m+1)(x, q) + (1 − (x + x−1)qm) DJ41,(m)(x, q)(10)
+ qm−1DJ41,(m−1)(x, q) = 1

for m ∈ Z. Equation (10) takes the form B41DJ41,(m) = 1 where

(11) B41(Sm, Qm, x, q) = qQmS
2
m + (1 − (x + x−1)Qm)Sm + Q−1

m S−1
m .

Note that after setting q = 1 and x = 1 and Qm = 1 and renaming Sm

to be L, we have B41(L, 1, 1, 1) = L2 − L + 1 has roots generating the two
embeddings of the trace field Q(

√
−3) of the 41 knot.

A more interesting example is the 52 knot, where the descendant col-
ored Jones polynomials (or their evaluation at q = 1) is a one-parameter
q-holonomic module, whereas the two-dimensional state-sum formula for the
Kashaev invariant leads to a two-parameter q-holonomic module considered
in [GZ] in relation to the Refined Quantum Modularity Conjecture. The co-
incidence of the spanning space of the two modules is no longer obvious, but
appears to be true. Another feature of this knot is that the recursion for the
descendant colored Jones polynomials has higher degree (precisely, two more)
than the degree of the recursion of the colored Jones polynomials, and the
degree of the A-polynomial of the knot. This excess degree and its relation
to the character variety of SL2(C)-representations is a challenging question
discussed further below.

We first recall the Habiro polynomials of the 52. The latter is the twist
knot K2 and its Habiro polynomials were given by Habiro [Hab02]; see also
Masbaum [Mas03] for a detailed discussion. In fact, the Habiro polynomials
of 52 are given explicitly by

(12) H52
k (q) = (−1)kq

1
2k(k+3)

k∑
s=0

qs(s+1)
(
k

s

)
q

where
(a
b

)
q

= (q; q)a/((q; q)b(q; q)b−a) is the q-binomial function. In [GS06], it
was shown that Hk = H52

k (q) satisfies the linear q-difference equation

H52
k+2(q) + q3+k(1 + q − q2+k + q4+2k)H52

k+1(q)(13)
− q6+2k(−1 + q1+k)H52

k (q) = 0
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for k ≥ 0 with initial conditions H52
k (q) = 0 for k < 0 and H52

0 (q) = 1.
Actually, the above recursion is valid for all integers if we replace the right
hand side of it by δk+2,0. This, combined with Equation (5) and [Kou10], gives
that DJ(m) = DJ52,(m)(x, q) satisfies the linear q-difference equation

(−1 + q1+m)(−1 + q2+m)x2DJ(m)
(14)

− q2+m(−1 + q2+m)x(1 + q + x + (1 + q)x2)DJ(1+m)

+ q3+m(q3+m + (−1 + q2+m + q3+m)x
+ (−2 − q + q2+m + 2q3+m + q4+m)x2 + (−1 + q2+m + q3+m)x3

+ q3+mx4)DJ(2+m) − q4+m(q3+m + (−1 + q3+m + q4+m)x
+ (−1 + q2+m + 2q3+m + q4+m)x2 + (−1 + q3+m + q4+m)x3

+ q3+mx4)DJ(3+m) + q5+mx(q3+m + q4+m + (−1 + q4+m)x
+ (q3+m + q4+m)x2)DJ(4+m) − q10+2mx2DJ(5+m)

= x(q2+m + q4+m + (1 − q1+m − 2q3+m − q5+m)x + (q2+m + q4+m)x2)H0(q)
+ qmx(1 − xq−1)(1 − qx)H1(q).

Using the values H0(q) = 1, H1(q) = −q2 − q4, it follows that the right hand
side of the above recursion is x2 for all m. Writing the above equation in
operator form B52DJ52,(m) = x2, where B52 = B52(Sm, Qm, x, q), we obtain
that B52(L, 1, 1, 1) = −L2(−5 + 7L − 4L2 + L3), and three nonzero roots of
the above polynomial generate the three embeddings of the trace field of the
52 knot. The latter is a cubic field of discriminant −23.

