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CHERN-SIMONS THEORY, ANALYTIC CONTINUATION

AND ARITHMETIC

STAVROS GAROUFALIDIS

Abstract. The purpose of the paper is to introduce some conjectures re-
garding the analytic continuation and the arithmetic properties of quantum
invariants of knotted objects. More precisely, we package the perturbative and
nonperturbative invariants of knots and 3-manifolds into two power series of
type P and NP, convergent in a neighborhood of zero, and we postulate their
arithmetic resurgence. By the latter term, we mean analytic continuation
as a multivalued analytic function in the complex numbers minus a discrete
set of points, with restricted singularities, local and global monodromy. We
point out some key features of arithmetic resurgence in connection to various
problems of asymptotic expansions of exact and perturbative Chern-Simons
theory with compact or complex gauge group. Finally, we discuss theoretical
and experimental evidence for our conjecture.

1. Introduction

1.1. Chern-Simons theory and analytic continuation. Chern-Simons Quan-
tum Field Theory in 3-dimensions (perturbative, or non-perturbative) produces
a plethora of numerical invariants of knotted 3-dimensional objects. We intro-
duce a packaging of these invariants into two power series: one that encodes
non-perturbative invariants (model NP), and one that encodes perturbative in-
variants (model P). The paper is concerned with the analytic continuation, the
asymptotic behavior and arithmetic properties of those power series.

Let us begin with a conjecture concerning the structure of nonperturbative
quantum invariants. Consider the generating series

(1) Lnp
M,G(z) =

∞
∑

n=0

ZM,G,nzn
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of the Witten-Reshetikhin-Turaev invariants ZM,G,n (see Section 2) of a closed,
oriented, connected 3-manifold M , using a compact Lie group G and a level n ∈ N.
The power series (1) is known to be convergent inside the unit disk |z| < 1 since
unitarity implies that ZM,G,n grows at most polynomially with respect to n; see
[Ga1].

Conjecture 1. (Analytic Continuation) For every pair (M,G) as above, the
series Lnp

M,G(z) has analytic continuation as a multivalued function on C\eΛM,G,
where eΛM,G ⊂ C is a finite set that contains zero and the exponentials of the
negative of the critical values of the complexified Chern-Simons action.

A key observation is that eΛM,G may contain elements inside the unit disk
|z| < 1 despite the fact that the power series Lnp

M,G(z) is analytic for z such

that |z| < 1. One may compare this behavior with the power series
∑∞

n=1 zn/n2

that define the classical dilogarithm, whose analytic continuation is a multivalued
analytic function in C\{0, 1}. Schematically, the analytic continuation of Lnp

M,G(z)
may be depicted as follows:

The above conjecture has the following features:

(a) It can be formulated for pairs (K, G) where K denotes a knotted object,
i.e., a knot K in 3-space or a closed 3-manifold M and G denotes a
compact Lie group.

(b) It implies via elementary complex analysis two well-known Asymptotic
Conjectures in Quantum Topology; namely the Volume Conjecture (in
the case of knots), and the Witten Conjecture (in the case of 3-manifolds).
The complex analysis argument uses the Cauchy formula to write ZM,G,n

as a contour integral of Lnp
M,B(z)/zn+1 and then deform the contour around

the singularities of the integrand nearest to the origin. For a detailed dis-
cussion, see [CG1, Sec.7].

(c) It states a precise relation between exact Chern-Simons theory and its
perturbation expansion around a trivial (or not) flat connection. Namely,
perturbation theory is simply the expansion of the multivalued function
Lnp

M,G(z) around one of its singularities.
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(d) It explains the effect of complexifying a compact gauge group and to
the partition function of the corresponding gauge theory. Indeed, ana-
lytic continuation captures the critical values of the complexified action;
compare also with [GM, Vo].

(e) The Conjecture can be extended to state-sum invariants of sum-product
type that generalize ZM,G,n and do not necessarily come from topology.

(f) The Conjecture has been proven for power series of 1-dimensional sum-
product type, which includes the case of the 31 and 41 knots; see [ES] and
[CG2].

(g) The Conjecture can, and has been, numerically tested. See Section 7.

1.2. Chern-Simons theory and Symmetry. Our next conjecture is a Sym-
metry Conjecture. Recall that M denotes an oriented 3-manifold; we let τM
denote the orientation reversed manifold.

Conjecture 2. (Symmetry) For every pair (M,G) with M an integer homology
sphere, we have:

(2) LM,G(z) := Lnp
τM,G(z) − Lnp

M,G(1/z)

has singularities at z = 0, 1,∞.

Let us make some comments regarding the above paradoxical statement.

(a) The left (resp. right) hand side is given by a convergent power series
for |z| < 1 (resp. |z| > 1). Thus, the power series never make sense
simultaneously, but their analytic continuations do.

(b) Zagier calls a similar statement in [Za1, Eqn.7] a strange identity since the
the two sides never make sense simultaneously. Our Symmetry Conjecture
is closely related to a modular property, at least for the series studied by
Kontsevich-Zagier; see [Za1, Sec.6].

(c) In physics, Equation (2) is usually called a duality.
(d) In algebraic geometry and number theory, one may compare (2) with the

following symmetry for the polylogarithm:

(3) Lik(z) + (−1)kLik(1/z) = −(2πi)k

k!
Bk

(

log(z)

2πi

)

,

where Lik(z) =
∑

∞

n=1 zn/nk is the k-th polylogarithm and Bk(z) is the
k-th Bernoulli polynomial; see [Oe, Sec.1.3].

(e) In analysis one may use the above symmetry to deduce the asymptotic
behavior (and even more, the asymptotic expansion) of Lnp

M,G(z) for large

|z|. In particular, if LM,G(z) = 0, it follows that

(4) Lnp
M,G(z) = 1 + O

(

1

z

)

for large |z|.
(f) The above symmetry may be explained by the fact that CS changes sign

under orientation reversal. Since the level is nonnegative, the path inte-
gral formula for Lnp

M,G(z) formally implies the above symmetry.
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(g) If we use the normalized invariants

(5) L̂np
M,G(z) =

∞
∑

n=0

ẐM,G,nzn, ẐM,G,n =
ZM,G,n

ZS3,G,n

and if M is an integer homology sphere, then it is possible that

(6) L̂np
τM,G(z) − L̂np

M,G(1/z) = 0.

(h) When LM,G(z) = 0, it follows that the asymptotic expansion of Lnp
M,G

around its singularities uniquely determines Lnp
M,G. Indeed, the difference

between two determinations is an entire function which is bounded by a
constant by the Symmetry Conjecture. Thus, the difference is identically
zero.

