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BLOCH GROUPS, ALGEBRAIC K-THEORY, UNITS,
AND NAHM’S CONJECTURE

by Frank CALEGARI, Stavros GAROUFALIDIS
and Don ZAGIER

Abstract. – Given an element of the Bloch group of a number field F and a natural number n,
we construct an explicit unit in the field Fn D F.e2�i=n/, well-defined up to n-th powers of nonzero
elements of Fn. The construction uses the cyclic quantum dilogarithm, and under the identification
of the Bloch group of F with the K-group K3.F / gives (up to an unidentified invertible scalar) a
formula for a certain abstract Chern class fromK3.F /. The units we define are conjectured to coincide
with numbers appearing in the quantum modularity conjecture for the Kashaev invariant of knots
(which was the original motivation for our investigation), and also appear in the radial asymptotics
of Nahm sums near roots of unity. This latter connection is used to prove Nahm’s conjecture relating
the modularity of certain q-hypergeometric series to the vanishing of the associated elements in the
Bloch group of Q.

Résumé. – Étant donné un élément du groupe de Bloch d’un corps de nombres F et un
entier n strictement positif, nous construisons une unité explicite dans l’extension cyclotomique
Fn D F.e2�i=n/, bien définie à des puissances n-ièmes d’éléments non-nuls de Fn près. La construc-
tion utilise le dilogarithme quantique cyclique, et grâce à l’identification du groupe de Bloch de F avec
le K-groupe K3.F / donne aussi (à un scalaire inversible non identifié près) une formule pour une cer-
taine classe de Chern abstraite deK3.F /. Les unités que nous définissons coïncident conjecturalement
avec les nombres qui apparaissent dans la conjecture de modularité quantique pour l’invariant de
Kashaev des nœuds (ce qui constituait la motivation initiale de notre étude), et apparaissent également
dans le comportement asymptotique radial des sommes de Nahm au voisinage des racines de l’unité.
On utilise cette dernière connexion pour démontrer la conjecture de Nahm qui relie la modularité
de certaines séries q-hypergéometriques à l’annulation des éléments associés dans le groupe de Bloch
de Q.

1. Introduction

The purpose of the paper is to associate to an element � of the Bloch group of a number
fieldF and a primitive n-th root of unity � an explicit S -unit (where S is independent of � and
can often be taken to be trivial) R� .�/ in the cyclotomic extension Fn D F.�/, well-defined
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doi:10.24033/asens.25370012-9593/02/© 2023 Société Mathématique de France. Tous droits réservés



384 F. CALEGARI, S. GAROUFALIDIS AND D. ZAGIER

up to n-th powers of nonzero elements of Fn. Our construction uses the cyclic quantum
dilogarithm and is shown to agree, up to an unidentified invertible scalar, with the abstract
Chern class map on K3.F / if the latter is identified with the Bloch group. The S -unit is also
conjectured (and checked numerically in many cases) to coincide with a specific number that
appears in the Quantum Modularity Conjecture of the Kashaev invariant of a knot [36].
This was in fact the starting point of our investigation, as described in detail in [11] and in
section 1.4 below.

As a surprising consequence of our main theorem we were able to prove a famous conjec-
ture of Werner Nahm asserting that the modularity of certain q-hypergeometric series
(“Nahm sums”) implies the vanishing of certain explicit elements in the Bloch group of Q.
A precise statement will be given in Section 1.3 of this introduction.

1.1. Bloch groups and associated units

We first recall the definition of the classical Bloch group, as introduced by Bloch in [2].
(More precisely, we take the version given by Suslin in [28].) LetZ.F / denote the free abelian
group on F � n f1g, i.e. the group of formal finite combinations � D

P
i ni ŒXi � with ni 2 Z

and Xi 2 F � n f1g.

Definition 1.1. – The Bloch group of a field F is the quotient

(1) B.F / D A.F /=C.F /;

where A.F / is the kernel of the map

(2) d W Z.F / �!
V2F � ŒX� 7! .X/ ^ .1 �X/

and C.F / � A.F / the group generated by the five-term relation

(3) �X;Y D ŒX� � ŒY � C

�
Y

X

�
�

�
1 �X�1

1 � Y �1

�
C

�
1 �X

1 � Y

�
with X ¤ Y ranging over all X 2 F � n f1g.

We remark that there are a number of different definitions of the Bloch group in the
literature which usually agree up to 6-torsion. One harmless modification we may make is
to adjoin the elements Œ0�, Œ1�, and Œ1� to B.F / subject to the relations:

(4) Œ1� D 0; Œ1� D �Œ0�; Œ0� D ŒX�C Œ1 �X�; 8X 2 F:

We explain in §2 why these new relations don’t change B.F /. We also discuss an alternative
way to define the Bloch group which agrees with Suslin’s group up to 2-torsion.

In this paper, we will study an invariant of the Bloch group whose values are units in Fn
modulo the n-th powers of units, where n is a natural number and Fn the field obtained by
adjoining to F a primitive n-th root of unity � D �n. The extension Fn=F is Galois with
Galois group G D Gal.Fn=F /, and G admits a canonical map

(5) � W G �! .Z=nZ/�

determined by �� D ��.�/. The powers �j (j 2 Z=nZ) of this character define eigenspaces�
F �n =F

�n
n

��j
in the obvious way as the set of x 2 F �n =F

�n
n such that �.x/ D x�

j .�/ for
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BLOCH GROUPS, ALGEBRAIC K-THEORY, UNITS, AND NAHM’S CONJECTURE 385

all � 2 G, and similarly for .O�n =O�nn /�
j

or .O�S;n=O
�n
S;n/

�j , where On (resp. OS;n) is the
ring of integers (resp. S -integers) of Fn. Our main result is the following theorem.

Theorem 1.2. – Suppose that F does not contain any non-trivial n-th root of unity. Then
there is a map

(6) R� W B.F /=nB.F / �!
�
O�S;n=O

�n
S;n

���1
�
�
F �n =F

�n
n

���1
for some finite set S of primes depending only on F . If n is prime to a certain integer MF

depending on F , then the map R� is injective and its image is contained in
�
O�n =O�nn

���1 , and
equal to this if n is prime.

The map R� satisfies various natural compatibilities as one varies either n or the field F ;
see Lemmas 2.7 and 2.10.

Remark 1.3. – Note that the field Fn and the character � of (5) depend only on n and
not on the primitive n-th root of unity �. The map R� from B.F / to F �n =F

�n
n does depend

on �, but in a very simple way, described by either of the formulas

(7) �
�
R� .�/

�
D R�.�/.�/ .� 2 G/; R� .�/ D R�k .�/

k .k 2 .Z=nZ/�/;

where the simultaneous validity of these two formulas explains why the image of each mapR�
lies in the ��1 eigenspace of F �n =F

�n
n .

Remark 1.4. – The optimal definition of MF is somewhat complicated to state.
However, one may take it to be 6�F jK2.OF /j. When n is not divisible by 9, one may
take MF to be 2�F jK2.OF /j. (Both assertions are proved in §3.5.)

The detailed construction of the map R� will be given in Section 2. A rough description
is as follows. Let � D

P
ni ŒXi � be an element of Z.F / whose image in ^2.F �=F �n/ under

the map induced by d vanishes. We define an algebraic number P� .�/ by the formula

(8) P� .�/ D
Y
i

D� .xi /
ni

D� .1/ni
;

where xi is some n-th root of Xi and D� .x/ is the cyclic quantum dilogarithm function

(9) D� .x/ D

n�1Y
kD1

.1 � �kx/k :

The number P� .�/ belongs to the Kummer extensionH� of F defined by adjoining all of the
xi to Fn and is well-defined modulo H�n

�
. We show that for n prime to some MF it has the

form abn with b in H�
�

and a 2 F �n (or even a 2 O�n under a sufficiently strong coprimality
assumption about n). Then R� .�/ is defined as the image of a modulo n-th powers.

ANNALES SCIENTIFIQUES DE L’ÉCOLE NORMALE SUPÉRIEURE



386 F. CALEGARI, S. GAROUFALIDIS AND D. ZAGIER

1.2. Algebraic K-groups and associated units

A second main theme of the paper concerns the relation to the algebraic K-theory
of fields. The group B.F / was introduced by Bloch as a concrete model for the abstract
K-group K3.F /. It was proved by Suslin [28] that, if F is a number field, then (up to
2-torsion) K3.F / is an extension of B.F / by the roots of unity in F , and in this case one
also knows by results of Borel and Suslin-Merkurjev [27], [19], [33] that K3.F / has the
structure

(10) K3.F / Š Zr2.F / ˚
(
Z=w2.F /Z if r1.F / D 0,

Z=2w2.F /Z ˚ .Z=2Z/r1.F /�1 if r1.F / � 1,

where .r1.F /; r2.F // is the signature of F and w2.F / is the integer

(11) w2.F / D 2
Y
p

p�p ; �p WD max
˚
� 2 Z j �p� C ��1p� 2 F

	
:

For a detailed introduction to the algebraic K-theory of number fields, see [33].

Theorem 1.2 is then a companion of the following result expressed in terms of K3.F /
rather than the Bloch group B.F /:

Theorem 1.5. – Let F be a number field. Then there is a canonical map

(12) c� W K3.F /=nK3.F / �!
�
O�S;n=O

�n
S;n

���1
�
�
F �n =F

�n
n

���1
defined using the theory of Chern classes for some finite set S of primes depending only on F .
If n is prime to a certain integerMF depending on F , then the map c� is injective and its image

is contained in
�
O�n =O�nn

���1 , and equal to this if n is prime.

We note that the proof of Theorem 1.2 relies upon the precise computation ofK3.F / and
the properties of c� given above. Finally, in view of the near isomorphism betweenB.F / and
K3.F /, one might guess that the two maps P� and c� are the same, at least up to a simple
scalar. This is the content of our next theorem.

Theorem 1.6. – For n prime to MF , the map R� equals c

�

for some 
 2 .Z=nZ/�.

The constant 
 does not depend on the underlying field; both our construction and the
Chern class map are well behaved in finite extensions, so we can compare the maps over
any two fields with the maps in their compositum. We conjecture that the constant 
 is, up
to sign, a power of 2 that is independent of both F and n. More optimistically, one might
further guess that 
 is exactly 2. To motivate our conjecture, and to determine 
 , it suffices
to compute the image under both maps R� and c� of some element of K3.F /=nK3.F / of
exact order n. For each root of unity � of order n, there is a specific element �� (eq. (36)) of
the finite Bloch group B.Q.� C ��1// that is of exact order n. Using the relation of the map
R� to the radial asymptotics of certain q-series called Nahm sums discussed in Section 7, we
will prove

(13) R� .�� / D �2
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BLOCH GROUPS, ALGEBRAIC K-THEORY, UNITS, AND NAHM’S CONJECTURE 387

(Theorem 7.4). But certain expected functorial properties of the map c� , discussed in
Section 5.3, indicate that up to sign and a small power of 2, we have:

(14) c� .�� /
‹
D �;

and in combination with (13) this justifies our conjecture concerning 
 .
The above-mentioned relation between our mod n regulator map on Bloch groups and the

asymptotics of Nahm sums near roots of unity is also an ingredient of our proof of Nahm’s
conjecture (under some restrictions) relating the modularity of his sums to torsion in the
Bloch group. The argument, described in Section 7.3, uses the full strength of Theorem 1.2
and gives a nice demonstration of the usefulness, despite its somewhat abstract statement, of
that theorem.

Theorem 1.2 also motivates a mod n (or étale) version of the Bloch group of a number
field F , defined by

(15) B.F IZ=nZ/ D A.F IZ=nZ/=.nZ.F /C C.F //;

where A.F IZ=nZ/ is the kernel of the map d W Z.F /! ^2.F �=F �n/ induced by d . This is
studied in Section 6, where we establish the following relation to K2.F /.

Theorem 1.7. – The étale Bloch group is related to the original Bloch group by an exact
sequence

(16) 0 �! B.F /=nB.F / �! B.F IZ=nZ/ �! K2.F /Œn� �! 0;

where K2.F /Œn� is the n-torsion in the K-group K2.F /.

There is a corresponding exact sequence (Equation (40)) with B.F /=nB.F / and
B.F IZ=nZ/ replaced by Galois cohomology groups, and these sequences coincide for
n D pm prime to the number wF of roots of unity of F . A large part of the story that we

have told here for the Bloch group B.F / and the third K-group K3.F / can be generalized
to higher Bloch groups Bm.F / and K2m�1.F / with m � 2, and here the étale version really
comes into its own, because the higher Bloch groups as originally introduced in [34] have
several alternative definitions that are only conjecturally isomorphic and are difficult or
impossible to compute rigorously, whereas their étale versions turn out to have a canonical
definition and are more amenable to numerical computations. The study of the higher cases
has many points in common with the m D 2 case studied here, but there are also many new
aspects, and the discussion will therefore be left to a future time.

1.3. Nahm’s Conjecture

The S -unit constructed in Section 1.1 also appears in connection with the asymptotics
near roots of unity of certain q-hypergeometric series called Nahm sums. These series are
defined by

fA;B;C .q/ D
X

m2Zr
�0

q
1
2m

tAmCBmCC

.q/m1 � � � .q/mr
;

where .q/r D
Qr
kD1.1 � q

k/ is the quantum r-factorial, A 2 Mr .Q/ is a positive definite
symmetric matrix, B an element of Qr , and C a rational number. Based on ideas coming
from characters of rational conformal field theories, Nahm conjectured a relation between
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388 F. CALEGARI, S. GAROUFALIDIS AND D. ZAGIER

the modularity of the associated holomorphic function efA;B;C .�/ D fA;B;C .e
2�i� / in the

complex upper half-plane and the vanishing of a certain element or elements in the Bloch
group of Q. (See [22], [35], and Section 7 for more details.) This relation conjecturally goes
in both directions, but with the implication from the vanishing of the Bloch elements to the
modularity of certain Nahm sums not yet having a sufficiently precise formulation to be
studied. The conjectural implication from modularity to vanishing of Bloch elements had
a completely precise formulation, as follows. Let A be as above and .X1; : : : ; Xr / the unique
solution in .0; 1/r of Nahm’s equation

1 � Xi D

rY
jD1

X
aij
j .i D 1; : : : ; r/:

Then Nahm shows that the element �A D
Pr
iD1ŒXi � belongs to B.R\Q/, and his assertion

is the following theorem, which we will prove as a consequence of the injectivity statement
in Theorem 1.2.

Theorem 1.8 (Nahm’s Conjecture). – If the function efA;B;C .�/ is modular for someA,B
and C as above, then �A vanishes in the Bloch group of Q.