Although Equation (14) is fifth order and inhomogeneous, we claim that
the Z[q±]-module of the colored Habiro ring generated by DJ(m)(x, q) for
all m ≥ 0 equals to the module M spanned by {1,DJ(0)(x, q),DJ(1)(x, q),
DJ(2)(x, q)}. Indeed, since the coefficient of DJ(m) (resp. DJ(m+1)) in (14)
vanishes when m = −2 and m = −1, (resp. m = −2) the specialization
of (14) to m = −2 and to m = −1 gives that DJ(3)(x, q) (resp. DJ(4)(x, q))
is in M. Given this, Equation (14) then implies that DJ(m)(x, q) ∈ M for all
natural numbers m. On the other hand, DJ(m)(x, q) for m = −1 and m = −2
do not seem to lie in M.

We now recall a second q-holonomic module which is motivated by the
(projection-dependent) formula for the Kashaev invariant of 52 given in
[Kas97, Eqn. (2.3)]

(15) J(q) =
∑
k,l≥0

q−(k+l+1)l (q; q)2k+l

(q−1; q−1)l
=

∑
k,l≥0

(−1)lq−
1
2 (2k+l+1)l (q; q)2k+l

(q; q)l
.
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(Warning: the above formula is q times the evaluation of the n-th colored
Jones polynomial at the n-th root of unity.) Given this formula, we can define
a 2-parameter family of descendants (elements of the Habiro ring) by

(16) DJa,b(q) =
∑
k,l≥0

(−1)lq−
1
2 (2k+l+1)l+ak+bl (q; q)2k+l

(q; q)l
(a, b ∈ Z).

Then, DJa,b(q) is a q-holonomic module in two variables. Experimentally, it
appears that the span over Q(q) of DJa,b(q) for (a, b) in some cone coincides
with the span of {1,DJ(0),DJ(1),DJ(2)}. For instance, we have:

DJ1,0 = (3 − q−1)DJ(0) + (1 − 3q)DJ(1) + q2DJ(2)

DJ−1,0 = 3qDJ(0) − 3q2DJ(1) + q3DJ(2)

DJ1,−1 = (3 + q−2 − q−1)DJ(0) + (1 − q−1 − 3q)DJ(1) + q2DJ(2) − q−2 + q−1

DJ0,−1 = −DJ(0) + qDJ(1) + 1
DJ−1,−1 = 2qDJ(0) − q2DJ(1).

In the examples given above for the 31, 41 and 52 knots, we observed two
phenomena for the annihilating polynomial B(Sm, Qm, x, q) with respect to
m of the descendant colored Jones polynomials, namely:

(a) The degree of B(Sm, Qm, x, q) is greater than or equal to the degree of
the A-polynomial of a knot [CCG+94] (which conjecturally coincides
with the degree of the minimal inhomogeneous recursion of the colored
Jones polynomials). Let δ denote this difference.

(b) B(Sm, Qm, x, q) is monic and the coefficient of Sj
m in B(Sm, Qm, x, q)

vanishes when m = −δ,−δ + 1, . . . ,−j − 1 for j = 0, . . . , δ − 1. This
implies that the Z[q±]-span of DJ(m)(x, q) for m ≥ 0 equals to the span
of DJ(m)(x, q) for m = 0, . . . , deg(A) − 1.

The above observations hold for all twist knots Kp considered in [Mas03,
Fig. 3], where K1 = 31, K−1 = 41 and K2 = 52. Their A-polynomials were
computed by Hoste–Shanahan [HS04] and the Â polynomials (i.e. a minimal
recursion for the colored Jones polynomials) was computed in [L0̂6]. The re-
cursions for the Habiro polynomials of the twist knots was given in [GS06],
and, using this, one can obtain recursions for the descendant colored Jones
polynomials with respect to m. An explicit computation shows that the B-
polynomials of twist knots satisfy the above mentioned two properties. More-
over, the degrees of the A-polynomials, the B-polynomials and the excess
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numbers of twist knots are given by

(17)
deg(AKp) = 2p− 1, deg(BKp) = 3p− 1, δ(Kp) =p, (p > 0)
deg(AKp) = 2|p|, deg(BKp) = 3|p| − 1, δ(Kp) =|p| − 1 (p < 0).