(i) If M = M is amphicheiral (for example, M is given by a connected
sum M = N#τN where τ is the orientation reversing involution), then

Equation (6) predicts that L̂np
M,G(z) = L̂np

τM,G(1/z).

1.3. Chern-Simons theory and P versus NP. So far, we considered non-
perturbative quantum invariants. Let us now consider perturbative quantum
invariants of pairs (K, G). They can be packaged into a power series Lp

M,G(z)
which is convergent at z = 0. For a detailed definition, see Section 2.

Our next conjecture describes an explicit relation between the perturbative
and nonperturbative quantum invariants.

Conjecture 3. (Exact Implies Perturbative) For every integer homology sphere
M we have:

(7) L̂np
M,G(1 + z) = log(z)Lp

M,G(log(1 + z)) + h(z),

where h(z) is a holomorphic function of z at z = 0 and L̂np
M,G(1 + z) denotes

the analytic continuation at 1 + z along any path that avoids the singularities.

As before, we can extend Conjecture 3 to pairs (K,SU(2)), where K is a knot
in 3-space.

Remark 1.1. In Écalle’s terminology (see [Ec1] and also [Sa, Sec.2.3]), if ∆z

denotes the alien derivative in the direction z, Conjecture 3 states that:

∆1L̂np
M,G(z) = Lp

M,G(log(1 + z)),(8)

∆1−z∆zL̂np
M,G(z) = 0, for z ∈ C \ {0, 1}.(9)

Equation (9) is reminiscent of the condition z ∧ (1− z) ∈ ∧2(C∗) that defines the
Bloch group; see for example [Ga4].

Remark 1.2. The series Lp
K,G(z) also satisfies a Symmetry Property:

(10) Lp
τK,G(z) = Lp

K,G(−z).

Unlike the case of Conjecture 2, this is an easy corollary of its very definition.
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Remark 1.3. Chern-Simons theory with complex gauge group was studied exten-
sively by Gukov in [Gu]. It is an interesting problem to compare forthcoming
work of Gukov-Zagier on modularity properties of the quantum invariants with
our conjectures.

1.4. Chern-Simons theory and arithmetic resurgence. Based on some par-
tial results of [ES] and [CG2] and stimulating conversations with O. Costin, J.

Écalle and D. Zagier, more is actually expected to be true. Namely, we expect
arithmetic restrictions on the singularities of the series Lnp

M,G(z) and of its mon-
odromy, local and global. These restrictions lead us naturally to the notion of
arithmetic resurgence, and the Gevrey series of mixed type. In the rest of the
paper, we will formulate these expected algebraic/arithmetic aspects of quantum
invariants in a precise way and to expose the reader to the wonderful world of
resurgence, introduced by Écalle in the eighties for unrelated reasons; [Ec1].

The logical dependence of the sections is the following:

Section 2 Section 3

Section 5 Section 4 Section 6

Section 7

AAAD 


� AAAD 


�[[[[[[[] u ��������
2. Chern-Simons theory and invariants of knotted objects

2.1. Model NP: Non-perturbative invariants of 3-manifolds. In this sec-
tion M will denote a closed 3-manifold and G will denote a simple, compact,
simply connected group G. For example, G = SU(2).

The Witten-Reshetikhin-Turaev invariant is a map:

(11) ZM,G : N −→ C.

For a definition of ZM,G,n see [RT, Tu2, Wi]. Formally, for n ∈ N, ZM,G,n is the
expectation value of a path integral with a topological Chern-Simons Lagrangian
at level n; see [Wi]. Since the Chern-Simons Lagrangian takes values in R/Z, it
follows that the level n has to be an integer number, which without loss we take
it to be nonnegative. We can convert the sequence (ZM,G,n) into a generating
series as follows:

Definition 2.1. For every M and G as above, we define:

(12) Lnp
M,G(z) =

∞
∑

n=0

ZM,G,nzn.

Unitarity of the Chern-Simons theory implies that for every M,G the sequence
(ZM,G,n) grows polynomially with respect to n. In other words, it was shown in
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[Ga1] that there exists positive constant C and m ∈ N (that depend on M and
G) so that

|ZM,G,n| < Cnm

for all n ∈ N. Thus, Lnp
M,G(z) is analytic inside the unit disk |z| < 1.

2.2. Model P: Perturbative invariants of 3-manifolds. The path integral
interpretation of ZM,G,n formally leads to a perturbation theory along a distin-
guished critical point of the Chern-Simons action, namely the trivial flat connec-
tion. This gives rise to a graph-valued power series invariant, which has been
defined by Le-Murakami-Ohtsuki in [LMO]. Additional definitions of this power-
ful invariant were given by Kuperberg-Thurston; see [KT]. More precisely, LMO
define a graph-valued invariant ZLMO

M ∈ A(∅) where A(∅) is a completed vector
space of Jacobi diagrams. A Jacobi diagram of degree n is a trivalent graph with
2n oriented vertices, considered modulo the AS and IHX relations; see [B-N].
Jacobi diagrams are diagrammatic analogues of tensors on a Lie algebra with an
invariant inner product. Indeed, given a simple Lie algebra g, there is a weight
system map that replaces a Jacobi diagram of degree n by a rational number
times x−n:

Wg : A(∅) −→ Q[[1/x]],

see [B-N]. Recall the Borel transform:

(13) B : Q[[1/x]] −→ Q[[z]], B
(

∞
∑

n=0

an

xn

)

=
∞
∑

n=0

an+1

n!
zn.

Definition 2.2. Let Lp
M,g(z) denote the Borel transform of Wg ◦ ZLMO

M .

In [GL2] it was proven that if M is a homology sphere and g is a simple Lie
algebra, then the formal power series Wg ◦ ZLMO

M is Gevrey-1. In other words,
Lp

M,g(z) is an analytic function in a neighborhood of z = 0.

2.3. The critical values of the Chern-Simons action and the diloga-

rithm. Our main Resurgence Conjecture 4 formulated in Section 4 below links
the singularities of the analytic continuation of the series Lnp

K,G(z) and Lp
K,G(z)

to some classical geometric invariants of 3-manifolds, namely the critical values
of the complexified Chern-Simons function. Let us recall those briefly, and refer
the reader to [GZ, Wi, Ne, Ga4] for a more detailed discussion.

Let us fix a closed 3-manifold M , and simple, compact simply connected group
G, and a trivial bundle M × G with the trivial connection d. Let A denote the
set of G-connections on M × G. There is a Chern-Simons map:

(14) CS : A −→ R/Z(2),

where, as common in algebraic geometry, we denote

(15) Z(n) = (2πi)nZ.
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Even though A is an affine infinite dimensional vector space acted on by an infinite
dimensional gauge group, the set XG(M) of gauge equivalence classes of the criti-
cal points of CS is a compact semialgebraic set that consists of flat G-connections.
Up to gauge equivalence, the latter are determined by their monodromy. In other
words, we may identify:

(16) XG(M) = Hom(π1(M), G)/G.