We remark that the vanishing condition can be (and often is) stated by saying that �A is a
torsion element in the Bloch group of the smallest real (but in general not totally real) number
field containing all the Xi , but when we take the image of this Bloch group in the Bloch
group ofQ orC, then the torsion vanishes, becauseB.Q/ andB.C/ are uniquely divisible [26,
Theorem 6.3] and so in particular are torsion free.

1.4. Motivation from quantum topology

In this subsection—which will not be used anywhere else in this paper—we discuss the
empirical discoveries that led us to conjecture the results presented here. A much more
detailed discussion of these ideas and of the experimental results can be found in [11]
(Introduction, Sections 1, 5 and 9, and Appendix).

The story has its origin in Quantum Topology and one of its most prized problems, the
Volume Conjecture of Kashaev, which relates the Jones polynomial of a hyperbolic knot with
hyperbolic geometry. More precisely, the Volume Conjecture [14] asserts that the Kashaev
invariant hKiN of a hyperbolic knot (which is equal to the value of the N -th colored Jones
polynomial at e2�i=N [21]) grows exponentially at a rate proportional to the hyperbolic
volume V.K/ of the knot complement:

(17) lim
N

1

N
log jhKiN j D

V.K/
2�

:

A refinement of the Volume Conjecture asserts the existence of an asymptotic expansion

(18) hKiN � N 3=2 b̂K.2�i=N /; b̂K.h/ D ev.K/=hˆK.h/
to all orders in 1=N as N !1, where v.K/ D iV.K/CCS.K/ 2 C=4�2Z is the complexi-
fied volume ofK andˆK.h/ is a power series which satisfies�ı.K/1=2ˆK.h/ 2 FK ŒŒh��where
FK is the trace field of the hyperbolic knot, � is some eighth root of unity, and ı.K/ is a
non-zero number in FK related to the Ray-Singer torsion ofK. For instance, for the simplest
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BLOCH GROUPS, ALGEBRAIC K-THEORY, UNITS, AND NAHM’S CONJECTURE 389

hyperbolic (figure-eight) knot, whose trace field is F41 D Q.
p
�3/, the first few terms of the

series ˆ41.h/ are given by

ˆ41.h/ D
1
4
p
3

�
1 C

11

72
p
�3
h �

697

31104
h2 �

724351

33592320
p
�3
h3 C � � �

�
:

In [36], the third author observed that if we extend the Kashaev invariant to a function
J.K/ W Q=Z ! Q by Galois equivariance (i.e., by setting J.K/.a=N / WD ��a

�
hKiN

�
for

N > 0 and .a;N / D 1), then (18) can be improved to

(19) JK.�1=X/ � X3=2 JK.X/ b̂K.2�i=X/;
to all orders in 1=X as X ! 1 in Q with bounded denominator (note that JK.X/ D 1 if
X D N 2 N), and more generally that for any

�
a b
c d

�
2 SL.2;Z/ we have

(20) JK
�aX C b
cX C d

�
� .cX C d/3=2 JK.X/ ev.K/.XCd=c/ˆKa=c

� 2�i

cX C d

�
to all orders in 1=X as X ! 1 in Q with bounded denominator, where ˆK˛ .h/ 2 QŒŒh��
(˛ 2 Q) is a power series depending only on ˛ 2 Q=Z. This conjectural modular property
led to the concept of a quantum modular form [36], and its more recent development, that
of a holomorphic quantum modular form (see [11] and a planned expository paper by the last
author). Experiments for various knots and various values of ˛ suggested that the power
series ˆK˛ is the product of a number �˛ 2 Q with a power series having coefficients in
the cyclotomic extension FK.e2�i˛/ of the trace field of the knot. The story that led to the
present paper was then the striking empirical discovery that the quotient of �˛ by �0 was
always the product of a root of unity and the c-th root of an S -unit �K˛ in FK.e2�i˛/ with
S independent of ˛, where c is the denominator of ˛, and furthermore that this unit, which
is well-defined only up to c-th powers, transforms according to Equation (7). For example,
numerical computations given in [36] for the 41 knot and c D 5 suggested that "K˛ in this case
equals .�4 C 1/=�.� � 1/2 with � D e2�i.˛�1=3/ 2 F41.e

2�i˛/ D Q.e2�i=15/.
On another note, it is well known that a hyperbolic knot (and more generally, a complete,

finite-volume hyperbolic 3-manifold) gives an element �K in the Bloch group B.FK/, or
equivalently of the third K-group K3.F /, which determines (via the regulator map) the
complexified volume ofK, and this led to the guess that the units appearing in the quantum
modularity conjecture might depend only on �K . Moving away from hyperbolic manifolds
and quantum topology, these observations prompted the third author to ask the first author
during an Oberwolfach meeting (in July 2011) whether he could suggest a construction of a
map c� as in Theorem 1.5. The answer was positive, but of course with no proof that the units
coming from the Kashaev invariant and the units given by c� were connected, leading to an
initial two-author version of the current paper with an abstract saying that we conjectured
that a number that could not be defined was equal to a number that could not be computed!
In the following years, the number of authors increased by one and it was discovered that
the asymptotic expansions of Nahm sums at roots of unity also involved a unit with very
similar properties, which together with Nahm’s construction of an element of the Bloch
group associated canonically to any Nahm sum suggested the existence of a map R� as in
Theorem 1.2 as well as of the map c� in algebraic K-theory. The map R� has the fortunate
property of being well-defined and computable. Eventually we found complete constructions
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390 F. CALEGARI, S. GAROUFALIDIS AND D. ZAGIER

of both maps, as explained in the current paper. But the basic disclaimer of the old abstract
remains true: the quantum modular conjecture is still open, so that we cannot rigorously
prove even the existence of the units "K˛ . There is, however, a conjectural description of the
power series ˆK˛ occurring in (20), as given by Tudor Dimofte and the second author [5, 6],
and these can be related to the map R� , as discussed in Section 7 of [11], so in conjunction
with the extensive numerical computations of the putative units coming from the quantum
modular conjecture described in the appendix of that paper we can conjecture with a fair
degree of conviction that these numbers do indeed always coincide.

1.5. Plan of the paper

In Section 2, we begin with some preliminaries on the Bloch group. We then recall the
cyclic quantum dilogarithm and use it, together with some basic facts about Kummer exten-
sions, to define the mapR� . The fact that the mapR� satisfies the 5-term relation follows from
some state-sum identities of Kashaev-Mangazeev-Stroganov [15], reviewed in Section 2.5.
The remaining statements of Theorem 1.2 are deduced from Theorems 1.5 and 1.6.

In Section 3 we recall the basic properties of Chern classes and use them to define the
map c� and prove Theorem 1.5. Its proof follows from Lemmas 3.1 and 3.5.

The comparison of the maps c� and R� is done via reduction to the case of finite fields.
This reduction is discussed in Section 4, and the proof of Theorem 1.6 is given in Section 5.

In Section 6, we discuss the connection of our map R� with Tate’s results on K2.OF /.
In Section 7, we state the connection of our mapR� with the radial asymptotics of Nahm

sums at roots of unity and give two applications: a proof of Equation (13) (as a consequence
of a special modular Nahm sum, the Andrews-Gordon identity), and a proof of Theorem 1.8.

Remark 1.9. – During the writing of this paper, we learned that Gangl and Kontsevich
in unpublished work also proposed the map P� as an explicit realization of the Chern class
map. Although they did not check in general that the image ofP� could be lifted to a suitable
element R� 2 .F �n =F

�n
n /�

�1
, they did propose an alternate proof of the 5-term identity

using cyclic algebras. Goncharov also informs us that he was aware many years ago that the
function P� should be an explicit realization of the Chern class map.

2. The maps P� and R�

2.1. Preliminaries on the Bloch group

In this section, we discuss a number of alternate definitions of B.F /. By [28, Lemma 1.3],
the element c WD ŒX�CŒ1�X� forX 2 F �nf1g does not depend onX 2 F �. This immediately
shows that adjoining elements Œ0� and Œ1� to B.F / such that Œ1� D 0 and Œ0� D ŒX�C Œ1�X�
for all X 2 F does not change B.F /. But having allowed the elements Œ0�, Œ1�, and Œ1�, it is
then tempting to defineB.F / by taking all specializations of the five term relation (3) without
indeterminant factors such as 0

0
or 1
1

. We now explain how this can be done, at least up to
taking a quotient of B.F / by a 2-torsion subgroup.

We may first augmentA.F / by formally adding Œ0�, Œ1�, and Œ1�. If we take the specializa-
tion of �X;Y in (3) to Y D 1, we obtain the element

ŒX� � Œ1�C ŒX�1� � Œ1�C Œ1� D Œ1�C ŒX�C ŒX�1�:
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The problem is that hXi WD ŒX�C ŒX�1� does not lie in A.F /, since d.hXi/ is equal to

(21) X ^ .1�X/C .1=X/^ .1�1=X/ D X ^ .1�X/�X ^ .X �1/CX ^X D X ^ .�X/;

and X ^ .�X/ is not necessarily 0 in
V2F �. Hence, if we proceed in this way, the relations

are not a subset of the generators! It is always the case, however, that 2hXi 2 A.F /. We may
thus fix the problem by increasing A.F / to accommodate the elements of this form (which
we then set to zero).

We define the modified Bloch group eB.F / as follows:

Definition 2.1. – Let eZ.F / D ZŒP1.F /�, and let eA.F / denote the kernel of the maped W eZ.F /! .F � ˝ F �/=.X ˝ .�X/; X 2 F �/; ed.ŒX�/ WD ŒX ˝ .1 �X/�; X 2 F � n f1g;
and ed sends Œ0�, Œ1�, and Œ1� to 0. Let eC.F / denote the group generated by specializa-
tions of the five-term relation in which we now allow X and Y to range over all of P1.F /
(including X D Y ), forbidding only those terms for which the resulting fractions have the
indeterminate form 0

0
or 1
1

. Finally, let eB.F / WD eA.F /=eC.F /.
Lemma 2.2. – There is a surjection B.F /! eB.F / whose kernel is 2-torsion.

Proof. – Note that if X ˝ .�X/ D 0 for all X 2 F �, then

X˝YCY˝X D X˝.�XY /CY˝X.�Y / D X˝.�XY /CY˝.�XY / D XY˝.�XY / D 0;

and hence there is a surjectionV2F � D .F ˝ F /=.X ˝ Y C Y ˝X/! .F ˝ F /=.X ˝ .�X//:

Thus A.F / � eA.F /. Moreover, one may check that all admissible specializations of the
five term relation (3) land inside eA.F /. Since C.F / � eC.F /, there is an induced map
B.F /! eB.F /. We first prove it is surjective and then that the kernel is 2-torsion. To prove
surjectivity it suffices to show that the class of hXi is contained in the image. But the special-
ization of the 5-term identity with Y D 1 shows that hXi is contained in eC.F / and thus
this element is zero in eB.F /. We now consider the kernel. Certainly the kernel contains the
specializations of (3) with X ¤ Y 2 F � n f0; 1g. Let us now consider the other specializa-
tions. Up to symmetry, these are obtained by taking Y to be either 0, 1,1 and X , and then
the further specialization X D 1 and Y D 1, giving the following extra relations, where
(following [28]) one writes c for the element ŒX�C Œ1 �X� for any X 2 F �:

0 D ŒX� � Œ0�C Œ0� � Œ0�C Œ1 �X� D ŒX�C Œ1 �X� � Œ0� D Œc� � Œ0�;

0 D ŒX� � Œ1�C Œ1=X� � Œ1�C Œ1� D hXi � Œ1�;

0 D ŒX� � Œ1�C Œ1� � Œ1 � 1=X�C Œ0� D ŒX�C Œ1=X� � Œ1=X� � Œ1 � 1=X�C Œ0�

D hXi � c C Œ0�;

0 D ŒX� � ŒX�C Œ1� � Œ1�C Œ1� D Œ1�;

0 D h0i � Œ1� D Œ0�C Œ1� � Œ1�:

These correspond precisely to the relations (4) together with hXi D 0 for allX 2 F �. By [28,
Lemma 1.2], we have 2hXi D 0 2 B.F /, and hence the extra relations are all 2-torsion.
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In this paper, we shall primarily be concerned with quotients ofB.F /=nB.F /with n odd,
in which case it makes no difference whether one uses B.F / or eB.F /. In B.F / one has the
identity 3Œ0� D h�1i and 6Œ0� D 0 ([28, Lemma 1.4]) whereas in eB.F / one has h�1i D 0

and 3c D 0. In eB.F /, however, one has the pleasant identity ŒX�C Œ1=X� D 0 for all X 2 F .
We only use the “extra” identities in eB.F / in two contexts. The first is when considering
explicit torsion elements in B.Fq/ ˝ Zp for p odd, where Lemma 2.2 guarantees there are
no issues. The second is during the proof of Theorem 7.4, where once more n is odd and all
relevant maps factor through eB.R/.
2.2. The map P�

Let n be a positive integer and � D �n 2 Fn be a primitive n-th root of unity, which we
usually consider as fixed and omit from the notations. Let F be a field of characteristic prime
to n and Fn D F.�n/.

Let � D h�i denote the Gal.Fn=F /-module of n-th roots of unity. Note that � naturally
has an action of Gal.E=F / for any Galois extension E=F containing Fn.

The universal Kummer extension is by definition the extension H=Fn obtained by
adjoining n-th roots of every element in F . Let ˆ D Gal.H=Fn/. We have [18, Chpt.VI]:

Lemma 2.3. – The extension H=F is Galois. There is a natural isomorphism

� W F �=F �n ' Hom.ˆ;�/ ' H 1.ˆ;�/

given by X 7! .� 2 ˆ 7! �x=x/, where x 2 H� is any element that satisfies xn D X ,
and where Hom denotes continuous homomorphisms with respect to the usual topology on
Galois groups.

By Hilbert’s Theorem 90, these groups are all isomorphic to H 1.F; �/. The Galois
group Gal.H=F / respects these isomorphisms. More explicitly, any � 2 Gal.H=F / acts
trivially on F � and acts on both ˆ and � via the cyclotomic character.

Consider the function

(22) P� .X/ WD
D� .x/

D� .1/
2 H�=H�n .X 2 F � X f0; 1g; xn D X/;

whereD� .x/ is the cyclic quantum dilogarithm defined in (9). (We previously definedP� .X/,
in Equation (9) of the introduction, as an element of H�, but only its image modulo n-th
powers was ever used, and it is more canonical to define it in the manner above.) We extend
the definition of P� to X D 1 and X D 0 by the same formula after insisting when X D 1

on the choice x D 1. In particular, P� .1/ D 1 and P� .0/ D D� .1/�1.