We mention parenthetically that the degree of the A-polynomials of the twist
knots coincide with the degrees of their trace fields [HS01]. The excess de-
gree of a knot and its relation to quantum invariants, their asymptotics,
and their connection with the work of Gukov et al [GM21] is studied in
detail by Campbell Wheeler in his upcoming thesis [Whe] and in forthcoming
work [GGMnW].

3. The colored Jones polynomials at roots of unity

This section fills a historical gap where we discuss a previously unnoticed con-
jectural relationship between the colored Jones polynomials and some quan-
tum R-matrices at roots of unity considered by the second author in [Kas96].
Namely, we show that the R-matrices over the vector space CN depending
on a primitive N -th root of unity ζ and indexed by an integer parameter
0 < m < N actually give knot invariants which conjecturally coincide with
the (m + 1)-colored Jones polynomial evaluated at q = ζ. In particular, we
show that a specific choice of the discrete parameter m = N − 1 gives the
Kashaev invariant 〈K〉N of a knot, which, in its turn, appears to be equal to
the N -colored Jones polynomial JN (ζ) [MM01]. The other choices of m lead
to knot invariants 〈K〉N,m for m ∈ {0, . . . , N − 1} (or even links, with each
component colored by its own integer parameter).

In [Kas94], the second author assigned a state-sum to a root of unity and
to a pair consisting of a triangulated compact closed oriented 3-manifold and
a link represented by a Hamiltonian sub-complex, and showed that the state-
sum is invariant under some natural Pachner moves. The state-sum depended
on a tetrahedral weight function, from which one can obtain an R-matrix
that satisfies the Yang–Baxter equation. This led to an invariant of knots in
the 3-sphere that depends to a root of unity, where the knot in question is
a Hamiltonian path of a triangulation of the 3-sphere. This is how the R-
matrix of [Kas95] was found and explained (without pictures), see [Kas95,
Sec. 4]. The R-matrices of [Kas96], which depend on discrete and continuous
spectral parameters, are expected to generalize the R-matrix of [Kas95]. The
continuous spectral parameter apparently plays no role in constructing knot
invariants, while the discrete spectral parameter seems to take care of the
color in the colored Jones polynomials.
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We should remark that for all values of the colors, this R-matrix of [Kas96]
is over the same vector space CN and appears nontrivial even when the color
is trivial. This is in contrast to the standard (quantum group) definition of
the colored Jones polynomials, where the size of the R-matrix depends on the
color and is trivial for the trivial color.

3.1. R-matrices with a spectral parameter

We begin our discussion of R-matrices by introducing some useful notation.
For a positive integer n ∈ Z>0, we define

(18) (x)n :=
n∏

k=1
(1 − xk), 〈〈x〉〉n := 1 − xn

(1 − x)n

with the convention (x)0 := 1.
For a fixed root of unity ζ of order N = ord(ζ) ∈ Z>0, we define rational

functions w(x|n) ∈ C(x) for all integers n ∈ Z by the recurrence relation

(19) w(x|n)(1 − xζn) = w(x|n− 1), w(x|0) = 1.

One has the addition property

(20) w(x|m + n) = w(x|m)w(xζm|n) (m,n ∈ Z)

which, by taking into account the equality w(x|N) = 1/(1 − xN ), gives the
quasi-periodicity property

(21) (1 − xN )w(x|n + N) = w(x|n) (n ∈ Z).

Notice the relation to the q-Pochhammer symbols with q = ζ

(22) w(x|n) = 1
(xζ; ζ)n

(n ∈ Z≥0).

It follows that w(x|n) is a rational function of x with coefficients in the
cyclotomic field FN := Q(ζ) whose poles and zeros (if any) are integer powers
of ζ. We will call such rational functions, and more generally matrices of such
rational functions, N -cyclotomic.