This gives rise to a map:

(17) CS : XG(M) −→ R/Z(2), A 7→ CS(A) =

∫

M
tr(A∧ dA +

2

3
A∧A∧A).

Stokes’s theorem implies that CS is a locally constant map. Since XG(M) is a
compact set, CS takes finitely many values in R/Z(2). Let us now complexify
the action; see also [Vo]. This means that we replace the compact Lie group
G by its complexification GC, the moduli space XG(M) by XGC

(M), and the
Chern-Simons action CS by CSC:

(18) CSC : XGC
(M) −→ C/Z(2).

CSC is again a locally constant map, and takes finitely many values in C/Z(2).
Thus, we may define the following geometric invariants of 3-manifolds.

Definition 2.3. For M and G as above, we define

ΛM,G = ∪ρ∈XGC
(M)(−CSC(ρ) + Z(2)) ⊂ C,

eΛM,G = {0} ∪ exp

(

1

2πi
ΛM,G

)

⊂ C.(19)

Remark 2.4. Under complex conjugation (but keeping the orientation of the ambi-

ent manifold fixed), we have CSC(ρ̄) = CSC(ρ). It follows that ΛM,G (resp.eΛM,G)
is invariant under λ ↔ λ̄ (resp. λ ↔ 1/λ̄). The involution λ ↔ 1/λ̄ preserves the
set of rays through zero.

On the other hand, under orientation reversal, we have ΛτM,G = −ΛM,G and
eΛτM,G = τeΛM,G, where τ(λ) = 1/λ for λ 6= 0 and τ(0) = 0. We thank C.
Zickert for help in identifying those involutions.
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Thus, a typical picture for ΛM,G and eΛM,G \ {0} is the following:

Out[41]=
-1.0 -0.5 0.5 1.0

-1.0

-0.5

0.5

1.0

where the horizontal spacing between two dots in any horizontal line is

4π2 = 39.4784176044 . . . .

Complexification is a key idea, theoretically, as well as computationally. For
example, XGC

(M) is an algebraic variety whereas its real part XG(M) is only
a compact set with little structure. The only systematic way (known to us)
to give exact formulas for the critical values of CS is to actually compute the
critical values of CSC and then decide which of these are critical values of CS.
For G = SU(2), there are exact and numerical computer implementations for the
critical values of CSC: see snap [Sn] and [Ne, DZ].

Complexification also reveals the arithmetic structure of ΛM,G: its elements
are periods of weight 2 (in the sense of Kontsevich-Zagier [KZ]), of a rather special
kind. Namely, the critical values of CSC are Q-linear combinations of the Rogers
dilogarithm function evaluated at algebraic numbers. The latter is defined by:

(20) L(z) = Li2(z) +
1

2
log(z) log(1 − z) − π2

6

for z ∈ (0, 1) and analytically continued as a multivalued analytic function in
C \ {0, 1}. Here, Li2(z) =

∑∞

n=1 zn/n2 is the classical dilogarithm function.
For G = SU(2), our identification of the complexified Chern-Simons action with
[NZ, Ne, GZ] is as follows:

(21) CSC(ρ) = iVol(ρ) + CS(ρ).

For higher rank groups, exact formulas for the critical values of CSC may also be
given in terms of the Rogers dilogarithm function at algebraic numbers. This will
be explained in detail in a separate publication. As an illustration of the above
discussion let us give an example.
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Example 2.5. If M is obtained by 1/2 surgery on the 41 knot, then eΛ \ {0}
consists of 13 points plotted as follows:

-1 -0.5 0.5 1

-1

-0.5

0.5

1

In this picture, a higher resolution reveals that the points nearest to the vertical
axis consist of two distinct but close pairs. We thank C. Zickert for providing us
with an exact and numerical computation of the critical values of the complexified
Chern-Simons map.

Let us end this section with a problem:

Problem 1. Give an direct relation between the cubic polynomial action (14)
and the Rogers dilogarithm (20).

A transcendental relation between the Chern-Simons action and the Rogers
dilogarithm was given in [Ga4, Sec.6.2], using the third algebraic K-theory group
K ind

3 (C).

2.4. Extension to knots in 3-space. So far, the discussion involved closed 3-
manifolds. Let us now consider knots K in the 3-sphere. For simplicity, we will
assume that G = SU(2) (so GC = SL(2, C)) in this section.

Let us fix a knot K in 3-sphere and a nonnegative integer n. Let us denote
by ZK,SU(2),n the Kashaev invariant of K (see [Ka]), which is also identified by
[MM] with the value of the Jones polynomial colored by the n-th dimensional
irreducible representation of sl2 evaluated at q = e2πi/n (and normalized to be 1
at the unknot). Thus, we may define:

(22) Lnp
K,SU(2)(z) =

∞
∑

n=0

ZK,SU(2),nzn.

We define the perturbative invariant Lp
K,SU(2)(z) as follows:

(a) Take the sequence JK,n(q) ∈ Z[q±] of the Jones polynomials of n, colored
by the n-dimensional irreducible representation of sl2, and normalized by
Junknot,n(q) = 1. See for example, [Tu1, Tu2].

(b) It turns out that there exists a power series JK(u, q) ∈ Q(u)[[q−1]] so that
JK(qn, q) = JK,n(q) ∈ Q[[q−1]] for all n ∈ N; see for example [Ga2, GL3].
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(c) Consider the power series JK(1, e1/x) ∈ Q[[1/x]].

(d) Define Lp
K,SU(2)(z) = B(JK(1, e1/x)) ∈ Q[[z]].

In [GL3] (resp. [GL2]) it was shown that Lnp
K,SU(2)(z) (resp. Lp

K,SU(2)(z)) is

analytic for z in a neighborhood of 0. Regarding the critical values of the Chern-
Simons action, we will consider only parabolic SL(2, C) representations; i.e., those
representations so that the trace of every peripheral element is ±2. As in the case
of closed 3-manifolds, we may identify the moduli space of parabolic flat SL(2, C)-
connections on the knot complement with Xpar

SL(2,C)(K):

(23) Xpar
SL(2,C)(K) = Hompar(π1(S

3 \ K),SL(2, C))/SL(2, C).

In addition, we have a map, described in detail in [GZ]:

(24) CSC : Xpar
SL(2,C)(M) −→ C/Z(2).

CSC is again a locally constant map, and takes finitely many values in C/Z(2),
and allows us to define the sets ΛK,SU(2) and eΛK,SU(2).

Let us end this section with an example of the simplest knot 31 and the simplest
hyperbolic knot 41.