Lemma 2.4. – The functions P� ;D� W F � ! H�=H�n have the following properties.

(a) P� .X/ is independent of the choice of n-th root x of X .

(b) If n is odd, then D� .1/ D �n=3 mod H�n, where we interpret this to mean 1 mod H�

if .3; n/ D 1. If n is even, then D� .1/2 is a root of unity mod H�n.

(c) .P� .X/P� .1=X//2 D 1 for any X 2 F �n .

(d) P� .X/ 2 H�=H�n is invariant under the action of ˆ D Gal.H=Fn/.

(e) �.P� .X// D P� .X/�
�1.�/ for all � 2 G.
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Proof. – We begin by establishing an equality forD� .�mx/=D� .x/which implies part (a)
and will be useful in the sequel. For 0 � m � n � 1, we have an equality

D� .�
mx/

D� .x/
D

n�1Y
kD0

.1 � �kCmx/k

.1 � �kx/k
:

Since
n�1Y
kD0

.1 � �kCmx/m D .1 �X/m, we may also write

.1 �X/m
D� .�

mx/

D� .x/
D

n�1Y
kD0

.1 � �kCmx/kCm

.1 � �kx/k
D

m�1Y
kD0

.1 � �kx/n;

and hence

(23)
D� .�

mx/

D� .x/
D

m�1Y
kD0

.1 � �kx/n

1 �X
2 H�n;

which proves part (a). We note also that this equality holds for anym, since adding multiples
of n to m certainly doesn’t change the LHS of equation (23) and does not change the RHS
since

Qn�1
kD0.1��

kx/n=.1�X/ D .1�X/n=.1�X/n D 1. For the remainder of the argument,
note that, because P� .X/ is defined only up to n-th powers, we can use the alternate equality

(24) P� .X/ D
1

D� .1/

Y
k mod n

.1 � �kx/k

.1 � �k/k
mod H�n .xn D X/;

for X ¤ 1, where the product is over k 6� 0 mod n.

Reversing the order of the product, we deduce the equality (for n odd):
(25)

D� .1/
2
D

n�1Y
kD1

.1��k/k.1���k/n�k D

n�1Y
kD1

.1��k/n.��k/k D .�1/n.n�1/=2�.n�1/n.2n�1/=6nn:

We note that if .n; 6/ D 1 then D� .1/2 D .�1/n.n�1/=2nn is a perfect n-th power, and thus,
since n is odd,D� .1/ is itself a perfect n-th power. If 3jn, then 3njn2, and combining the same
argument with the formula (25) above shows that D� .1/2 � �n=6 � �2n=3 mod H�n, and
thus D� .1/ � �n=3 mod H�. If n is even, then from (25) we see that D� .1/2 is transparently
a root of unity in H�. This establishes part (b).

Replacing k by �k in the definition of P� .1=X/, gives (working modulo H�n)

P� .X/P� .1=X/ D

n�1Y
kD1

.1 � �kx/k.1 � ��kx�1/�k

.1 � �k/k.1 � ��k/�k
D

n�1Y
kD1

.��kx/k

.��k/k
D xn.n�1/=2;

proving part (c). For part (d), we note that the effect of an element � 2 ˆ on D� .x/ is
to replace x by �ix for some i , so the result follows from part (a). For part (e), we first
observe that the statement makes sense because ˆ D Gal.H=Fn/ is a normal subgroup of
Gal.H=F / and hence acts trivially onP� .X/ 2 H�=H�n by virtue of (d), so that the quotient

ANNALES SCIENTIFIQUES DE L’ÉCOLE NORMALE SUPÉRIEURE



394 F. CALEGARI, S. GAROUFALIDIS AND D. ZAGIER

G D Gal.Fn=F / acts on P� .X/. For the proof, we choose a lift of � 2 G to Gal.H=F / that
fixes x. Then

�P� .X/ D
Y
k

.1 � �.�/kx/k

.1 � �.�/k/k
D

Y
k

.1 � �k�.�/x/k

.1 � �k�.�//k
D

Y
k

.1 � �kx/k�.�/
�1

.1 � �k/k�.�/
�1
D P� .X/

�.�/�1 ;

where all products are over k 6� 0 mod n and all calculations are modulo H�n.

We extend the map P� to the free abelian group Z.F / D ZŒP1.F /� by linearity as in (8),
with P� .1/ D P� .0/�1 D D� .1/.

2.3. The map R�

Let wF D w1.F / denote the number of roots of unity in F . The assumption in
Theorem 1.2 that F contains no non-trivial n-th roots of unity is the assumption that
.n; wF / D 1. The next proposition associates an element R� .�/ 2 .F �n =F

�n
n /�

�1
to every

element of A.F IZ=nZ/ as long as .n; wF / D 1. More generally, when .n; wF / > 1, we may
define an element R� .�/wF 2 .F �n =F

�n
n /�

�1
which coincides with the wF -th power of R� .�/

whenever .n; wF / D 1. Recall the group A.F IZ=nZ/ from subsection 1.1.

Proposition 2.5. – Let � 2 A.F IZ=nZ/.

(a) The image of P� .�/wF lifts to F �n =F
�n
n .

(b) The image of P� .�/wF admits a unique lift to F �n =F
�n
n on which G acts by ��1, that

we denote by R� .�/wF . If n is prime to wF , then P� .�/ itself admits a unique lift
R� .�/ 2 .F

�
n =F

�n
n /�

�1
.

Proof. – For part (a), by Hilbert 90 and inflation-restriction, there is a commutative
diagram:

H 1.ˆ;�/ - H 1.Fn; �/ - H 1.H;�/ˆ
ı- H 2.ˆ;�/

F �n =F
�n
n

wwwwwwwwww
-

�
H�=H�n

�ˆ
:

wwwwwwwww
That is, there is an obstruction to descending from .H�=H�n/ˆ to F �n =F

�n
n which lands

in H 2.ˆ;�/.
We now claim that there is a commutative diagram as follows:

Z.F /
P� - .H�=H�n/ˆ

V2.F �=F �n/
d

?
�
[ - H 2.ˆ;�/;

?

ı

where the left vertical map is the one defined in (2) and the bottom horizontal map is the map
induced by the cup product from the isomorphism F �=F �n ! H 1.ˆ;�/ of Lemma 2.3.
Note that the cup product is more naturally a map

V2H 1.ˆ;�/! H 2.ˆ;�˝2/, but can be
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interpreted as in the theorem by using the trivialization � ' Z=nZ ' �˝2 defined by the
choice of the root of unity �.

We now show that the above diagram commutes. By linearity, it suffices to prove this for
elements � of the form ŒX�. Write X D xn and 1 � X D yn. For Z 2 F �=F �n and zn D Z
(following Lemma 2.3), we may write

�.z/ D ��.z;�/z:

where �.z; �/ is defined to satisfy ��.z;�/ D �.z/.�/ 2 �.
By definition, we have P� .ŒX�/ D D� .x/=D� .1/modulo n-th powers. SinceD� .1/ D �n=3

already lifts to F �n =F
�n
n , the obstruction to lifting P� .ŒX�/ is the same as the obstruc-

tion to lifting D� .x/. Lifting D� .x/ amounts to finding an element u 2 H� such that
D� .x/=u

n 2 F �n . In light of equation (23), such a u would necessarily satisfy

(26)
��u
u

�n
D
�D� .x/

D� .x/
D

D� .�
�.x;�/x/

D� .x/
D

� �.x;�/�1Y
kD0

1 � �kx

y

�n
:

The expression inside the n-th power is determined exactly modulo � D h�i. Hence we may
define a cocycle

h D hX W ˆ ! H�=�; h.�/ WD

�.x;�/�1Y
kD0

1 � �kx

y
:

To verify that h is a cocycle, it suffices to show that h.��/ D h.�/�h.�/ 2 H�=�. This
identity holds for hn thought of as valued in H� by equation (26), since in that formula it is
manifestly given by the coboundary � 7! �D� .x/=D� .x/. But this implies immediately that h
itself satisfies this equation modulo �. Thus h gives an element of H 1.ˆ;H�=�/, which by
consideration of the exact sequence

H 1.ˆ;H�/ �! H 1.ˆ;H�=�/ �! H 2.ˆ;�/

maps toH 2.ˆ;�/. This is actually an injection, because the first term vanishes by Hilbert 90.
This is the image of ı; explicitly, the class ı.h/ 2 H 2.ˆ;�/ (or its inverse, depending on one’s
convention for the boundary map) is given by

ı.h/.�; �/ D
h.��/

h.�/�h.�/

D
1

h.�/�h.�/

�.x;�/C�.x;�/�1Y
kD0

1 � �kx

y

D
1

h.�/�h.�/

�.x;�/�1Y
kD0

1 � �kx

y

�.x;�/�1Y
kD0

1 � �k��.x;�/x

y

D
1

h.�/�h.�/

�.x;�/�1Y
kD0

1 � �kx

y

�.x;�/�1Y
kD0

1 � �k��.x;�/x

��.y;�/y
� ��.y;�/

D ��.x;�/�.y;�/:

Nonetheless, the class in H 1.ˆ;�/ associated to X D xn is the map � 7! ��.x;�/, and the
class associated to 1�X D yn is the map � 7! ��.y;�/, and the exterior product of these two
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classes in H 2.ˆ; �/ is precisely ı.h/. The fact that the cup product gives an injection is an
easy fact about the cohomology of abelian groups of exponent n. This concludes the proof
of part (a).

For part (b), suppose that � 2 A.F IZ=nZ/. By the argument above, there certainly
exists an element in F �n =F

�n
n which maps to P� .�/. Let M denote the image of F �n =F

�n
n in

.H�=H�n/ˆ, and let S D F �=F �n. We have a short exact sequence as follows:

0 �! S �! F �n =F
�n
n �!M �! 0:

Taking ��1-invariants is the same as tensoring with Z=nZ.1/ and taking invariants. Hence
there is an exact sequence�

F �n =F
�n
n

���1
�!M��1

�! H 1.G; S.1//:

In particular, the obstruction to lifting to a ��1-invariant element lies inH 1.G; S.1//, and it
suffices to prove that this group is annihilated bywF . By construction, the module S is trivial
as a G-module, and hence the action of G on S.1/ is via the character �. Sah’s Lemma ([17,
Lem.8.8.1]) implies that the self-map ofH 1.G; S.1// induced by g�1 for any g 2 Z.G/ D G
is the zero map. But, since � W G ! .Z=nZ/� is the cyclotomic character, the greatest
common divisor of �.g/ � 1 for g 2 G is wFZ=nZ. In particular, the group is annihilated
by wF . The result follows.

Remark 2.6. – Suppose .wF ; n/ D 1, and let P 2 H� be a representative of
P� .�/ 2 H

�=H�n. Then the construction of the element R� .�/ whose existence is asserted
by Proposition 2.5 reduces to the problem of finding S 2 H� such that

(a) P=Sn 2 F �n , and

(b) the image of P=Sn in F �n =F
�n
n lies in the ��1-eigenspace,

since thenR� .�/ D P=Sn 2 .F �n =F
�n
n /�

�1
. In practice, S will be constructed via a Hilbert 90

argument as an additive Galois average, and the difficulty is ensuring that S ¤ 0. See
Section 7, where this is done for a particular P constructed as a radial limit of a Nahm sum.

2.4. Compatibilities

In this section, we discuss the compatibility of the map R� with respect to n, and in
particular we compare R� to R�q for any divisor q of n. This will be important in Section 5,
where we consider the relation of our map and the Chern class in K-theory. We also discuss
the compatibility of R� with respect to a change of field.

Lemma 2.7. – Let .n; wF / D 1 and � D �n as usual. Then the following compatibilities
hold:

1. If .n; k/ D 1, then R�k .X/ D R� .X/
k�1 .

2. Let n D qr , and let �r D �
q
n . Then the image of R�n.X/ modulo r-th powers is equal

to the image of R�r .X/ under the map

(27)
�
F �r =F

�r
r

���1
!
�
F �n =F

�r
n

���1
induced by the inclusion.
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We note in passing that the map (27) is not always injective (a fact exploited in the proof
of Lemma 5.3).

Proof. – The first statement reflects the fact that gR� D Rg.�/ for g 2 G D Gal.Fn=F /.
For the second claim, we first note by Lemma 2.4(b) that D�n.1/ D �

n=3
n � �

r=3
r D D�r .1/,

where the equivalence is modulo r-th powers. (Either 3jr in which case both sides are literally
equal, or .3; r/ D 1 and 3rd roots of unity are r-th powers.) Then we calculate

D�n.1/P�n.X/ D
Y

k mod n

�
1 � �knx

�k
D

Y
i mod q
j mod r

�
1 � �riCjn x

�riCj
�

Y
i mod q
j mod r

�
1 � �iq�

j
nx
�j
D

Y
j mod r

�
1 � �jr x

q
�j
D D�r .1/P�r .X/;

where the congruence is modulo r-th powers.

Next, we discuss a reduction of the map P�n to the case where n is a prime power.

Lemma 2.8. – Let n D ab with .a; b/ D 1 and � a primitive n-th root of unity. If
X 2 A.F IZ=nZ/, let un D R� .X/, ua D R�b .X/ and ub D R�a.X/. Then un determines
and is uniquely determined by ua and ub .

Proof. – Part (2) of Lemma 2.7 shows that the image of un in F �n =F
�a
n is the image of ua

under the natural map

F �a =F
�a
a ! F �n =F

�a
n :

Equivalently, ua determines un up to an a-th power, and similarly ub determines un up to
a b-th power. This is enough to determine un completely since a and b are coprime. The
converse has already been shown.

Remark 2.9. – Both lemmas hold also for .n; wF / > 1 if we replace R� by RwF
�

.

We also have:

Lemma 2.10. – Let E=F be a field extension, and assume that .n; wE / D 1 and � D �n.
Then the following diagram commutes:

B.F /=nB.F /
R�
//

��

�
F �n =F

�r
n

���1
��

B.E/=nB.E/
R�
//
�
E�n =E

�r
n

���1
:

Proof. – By construction, the maps P� .�/ are compatible where the targets on the RHS
are replaced by the corresponding universal Kummer extensions. But by the uniqueness of
the lift R� .�/ (Proposition 2.5(b)), the diagram commutes.
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2.5. The 5-term relation

In this section, we use a result of Kashaev, Mangazeev and Stroganov to show that the
map R� satisfies the 5-term relation, and consequently descends to a map of the group
B.F IZ=nZ/.