In [Kas96], the second author considered the N -cyclotomic matrix
r(x;m,n) ∈ MatN2(C(x)) defined by the formula

〈i, j|r(x;m,n)|k, l〉 = 〈〈x〉〉Nζ(i−k+n)(l−j) w(x/ζ|j − i−m)w(x|l − k + n)
w(x/ζ|j − k + n−m)w(x/ζ|l − i)

(23)



2320 Stavros Garoufalidis and Rinat Kashaev

(where the left hand-side is the bra-ket notation for the entries of a matrix)
and proved that it satisfies the Yang–Baxter equation

(24) r1,2(x;m1,m2)r1,3(xy;m1,m3)r2,3(y;m2,m3)
= r2,3(y;m2,m3)r1,3(xy;m1,m3)r1,2(x;m1,m2)

where, along with continuous spectral parameters x and y, the integers m1,
m2, m3 play the role of discrete spectral parameters. Here, r1,2, r1,3 and r2,3
denote the N -cyclotomic matrices in MatN3(C(x)) obtained by interpreting r
as an endomorphism of an N -dimensional space V ⊗2, equipped with a basis,
and ri,j as the corresponding endomorphisms of V ⊗3, acting nontrivially on
the i, j copies of V in V ⊗3 and trivially on the remaining copy.

Aside from being a solution to the Yang–Baxter equation with a spectral
parameter, a somehow surprising fact is that r(x;m,n) is regular (i.e. it has a
finite limit) at x = 1. This follows from the existence of the gauge conjugating
matrix h(y,m) ∈ MatN (C(y)) defined by

(25) 〈i|h(y,m)|j〉 = ζ(j−i)m〈〈y ζj−i〉〉N .

The entries of the matrix h(y,m) are, in fact, polynomials in y, it satisfies
the multiplicative property

(26) h(x,m)h(y,m) = h(xy,m)

and it enters the important gauge symmetry transformation formulae for the
r-matrix (23):

h1(y,m + 1)r(x;m,n)h1(y−1,m + 1)(27)
= r(xy;m,n) = h2(y−1, 0)r(x;m,n)h2(y, 0).

Here, h1 and h2 denote matrices in MatN2(C(y)) obtained by interpreting h
as an endomorphism of an N dimensional space V with a basis, and hj as
corresponding endomorphisms of V ⊗2 obtained by acting on the j-th copy of
V in V ⊗2 by h and on the remaining copy of V by identity.

The above gauge symmetry transformation formulae, together with the
fact that h(y,m) has polynomial entries in y, imply easily that r(x;m,n) is
regular at x = 1. An additional calculation shows that

(28) 〈i, j|r(1;m,n)|k, l〉 = Vi,j−m,k−n,l(ζ)ζk−l−n+(k−i−n)m
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where

(29) Vi,j,k,l(ζ) := N θN ({j − i− 1}N + {l − k}N ) θN ({i− l}N + {k − j}N )
(ζ̄){j−i−1}N (ζ){i−l}N (ζ̄){l−k}N (ζ){k−j}N

and where ζ̄ denotes the complex conjugate of the complex number ζ and for
an integer k, {k}N denotes the unique integer such that

(30) {k}N ≡ k (mod N), 0 ≤ {k}N < N,

and

(31) θN (k) := δk,{k}N

where δ is the standard Kronecker delta symbol. The regularity of the matrix
r(x;m,n) is reminiscent to the p-adic valuation of factorials in Landau’s work,
see for instance [RV, Sou20] and references therein.

A consequence of formula (28) is that the rows and columns of r(1;m,n)
are naturally indexed by elements of the additive group Z/NZ, as well as the
discrete spectral parameters are in Z/NZ.

3.2. Proof of the gauge symmetry equations

In this section we give the proofs of equations (26) and (27) which were stated
in [Kas96], but proofs were ommitted.

We begin with Equation (26). Writing out its left hand side in matrix
coefficients (indexed by i, j ∈ {0, . . . , N − 1}), we have

〈i|h(x,m)h(y,m)|j〉 =
N−1∑
k=0

〈i|h(x,m)|k〉〈k|h(y,m)|j〉(32)

= ζ(j−i)m
N−1∑
k=0

〈〈xζk−i〉〉N 〈〈yζj−k〉〉N

so that Equation (26) is equivalent to

N−1∑
k=0

〈〈xζk−i〉〉N 〈〈yζj−k〉〉N = 〈〈xyζj−i〉〉N ⇔
N−1∑
k=0

〈〈xζk〉〉N 〈〈yζj−k〉〉N = 〈〈xyζj〉〉N .