Example 2.6. If K = 31 is the right hand trefoil knot 31, then

(25) eΛ = {eπi/12, 1, 0}

can be plotted as follows:

-1.0 -0.5 0.5 1.0

-1.0

-0.5

0.5

1.0

Example 2.7. If K = 41 is the simplest hyperbolic knot, then

(26) eΛ = {e−Vol(41)/(2π), 1, eVol(41)/(2π), 0}

can be plotted as follows:
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-1.0 -0.5 0.5 1.0

-1.0

-0.5

0.5

1.0

where

Vol(41) = −iLi2(e
2πi/6) + iLi2(e

−2πi/6) = 2.02988321281930725004240510855 . . .

is the Volume of 41; see [Th], and numerically,

e−Vol(41)/(2π) = 0.72392611187952434703122933736 . . .

eVol(41)/(2π) = 1.38135644451849779337146695685 . . . .

3. Arithmetic resurgent functions

3.1. Resurgent functions. The arithmetic nature of ΛM,G is only the begin-
ning. It turns out that

(a) the Ray-Singer torsion invariants associated to a GC-representation of
π1(M) are also algebraic numbers (this is proven and discussed in detail
in [DG]),

(b) in case M is hyperbolic and G = SU(2) the geometric representation is
defined over a number field; see [MR],

(c) the perturbative expansions of the quantum invariants ZM,G,n around an
GC-representation of π1(M) are conjectured to be algebraic numbers; see
for example [GM] and [CG1].

The need to formulate these algebricity properties in a uniform way, as well as
some results in some key cases, lead us to the notion of an arithmetic resurgent
series, which is the focus of this section.

Along the way, we will also discuss the auxiliary notion of a Gevrey series of
mixed type, perhaps of interest on its own.

Resurgence was coined by Écalle in his study of analytic continuation of formal
and actual solutions of differential equations, linear or not; see [Ec1]. An earlier

term used by Écalle was the notion of endless analytic continuation. The concept
of resurgence has influenced our thinking deeply. Unfortunately, it is not easy to
find an accepted definition of resurgence, or a reference for it in the literature. On
the other hand, there are several expositions of instances of resurgence, covering
special cases of this rather general notion. The curious reader may consult [Co1,
Co2, Dl, Ml, Sa] for a detailed discussion in addition to the original work [Ec1].
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Given the gap in the literature, we will do our best to give a working (and exact)
definition of resurgence, which features some properties which are arithmetically
important, and analytically rare. Let us begin by recalling the monodromy of
multivalued germs of interest in this paper. We refer the reader to [Ml] for further
details. The next definition is motivated by the types of singularities that appear
in algebraic geometry; see [Kz].

Definition 3.1. A multivalued analytic germ f(z) at z = 0 is called quasi-
unipotent if its monodromy T around 0 satisfies the condition:

(27) (T r − 1)s = 0

for some nonzero natural numbers r and s.

It is easy to see that a quasi-unipotent germ f(z) can be written as a finite
sum of germs of the form:

(28)
∑

α,β

cα,βzα(log(z))βhα,β(z),

where α ∈ Q, β ∈ N, and hα,β(z) ∈ C{z}0, where C{z}0 is the ring of power
series convergent at z = 0 (identified with the ring of germs of functions analytic
at z = 0). See for example, [Ml]. Series of the form (28) are often known in the
literature as series of the Nilsson class; see [Ni1, Ni2].

The rationality of the exponents {α} above is an important feature that always
appears in algebraic geometry and arithmetic and rarely appears in analysis. For
a further discussion; see [Ga5].

Definition 3.2. We say that G(z) =
∑

∞

n=0 anzn is an resurgent series (and write
G(z) ∈ RES) if

(a) G(z) is convergent at z = 0.
(b) G(z) has analytic continuation as a multivalued function in C \Λ, where

Λ ⊂ C is a discrete subset of C.
(c) The local monodromy is quasi-unipotent.

In what follows, we will make little distinction between a germ, its analytic
continuation, and the corresponding function. So, we will speak about the algebra
of resurgent functions.

3.2. Gevrey series of mixed type. The following definition is motivated by
the properties of some power series that are associated to knotted 3-dimensional
objects.

Definition 3.3. We say that series G(z) =
∑∞

n=0 anzn is a Gevrey series of
mixed type (r, s) if

(a) r, s ∈ Q and the coefficients an lie in a number field K, and
(b) there exists a constant C > 0 so that for every n ∈ N the absolute value

of every Galois conjugate of an is less than or equal to Cnn!r, and
(c) the common denominator of a0/0!

s, . . . , an/n!s is less than or equal to
Cn.
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Remark 3.4. If G(z) is Gevrey of mixed type (r, s) and r′ > r, s′ 6 s, then G(z)
is also Gevrey of mixed type (r′, s′).

Let CGM{z} (resp. CGM{z}r,s) denote the Q[z]-algebra of Gevrey series of
mixed type (resp. mixed type (r, s)).

Remark 3.5. The Gevrey series of mixed type (r, r) are precisely the important
class of arithmetic Gevrey series of type r, introduced and studied by André; see
[An].

Remark 3.6. A G-function G(z) in the sense of Siegel is a Gevrey series of mixed
type (0, 0) which is holonomic, i.e., it satisfies a linear ODE with coefficients in
Q[z]; see [An, Bo, DGS].

3.3. Arithmetic resurgent functions. Restricting the functions hα,β(z) in
(28) to be Gevrey series of type (0, s), we arrive at the notion of an arithmetic
quasi-unipotent germ.

Definition 3.7. We say that a multivalued analytic germ f(z) at z = 0 is
arithmetic quasi-unipotent if it can be written as a finite sum of germs of the
form (28) where hα,β(z) ∈ CGM{z}.

Combining this definition with the notion of a resurgent function, we arrive at
the notion of an arithmetic resurgent function. Let P ⊂ C denote the countable
set of periods in the sense of Kontsevich-Zagier; see [KZ].

Definition 3.8. We say that G(z) =
∑

∞

n=0 anzn is an arithmetic resurgent series
(and write G(z) ∈ ARES) if

(a) G(z) is a resurgent series.
(b) The singularities Λ of G(z) is a discrete subset of P, where P denotes the

set of periods as defined by Kontsevich-Zagier; see [KZ].
(c) The local monodromy is arithmetic quasi-unipotent.
(d) The global monodromy is defined over Q̄.

3.4. The Taylor series of an arithmetic resurgent function. In a separate
publication we will give the proof of the following proposition which shows that
the coefficients of the Taylor series at the origin of an arithmetic resurgent func-
tion have asymptotic expansions themselves. The transseries conclusion of the
proposition below (without any claims on the mixed Gevrey type) follows from
the resurgence hypothesis on G(z) alone, and are studied systematically in the
upcoming book of Costin [Co2], as well as in [Co3].