Theorem 2.11. – Let F be a field and Fn D F.�/, where � is a root of unity of order n
prime to wF and to the characteristic prime of F . Then the map R� vanishes on the subgroup
C.F / � A.F IZ=nZ/ � Z.F / generated by the 5-term relation, and therefore induces a map

B.F / �! B.F /=nB.F / �! B.F IZ=nZ/
R�
�!

�
F �n =F

�n
n

���1
:

Proof. – Denote byH the universal Kummer extension as before. Then it suffices to show
that the appropriate product of the functions D� is a perfect n-th power in H .

It suffices to consider the case when X; Y ¤ 0; 1;1 and X ¤ Y . Let X; Y; Z 2 F � be
related byZ D .1�X/=.1�Y /, and choose n-th roots x; y; z ofX; Y; Z. Using the standard
notation .xI q/k D .1 � x/.1 � qx/ � � � .1 � qk�1x/ (q-Pochhammer symbol) and following
the notation of [15] (except that they use w.xjk/ for .x�I �/�1

k
), we set

f .x; y j z/ D

n�1X
kD0

.�yI �/k

.�xI �/k
zk D

X
k mod n

.�yI �/k

.�xI �/k
zk 2 H;

where the second equality follows from the relation between x, y, and z. By Equation (C.7)
of [15], we have

.�y/n.1�n/=2 f .x; y j z/n D
D� .1/D� .y�=x/D� .x=yz/

D� .1=x/D� .y�/D� .�=z/
:

Considering this modulo n-th powers, and using Lemma 2.4, we find

1 D P� .X/P� .Y /
�1 P� .Y=X/P� .YZ=X/

�1 P� .Z/:

This is precisely the 5-term relation for the map P� , and the uniqueness clause in Proposi-
tion 2.5 implies the same 5-term relation for the map R� .

2.6. An eigenspace computation

As in Section 1.1, we write G D Gal.Fn=F /, identified with a subgroup of .Z=nZ/� via
the map � of Equation (5). Since F �n =F

�n
n is an n-torsion G-module, the ��1 eigenspace

makes sense and is given by�
F �n =F

�n
n

���1
D fx 2 F �n =F

�n
n j �x D x�.�

�1/; for all � 2 Gg;

where x�.�
�1/ is computed using any lift of �.��1/ 2 .Z=nZ/� to Z.

In characteristic zero, one can also consider the action of G on M ˝Z R, where R is a
ZŒG� module that contains the eigenvalues of � 2 G. For example, one can take M D O�n
and R D C. If n D p is prime, then one can take R D Zp, which contains the .p � 1/-th

roots of unity. In particular, if n D p, then one can define
�
M ˝Z Zp

���1
, which will have

the property that �
M ˝Z Zp

���1
˝ Z=pZ D .M=pM/�

�1

:

Proposition 2.12. – Suppose that F is disjoint from Q.�n/.
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(a) There exists an isomorphism of G-modules

(28)
�
O�n ˝ C

���1
D Cr2.F /:

(b) If n D p is prime, so that � W G ! .Z=pZ/� admits a Teichmüller lift to Z�p , then

rankZp
�
O�n ˝ Zp

���1
D r2.F /:

If in addition � and ��1 are distinct characters of G, then�
O�p =O�pp

���1
D .Z=pZ/r2.F / :

Proof. – Part (b) follows easily from part (a) and the above discussion, together with the
fact that if � ¤ ��1 then the torsion in the unit group (which just comprises roots of unity)
is in the �-eigenspace and not the ��1-eigenspace.

For (a), let eF be the Galois closure of F over Q and let � D Gal.eF=Q/. By assumption,
with eFn D eF .�n/, we have Gal.eFn=Q/ D ��G D ��.Z=nZ/�. From the proof of Dirichlet’s
unit theorem, the unit group of eFn, tensored with C, decomposes equivariantly asM

W

W dim.W jcD1/;

where W runs over all the non-trivial irreducible representations of � � G and c 2 � is
any complex conjugation, which we may take to be .c;�1/ 2 G � .Z=nZ/� for a complex
conjugation c 2 �. The irreducible representations ofW are of the formU˝V for irreducible
representations U of � and V of G D .Z=nZ/�. Note that

dim.U ˝V j.c;�1/ D 1/ D dim.U jc D 1/ dim.V jc D 1/Cdim.U jc D �1/ dim.V jc D �1/:

If we take the ��1-eigenspace under the action of the second factor, the only representation
V of G which occurs is ��1, on which �1 acts by �1, and hence we are left with�

O�eFn ˝ C
���1

D

M
V

V dim.V jcD�1/;

where the sum runs over all representations V of �. In particular, there is an isomorphism in
the Grothendieck group of G-modules� �

O�eFn ˝ C
���1 �

C
�
O�eF ˝ C

�
C
�
C
�
D

�
CŒG�

�
:

Now take the� D Gal.eF=F / D Gal.eFn=Fn/-invariant part and take dimensions, we obtain
the equality

dimC

��
O�Fn ˝ C

���1�
C .r1 C r2 � 1/ C 1 D r1 C 2r2;

where .r1; r2/ is the signature of F . The result follows.

3. Chern Classes for algebraic K-theory

In this section, we will define the Chern class map (12).
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3.1. Definitions

In the following discussion, certain isomorphisms will depend on a choice of some prim-
itive n-th root of unity �. In order to make this clear, we shall write (in this section only)
either D� or D to denote isomorphisms which respectively do or do not depend on such a
choice. Let F be a number field, and letO WD OF denote the ring of integers of F . The Tate
twist Zp.1/ is defined to be the projective limit proj lim�pn of the pn-th roots of unity over
all n, and Zp.m/ WD Zp.1/˝m. The Galois group GF acts on Zp.m/ via the m-th power �m

of the cyclotomic character. For all m � 1, there exists a Chern class map:

c W K2m�1.F /! H 1.F;Zp.m//:

These Chern class maps arise as the boundary map of a spectral sequence, specifically,
the Atiyah-Hirzebruch spectral sequence for étale K-theory. These maps were originally
constructed by Soulé [24, Section II]. We may compose this map with reduction mod pi to
obtain a map:

c W K2m�1.F /! H 1.F;Z=piZ.m//:
By the Chinese remainder theorem, we may also piece these maps together to obtain a map:

c W K2m�1.F /! H 1.F;Z=nZ.m//

for any integer n. Let � be a primitive n-th root of unity, Fn D F.�/ and write G for the
(possibly trivial) Galois group Gal.Fn=F /. Let� denote the module of n roots of unity. There
is a canonical injection

� W G ! Aut.�/ D .Z=nZ/�:
By inflation–restriction, there is a canonical map:

(29) H 1.F;Z=nZ.m//! H 1.Fn;Z=nZ.m//G :

Form � 1, there is an invariantwm.F / 2 N that we will need. It is defined in terms of Galois
cohomology by

wm.F / D
Y
p

ˇ̌
H 0.F;Qp=Zp.m//

ˇ̌
;

Note that w1.F / is equal to wF , the number of roots of unity in F , and w2.F / agrees
with (11) because the action of GF on Z=nZ.2/ � Qp=Zp.2/ for any n precisely factors
through Gal.F.� C ��1/=F / for a primitive n-th root of unity �. We also define

(30) ewF D Y
p

ˇ̌
H 0.eF .�p C ��1p /;Qp=Zp.1//

ˇ̌
;

where eF is the Galois closure of F over Q. Thus ewF is divisible only by the finitely many
primes p such that �p belongs to eF .�pC��1p /. If pjewF and p > 2, then p necessarily ramifies
in F . Note that ewF is always divisible by wF .

Lemma 3.1. – The map (29) is injective for integers n prime to wm.F /.

Proof. – The kernel of this map isH 1.Fn=F;Z=nZ.m//. Assume that this is non-zero. By
Sah’s lemma, this group is annihilated by �m.g/ � 1 for any g 2 G. Equivalently, the kernel
has order divisible bypjn if and only if the elements am�1 are divisible byp for all .a; p/ D 1.
Yet this is equivalent to saying thatH 0.F;Z=pZ.m// � H 0.F;Qp=Zp.m// is non-zero, and
hence pjwm.F /.
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There is an isomorphism Z=nZ.1/ D �. A choice of primitive n-th root of unity � gives a
trivialization t� W Z=nZ.1/ D� Z=nZ.m/ defined by sending � to �˝n. This isomorphism is
not, in general, G-equivariant, but rather satisfies

(31) t� .�x/ D �
1�m.�/� t� .x/:

The dependence of t� on � is given by t�k D k
m�1t� . By Hilbert 90, for a number fieldL, there

is a canonical isomorphism H 1.L; �/ D L�=L�n, and hence (given �) an isomorphism

H 1.Fn;Z=nZ.m//G D� H 1.Fn;Z=nZ.1//�
1�m

D
�
F �n =F

�n
n

��1�m
;

where the first isomorphism is induced by t� . Thus c and � give rise to a map:

(32) c� W K2m�1.F /!
�
F �n =F

�n
n

��1�m
:

3.2. The relation between étale cohomology and Galois cohomology

There are isomorphisms that can be found in Sections 5.2 and 5.4 of [33]

(33) K2m�1.F /˝ Zp ' K2m�1.OF Œ1=p�/ ' K2m�1.OF /˝ Zp
form > 1. These isomorphisms are also reflected in the following isomorphism between étale
cohomology groups and Galois cohomology groups:

H 1
ét.OF Œ1=p�;Zp.m// ' H 1.F;Zp.m//

for m � 2. In particular, we may also view the Chern class maps considered above as
morphisms

c W K2m�1.F /˝ Zp ' K2m�1.OF /˝ Zp ! H 1
ét.OF Œ1=p�;Zp.m//:

Theorem 3.2. – For p > 2, there is an isomorphism

c W K3.F /˝ Zp ' K3.OF /˝ Zp ! H 1
ét.OF Œ1=p�;Zp.2//:

The rank of K3.F / is r2.

Sketch. – This follows from the Quillen-Lichtenbaum conjecture, as proven by Voevodsky
and Rost (see [33], [32]). In this case, it can also be deduced from the description of torsion
in K3.F / by Merkurjev and Suslin [19] (described in terms of w2.F / above) combined with
Borel’s theorem for the rank (see also Theorem 6.5 of [29]), and the result of Soulé that the
Chern class map is surjective.

Lemma 3.3. – Suppose that p ∤ w2.F / for every prime p with p2jn. Then the map

(34) c� W K3.F /! K3.F /=nK3.F /!
�
F �n =F

�n
n

���1
is injective on K3.F /=nK3.F /.

Proof. – By the Chinese Remainder Theorem, it suffices to consider the case n D pm. In
light of Theorem 3.2, it suffices to show that the map

H 1.F;Zp.2//=n! H 1.F;Z=nZ.2//! F �n =F
�n
n

is injective. The kernel of the first map is H 0.F;Zp.2//=n D 0. The kernel of the second
map is, via inflation–restriction, the group H 1.Gal.Fn=F /;H 0.F;Z=nZ.2///. If n D p,
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then Gal.Fn=F / has order prime to p and the cohomology group vanishes. If p2jn, this
group is certainly zero unless

H 0.F;Z=nZ.2// � H 0.F;Qp=Zp.2//

is non-zero, or in other words, unless p divides w2.F /.

3.3. Upgrading from F �n to OFn Œ1=S��

The following is a consequence of the finite generation of K3.F /:

Lemma 3.4. – For any field F , there exists a finite set S of primes which avoids any
given finite set of primes not dividing n such that the image of c� on K3.F /=nK3.F / may
be realized by an element of O�

F.�/
Œ1=S�.

Proof. – Note that without the requirement that S avoids any given finite set of primes
not dividing n, the result is a trivial consequence of the fact that K3.F / is finitely gener-
ated. The construction of c as a map to units in F �n proceeded via Hilbert 90. In light of
Theorem 3.2 above, it suffices to do the same with H 1.Fn; �/ replaced by H 1

ét.OFn Œ1=S�; �/
for some set S containing pjn. However, in this case, the class group intervenes, as there is
an exact sequence ([20], p.125):

OFn Œ1=S��=OFn Œ1=S��n ! H 1
ét.OFn Œ1=S�; �/! Pic.OFn Œ1=S�/Œn�;

whereMŒn� denotes the n-torsion ofM and Pic is the Picard group, which may be identified
with the class group of OFn Œ1=S�. It is well known that one can represent generators in the
class group by a set of primes avoiding any given finite set of primes, and hence for a set S
including primes for each generator of the class group, the last term vanishes.

3.4. Upgrading from S -units to units

We give the following slight improvement on Lemma 3.4.

Lemma 3.5. – Suppose that any prime divisor p of n is odd and divides neither the
discriminant of F nor the order of K2.OF /. Then the image of c� on K3.F /=nK3.F / may
be realized by an element of O�n .

Proof. – By Lemma 2.8, it suffices to consider the case when n is a power ofp. Let � D �n.
The fact that p is prime to the discriminant of F implies that F.�/=F is totally ramified
at p. The image of c� factors through H 1

ét.OŒ1=p�;Z=nZ.2//, and, via inflation–restriction,
through H 1

ét.OF.�/Œ1=p�;Z=nZ.1//. The Kummer sequence for étale cohomology gives a
short exact sequence:

OF.�/Œ1=p��=OF.�/Œ1=p��n ! H 1
ét.OF.�/Œ1=p�;Z=n.1//! Pic.OF .�/Œ1=p�/Œn�:

The image of c� lands in the ��1-invariant part of the second group. The ��1-invariant
partM��1 of aG-moduleM is non-zero if and only if the largest��1-invariant quotientM��1

is non-zero. However, by results of Keune [16], there is an injection

.Pic.OF .�/Œ1=p�/=pm/��1 ! K2.OF /=pm:

In particular, the pushforward of the image of c� to the Picard group is trivial when-
ever K2.OF / ˝ Zp is trivial. Since we are assuming that p does not divide the order
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of K2.OF /, we deduce that the image of c� is realized by p-units. We now upgrade this to
actual units. There is an exact sequence:

.OF.�//�=.OF.�//�n ! .OF.�/Œ1=p�/�=.OF.�/Œ1=p�/�n !
M
vjp

Z=nZ;

where the last map is the valuation map. Since p is totally ramified in F.�/=F , the action
of G on the final term is trivial. By assumption, the quotient Gal.F.�p/=F / is non-trivial,
and hence the ��1-invariants of the final term are zero. Hence, after taking ��1-invariants,
we see that the image of c� comes from a unit.