(33)
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The definition (18) gives 〈〈x〉〉N = N−1 ∑N−1
a=0 xa. Using this equality, we ob-

tain
N−1∑
k=0

〈〈xζk〉〉N 〈〈yζj−k〉〉N(34)

= N−2
N−1∑

k,a,b=0
(xζk)a(yζj−k)b = N−1

N−1∑
a,b=0

xaybζjbδ0,{a−b}N

= N−1
N−1∑
b=0

(xyζj)b = 〈〈xyζj〉〉N .

We can diagonalize the matrices h(x,m) by conjugating them by the
(discrete) Fourier transformation operator 〈i|F |j〉 = ζij . Indeed, assuming
i, j ∈ {0, . . . , N − 1}, we have

〈i|Fh(x,m)F−1|j〉

(35)

= N−1 ∑
i′,j′

ζii
′−jj′〈i′|h(x,m)|j′〉 = N−1 ∑

i′,j′
ζii

′−jj′+(j′−i′)m〈〈xζj′−i′〉〉N

= N−1 ∑
i′,j′

ζii
′−j(j′+i′)+j′m〈〈xζj′〉〉N = δi,j

∑
j′

ζ(m−j)j′〈〈xζj′〉〉N

= N−1δi,j
∑
j′

ζ(m−j)j′
N−1∑
a=0

xaζaj
′ = δi,j

N−1∑
a=0

δ0,{m−j+a}Nx
a = δi,jx

{j−m}N .

Thus, conjugating the r-matrix (23) by F , we can prove Equations (27) by
explicit computation. Indeed, assuming that i, j, k, l ∈ {0, . . . , N − 1}, we
have

〈i, j|(F ⊗ F )r(x;m,n)(F−1 ⊗ F−1)|k, l〉(36)
= N−2 ∑

i′,j′,k′,l′

ζii
′+jj′−kk′−ll′〈i′, j′|r(x;m,n)|k′, l′〉

= 〈〈x〉〉N
N2

∑
i′,j′,k′,l′

ζii
′+jj′−kk′−ll′+(i′−k′+n)(l′−j′)

× w(x/ζ|j′ − i′ −m)w(x|l′ − k′ + n)
w(x/ζ|j′ − k′ + n−m)w(x/ζ|l′ − i′)

= 〈〈x〉〉N
N2

∑
i′,j′,k′,l′

ζi(i
′+k′)+j(j′+k′)−kk′−l(l′+k′)+(i′+n)(l′−j′)
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× w(x/ζ|j′ − i′ −m)w(x|l′ + n)
w(x/ζ|j′ + n−m)w(x/ζ|l′ − i′)

=
〈〈x〉〉Nδ0,{i+j−k−l}N

N

∑
i′,j′,l′

ζii
′+jj′−ll′+(i′+n)(l′−j′)

× w(x/ζ|j′ − i′ −m)w(x|l′ + n)
w(x/ζ|j′ + n−m)w(x/ζ|l′ − i′) ,

where, in third equality, we have shifted the summation variables i′, j′, l′ by
k′ and, in the last equality, performed the k′-summation by using the formula

(37)
N−1∑
a=0

ζab = Nδ0,{b}N .

We continue the calculation in (36) by shifting the summation variables l′ �→
l′ + i′ and j′ �→ j′ + m− n followed by the shift i′ �→ i′ − n:

(36) =
〈〈x〉〉Nδ0,{i+j−k−l}N

N

∑
i′,j′,l′

ζi(i
′−n)+j(j′+m−n)−l(l′+i′−n)+i′(l′+i′−j′−m)

(38)

× w(x/ζ|j′ − i′)w(x|l′ + i′)
w(x/ζ|j′)w(x/ζ|l′)

=
〈〈x〉〉Nδ0,{i+j−k−l}N

Nζkn−jm

∑
i′,j′,l′

ζ(i−l−m+i′)i′+(j−i′)j′+(i′−l)l′

× w(x/ζ|j′ − i′)w(x|l′ + i′)
w(x/ζ|j′)w(x/ζ|l′)

=
〈〈x〉〉Nδ0,{i+j−k−l}N

Nζkn−jm

N−1∑
i′=0

w(x/ζ| − i′)w(x|i′)
ζ(l+m−i−i′)i′

×
∑
j′,l′

ζ(j−i′)j′+(i′−l)l′ w(xζ−i′−1|j′)w(xζi′ |l′)
w(x/ζ|j′)w(x/ζ|l′)