Proposition 3.9. If G(z) =
∑∞

n=0 anzn is arithmetic resurgent, then

an ∼
∑

λ

λ−nfλ

(

1

n

)

,

where the sum is over the finite set of singularities of G(z) nearest to the origin,
and fλ(z) is a finite sum of series of the form (28) where hα,β,λ(z) are Gevrey of
mixed type (1, s) (for some s).



348 STAVROS GAROUFALIDIS

3.5. Arithmetic invariants of arithmetic resurgent functions. Obvious
arithmetic invariants of an arithmetic resurgent function G(z) are:

(a) The set of singularities Λ ⊂ P.
(b) The local quasi-unipotent monodromy, and its field of definition.
(c) The global monodromy, defined over Q̄.

3.6. G-functions are arithmetic resurgent. This section is logically inde-
pendent of the rest of the paper and can be skipped at first reading, although it
provides some useful examples of arithmetic resurgent functions. A main example
of arithmetic resurgent functions comes from the following theorem of André.

Theorem 1. G-functions are arithmetic resurgent with singularities a finite set
of algebraic numbers.

G-functions arise naturally in three contexts:

(a) From geometry, related to the regularity of the Gauss-Manin connection.
(b) From arithmetic.
(c) From enumerative combinatorics.

For a geometric construction of resurgent functions, let us recall the following
result from [Kz]; see also [De, Br]. Let S/C be a projective non-singular connected
curve and S = S \ {p1, . . . , pr} the complement of a finite set of points. Suppose
that

π : X −→ S

is a proper and smooth morphism. For every i, the algebraic de Rham cohomol-
ogy H i

dR(X/S) is an algebraic differential equation on S, and the local system
H i(Xs, C) (for s ∈ S) is the local system of germs of solutions of that equa-
tion. Let T denote the local monodromy around a point pi. Then, we have the
following theorem.

Theorem 2. [Ka] The algebraic differential equation is regular singular and the
local monodromy T is quasi-unipotent.

The G-functions obtained by Theorems 2 and 1 are closely related. The main
conjecture is that all G-functions come from geometry. For a discussion of this
topic, and for a precise formulation of the Bombieri-Dwork Conjecture, see the
survey papers of [Bo, Ka] and also [To, p.8].

Let us discuss a third source of resurgent functions, which was discovered
recently by the author in [Ga5].

Definition 3.10. A hypergeometric term tn,k (in short, general term) in variables
(n, k) where k = (k1, . . . , kr) is an expression of the form:

(29) tn,k = Cn
0

r
∏

i=1

Cki

i

J
∏

j=1

Aj(n, k)!εj ,
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where Ci ∈ Q for i = 0, . . . , r, εj = ±1 for j = 1, . . . , J , and Aj are integral linear
forms in the variables (n, k). We assume that for every n ∈ N, the set

(30) {k ∈ Zr |Aj(n, k) > 0, j = 1, . . . , J}
is finite. We will call a general term balanced if in addition it satisfies the balance
condition:

(31)
J
∑

j=1

εjAj = 0.

Given a balanced term t, consider the corresponding sequence (at,n) defined by

(32) at,n =
∑

k

tn,k,

where the summation index lies in the finite set (30), and the corresponding
generating series:

(33) Gt(z) =

∞
∑

n=0

at,nzn ∈ Q[[z]].

We will call sequences of the form (at,n) balanced multisum sequences.

Theorem 3. [Ga3] For every balanced term t, the generating series Gt(z) is a
G-function.

Let us point out that the proof of Theorem 3 in general offers no help of locating
the singularities of the function Gt(z). To fill this gap, the author developed an
efficient ansatz for the location of the singularities of Gt(z); see [Ga3].

4. An arithmetic resurgence conjecture

A knotted object K denotes either a closed 3-manifold M or a knot K in 3-
space. A pair (K, G) denotes either a closed 3-manifold M and a compact Lie
group G, or a knot K = K in 3-space and G = SU(2). If G = SU(2) and M or
K is hyperbolic, let

(34) Λgeom
K,G = ∪ρ(−CSC(ρ) + Z(2))

denote the critical values of the Galois conjugates ρ of the geometric SL(2, C)-
representation.

We now have all the ingredients to formulate our Arithmetic Resurgence Con-
jecture, which is a refinement of the Analytic Continuation Conjecture 1.

Conjecture 4. (Arithmetic Resurgence) For every pair (K, G), Lnp
K,G(ez/(2πi))

and Lp
K,G(z) are arithmetic resurgent with possible singularities in the set ΛK,G.

If K is hyperbolic and G = SU(2), then the singularities of the above functions
include Λgeom

K,G .

Conjecture 4 implies the following corollaries.
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Corollary 4.1. For every pair (K, G), the power series Lnp
K,G(z) has analytic

continuation as a multivalued function on the complement C \ eΛK,G of the finite
set eΛK,G.

Corollary 4.2. If M is a closed hyperbolic 3-manifold, then the Witten-Reshetikhin-
Turaev invariants determine the Volume of M by:r

(35) e−Vol(M)/(2π) = min{|λ| | Lnp
M,SU(2)(z) is singular at z = λ 6= 0}.

This follows from the fact that Lnp
M,SU(2)(z) has a singularity at

e−(CSC(ρ)+Z(2))/(2πi) = e−Vol(ρ)/(2π)+iθρ

and Vol(ρ) 6 Vol(ρM ) = Vol(M) where ρM is a discrete faithful representation.

Corollary 4.3. Witten’s conjecture (formulated in [Wi]) regarding the asymptotic
expansion of the Witten-Reshetikhin-Turaev invariants holds.

Corollary 4.4. For every hyperbolic knot K in 3-space, the Kashaev invariants
determine the Volume of K by:

(36) e−Vol(K)/(2π) = min{|λ| | Lnp
K,SU(2)(z) is singular at z = λ 6= 0}.

Moreover, there is an asymptotic expansion of the Kashaev invariants in powers
of 1/n using Proposition 3.9.

5. The Habiro ring, and P versus NP

In this section we we describe an arithmetic relation, due to Habiro, between
the perturbative Lp

K,G(z) and the non-perturbative Lnp
K,G(z) invariants of knotted

objects. This section is independent of our conjecture. However, Habiro’s results

(a) are a good complement of our conjecture,
(b) are important and interesting on their own right,
(c) point to a different arithmetic origin for the invariants of knotted objects.

This point of view has been studied by Gukov-Zagier [GZa].