3.5. Proof of Theorem 1.5

We have all the ingredients to give a proof of Theorem 1.5. Fix an odd natural number n
and a primitive n-th root of unity �. Consider the Chern class map

c� W K3.F /=nK3.F /!
�
F �n =F

�n
n

���1
from (34). When n is either square-free or if any prime p2jn is coprime to w2.F /, the above
map is injective by Lemma 3.3. When n is furthermore coprime to the discriminant�F of F
and the order of K2.OF /, Lemma 3.5 implies that the above map factors through a map

c� W K3.F /=nK3.F /!
�
O�n =O�nn

���1
;

where On is the ring of integers of Fn. If p2jn and pjw2.F / is odd, then either pj�F
or p D 3, hence the assumptions .n; w2.F /�F jK2.OF /j/ D 1 and n odd are equivalent
to .n; 6�F jK2.OF /j/ D 1, and if n is furthermore not divisible by 9, they are equivalent
to .n; 2�F jK2.OF /j/ D 1, justifying the claims made concerningMF in Remark 1.4. When
n is prime (or more generally square-free), then (10) and Proposition 2.12(b) imply that both
sides of the above equation are abelian groups isomorphic to .Z=nZ/r2.F /. It follows that
when n is square-free and coprime to 2�F jK2.OF /j, then the above map is an injection of
finite abelian groups of the same order, and hence an isomorphism. This concludes the proof
of Theorem 1.5.

4. Reduction to finite fields

As we will see in Section 5, the comparison of the maps c� and R� and the proof of
Theorem 1.6 require a reduction of both maps to the case of finite fields. In this section,
we review the local Chern classes and the Bloch groups of finite fields, and introduce local
(finite field) versions of the maps c� andR� . We will be considering the case that n is a prime
power pm, and will denote by � a primitive n-th root of unity.

4.1. Local Chern class maps

Let q be a prime of norm q � �1 mod n in OF . We work with these primes for several
(related) reasons. The first is that the groupsK3.Fq/we consider below have order q2�1, and
so to see interesting classes in K3.F /=nK3.F / we require that q2 � 1 be divisible by n, and
this necessitates choosing q � ˙1 mod n. If q � 1 mod n, then Fq contains the n-th roots of
unity, which we generally need to avoid in our construction. The reason to avoid n-th roots of
unity manifests itself quite concretely in this setting: the Bloch group B.Fq/ itself turns out
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to have order (more or less) qC1 rather than q2�1, so it won’t see any interesting n-torsion
classes unless q � �1 mod n. The residue field ofOF at q is Fq , and the residue field ofOF.�/
at a primeQ above q is Fq2 D Fq.�/. Following Lemma 3.4, suppose that S does not contain
any primes dividing q.

Lemma 4.1. – There exists a commutative diagram of Chern class maps as follows:

K3.F /=nK3.F /
c�- .OŒ1=S��F.�/=OŒ1=S�

�n
F .�//

��1

K3.Fq/=nK3.Fq/
?

DDDDDDDDDD
c�;q

F�
q2
=F�n

q2
:

?

Proof. – By the Chinese Reminder Theorem, we may reduce to the case when n D pm.
There is an isomorphism K3.F /˝ Zp ' K3.OF /˝ Zp (see Theorem 3.2). Let OF;q be the
completion of OF at q. We have a more general diagram as follows:

K3.OF /=nK3.OF /
c� - H 1

ét.OF Œ1=p�;Z=nZ.2// - .OŒ1=S��F.�/=OŒ1=S�
�n
F .�//

��1

K3.OF;qIZp/=nK3.OF;qIZp/
?

DDDD
c�;q

H 1
ur.OF;q;Z=nZ.2//

?

DDDDDDDDDDD F�
q2
=F�n

q2

?

K3.Fq/=nK3.Fq/

wwwwwwwwww
DDDDDDDDDD

c�;q
H 1.Fq;Z=nZ.2//

wwwwwwwww
DDDDDDDDDDDD F�

q2
=F�n

q2
:

wwwwwwwww
The image of H 1

ét.OF Œ1=p�/ in the cohomology of OF;q for q prime to p lands in the
subgroup H 1

ur of unramified classes. This subgroup is precisely the image of H 1.O=q;Z=nZ.2//
under inflation. The first horizontal map on the right hand side was constructed previously,
and the other two horizontal maps on the right hand side are constructed in the same way.
The reason that the ��1-invariants do not appear on the factors F�

q2
=F�n

q2
is that the Galois

group already acts by ��1. More precisely, on the one hand, Gal.Fq2=Fq/ is generated
by Frobenius which acts as multiplication by q � �1 mod n, and on the other hand,
Gal.Fq2=Fq/ D Gal.Fq.�p/=Fq/, and the character ��1 is precisely the non-trivial character
of this group. The identification of the two lower horizontal lines is a reflection of Gabber
rigidity, which implies that K3.OF;qIZp/ ' K3.Fq/˝ Zp.

Proposition 4.2. – Let eF denote the Galois closure of F , and suppose that � … eF .� C ��1/.
(Equivalently, suppose that n is prime to ewF of Equation 30.)

(a) There is a map:

K3.F /=nK3.F /

L
c�;q-

M
F�
q2
=F�n

q2
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where the sum ranges over all primes q of prime norm q � �1 mod n which split
completely in F , or alternatively runs over all but finitely many primes q � �1 mod n
which split completely in F .

(b) The image of this map is isomorphic to the image of the global map c� , which is
injective if .n; w2.F // D 1.

(c) For � 2 K3.F /, the set ˚
q � OF Œ1=S�

ˇ̌
c�;q.�/ D 0

	
(for any finite S ) determines the image of � up to a scalar.

Proof. – It suffices to consider the case where n D pm. Let � 2 K3.F /, and let the
class of c� .�/ be represented by an S -unit �. Because of the Galois action, this gives rise
via Kummer theory to a Z=nZ-extension H of F.� C ��1/, and such that the reduction
mod q of � determines the element Frobq 2 Gal.H=F.� C ��1//. (Explicitly, we have
H.�/ D F.�; �1=n/.) Hence our assumptions imply that any prime q which splits completely
in F.� C ��1/ (which forces q � ˙1 mod n) and is additionally congruent to �1 mod p

must split in H . Let eH denote the Galois closure of H over Q, and eF the Galois closure
of F over Q. Note that the Galois closure of F.� C ��1/ is eF .� C ��1/. A prime q splits
completely in H if and only if it splits completely in eH , and splits completely in F.� C ��1/
if and only if it splits completely in eF .� C ��1/. We have a diagram of fields as follows:eH eH.�/

eF .� C ��1/ eF .�/:
By assumption, we have � … eF .�C ��1/. SinceH=F.�C ��1/ is cyclic of degree n, it follows
that Gal. eH=eF .� C ��1// is an abelian p-group. Also, Gal.eF .�/=eF .� C ��1// D Z=2Z. so
Gal. eH.�/=eF .� C ��1// is the direct sum of Z=2Z with a p-group.

Let � 2 Gal. eH.�/=eF .� C ��1// � Gal. eH=Q/ denote an element of order 2p. By
the Chebotarev density theorem, there exist infinitely many primes q 2 Q with Frobe-
nius element in Gal. eH=Q/ corresponding to � . By construction, the prime q splits
completely in eF .� C ��1/ because the corresponding Frobenius element is trivial in
Gal.eF .� C ��1/=Q/. Since � has order divisible by 2 and by p, it is non-trivial in both
Gal.eF .�/=eF .� C ��1// D Gal.Q.�/=Q.� C ��1// and Gal. eH=eF .�C ��1//. The first condi-
tion implies that q � �1 mod n, and the second condition implies that q does not split
completely in H , a contradiction. The injectivity (under the stated hypothesis) follows from
Lemma 3.1.

Remark 4.3. – The condition that � … eF .� C ��1/ is automatic if p is unramified
in F , because then the ramification degree of Q.�/ is p � 1 whereas the ramification degree
of eF .� C ��1/ is .p � 1/=2 for p odd. If � 2 eF .� C ��1/, then there are no primes q which
split completely in F and have norm �1 mod n. In particular, when � 2 eF .� C ��1/, we
have B.Fq/˝ Fp D 0 for every prime q which splits completely in F .
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4.2. The Bloch group of Fq

In order to make our maps explicit, we must relate the Chern class map to the Bloch
group. Let p > 2 and q > 2 be odd primes such that q � �1 mod n, where n D pm.
For a finite field Fq , the group F�q is cyclic, so

V2 F�q is a 2-torsion group. Hence the Bloch
groupB.Fq/ coincides with the pre-Bloch group after tensoring withFp, where the pre-Bloch
group is defined as the quotient of the free abelian group onP1.Fq/ by the 5-term relation (3).
By [13], the Bloch group B.Fq/ is a cyclic group of order q C 1 up to 2-torsion. Moreover,
following [13], one may relate B.Fq/ to the cohomology of SL2.Fq/ in degree three, as we
now discuss.

There is an isomorphism

H3.SL2.Fq/;Z/˝ Z=nZ ' Z=nZ:

Let us describe this isomorphism more carefully. By a computation of Quillen, we know that
H3.SL2.Fq/;Z/ is cyclic of order q2 � 1. It follows that the p-part of this group comes from
the p-Sylow subgroup. If one chooses an isomorphism

Fq2 ' .Fq/2

of abelian groups, one gets a well defined map:

F�
q2
D C D AutFq .Fq2/! GL2.Fq/

which is well defined up to conjugation. There is, correspondingly, a map C 1 ! SL2.Fq/,
where

C 1 D Ker
�
N W F�

q2
! F�q

�
:

We refer to both C and C 1 as the non-split Cartan subgroup. By Quillen’s computation, we
deduce that there is a canonical map:

C 1 D H3.C
1;Z/! H3.SL2.Fq/;Z/

which is an isomorphism after tensoring with Z=nZ. There is a canonical isomorphism
C 1Œn� D �, where � denotes the n-th roots of unity. Hence to give an element of order p
in H3.SL2.Fq/;Z/ up to conjugation is equivalent to giving a primitive n-th root of unity
� 2 C 1 � C D F�

q2
. From [13], there is a canonical map:

H3.SL2.Fq/;Z/! B.Fq/;

at least away from 2-power torsion, which is an isomorphism after tensoring with Z=nZ.
Given a root of unity �, let t denote the corresponding element of SL2.Fq/. The corre-
sponding element of B.Fq/ is given (see [13]) by:X

k mod n

"
t .1/ � tkC1.1/

t.1/ � tkC2.1/

#
:

This construction yields the same element for � and ��1. We may represent t by its conjugacy
class in GL2.Fq/, which has determinant one and trace � C ��1 2 Fq . The choice of � up to
(multiplicative) sign is given by this trace. Note that the congruence condition on q ensures
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that the Chebyshev polynomial with roots � C ��1 has distinct roots which split completely
over Fq . Explicitly, we may choose

t D

 
0 1

�1 � C ��1

!
D A

 
��1 0

0 �

!
A�1; A D

 
� ��1

1 1

!
:

Let Fk be the Chebyshev polynomials, so Fk.2 cos�/ D
sin k�
sin�

. Then

tk.1/ D
Fk�1.� C �

�1/

Fk.� C ��1/

and an elementary computation then shows that the corresponding element in B.Fq/˝ Zp
is given by

(35)
X

k mod n

�
1 �

1

Fk.� C ��1/2

�
D

X
k mod n

"
1 �

�
� � ��1

�k � ��k

�2#
:

4.3. The local Chern class map c�

In this section, q will denote a prime with q � �1 mod pm which splits completely in F .
Let q be a prime above q. There is a natural mapB.F /! B.OF =q/ D B.Fq/. The reduction
map sends Œx� to Œx� under the natural reduction map P1.F /! P1.Fq/.

Lemma 4.4. – Let p > 2. There is a commutative diagram as follows:

B.F /=nB.F / -
M

B.Fq/˝ Z=nZ

K3.F /=nK3.F /

wwwwwwwwww
-

M
K3.Fq/˝ Z=nZ

'

DDDDD

L
c�;q M

F�
q2
=F�n

q2
;

where the product runs over all primes q of norm q � �1 mod nwhich split completely inF ,
or alternatively all but finitely many such primes.

Proof. – The isomorphism of the left vertical map is a theorem of Suslin [28, Theorem 5.2],
and the isomorphism of the right vertical map follows from [13]. The fact that the diagram
commutes is a consequence of the fact that both constructions are compatible (and can be
seen in group cohomology).

Recall that an element x of an abelian group G is p-saturated if x 62 Œp�G, where
Œp� W G ! G is the multiplication by p map.

Corollary 4.5. – There is an algorithm to prove that a set of generators of B.F / is
p-saturated for p > 2.

Proof. – Computing B.Fq/ is clearly algorithmically possible. Moreover, we can a
priori compute B.F / ˝ Zp as an abstract Zp-module. Hence it suffices to find sufficiently
many distinct primes q such that the image of a given set of generators has the same order
as B.F /=nB.F /.
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In light of the commutative diagram of Lemma 4.4, we also use c� to denote the Chern
class map on B.F /=nB.F /.

4.4. The local R� map

Suppose that q � �1 mod p. It follows that the field Fq does not contain �p, and so
Proposition 2.5 applies to give maps P� and R� which are well defined over this field. In
particular, since .p; q � 1/ D 1, all elements of Fq are p-th powers, and hence the Kummer
extension H is given by H D Fn and R� and P� coincide.

5. Comparison between the maps c� and R�

The main goal of this section, carried out in the first subsection, is to prove Theorem 1.6.
The main result here is Theorem 5.2, which says that our modn local regulator mapR�;q gives
an isomorphism fromB.Fq/˝Z=nZ toF�

q2
˝Z=nZ for any prime power n and prime q � �1

.mod n/. This implies in particular the existence of a curious “mod-p–q dilogarithm map”
from Fq to Z=nZ, and in Section 5.2, we digress briefly to give an explicit formula for this
map. In the final subsection, we describe the expected properties of the Chern class map that
would imply the conjectural equality (14) and hence, in conjunction with (13), the evaluation

 D 2 of the comparison constant 
 occurring in Theorem 1.6.

5.1. Proof of Theorem 1.6

Throughout this section, we set n D pm, and let � denote a primitive n-th root of unity.
For a prime q � �1 mod n that splits completely in F , and for a corresponding prime q
above q, let R�;q denote the map B.OF =q/ D B.Fq/! F�

q2
=F�n

q2
.