=
〈〈x〉〉Nδ0,{i+j−k−l}N

Nζkn−jm

×
N−1∑
i′=0

w(x/ζ| − i′)w(x|i′)
ζ(l+m−i−i′)i′ f(xζ−i′−1, x/ζ|ζj−i′)f(xζi′ , x/ζ|ζi′−l)

where, in third equality, we used the addition formula (20), and in the last
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equality, we use function f(x, y|z) defined by

(39) f(x, y|z) :=
∑
a

w(x|a)
w(y|a)z

a, (1 − yN )zN = 1 − xN ,

whose automorphic properties are described in [KMS93]. In particular, we
have the equality

(40) f(xζa, x/ζ|ζ−b) = x{b}N

〈〈x〉〉Nw(x|{a}N )
(ζ){a}N+{b}N

(ζ){a}N (ζ){b}N
(a, b ∈ Z)

which we can use to proceed in (38) as follows:

(38) =
〈〈x〉〉Nδ0,{i+j−k−l}N

ζkn−jm

N−1∑
i′=j

w(x|i′)xi′−j

ζ(l+m−i−i′)i′
(ζ)N−1−j

(ζ)N−1−i′(ζ)i′−j
f(xζi′ , x/ζ|ζi′−l)

=
〈〈x〉〉Nδ0,{i+j−k−l}N

ζkn−jm

N−1∑
i′=j

w(x|i′)xi′−j

ζ(l+m−i−i′)i′
(ζ̄)i′

(ζ̄)j(ζ)i′−j

f(xζi′ , x/ζ|ζi′−l)

(41)

where, in first equality, we used the addition formula (20) for simplification,
and in the last equality, the property

(42) (ζ)k(ζ̄)N−1−k = N (k ∈ Z, 0 ≤ k ≤ N − 1).

Continuing with the second f -function in (41), we have

=
δ0,{i+j−k−l}N

ζkn−jm

l∑
i′=j

xl−j

ζ(l+m−i−i′)i′
(ζ̄)i′

(ζ̄)j(ζ)i′−j

(ζ)l
(ζ)i′(ζ)l−i′

=
δ0,{i+j−k−l}N (ζ)lxl

ζ(n−j)k(ζ)jxj
l−j∑
i′=0

(−1)i′ζ(i′−1)i′/2

ζ(l+m−i−j)i′(ζ)i′(ζ)l−j−i′

=
δ0,{i+j−k−l}N (ζ)lxl(ζk−m; ζ)l−j

ζ(n−j)k(ζ)jxj(ζ)l−j
=

δ0,{i+j−k−l}N (ζ)lxl(ζ){k−m−1}N+l−j

ζ(n−j)k(ζ)jxj(ζ)l−j(ζ){k−m−1}N

= δ{i−m−1}N+j,{k−m−1}N+l ζ
(j−n)kxl−j (ζ)l(ζ){i−m−1}N

(ζ)j(ζ)l−j(ζ){k−m−1}N

(43)
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where, in third equality, we used the well-known q-binomial formula

(44) (z; q)s =
s∑

t=0
(−z)tq(t−1)t/2 (q)s

(q)t(q)s−t
, (s ∈ N),

with q = ζ, s = l − j and z = ζk−m; in fourth equality, the identity

(45) (ζa; ζ)b =
(ζ){a−1}N+b

(ζ){a−1}N
(a ∈ Z, b ∈ N),

and, in the last equality, the equivalence

{
i + j ≡ k + l (mod N)
0≤{k−m−1}N + l − j≤N − 1

⇔ {i−m−1}N + j = {k −m− 1}N + l.

(46)

Equation (43), combined with (35), straightforwardly implies relations (27).
We remark that the R-matrix coefficients in (43), when specialized to

m = n = −1, coincide with the standard colored Jones R-matrix coefficients.
This means that in this case, the associated knot invariant is the N -colored
Jones polynomial specialized to a primitive N -th root of unity.