In this section, a knotted object K denotes either a homology sphere M or a
knot K. For simplicity, we will assume that G = SU(2). A theorem of Habiro
implies that Lnp

K,SU(2)(z) determines Lp
K,SU(2)(z) and vice-versa; [Ha1, Ha2]. Let

us explain more about Habiro’s key results. In [Ha2] Habiro introduces the ring

(37) Ẑ[q±] = lim
←n

Z[q±]/((q)n),

where (q)n is the quantum n-factorial defined by:

(38) (q)n =
n
∏

k=1

(1 − qk)

with (q)0 = 1. In a sense, one may think of elements of the Habiro ring as
complex-valued analytic functions with domain Ω, the set of complex roots of
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unity. This way of thinking is motivated by the following features of the Habiro
ring, shown in [Ha1, Ha2]:

(a) It is easy to see that every element f(q) ∈ Ẑ[q±] can be written (nonuniquely)
in the form:

(39) f(q) =

∞
∑

n=0

fn(q)(q)n, fn(q) ∈ Z[q±], for n ∈ N.

Note however that the above form is not unique, since for example:

1 =

∞
∑

n=0

qn+1(q)n.

Nevertheless the form (39) can be used to generate easily elements of the
Habiro ring.

(b) Elements of the Habiro ring can be evaluated at complex roots of unity.
In other words, there is a map:

(40) Ẑ[q±] −→ CΩ, f(q) −→ (f : Ω −→ C, ω 7→ f(ω)) .

In particular, we can associate a map:

(41) Ẑ[q±] −→ C[[z]], f(q) −→ Lnp
f (z) = 1 +

∞
∑

n=1

f(e2πi/n)zn.

(c) Elements of the Habiro ring have Taylor series expansions around q = 1
(and also around every complex root of unity). In other words, we can
define a map:

(42) Ẑ[q±] −→ Q[[z]], f(q) −→ Lp
f (z) = B(f(e1/x)).

(d) As in the case of analytic functions, the maps (41) and (42) are 1-1.
Thus, Lnp

f (z) determines Lp
f (z) and vice-versa. However, we need all the

coefficients of the power series Lnp
f (z) to determine a single (eg. the third)

coefficient of Lp
f (z).

(e) Given a homology sphere M , there exists an element fM,SU(2)(q) ∈ Ẑ[q±]
such that its image under the maps (41) and (42) coincide with the non-
perturbative and perturbative invariants of M discussed in Section 2.1
and 2.2. This was a main motivation for Habiro, and was extended to
knots in 3-space by Huynh-Le in [HL].

One may ask for an extension of Conjecture 4 for the series Lnp
f (z) and Lp

f (z)
that come from the Habiro ring. Unfortunately, the Habiro ring is uncountable
(whereas all quantum invariants of knotted objects lie in a countable subring)
and it has little structure as such. Thus, it is unlikely that the series Lnp

f (z)

associated to a random sequence of Laurent polynomials (fn(q)) (as in (39)) will
be resurgent. Concretely, we can pose the following problem with overwhelming
numerical evidence:
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Problem 2. Show that Lnp
f (z) is not resurgent when

(43) f(q) =
∞
∑

n=0

q2n

(q)n.

In [GL4], Le and the author introduced a countable subring Ẑ[q±]
hol

that
consists of elements of the form:

(44) f(q) =

∞
∑

n=0

fn(q)(q)n, fn(q) ∈ Z[q±], (fn(q)) is q-holonomic

where q-holonomic means that (fn(q)) satisfies a linear q-difference equation with
coefficients in Q[q±, q±n]; see [WZ]. In [GL4] it was shown that the elements
fM,SU(2)(q) and fK,SU(2)(q) of the Habiro ring actually lie in the countable subring

Ẑ[q±]
hol

.

Problem 3. Show that for every f ∈ Ẑ[q±]
hol

, the series Lnp
f (z) and Lnp

f (z) are

arithmetic resurgent.

In the next section, we will discuss formulate a resurgence conjecture for some
special elements of the Habiro ring that do not always come from topology.

6. Series of sum-product type

Conjecture 4 and Problem 3 ask for proving that certain power series are
arithmetic resurgent. However, they do not explain the source of resurgence.
Usually, resurgence is associated with a differential equation, linear or not; see
for example [Ec1] and also [Co1, Sa].

In this section we will give another construction of powers series Lnp(z) and
Lp(z) which aims to explain the origin of arithmetic resurgence. This section

was motivated by conversations with O. Costin and J. Écalle whom we thank for
their generous sharing of their ideas.

Let us first introduce the notion of series of Sum-Product type.

Definition 6.1. Consider function F analytic in [0, 1] with F (0) = 0 and the
corresponding sequence and series of sum-product type:

an =

n
∑

k=1

k
∏

j=1

F

(

j

n

)

(45)

= F

(

1

n

)

+ F

(

1

n

)

F

(

2

n

)

+ · · · + F

(

1

n

)

F

(

2

n

)

. . . F
(n

n

)

and the corresponding series

(46) Lnp(z) =

∞
∑

n=1

anzn ∈ C[[z]].
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Since F (0) = 0, it follows that the formal power series

(47) ΣΠ(x) :=
∞
∑

n=1

n
∏

j=1

F

(

j

x

)

∈ C[[
1

x
]]

is also well-defined. Let Lp(z) denote the Borel transform:

(48) Lp(z) = B (ΣΠ(x)) ∈ C[[z]].

Let us now give a flavor of some results from [CG2] and [ES]. In the rest of
the section, let us consider F of the following trigonometric type:

(49) F (x) = φ(e2πix),

where

(50) φ(q) = εqc n(n+1)
2

∞
∏

r=1

(1 − qr)cr ,

where c ∈ Z, ε = ±1, cr ∈ N for all r, and cr = 0 for all but finitely many r. In
[Ga4] we construct elements of the extended Bloch group, given by solutions of
the algebraic equations:

(51) φ(q) = 1 or φ(q) = 0.

The values of these elements under the Rogers dilogarithm defines a set Λ ⊂ C,
and its exponentiated cousin eΛ = exp(Λ/(2πi)) ∪ {0}.
Theorem 4. [CG2, ES] Lnp(z) and Lp(z) are arithmetic resurgent with singu-
larities included in Λ.

Remark 6.2. Notice that Lnp(z) = Lnp
f (z) and Lp(z) = Lp

f (z), where

f(q) =

∞
∑

n=0

εnqcn
∞
∏

r=1

(qr)cr
n

is an element of the countable Habiro subring Ẑ[q±]
hol

, where

(qr)n =
n
∏

k=1

(1 − qkr).

Thus, Theorem 4 is a special case of Problem 2.