We have two maps we wish to compare. One of them is

c� W B.F /=nB.F / !
�
F �n =F

�n
n

���1
:

Because B.F / is a finitely generated abelian group, we may represent the generators of the
image by S -units for some fixed S (at this point possibly depending on n) and consider the
map

c� W B.F /=nB.F /! .OF.�/Œ1=S��=OF.�/Œ1=S��n/�
�1

,!
M

F�
q2
=F�n

q2
'

M
B.Fq/;

where the final sum is over all but finitely many primes q of norm q � �1 mod n which split
completely in F . We have the diagram

B.F /=nB.F /
R� - .OF.�/Œ1=S��=OF.�/Œ1=S��n/�

�1

M
B.Fq/˝ Z=nZ

?
R�;q -

M
F�
q2
=F�n

q2
:

?

We have already shown, by Chebotarev (Proposition 4.2(b)), that c� .�/ for � 2 K3.F / is
determined up to scalar by the set of primes for which c�;q.�/ D 0. Hence the result is
a formal consequence of knowing that the maps R�;q are isomorphisms for all q of norm
q � �1 mod n. This is exactly Theorem 5.2 below.
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By (10), the p-torsion subgroup of K3.Q.� C ��1// is isomorphic to Z=nZ. Since
Q.� C ��1/ is totally real, we have an isomorphism:

K3.Q.� C ��1//˝ Zp ' Z=nZ:

Lemma 5.1. – Letp > 2 andn D pm. Suppose that q � �1 mod n and q 6� �1 mod pn.
The prime q splits completely in Q.� C ��1/. Let Fq denote the residue field at one of the
primes above q. Then the map

K3.Q.� C ��1//˝ Zp ! B.Fq/˝ Zp

is an isomorphism.

Proof. – If n is odd, a generator of B.Q.� C ��1//Œn� ' K3.Q.� C ��1// ˝ Zp is given
explicitly by the element

(36) �� WD
X

k mod n

"
1 �

�
� � ��1

�k � ��k

�2#
D

X
k mod n

0@Œ0�C 24 �k � ��k
� � ��1

!2351A :
(The equivalence of these expressions follows from the identities Œ0�C Œ1=X� D Œ0� � ŒX� D

Œ1 � X�.) This can also be proved by combining the calculation given on p. 40 of [35] with
the ones given at the end of Section 4.2, or following an argument similar to the proof
of [37, Theorem 1.4]. (See also [8, Proposition 5.4].) The reduction modulo any prime above q
generates the latter group, as follows from the discussion in Section 4.2 (see in particular
equation (35).)

We now prove Theorem 5.2 as mentioned above:

Theorem 5.2. – Let n be an odd prime power and q � �1 mod n. Then the map

R�;q W B.Fq/˝ Z=nZ! F�
q2
˝ Z=nZ

is an isomorphism, where � is an n-th root of unity.

Proof. – Note that B.Fq/ is cyclic of order q C 1 up to 2-torsion, and F�
q2

is cyclic of

order q2 � 1. In particular, for odd primes p with q � �1 mod p, the groups B.Fq/ ˝ Zp
andF�

q2
˝Zp are isomorphic to each other and toZp=.qC1/Zp. We begin with the following:

Lemma 5.3. – For n an odd prime power, R� .�� / D �


2 .Q.�/�=Q.�/�n/��1 for

some 
 2 Zp.

Proof. – Write �n D � and let �0 be an n2-th root of unity. Consider the image of
R� 0.�� 0/. Because �� is divisible by n in B.Q.�0/C/, the image is a n-th power. Hence, by the
compatibility of the maps R for varying n (Lemma 2.7 (2)), it follows that R� .�� / lies in the
kernel of the map �

Q.�/�=Q.�/�n
���1

!
�
Q.�0/�=Q.�0/�n

���1
:

But this kernel consists precisely of n-th roots of unity.
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Let ��;q 2 B.Fq/ denote the reduction of �� in B.Fq/. By Lemma 5.1, the image also
generates B.Fq/ ˝ Z=nZ. Since all primes q � �1 mod n split completely in Q.�/C, if

 6� 0 mod p, the result above follows by specialization. We proceed by contradiction and
assume that 
 � 0 mod p, which means that the image of the map P�;q is divisible by p for
all q of norm q satisfying q � �1 mod n. In particular, to prove the result, it suffices to find
a single such q for which R�;q is an isomorphism.

Choose a completely split prime r in Q.�/. Assume that

� � a�1 mod r; � 6� a�1 mod r2

for some integer a ¤ 1. The splitting assumption means that an a satisfying the first
condition exists. Replacing a�1 by .aCN.r//�1 if necessary implies the second, because

1

a
�

1

aCN.r/
D

N.r/

a.aCN.r//
6� 1 mod r2:

Let

� D

n�1Y
kD0

.1 � �ka/k 2 Q.�/�:

Lemma 5.4. – � � �i is not a perfect p-th power for any i .

Proof. – The assumption on r implies that all the p-th roots of unity are distinct
modulo r, and hence the only factor of � divisible by r is .1 � a�/, which has valuation
one.

The element � gives rise, via Kummer theory, to a Z=nZ-extension F=Q.�/C. By the
Lemma above, it is non-trivial. Let q � �1 mod n be prime. Then, for a prime q above q,
the element Frobq 2 Gal.F=Q.�/C/ fails to generate Z=nZ if and only if � is a perfect p-th
power modulo q. This is equivalent to saying that Frobq generates Gal.F=Q.�/C/ if and only
if

R�;q.Œa
n�/ D P�;q.Œa

n�/ D

n�1Y
kD0

.1 � a�k/k 2 F�
q2
˝ Z=nZ

is a generator. Hence it suffices to find a single q � �1 mod n and q 6� �1 mod np with
the desired Frobenius. Such a q exists by Chebotarev density unless h�i D h�i mod Q.�/�p.
However, this cannot happen by Lemma 5.4.

Proof of Theorem 1.2. Assume that n is prime to w2.F /. It follows that the Chern class map
gives an injection

K3.F /=nK3.F /! OFn Œ1=S��=OFn Œ1=S��n

for some finite set of primes S . If, in addition, we assume that p does not divide ewF , then
we deduce from Proposition 4.2 that this map can be extended to an injection into the
group

L
q B.Fq/=nB.Fq/. By Theorem 1.5, this agrees with the map R� defined on B.F /,

which is thus injective. If one additionally assumes that n is prime to j�F jjK2.OF /j, then
by Lemma 3.4 one may additionally assume that the image is precisely the ��1-invariants
of O�Fn=O

�n
Fn

.
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5.2. Digression: the mod-p–q dilogarithm

Let q be prime, and q C 1 � 0 mod n with n a power of p as before. For convenience
of exposition, assume that p > 3 so that D� .1/ is a perfect n-th power. Fix an n-th root of
unity � in Fq2 . Then there is a trivialization log� W F�q2 ˝ Z=nZ ' Z=nZ sending � to 1.
The isomorphism B.Fq/ ˝ Zp ' Z=nZ of Theorem 5.2 now gives a curious function, the
p q dilogarithm, which is a function

L W Fq ! F�
q2
˝ Z=nZ

log�
! Z=nZ

satisfying the 5-term relation. What is perhaps surprising is that the quantum logarithm
suffices to give an explicit formula, as follows.

Proposition 5.5. – The function L is given by the formula

L.a/ D
X
bnDa

log� .b/ log� .1 � b/ .a 2 F�q /;

where the sum is over the n-th roots b of a in F�
q2

.

Proof. – Since F�q has order prime to n, the element a has a unique n-th power c 2 F�q .
Then (24) can be rewritten as L.a/ D

P
k mod n k log� .1 � �

kc/. (Note that R� D P� for
finite fields, and the assumption that p > 3means that we can ignore theD� .1/ factor.) The
elements b D �kc are the n-th roots of a in F�

q2
, and log� .b/ D k because c has order prime

to n and thus log� .c/ D 0.

5.3. The Chern class map on n-torsion in Q.�/C

The following section contains a speculative digression and is not used elsewhere in the
paper. We have proved that the maps c� and R� agree up to an invertible element of Z�p .
To determine the value of this ratio, we need to compute the images of specific elements
of the Bloch group. More specifically, as explained in the introduction, we need the two
statements (13) and (14). The first of these will be proved below (Theorem 7.4). Here we want
to show that the second is not pure fantasy. We shall give a heuristic justification of why the
image of the Chern class map on �� should be �-–at least up to a sign and a small power of 2
in the exponent. We hope that the arguments of this section could, with care, be made into a
precise argument. However, since the main conjecture of this section is somewhat orthogonal
to the main purpose of this paper, and correctly proving everything would (at the very least)
involve establishing that several diagrams relating the cohomology of SL2 and PSL2 and GL2
and PGL2 commute up to precise signs and factors of 2, we content ourselves with a sketch,
and enter the happy land where all diagrams commute.

The first subtle point is that the relation betweenK3.F / andB.F / as established by Suslin
is not an isomorphism. There is always an issue with 2-torsion coming from the image of
Milnor K3. However, even for primes p away from 2, there is an exact sequence of Suslin
([28], Theorem 5.2; here F is a number field so certainly infinite):

0! Tor1.�F ; �F /˝ ZŒ1=2�! K3.F /˝ ZŒ1=2�! B.F /˝ ZŒ1=2�! 0;

and hence when pjwF D j�F j, the comparison map is not an isomorphism. (This is one
of the headaches which required us to assume that � … F when computing the Chern class
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map on B.F /.) This issue arises in the following way. Over the field Q.�/, the Bott element
provides a direct relationship between K1.F;Z=nZ/ and K3.Z;Z=nZ/. This suggests
we should push forward �� to Q.�/ and compute the Chern class there. However, since
in B.Q.�//, the class �� may (and indeed does) become trivial, we instead consider �� as an
element of K3.Q.�//, and then compute the Chern class map directly in K-theory.

By Theorem 4.10 of Dupont-Sah [7], the diagonal map

x !

 
x 0

0 x�1

!
induces an injection

�C ' H3.�C;Z/! H3.SL2.C/;Z/;
whose image is precisely the torsion subgroup. (We shall be more precise about this first
isomorphism below.) Let n be odd, and let � be a primitive n-th root of unity, let E D Q.�/,
and let EC D Q.�/C. If �E is the group of n-th roots of unity, the map �E ! SL2.E/ is
conjugate to a map

�E ! SL2.EC/

as follows; send � to

t D A

 
��1 0

0 �

!
A�1; where A D

 
� ��1

1 1

!
:

The cohomology of �E with coefficients in Z=nZ is (non-canonically) isomorphic to Z=nZ
in all degrees. More precisely, there is a canonical isomorphism

H1.�E ;Z/ D H1.�E ;Z=nZ/ D �E ;

we have H2.�E ;Z/ D 0, and thus via the Bockstein map H2.�E ;Z=nZ/ D H1.�E ;Z/Œn� D �E .
A choice of � leads to a choice of element ˇ 2 H2.�E ;Z=nZ/ D �E , and hence to an
isomorphism

�E D H1.�E ;Z=nZ/
�ˇ
�! H3.�E ;Z=nZ/ D H3.�E ;Z/;

where the isomorphism is given by the Pontryagin product of �E with ˇ 2 H2.�E ;Z=nZ/.
These choices induce a map

�E ! H3.�E ;Z/! H3.SL2.EC/;Z/! K3.E
C/! B.EC/;

which sends � to �� . That the image of � is �� follows (for example) by §8.1 of [37]). Implicit
in this statement also is that the Pontryagin product of 1 2 Z=nZ D H1.Z=nZ;Z=nZ/
with 1 2 H2.Z=nZ;Z=nZ/ is exactly the class constructed in Proposition 3.25 of Parry
and Sah [23]. (The maps above are only properly defined modulo 2-torsion, since � has odd
order this issue can safely be ignored). Denote by �EC the corresponding element inK3.EC/.
The Chern class maps are compatible with base change, so to compute c.�EC/ it suffices to
compute c.�E / where �E 2 K3.E/ is the image of �EC under the map K3.EC/ ! K3.E/.
The Chern class map on K1.E/ D E� canonically sends � 2 E� to �; we would like to
directly connect the Chern class map onK1 with the one onK3 using the Bott element. The
Bott element ˇ 2 K2.EIZ=nZ/ is defined as follows. There is an isomorphism:

�E D ker
�
E�

n
�! E�

�
D �2.E

�
IZ=nZ/:
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The element ˇ is defined as the image of � under the composition

�2.BGL1.E/IZ=nZ/! �2.BGL.E/IZ=nZ/! �2.BGL.E/CIZ=nZ/ D K2.EIZ=pZ/:

The Bott element induces an isomorphism:

ˇ W K1.EIZ=nZ/! K3.EIZ=nZ/:

Hence there is, given our choice of � 2 E, a canonically defined map:

K3.E/ E�=E�n

K3.EIZ=nZ/
?

c �

-

K1.E;Z=nZ/

ˇ�1

wwwwwwwwww
c- E�=E�n:

wwwwwwwwwwwwwwwwwwwwwwww
Here c� is the composition of the Chern class map to H 1.E;Z=nZ.2// which can be identi-
fied withE�=E�n after a choice of � 2 E. Note that the definition of ˇ also requires a similar
choice. Thus it makes sense to make the following:

Assumption 5.6. – The diagram above commutes.

Using Assumption 5.6, we would like to show that c� .�E / D �, and hence that c� .�EC/
and thus c� .�� / are also both equal to �. This will follow if, under the Bott element, the
class �E corresponds to � 2 K1.EIZ=nZ/. To prove this, one roughly has to show that the
following square commutes:

�E D H1.�E ;Z=nZ/
�-̌ H3.�E ;Z=nZ/

E�=E�n D K1.E;Z=nZ/
?

-̌ K3.EIZ=nZ/:
?

The top line comes from the Pontryagin product structure of H1.�E ;Z=nZ/ D �E with

H2.�E ;Z=nZ/ D ker.�E
Œn�
�! �E /;

and the bottom line comes from Pontryagin product with the Bott element ˇ coming via the
Bockstein map from

ker.E�
Œn�
�! E�/:

We conveniently denote both maps by essentially the same letter in order to be more sugges-
tive. One caveat is that the maps from E� ! GL2.E/ and �E ! SL2.E/ considered above
differ slightly in that x is sent to

�
x 0
0 1

�
and

�
x 0
0 x�1

�
respectively; since n is odd such maps can

be compared by comparing the cohomologies of GL, PGL, SL, and PSL respectively; it is
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quite possible that such comparisons might require that the maps above include a factor of 2
or �1 at some point.

The above discussion above makes the conjectured Equation (14) plausible.

6. The connecting homomorphism to K-theory

In this section, we give a proof of Theorem 1.7. Assume that F is a field of characteristic
prime to p which does not contain a p-th root of unity. Recall that Z.F / is the free abelian
group on F X f0; 1g and C.F / the subgroup generated by the 5-term relation.