3.3. Knot invariants

We can use the r-matrix given in Equation (28) to construct knot invariants
from their planar projections. This is a standard construction explained in
several places that include [Jon89, RT90, Tur88, Tur94]. We will follow the
presentation of [Kas] which does not require neither the theory of Hopf alge-
bras nor the existence of ribbon elements, and uses as a combinatorial input a
generic planar projection of a long knot with no local extrema oriented from
left to right and equal numbers of positive and negative crossings. Locally,
such a planar projection has eight types of crossings (four positive and four
negative ones)

(47)

to which one assigns the suitably “rotated” r-matrices shown in Equations
(16)–(19) of [Kas], two types of vertical segments, and two types of local
extrema

(48)
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to which ones assigns respectively the identity operators and ε and η maps
of Equation (7) of [Kas]. In our case, we fix a primitive root of unity ζ of
order N , a (discrete spectral parameter) n ∈ Z/NZ and a planar projection
D of a long knot K. We color each arc of D by an element of Z/NZ, place r-
matrices at the crossings (using the fixed spectral parameter at all crossings),
according to the rules described below, and sum over all indices. The result
of this contraction is a complex number that depends on the colors i and j
of the outgoing and incoming arcs of the diagram of the long knot. These
complex numbers arrange in a matrix

(49) 〈D〉N,n ∈ MatN (Z[N−1, ζ])

The r-matrices given below are rigid, i.e., satisfy the Yang-Baxter equation
(9) and the inverse matrix equation (10) of [Kas]. The next theorem follows
from the results of [Kas].

Theorem 3.1. The state-sum 〈D〉N,n depends on the long knot K and not
on the planar projection D used.

It remains to explain the rules for the r-matrices.
Starting with the case with m = n = 0, we get the following rules for the

four types of positive crossings

k l

j i

=
j k

i l

=
i j

l k

=Vi,j,k,l(ζ)ζk−l,

k l

j i

=Vk,l,i,j−1(ζ̄)ζj−1−k

(50)

and for the four types of negative crossings

k l

j i

=
j k

i l

=
i j

l k

=Vi,j,k,l(ζ̄)ζ l−k,

k l

j i

=Vk,l,i,j−1(ζ)ζk−j+1.

(51)

Note that the weights of the negative crossings are the complex conjugates of
the corresponding weights of the positive crossings.
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Switching in now the general colors m and n, we get the rules for the
positive crossings

k l

j i

m n
=

j k

i l

n m
=

i j

l k

m n
= Vi,j−m,k−n,l(ζ)ζk−l−n+(k−i−n)m,

k l

j i

n m
= Vk,l,i−m,j−n−1(ζ̄)ζj−1−k−n+(j−l−n)m

(52)

and the negative crossings

k l

j i

n m
=

j k

i l

m n
=

i j

l k

n m
= Vi,j−n,k−m,l(ζ̄)ζ l−k+(l−j+1+n)m,

k l

j i

m n
= Vk,l,i−n,j−m−1(ζ)ζk−j+1+(k−i+1+n)m.

(53)

Note that for general m,n, the weights of the negative crossings are not the
complex conjugates of the corresponding weights of the positive crossings.
Note also that the eight r-matrices needed in Equations (16)–(19) of [Kas],
up to powers of ζ, are all expressed in terms of the symbols Vi,j,k,l(ζ) and
their complex conjugates Vi,j,k,l(ζ̄).

Additionally, we have relations between colored and uncolored weights

k l

j i

m n
=

j k

i l

n m
=

i j

l k

m n
=

k − n l

j − m i

ζ(k−i−n)m,(54)

k l

j i

n m
=

k l

j − n i − m

ζ(j−l−n)m
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in the case of positive crossings, and

k l

j i

n m
=

j k

i l

m n
=

i j

l k

n m
=

k − m l

j − n i

ζ(l−j+n)m,

k l

j i

m n
=

k l

j − m i − n

ζ(k−i+n)m

(55)

in the case of negative crossings.
We complement the rules by the weights on the four types of segments

(56)
i

j

=
j

i

=
i j

= i j

= δi,j .