Remark 6.3. Equations (51) appear in the dilogarithm ladders of Lewin and oth-
ers, whose aim is to produce interesting elements of algebraic K-theory. For a
detailed discussion, see [Le] and [Za2].
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Remark 6.4. For the simplest knot 31 and the simplest hyperbolic knot 41, we
have:

Lnp
31,SU(2)

(z) = Lnp
f31

(z), Lnp
41,SU(2)

(z) = Lnp
f41

(z)

(and likewise, equality for the Lp-series), where

f31(q) =

∞
∑

n=0

(q)n

f41(q) =

∞
∑

n=0

(−1)nq−
n(n+1)

2 (q)2n

are both covered by Theorem 4.

Remark 6.5. The resurgence conclusion of Theorem 4 is valid for very general
entire functions F , with some mild hypothesis. For a detailed discussion, see [ES]
and [CG2].

7. Evidence

7.1. Some results. Let us summarize what is known about Conjecture 4. Con-
jecture 4 is known

(a) for all 3-manifolds M of the form Σ × S1 where Σ is a closed surface
and all compact groups G. Indeed, this follows from the fact that ZM,G,n

is a polynomial in n. Thus, Lnp
M,G(z) is a rational function of z with

denominator a power of 1 − z. On the other hand, eΛM,G = {0, 1}.
(b) for Lp

M,SU(2)
where M is the Poincare homology sphere, or small Seifert

fibered 3-manifolds, see [CG1]. In this lucky case, one uses explicit for-
mulas for the coefficients of Lp

M,SU(2)(z) given Zagier (see [Za1]) which

allow one show resurgence relatively easily.
(c) for the simplest knot 31 (and also for (2, p) torus knots); and for the

simplest hyperbolic knot 41; see [CG1] and [CG2]. See Remark 6.4.

Our sample calculations below show the importance of the fractional polylog-
arithms and their analytic continuation, studied in detail in [CG3].

7.2. Conjecture 4 for S3. Let us confirm Conjecture 4 for S3. For simplicity,
we will choose G = SU(2). The case of other Lie groups is similar. The Witten-
Reshetikhin-Turaev invariant is given by [Wi, Eqn.2.26]:

(52) ZS3,SU(2),n =

√

2

n + 2
sin

(

π

n + 2

)

.

Expanding the above as a convergent power series in 1/n:

ZS3,SU(2),n =
√

2

∞
∑

k=0

π2k+1(−1)k

(2k + 1)!

1

(n + 2)2k+3/2



CHERN-SIMONS THEORY, ANALYTIC CONTINUATION AND ARITHMETIC 355

and using the fractional polylogarithm Lα(z) defined for α ∈ C and |z| < 1 by the
convergent series:

(53) Liα(z) =

∞
∑

n=1

zn

nα

it follows that

(54) Lnp
S3,SU(2)

(z) =

√
2

z2

∞
∑

k=0

π2k+1(−1)k

(2k + 1)!

(

Li2k+3/2(z) − ζ(2k + 3/2)
)

.

Since Liα(z) has analytic continuation as a multivalued function in C\{0, 1} (see
[CG3]), it follows that Lnp

S3,SU(2)
(z) has analytic continuation on C \ {0, 1}. We

can further compute the monodromy around z = 0 and z = 1 using [CG3].

7.3. Conjecture 4 for S1 ×Σg. Let us confirm Conjecture 4 for 3-manifolds of
the form S1 × Σg. For simplicity, we will choose G = SU(2). The case of other
Lie groups is similar. The Witten-Reshetikhin-Turaev invariant is given by the
famous Verlinde formula [Wi, Sz]:

(55) ZS1×Σg,SU(2),n =

n+1
∑

j=1

(

n + 2

2 sin2 πj
n+2

)g−1

.

Altough not a priori obvious, it it true that the right hand side of the above
expression is a polynomial in n of degree 3g − 3. In fact, we have [Sz, Sec.3]:

(56) ZS1×Σg,SU(2),n = −(2n + 2)g−1Res

(

(n + 2) cot((n + 2)x)

(2 sin x)2g−2
, x = 0

)

when g > 2. For example, we have,

ZS1×Σ0,SU(2),n = 1,

ZS1×Σ1,SU(2),n = n + 1,

ZS1×Σ2,SU(2),n =
n3

6
+ n2 +

11n

6
+ 1.

It follows that Lnp
S1×Σg,SU(2)

(z) is a rational function with denominator a power

of z − 1. For example, we have:

Lnp
S1×Σ0,SU(2)

(z) =
1

1 − z
,

Lnp
S1×Σ1,SU(2)

(z) =
1

(1 − z)2
,

Lnp
S1×Σ2,SU(2)

(z) =
1

(1 − z)4
.
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Since XG(S1×Σg) is connected for all g and G, it follows that eΛS1×Σg,G = {0, 1}
confirming Conjecture 4.

7.4. Conjecture 4 for 31. Let us give some details about how the work of [Za1]
and [CG1] verify Conjecture 4 for the simplest 31 knot. An independent verifica-
tion of the Conjecture, valid for series of sum-product type, can be obtained by
[ES].

Equation (36) of [Za1] and [CG1] imply that we can write:

Z31,SU(2),n = ζ−n+3
24 n3/2 + 1 +

∫ ∞

0
e−npG(p)dp,

where ζc = e2πic and G(z) is a multivalued analytic function (analytic at z = 0):

(57) G(z) =
3π

2
√

2

∞
∑

n=1

χ(n)n

(−z + n2π2/6)5/2
,

where χ(·) denotes the unique primitive character of conductor 12:

(58) χ(n) =











1 if n ≡ 1, 11 mod 12,

−1 if n ≡ 5, 7 mod 12,

0 otherwise.

Together with Proposition 3.9, this implies that the singularities of Lnp
31,SU(2)(z)

are {0, 1, eπi/12}. Moreover, the local expansion of Lnp
31,SU(2)(z) around z = eπi/12

is given by:

Lnp
31,SU(2)(z) =

∞
∑

n=1

ζ−n+3
24 n3/2zn + h(z)

= ζ8 Li−3/2(ζ−24z) + h(z),

where h(z) is a function holomorphic at z = 0. Since Li−3/2(z) is multivalued
analytic at C \ {0, 1} (see [CG3]), this confirms Conjecture 4 for 31. Using a
Mittag-Leffler type decomposition for the fractional polylogarithm from [CG3,
Eqn.13], we can also verify the Symmetry Conjecture for 31.

7.5. Numerical evidence for the nearest singularity. Conjecture 4 gives
an exact formula for the singularity of Lp

K,SU(2)(z) which is nearest to the origin.

Notice that this singularity does not in general coincide with the critical value
of CSC corresponding to the discrete faithful representation. This was indeed
observed numerically for several twist knots. Let Kp denote the twist knot with
negative clasp and p full twists, where p ∈ Z:
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...

full twists
p

In particular, we have:
(59)
K1 = 31, K2 = 52, K3 = 72, K4 = 92, K−1 = 41, K−2 = 61, K−3 = 81, K−4 = 101.