Definition 6.1. – Let A.F IZ=nZ/ be the kernel of the map

d W Z.F / �!
V2F � ˝ Z=nZ; ŒX� 7! X ^ .1 �X/:

The étale Bloch group B.F IZ=nZ/ is the quotient

B.F IZ=nZ/ D A.F IZ=nZ/=.nZ.F /C C.F //:

It is annihilated by n.

There is a tautological exact sequence

0! B.F /! Z.F /=C.F /!
V2F � ! K2.F /! 0:

For appropriately definedR, we may break this into the two short exact sequences as follows:

0 - A.F / - Z.F / - R - 0

0 - B.F /

??
- Z.F /=C.F /

??
- R

wwwwwwwwww
- 0;

(37) 0! R!
V2F � ! K2.F /! 0:

Similarly, for someQ, withQ � R and nR � Q � n
V2F �, we have corresponding short

exact sequences:

0 - A.F / - A.F IZ=nZ/ - Q - 0;

0 - A.F /=.nZ.F /C C.F //

??
- A.F IZ=nZ/=.nZ.F /C C.F //

??
- Q=nR

??
- 0

0 - B.F /=nB.F /

wwwwwwwwww
- B.F IZ=nZ/

wwwwwwwwww
- Q=nR

wwwwwwwwww
- 0:

From now on, we make the assumption that the number field F does not contain a p-th
root of unity for any p dividing n. This implies from the previous inclusions that Q
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and R are all p-torsion free for pjn. Tensor the exact sequence (37) with Z=nZ. The
group Tor1.Z=nZ;^2F �/ vanishes by our assumption. Hence we have an exact sequence:

(38) 0! K2.F /Œn�! R=nR!
V2F � ˝ Z=nZ! K2.F /=nK2.F /! 0:

Recall that R is the image of Z.F / in
V2F � and Q is the image of A.F IZ=nZ/, which

is precisely the kernel of the map from R to
V2F � ˝ Z=nZ. It follows that the image

of Q in R=nR is the kernel of the map from R=nR to
V2F � ˝ Z=nZ. From the short

exact sequence (38), this may be identified with K2.F /Œn�. Since the image of Q in R=nR
is precisely Q=nR, however, this shows that Q=nR ' K2.F /, we obtain the exact sequence:

0 �! B.F /=nB.F / �! B.F IZ=nZ/ �! K2.F /Œn� �! 0;

completing the proof of Theorem 1.7.

The previous result was a diagram chase. The map ı W B.F IZ=nZ/ ! K2.F / can be
given explicitly as follows: Lift Œx� 2 B.F IZ=nZ/ to an element x of A.F IZ=nZ/=C.F /,
which is unique up to an element of nZ.F /. The image of x in

V2F � ˝ Z=nZ is zero by
definition. Hence, because

V2F � is p-torsion free for pjn, there exists an element y 2
V2F �

such that the image of z in
V2F � is ny, and now y is unique up to an element in the image

of C.F /. But the projection z of y 2
V2F � to K2.F / sends this ambiguity C.F / to zero,

and so ı.Œx�/ WD z 2 K2.F / is well defined.

If we assume that n is not divisible by any prime p which divides w2.F /, we have
constructed a map

(39) R� W B.F IZ=nZ/! .F �n =F
�n
n /�

�1

' H 1.F;Z=nZ.2//:

Taking n D pm for various m, and using the fact that B.F / is finitely generated and
so proj limB.F /=pmB.F / D B.F /˝ Zp, we obtain a commutative diagram as follows:

(40)

0 - B.F /=nB.F / - B.F IZ=nZ/ - K2.F /Œn� - 0

0 - H 1.F;Zp.2//=n
?

- H 1.F;Z=nZ.2//
?

- H 2.F;Zp.2//Œn�
?

- 0:

The first vertical map is an isomorphism by Theorem 3.2, taking into account the identifi-
cation of B.F /=nB.F / with K3.F /=nK3.F / for .n; wF / D 1 and equation (33). The last
vertical map is also an isomorphism by a theorem of Tate [29]. It follows that the map R� in
Equation 39 is an isomorphism for n prime to w2.F /. This gives a link between our explicit
construction of Chern class maps forK3.F / and the explicit construction ofK2.F / in Galois
cohomology by Tate [29].

We end this section with a remark on circular units. Let F D Q.�D/. Associated to a
primitive D-th root of unity �D , Beilinson (see §9 of [12]) constructed special generating
elements ofK3.F /, which correspond, on the Bloch group side, to the classesD�Œ�D� 2 B.F /.
(Note that D � �D ^ .1� �D/ D �DD ^ .1� �D/ D 0 2 ^

2F � so D � Œ�D� does indeed lie in the
Bloch group.) Soulé [25] proved that the images of these classes under the Chern class map
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consist exactly of the circular units. For p not dividing D, we see that the images of DŒ�D�
under the maps R� are unit multiples of the elements

pm�1Y
kD0

.1 � �k �D/
k
I

these are exactly the compatible sequences of circular units which yield a finite index
subgroup of H 1.F;Zp.2//—the index being directly related to K2.OF / via the Quillen-
Lichtenbaum conjectures.

7. Nahm’s conjecture and the asymptotics of Nahm sums at roots of unity

In Section 1.3 of the introduction, we saw that the S -units constructed in this paper from
elements of the Bloch group appear naturally (although in general only conjecturally) in
connection with the asymptotic properties of the Kashaev invariant of knots and its Galois
twists. A second place where these units appear is in the radial asymptotics of so-called Nahm
sums. This was shown in [10] and is quoted (in a simplified form) in Theorem 7.1 below. In
this section, we explain this and give two applications, the proof of Theorem 7.4 and the
proof of Nahm’s conjecture relating the modularity of Nahm sums to the vanishing of certain
elements in Bloch groups.

Nahm sums are special q-hypergeometric series whose summand involves a quadratic
form, a linear form and a constant. They were introduced by Nahm [22] in connection
with characters of rational conformal field theories, and led to his above-mentioned conjec-
ture concerning their modularity. They have also appeared recently in quantum topology
in relation to the stabilization of the coefficients of the colored Jones polynomial (see
Garoufalidis-Le [9]), and they are building blocks of the 3D-index of an ideally triangulated
manifold due to Dimofte-Gaiotto-Gukov [4, 3].

In the first subsection of this section, we review Nahm sums and the Nahm conjecture and
state Theorem 7.1 relating the asymptotics of Nahm sums at roots of unity to the near units
of Theorem 1.2. This is then applied in §7.2 to a particular Nahm sum (namely, the famous
Andrews-Gordon generalization of the Rogers-Ramanujan identities) to prove Equation (13)
of the introduction (Theorem 7.4). In the final subsection, we use Theorem 7.1 together with
Theorem 1.2 to give a proof of Nahm’s conjecture.

7.1. Nahm’s conjecture and Nahm sums

Nahm’s conjecture gives a very surprising connection between modularity and algebraic
K-theory. More precisely, it predicts that the modularity of certain q-hypergeometric series
(“Nahm sums”) is controlled by the vanishing of certain associated elements in the Bloch
group B.Q/.

The definition of Nahm sums and the question of determining when they are modular
were motivated by the famous Rogers-Ramanujan identities, which say that

G.q/ WD

1X
nD0

qn
2

.q/n
D

Y
n>0
.n5 /D1

1

1 � qn
; H.q/ WD

1X
nD0

qn
2Cn

.q/n
D

Y
n>0

.n5 /D�1

1

1 � qn
;
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where .q/n D .1�q/ � � � .1�qn/ is the q-Pochhammer symbol or quantum n-factorial. These
identities imply via the Jacobi triple product formula that the two functions q�1=60G.q/ and
q11=60H.q/ are quotients of unary theta-series by the Dedekind eta-function and hence are
modular functions. (Here and from now on we will allow ourselves the abuse of terminology
of saying that a function f .q/ is modular if the function ef .�/ D f .e2�i� / is invariant under
the action of some subgroup of finite index of SL.2;Z/.) To see how general this phenomenon
might be, Nahm [22] considered the three-parameter family

(41) fA;B;C .q/ WD q
CfA;B.q/ WD q

C
X
m�0

q
A
2 m

2CBm

.q/m
.A 2 Q>0; B; C 2 Q/:

These are formal power series with integer coefficients in some rational power of q, and
are analytic in the unit disk jqj < 1, but they are very seldom modular: apart from the
two Rogers-Ramanujan cases .A;B; C / D .2; 0;� 1

60
/ or .2; 1; 11

60
/, only five further cases

.1; 0;� 1
48
/, .1;˙1

2
; 1
24
/, .1

2
; 0;� 1

40
/ and .1

2
; 1
2
; 1
40
/ were known for which fA;B;C is modular,

and it was later proved ([30], [35]) that these are in fact the only ones. Since this list of seven
examples is not very enlightening, Nahm introduced also a higher-order version

(42) fA;B;C .q/ WD q
CfA;B.q/ WD q

C
X

m2Zr
�0

q
1
2m

tAmCBm

.q/m1 � � � .q/mr
;

where A D .aij / is a symmetric positive definite r � r matrix with rational entries, B 2 Qr

a column vector, and C 2 Q a scalar, and asked for which triples .A;B; C / the functionefA;B;C .�/ D fA;B;C .e2�i� / is modular. His conjecture gives a partial answer to this question.
To formulate this conjecture, Nahm made two preliminary observations.

(i) Let X D .X1; : : : ; Xr / 2 Cr be a solution of Nahm’s equations

(43) 1 � Xi D

rY
jD1

X
aij
j .1 � j � r/

(or symbolically 1�X D XA), and letF be the field they generate overQ, which will typically
be a number field since (43) is a system of r equations in r unknowns and generically defines
a 0-dimensional variety. Then the element ŒX� D ŒX1�C� � � ŒXr � of ZŒF � belongs to the kernel
of the map (2), because

d
�
ŒX�

�
D

X
i

.Xi / ^ .1 �Xi / D
X
i; j

aij .Xi / ^ .Xj / D 0

by virtue of the symmetry of A. (This calculation makes sense as it stands if A has integer
entries; if the entries are only rational, we have to tensor everything with Q.) Therefore ŒX�
determines an element of the Bloch group B.F /˝Q and it makes sense to ask whether this
element vanishes. This is equivalent to the vanishing of the numbers D.�X/ D

P
D.�Xi /

for all embeddings � W F ,! C, where D.x/ is the Bloch-Wigner dilogarithm function, and
this condition can be either tested numerically to any precision or else verified rigorously by
writing a multiple of ŒX� as a linear combination of 5-term relations.

(ii) The first observation is that if A is a positive definite symmetric matrix, then
there is a distinguished solution of the Nahm equations, namely the unique solution
fXA D .XA1 ; : : : ; X

A
r / with 0 < XAi < 1 for all ig. We denote by �A the corresponding
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element ŒXA� of the Bloch group. Then since XA is real, we obtain a further characteristic
property when this element is torsion, namely that the real number L.�A/ D

P
L.Xi /, where

L.x/ is the Rogers dilogarithm function as defined below, is a rational multiple of �2. But it
can be shown fairly easily that fA;B;C .e�h/ has an asymptotic expansion as eL.�A/=hCO.1/ as
h! 0C for anyB andC (in fact, a full asymptotic expansion of the form eL.�A/=hCc0Cc1hC���

is given in [35]). Since a modular function must have an expansion ec=hCO.1/ with c 2 Q�2,
this already gives a strong indication of a relation between the modularity of Nahm sums
and the vanishing (up to torsion) of the associated elements of Bloch groups.

Based on these observations, one can consider the following three properties of a matrixA
as above:

(a) The class ŒX� 2 B.C/ vanishes for all solutions X of the Nahm equations (43).

(b) The special class �A 2 B.C/ associated to the solution XA of (43) vanishes.

(c) The function fA;B;C .q/ is modular for some B 2 Qr and C 2 Q.

Trivially (a)) (b). Nahm’s conjecture (see [22] and [35]) says that (a)) (c) and (c)) (b).
(The possible stronger hypothesis that (b) alone might already imply (c) was eliminated
in [35] using the 2 � 2 matrix A D . 8 55 4 /, and the other possible stronger assertion that
(c) might require (a) was shown to be false by Vlasenko and Zwegers [31] with the coun-

terexample A D
�
3=2 1=2
1=2 3=2

�
.) This conjecture had a dual motivation: on the one hand, the

above-mentioned fact that both (b) and (c) force the rationality of L.�A/=�2, which is most
unlikely to happen “at random,” and on the other hand, a large number of supporting
examples coming from the characters of rational conformal field theories, which are always
modular functions and where the condition in the Bloch group can also be verified in many
cases. Here we are concerned with an extension of the first of these two aspects, namely the
asymptotics of the Nahm sum fA;B;C .q/ as q tends radially to any root of unity, not just
to 1.

In order to state the asymptotic formula, we need to define the Rogers dilogarithm. In our
normalization (which is �2=6 minus the standard one as given, for instance, in [35], §II.1A),
this is the function defined on R X f0; 1g by

(44) L.x/ D

8̂̂<̂
:̂
�2

6
� Li2.x/ � 1

2
log.x/ log.1 � x/ if 0 < x < 1,

�L.1=x/ if x > 1,
�2

6
� L.1 � x/ if x < 0

(here Li2.x/ D
P1
nD1

xn

n2
is the standard dilogarithm) and extended by continuity to a

function P1.R/ ! R=�2
2
Z by sending the three points 0, 1 and1 to �2

6
, 0, and ��

2

6
. Its

linear extension toZ.R/ vanishes on both the groupC.R/ as defined at the beginning of §1.1
and on the larger group eC.R/ in Definition 2.1. We comment here that the specific choice of
the definition of the Bloch group in Definition 2.1, which forces 3Œ0� D 0, ŒX�C Œ1=X� D 0

and ŒX�C Œ1�X� D Œ0� for any field F and any elementX of P1.F /, was chosen precisely so
that L is well-defined on eB.R/ (and thus also B.R/) and takes values in the group R=�2

2
Z

rather than just its quotient R=�2
6
Z.