With our rules, one can calculate weights of few simplest composed dia-
grams in the colored case

(57)
j i

n
= δj,{i+1}N ,

j i

n
= δj,{i+1}N ζ

n

and

(58)
j i

n

= δi,{j+1}N ,
j i

n

= δi,{j+1}N ζ
−n

which imply that

(59) i

j

n

= δi,jζ
n, i

j

n

= δi,jζ
−n.

It is interesting to note, that the continuous spectral parameter can be
used in an alternative formulation of knot and link invariants along the idea
of Jones [Jon89] of considering a “statistical mechanics” model on piecewise
linear diagrams with straight segments where the multiplicative angles are
encoded in the continuous spectral parameters. In our case, such an approach
might be applicable only in the case with color n ≡ −1 (mod N) but not for
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other values of n. In the case n ≡ −1 (mod N), the starting graphical rules
would look like

(60)
k l

j i

x

= 〈i, j|r(x;−1,−1)|k, l〉,
j

i

x
= 〈i|h(−1/x, 0)|j〉,

where the continuous variables x’s are thought of as exponentiated angles eiα,
whose product around each vertex is 1.

3.4. An example

In this sub-section we write an explicit expression for the invariant 〈41〉N,n of
the simplest hyperbolic knot 41 in the case of a primitive N -th root of unity
ζ and a color n ∈ Z/NZ. The invariant is an N × N matrix whose entries
Mi,j := 〈i|〈41〉N,n|j〉 are given by

Mi,j =
∑

k1,...,k7

j

i

k1

k2

k3

k4

k5

k6

k7

n

=
∑

k1,...,k7

Vi,k3−n,k7−n,k2(ζ̄)ζk2−k7+(k2−k3+1+n)n

Vk6,k4,k7−n,k3−n−1(ζ)ζk6−k3+1+(k6−k7+1+n)n

Vk1,k5,k2−n,k4−n−1(ζ̄)ζk4−k1−1+(k4−k5−1−n)n

Vk1,k6−n,j−n,k5(ζ)ζj−k5+(j−k1−1−n)n

=
∑

k1,...,k7

Vi,k3−n,k7−n,k2(ζ̄)Vk6,k4,k7−n,k3−n−1(ζ)Vk1,k5,k2−n,k4−n−1(ζ̄)

× Vk1,k6−n,j−n,k5(ζ)ζ(j−k1+k2−k3+k4−k5+k6−k7)(n+1)

=
∑

k1,...,k7

Vi,k3,k7,k2(ζ̄)Vk6,k4,k7,k3−1(ζ)Vk1,k5,k2−n,k4−n−1(ζ̄)Vk1,k6−n,j−n,k5(ζ)

× ζ(j−k1+k2−k3+k4−k5+k6−k7−2n)(n+1)

=
∑

k1,...,k7

V0,k3,k7,k2(ζ̄)Vk6,k4,k7,k3−1(ζ)Vk1,k5,k2−n,k4−n−1(ζ̄)

× Vk1,k6−n,j−i−n,k5(ζ)ζ(j−i−k1+k2−k3+k4−k5+k6−k7−2n)(n+1)

=
∑

k1,...,k7

V0,k3,k7,k2(ζ̄)V0,k4,k7−k6,k3−k6−1(ζ)V0,k5,k2+k1−k6,k4+k1−1(ζ̄)

× V0,k1,j−i−k6+k1,k5(ζ)ζ(j−i+2k1+k2−k3+k4−k5−k7)(n+1).

(61)
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The above is a sum over (Z/NZ)7 and it is not clear how to simplify
to sum in fewer variables. Numerical calculations suggest that 〈K〉N,n is a
multiple of the identity matrix.

3.5. A conjecture

When n = −1, Equation (43) implies that the invariant of a long knot K is a
multiple of the identity N ×N matrix, and the multiple is the specialization
of the N -colored Jones polynomial that enters the Volume Conjecture [Kas95,
Kas97]. When n ∈ Z/NZ is arbitrary, we conjecture the following.

Conjecture 3.2. For all knots K, strictly positive integers N and n, and a
primitive N -th root of unity ζ, we have

(62) 〈K〉N,n = JK
n+1(ζ)1N

where 1N denotes the identity N ×N matrix.

In particular, 〈K〉N,0 = 1N is a trivial invariant coming from a nontrivial
r-matrix over an N -dimensional vector space.
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