The invariant trace field of Kp is of type [1, p− 1] for p > 1 and [0, |p|] for p < 0.
It follows that ΛKp,SU(2) is a subset of a union of 2(p − 1) (resp. 2|p|) horizontal
lines, symmetric with respect to the z-axis, and a superposition of 2 (resp. 1)
copies of the z-axis for p > 1 (resp. p < 0). This set can be computed exactly
and numerically using the methods of [GZ].

The corresponding element of the Habiro ring is given by:

(60) fKp,SU(2)(q) =
∞
∑

n=0

CKp,n(q)(q)n(q−1)n,

where CKp,n(q) ∈ Z[q±] denote the n-cyclotomic polynomial of Kp. The latter
may be computed inductively with respect to n for each fixed p, see [GS].

Using this formula, one can compute 500 coefficients of

Lp
Kp,SU(2)(z) = B(fKp,SU(2)(e

1/x)),

and then numerically compute the singularity of the series Lp
Kp,SU(2)(z) nearest

to the origin. The numerical method used was the following:

• Fix a truncated power series

L(z) =

N
∑

n=0

anzn,

where N is a sufficiently large integer (eg N = 500).
• Using the root test, one can compute approximately the radius of conver-

gence r0 of the series L(z)
• Plot |L(r exp(2πit)| for r near the inverse of the radius of convergence.

The plot reveals a blow-up at certain values t0 of t.
• This suggests singularities at r0e

2πit0 , and an asymptotic expansion of an

with a term of the form:

r−n
0 e−2πit0nnα

(

c0 + c1
1

n
+ . . .

)

.

In general, we have a finite sum (over t0) of terms of the above form.
• One can numerically compute the constants α and c0 by fitting data. A

fitting method (also used by Zagier in [Za1, p.953]) can improve the rate
of convergence to O(1/nd) for any d. We used d = 100.
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This was done for the twist knots of Equation (59). If s(Kp) denote the inverse
of the radius of convergence of the series Lp

Kp,SU(2)(z) then we obtain numerically

that:

s(K1) =
π2

6
= 1.644 . . . s(K2) = 1.119 . . . s(K3) = 0.882 . . .

s(K4) = 0.745 . . . s(K5) = 0.745 . . .

These numbers agree with the absolute value of eCSC(ρ)/(2πi) for ρ some Galois
conjugate of the discrete faithful representation. We thank N. Dunfield, S. Shu-
makovitch and C. Zickert for their help in the numerical computations.

Additional numerical evidence for K1 and K−1 (and for many series of 1-
dimensional sum-product type) was obtained by [ES].
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Appendix A. A formal relation among Lnp(z) and Lp(z) for series of

sum-product type

In this section we will give a formal proof of the relation among Lnp(z) and
Lp(z) for series of sum-product type. We will use the notation from Section 6.

Suppose that F (x) < 1 for all x ∈ (0, 1]. Then, it is easy to see that Lnp(z) is
convergent inside the unit disk |z| < 1. The next theorem describes an explicit
relation between Lnp(z) and Lp(z).

Theorem 5. We have

(61) Lnp(1 + z) = log(z)Lp(log(1 + z)) + h(z),

where h(z) is analytic at z = 0.

Proof. We will give only the formal calculation, leaving the analytic details to
the reader. Below, h(z) will denote a germ of an analytic function at z = 0. For
n ∈ N, let cn denote the coefficient of 1/xn in ΣΠ(x) given in (47). Let us fix
N ∈ N and consider n large enough. Then, we have:

an =

N
∑

k=1

k
∏

j=1

F

(

j

n

)

+ O

(

1

nN+1

)

=

N
∑

k=1

ck

nk
+ O

(

1

nN+1

)

.

Thus,
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Lnp(z) =
∞
∑

n=1

anzn =
∞
∑

n=1

(

N
∑

k=1

ck

nk
+ O

(

1

nN+1

)

)

zn.

Ignore the O(·) terms, and interchange summation and integration. We obtain
that

∞
∑

n=1

N
∑

k=1

ck

nk
zn =

N
∑

k=1

ck

∞
∑

n=1

zn

nk
=

N
∑

k=1

ckLik(z),

where

Lik(z) =

∞
∑

n=1

zn

nk

is the k-polylogarithm. The latter is a multivalued analytic function on C\{0, 1}
with an asymptotic expansion at z = 1 of the form:

Lik(z) = log(z − 1)
log(z)k−1

(k − 1)!
+ h(z),

where h(z) is an analytic function at z = 0; see for example, [Oe, Eqn.6]. Thus,

∞
∑

n=1

N
∑

k=1

ck

nk
zn = log(z − 1)

N
∑

k=1

ck
logk−1(z)

(k − 1)!
+ h(z).

Letting N → ∞, and replacing z by z + 1 it follows that:

Lnp(1 + z) = log(z)
∞
∑

k=1

ck
logk−1(1 + z)

(k − 1)!
+ h(z)

= log(z)Lp(log(1 + z)) + h(z).

This concludes the formal calculation. �

Appendix B. A path integral formula for Lnp(z)

In this section we will give a path integral formula for Lnp
M,G(z) using as input

the famous Chern-Simons path integral studied in the seminal paper of Witten;
see [Wi]. With the notation of [Wi] and with our normalization we have:

ZM,G,n =

∫

A

e
n

2πi
CS(A)DA,

where A is the affine space A of G-connections on the trivial bundle M ×G over
M . Since CS takes values in C/Z(2), we require that the level n (which plays
the role of the inverse Planck’s constant) be integer. Without loss of generality,
we assume that n ∈ N. Formally separating the n = 0 contribution in (12) and
interchanging summation and integration in (12), it follows that



360 STAVROS GAROUFALIDIS

Lnp
M,G(z) = 1 +

∫

A

∞
∑

n=1

e
n

2πi
CS(A)zndA

= 1 + z

∫

A

1

e−
n

2πi
CS(A) − z

DA.

The above formula is an infinite dimensional analogue of a Riemann-Hilbert prob-
lem, and was obtained during a conversation with Kontsevich in the fall of 2006.
For a detailed discussion on the Riemann-Hilbert problem, see [Df]. Finite di-
mensional analogues of the Riemann-Hilbert problem are discussed in [CG2].
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of Math. 151 (2) (2000), 705–740.
[B-N] D. Bar-Natan, On the Vassiliev knot invariants, Topology 34 (1995), 423–472.
[Bo] E. Bombieri, On G-functions, in Recent progress in analytic number theory, Academic

Press Vol. 2 (1981), 1–67.
[Br] E. Brieskorn, Die Monodromie der isolierten Singularitäten von Hyperflächen, Manuscripta
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