Specifically, let A, B and C be as above; let X D XA be the distinguished solution of (43)
as in (ii) and F the corresponding number field, and for each integer n choose a primitive
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n-th root of unity �, set Fn D F.�/ and denote by H D Hn the Kummer extension of Fn
obtained by adjoining the positive n-th roots xi of theXi . We are interested in the asymptotic
expansion of fA;B;C .�e�h=n/ as h ! 0C. Strictly speaking, this only makes sense if A has
integral coefficients, B is congruent to 1

2
diag.A/ modulo Zr , and C 2 Z, since otherwise

the quadratic function q
1
2nAn

tCnBCC occurring in the definition of fA;B;C is not uniquely
defined. We get around this by picking a representation of � as e.a=n/ for some a 2 Z (where
e.x/ D e2�ix) and interpreting fA;B;C .�e�h=n/ as efA;B;C �aCiℏn �

, where ℏ D h
2�

. The full
asymptotic expansion of fA;B;C .�e�h=n/ as h ! 0C was calculated in [10] using the Euler-
Maclaurin formula, generalizing an earlier result in [35] for the case n D 1. We do not give
the complete formula here, but only the simplified form as needed for the applications we will
give. In the statement of the theorem we have abbreviated by �X the diagonal matrix whose
diagonal is a given vector X .

Theorem 7.1 ([10, Thm 3.1]). – Let A 2 Mr .Q/ and B 2 Qr be as above. Let n be a
positive integer coprime to the denominator of A and B. Then for every primitive n-th root of
unity �, we have

(45) fA;B
�
� e�h=n

�
D �! eL.�A/=nh

�
ˆ� .h/ C O.hK/

�
for allK > 0 as h! 0C, where!2 2 F �,� D e.r.n�1/.n�2/=24n/, andˆ� .h/ D ˆA;B;� .h/
is an explicit power series satisfying the two properties ˆ� .h/n 2 FnŒŒh�� and

(46) P� .�A/
1=nD� .1/

r=nˆ� .h/ 2 FnŒŒh��:

Moreover, if ˆ� .0/n ¤ 0, then its image in F �n =F
�n
n belongs to the ��1 eigenspace.

Corollary 7.2. – If ˆ� .0/ ¤ 0, then the product of the power series ˆ� .h/ with "1=n

for any unit " representing R� .�A/ belongs to FnŒŒh�� .

Proof. – Let " 2 F �n denote a representative of R� .�A/. On the one hand, Theorem 7.1
and Remark 2.6 imply that ˆ� .0/"1=n 2 F �n . On the other hand, Theorem 7.1 and our
assumption imply that .ˆ� .h/=ˆ� .0//n 2 FnŒŒh��. Since ˆ� .h/=ˆ� .0/ is a power series with
constant term 1, it follows that ˆ� .h/=ˆ� .0/ 2 FnŒŒh��. Combining both conclusions, it
follows that "1=nˆ� .h/ 2 FnŒŒh��.

Remark 7.3. – In the theorem, we do not assert that the power series ˆ cannot vanish
identically (which is why we wrote an equality sign and ˆ.h/ C O.hK/ in (45) rather than
writing an asymptotic equality sign and putting simply ˆ.h/ on the right), and indeed this
often happens, for instance, when fA;B;C is modular and we are expanding at a cusp not
equivalent to 0. Of course, the corollary is vacuous if ˆ vanishes.

7.2. Application to the calculation of R� .�� /

In this subsection, we apply Theorem 7.1 and its corollary to a specific Nahm sum to prove
equation (13) in the introduction.

Theorem 7.4. – Let n be odd and �� be the n-torsion element inB.Q.�/C/ defined by (36),
where � is a primitive n-th root of unity. Then R� .�� / D �2 .
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Proof. – The case n D 1 is trivial, so assume that n � 3. Set An D
�
2min.i; j /

�
1�i;j�r

,
where r D .n � 3/=2. If n � 5, let fn be the r-dimensional Nahm sum fAn;0. If n D 3, we
let f3 D 1, which is also the natural interpretation of the corresponding 0-dimensional Nahm
sum. By a famous identity of Andrews and Gordon [1], which reduces to the first Ramanujan-
Rogers identity when n D 5, we have the product expansion

(47) fn.q/ D
Y
k>0

2k 6�0;˙1 . mod n/

1

1 � qk

and this is modular up to a power of q for the same reason as for G.q/ D f5.q/ (quotient
of a theta series by the Dedekind eta-function). This modularity allows us to compute its
asymptotics as q ! �n, and by comparing the result with the general asymptotics of Nahm
sums as given in 7.1, we will obtain the desired evaluation of �n. We now give details.

It is easy to check that all solutions X of the Nahm equation 1�X D XAn have the form

X D .XrC1; : : : ; X2/; Xk D
.1 � �k�1/.1 � �kC1/

.1 � �k/2

with � a primitive n root of unity, and hence form a single Galois orbit. The distinguished
solution XAn 2 .0; 1/r corresponds to � D e.1=n/ D �n. From the equation

(48) 1 �Xk D

 
�1=2 � ��1=2

�k=2 � ��k=2

!2
and the functional equation L.1 �X/ D �2

6
� L.X/, we find

(49) L.ŒX�/ D
rC1X
kD2

L.Xk/ D
1

2

n�2X
kD2

�
�2

6
� L

�
sin2.�=n/

sin2.k�=n/

��
D
.n � 3/�2

6n
;

the invoked equality being a well-known identity for the Rogers dilogarithm of which a proof
can be found at the end of [35], §II.2C. Denote the right-hand side of this by �4�2Cn and
set efn.�/ D efAn;0;Cn.�/ D qCnfn.q/. Using the Jacobi theta function and the Jacobi triple
product formula

�.�; z/ D

1X
�1

.�1/kq.2kC1/
2=8y.2kC1/=2 D q1=8 y1=2

1Y
kD1

�
1 � qk

��
1 � qky

��
1 � qk�1y�1

�
(where =.�/ > 0, z 2 C, q D e.�/, and y D e.z/), together with the Dedekind eta-function
�.�/ D q1=24

Q
n>0.1 � q

k/, we can rewrite (47) as

efn.�/ D q.rC1/
2=2n �.n�; �.r C 1/�/

�.�/
;

which in conjunction with the standard transformation properties of � and � implies thatefn.�/ is a modular function (with multiplier system) on the congruence subgroup �0.n/ of
SL.2;Z/. We need only the special case � 7! �

n�C1
, where the transformation law is given by

(50) efn� �

n� C 1

�
D e

�n � 3
24

� efn.�/:
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We sketch the proof of this for completeness. The well-known modular transformation
properties of � and � under the generators T D

�
1 1
0 1 / and S D

�
0 �1
1 0 / of SL.2;Z/ are given

by

�.� C 1; z/ D e.1=8/ �.�; z/; �.�1=�; z=�/ D
p
�=i e.z2=2�/ �.�; z/

�.� C 1/ D e.1=24/ �.�/; �.�1=�/ D
p
�=i �.�/:

Hence, using
T
� and

S
� to denote an equality up to an elementary factor (the product of a

power of � with the exponential of a linear combination of 1, � and z2=� ) that can be deduced
from the T -or S -transformation behavior of the function in question, we have

�
� n�

n� C 1
;
.r C 1/�

n� C 1

�
T
� �

�
�1

n� C 1
;
.r C 1/�

n� C 1

�
S
� � .n� C 1; .r C 1/�/

T
� � .n�; .r C 1/�/ ;

�
� �

n� C 1

�
S
� �

�
�n �

1

�

�
T
� �

�
�
1

�

�
S
� �.�/:

Inserting all omitted factors and dividing the first equations by the second, we obtain (50).

Now applying (50) to � D �1Ci=ℏ
n

, with ℏ D h
2�

, where h is positive and small, we find

(51)

fAn;0

�
�ne
�h=n

�
D e

�
�Cn

1C iℏ
n

� efn �1C iℏ
n

�
D e

�
�Cn

1C iℏ
n
C
n � 3

24

� efn ��1C i=ℏ
n

�
D e

�
n

24
�
1

8
C

1

12n
�

1

4n2

�
eL.XAn /=nh.1CO.ℏ//:

Taking the 4n-th power of this and combining with Theorem 7.1 and its Corollary 7.2, we
have an equality

(52) e
�
n2

6
�
n

2
C
1

3
�
1

n

�
.1C : : :/ D e

�
r.n � 1/.n � 2/

6

�
!4n.ˆ4n� .h/C � � � /:

Writing �� for the Bloch element corresponding to An, we know from Theorem 7.1 that
there is an inclusion P� .�/1=nD� .1/r=nˆ� .h/ 2 FnŒŒh��, where in this case F D Q.� C ��1/
and Fn D Q.�/. Thus from equation (52) we deduce that

R� .�/
4D� .1/

4re
�
�
r.n � 1/.n � 2/

6

�
D e

�
�
n2

6
C
n

2
�
1

3
C
1

n

�
mod F �nn :

Since r D .n � 3/=2 and D� .1/ D e.n=3/ by Lemma 2.4(b), we deduce that

R� .�/
4
D e

�
�
n2

6
C
n

2
�
1

3
C
1

n
C
r.n � 1/.n � 2/

6
�
4rn

3

�
mod F �nn :

If .3; n/ D 1, the only term which is non-trivial modulo n-th powers is e.1=n/. (Recall that n
is odd.) If 3jn, then 3jr , so the only terms which are non-trivial modulo n-th powers are
now e.1=n/ and e.�1=3/. Hence we deduce that

(53) R� .�/
4
D

(
e.1=n/; .n; 3/ D 1;

e.1=n/e.�1=3/; 3jn:
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From equation (48), we find that

�� D

.n�1/=2X
kD2

241 �  �1=2 � ��1=2
�k=2 � ��k=2

!235 :
Using the k 7! �k symmetry in Equation (36), we deduce that

�� D Œ1�C 2Œ0�C 2

.n�1/=2X
kD2

"
1 �

�
� � ��1

�k � ��k

�2#
;

and hence (using the identities 2Œ1� D Œ0� and Œ1� D 2Œ0�) we deduce that

(54) 2�� D ��1=2 � 4Œ0� D ��1=2 � Œ0�:

It remains to show that ��1=2 D
1
4
��� because then, by Equations (53) and (54), and the fact

that R� .Œ0�/�2 D D� .1/2 D e.2=3/ if 3jn and 1 otherwise, we will have

R� .�� / D R� .��1=2/
4
D R� .�/

8R� .Œ0�/
�2
D e.2=n/ D �2;

which is the desired conclusion. In fact, more generally, we show that ��k D k
2�� for k prime

to n. Suppose that R� .�� / D �m. Since this does not depend on the choice of �, it must also
be true that R�k .��k / D �

km. By Lemma 2.7(1), we have

R�k .�� / D R� .�� /
1=k
D �m=k ;

and thus

�mk D R�k .k
2�� / D R�k .��k /:

By Lemma 5.3, the map R�k is injective on the torsion subgroup of B.Q.�/C/, and
thus ��k D k2�� , as desired. As a consistency check, note that the Galois group
Gal.Q.�/=Q.�/C/ should act trivially on B.Q.�/C/, and we indeed see that the non-trivial
element � W � 7! ��1 satisfies

��� D ���1 D .�1/
2�� D �� :

7.3. Application to Nahm’s conjecture

In this final subsection, we give an application of the asymptotic Theorem 7.1 and
Theorem 1.2 to proving one direction of Nahm’s conjecture about the modularity of Nahm
sums. The notations and assumptions are as before, but for convenience we repeat them
here.

Let A 2 Mr .Q/ be a positive definite symmetric matrix, B 2 Qr , and C 2 Q. We denote
by XA D .X1; : : : ; Xr / the unique solution in .0; 1/r to the Nahm equation, by F D FA
the real number field generated by the Xi and by �A D

P
i ŒXi � 2 B.FA/ the corresponding

element of the Bloch group. Finally, when we say that FA;B;C is modular, we mean that the
function ef .�/ D fA;B;C .e.�// is invariant with respect to a subgroup of finite index of
SL.2;Z/.

Theorem 7.5. – If fA;B;C .�/ is a modular function, then �A 2 B.FA/ is a torsion element.
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Proof. – On p. 56 of [35], it is shown that any Nahm sum has an expansion near q D 1

of the form

(55) fA;B;C .e
��/ D eL.�A/=�

�
K C O.�// .� ! 0/;

where K (given explicitly in eq. (29) of [35]) is a non-zero algebraic number some power of
which belongs toF D FA. Moreover, if fA;B;C is assumed to be modular, the error term O.�/
can be replaced by O.e�c=�/ with some c > 0 ([35], eq. (28)). Notice that in this case the
number � D L.�A/=4�2 must be rational, since the modularity of ef .�/ D fA;B;C .e.�//
implies that the function ef .�1=�/ is invariant under some power of

�
1 1
0 1

�
.

Now assume that ef is modular with respect to a finite index subgroup� of SL.2;Z/. Then
for h! 0C, ℏ D h

2�
, and any 
 D

�
a b
c d

�
2 �, taking � D dh

1�icℏ , we find

fA;B;C .e
��/ D ef � i�

2�

�
D ef �ai�=2� C b

ci�=2� C d

�
D ef �b C iℏ

d

�
D fA;B;C .�e

�h=d /;

where � D e.b=d/, and now comparing the asymptotic formulas (55) and (45) (with n D d ),
we find

�eL.�A/=hd ˆ.h/ D eL.�A/=hd
�
Ke.�c=d/ C O.h/

�
or ˆ� .0/ D ��1Ke.�c=d/, with � 2 Q as above. This implies in particular that ˆ� .0/ ¤ 0,
and now, using that some bounded power of both � and K belong to Fn, we deduce that
ˆ.0/r belongs to Fn for some fixed integer r > 0 independent of n D d . We can also
assume that d is prime to M for any fixed integer M , since by intersecting � with the full
congruence subgroup �.M/, we may assume that � is contained in �.M/. This shows that
there are infinitely many integers n and primitive n-th roots of unity � for which ˆ� .0/r in
Theorem 7.1 is a non-zero element of Fn. Now Corollary 7.2 implies that the r-th power
of R� .�A/ has trivial image in F �n =F

�n
n for infinitely many n, and in view of the injectivity

statement in Theorem 1.2 this proves that �A is a torsion element in the finitely generated
group B.F /.

Remark 7.6. – The proof of the theorem would have been marginally shorter if we
had assumed that fA;B;C was a modular function on a congruence subgroup, rather than
just a subgroup of finite index of SL.2;Z/. We did not make this assumption since it was
not needed, but should mention that fA;B;C , if modular at all, is expected automatically to
be modular for a congruence subgroup, because it has a Fourier expansion with integral
coefficients in some rational power of q and a standard conjecture says that the Fourier
expansion of a modular function on a non-congruence subgroup of SL.2;Z/ always has
unbounded denominators.

Remark 7.7. – Conversely, we could have stated Theorem 7.5 in an apparently more
general form by writing “modular form” instead of “modular function.” We did not do this
since it is easy to see that if a Nahm sum is modular at all, it is actually a modular function,
because if it were a modular form of non-zero rational weight k, there would be an extra
factor h�k in the right-hand side of (55).
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