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Abstract. Given an element of the Bloch group of a number field F and a natural num-
ber n, we construct an explicit unit in the field Fn = F (e2πi/n), well-defined up to n-th
powers of nonzero elements of Fn. The construction uses the cyclic quantum dilogarithm,
and under the identification of the Bloch group of F with the K-group K3(F ) gives an
explicit formula for a certain abstract Chern class from K3(F ). The units we define are
conjectured to coincide with numbers appearing in the quantum modularity conjecture for
the Kashaev invariant of knots (which was the original motivation for our investigation),
and also appear in the radial asymptotics of Nahm sums near roots of unity. This latter
connection is used to prove one direction of Nahm’s conjecture relating the modularity of
certain q-hypergeometric series to the vanishing of the associated elements in the Bloch
group of Q.
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1. Introduction

The purpose of the paper is to associate to an element ξ of the Bloch group of a number
field F and a primitive nth root of unity ζ an explicit unit or near unit Rζ(ξ) in the field
Fn = F (ζ), well-defined up to n-th powers of nonzero elements of Fn. Our construction uses
the cyclic quantum dilogarithm and is shown to give an explicit formula for an abstract Chern
class map on K3(F ). The near unit is conjectured (and checked numerically in many cases)
to coincide with a specific number that appears in the Quantum Modularity Conjecture of
the Kashaev invariant of a knot. This was in fact the starting point of our investigation [13],
[39].

As a surprising consequence of our main theorem we were able to prove one direction of
Werner Nahm’s famous conjecture, namely that the modularity of certain q-hypergeometric
series (“Nahm sums”) implies the vanishing of certain explicit elements in the Bloch group
of Q. A precise statement will be given in Section 1.3 of this introduction.

1.1. Bloch groups and associated units. We first recall the definition of the classical
Bloch group, as introduced in [2]. Let Z(F ) denote the free abelian group on P1(F ) =
F ∪ {∞}, i.e. the group of formal finite combinations ξ =

∑
i ni[Xi] with ni ∈ Z and

Xi ∈ P1(F ).

Definition 1.1. The Bloch group of a field F is the quotient

B(F ) = A(F )/C(F ) , (1)

where A(F ) is the kernel of the map

d : Z(F ) −→
∧2F× , [X] 7→ (X) ∧ (1−X) (2)

(and [0], [1], [∞] 7→ 0) and C(F ) ⊆ A(F ) the group generated by the five-term relation

ξX,Y = [X] − [Y ] +

[
Y

X

]
−
[

1−X−1

1− Y −1

]
+

[
1−X
1− Y

]
(3)

with X and Y ranging over P1(F ) (but forbidding arguments 0
0

or ∞∞ on the right-hand side).

In this paper, we will study an invariant of the Bloch group whose values are units in
Fn modulo nth powers of units, where n is a natural number and Fn the field obtained by
adjoining to F a primitive n-th root of unity ζ = ζn. The extension Fn/F is Galois with
Galois group G = Gal(Fn/F ), and G admits a canonical map

χ : G −→ (Z/nZ)× (4)
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determined by σζ = ζχ(σ). The powers χj (j ∈ Z/nZ) of this character define eigenspaces(
F×n /F

×n
n

)χj
in the obvious way as the set of x ∈ F×n /F

×n
n such that σ(x) = xχ

j(σ) for

all σ ∈ G, and similarly for (O×n /O×nn )χ
j

or (O×S,n/O
×n
S,n)χ

j
, where On (resp. OS,n) is the ring

of integers (resp. S-integers) of Fn. Then our main result is the following theorem.

Theorem 1.2. Suppose that F does not contain any non-trivial nth root of unity. Then
there is a canonical map

Rζ : B(F )/nB(F ) −→
(
O×S,n/O

×n
S,n

)χ−1

⊂
(
F×n /F

×n
n

)χ−1

(5)

for some finite set S of primes depending only on F . If n is prime to a certain integer MF

depending on F , then the map Rζ is injective and its image is contained in
(
O×n /O×nn

)χ−1

,
and equal to this if n is prime.

Remark 1.3. Note that the field Fn and the character χ of (4) do not depend on the
primitive nth root of unity ζ. The map Rζ from B(F ) to F×n /F

×n
n does depend on ζ, but in

a very simple way, described by either of the formulas

σ
(
Rζ(ξ)

)
= Rσ(ζ)(ξ) (σ ∈ G), Rζ(ξ) = Rζk(ξ)

k (k ∈ (Z/nZ)×) , (6)

where the simultaneous validity of these two formulas explains why the image of each map Rζ

lies in the χ−1 eigenspace of F×n /F
×n
n .

Remark 1.4. The optimal definition of MF is somewhat complicated to state. However,
one may take it to be 6 ∆F |K2(OF )| .

The detailed construction of the map Rζ will be given in Section 2. A rough description
is as follows. Let ξ =

∑
ni[Xi] be an element of Z(F ) whose image in ∧2(F×/F×n) under

the map induced by d vanishes. We define an algebraic number Pζ(ξ) by the formula

Pζ(ξ) =
∏
i

Dζ(xi)
ni , (7)

where xi is some nth root of Xi and Dζ(x) is the cyclic quantum dilogarithm function

Dζ(x) =
n−1∏
k=1

(1 − ζkx)k . (8)

The number Pζ(ξ) belongs to the Kummer extension Hξ of F defined by adjoining all of the
xi to Fn and is well-defined modulo Hn

ξ . We show that for n prime to some MF it has the

form abn with b in H×ξ and a ∈ F×n (or even a ∈ O×n under a sufficiently strong coprimality
assumption about n). Then Rζ(ξ) is defined as the image of a modulo nth powers.

1.2. Algebraic K-groups and associated units. A second main theme of the paper
concerns the relation to the algebraic K-theory of fields. The group B(F ) was introduced
by Bloch as a concrete model for the abstract K-group K3(F ). It was proved by Suslin [31]
that, if F is a number field, then (up to 2-torsion) K3(F ) is an extension of B(F ) by the roots
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of unity in F , and in this case one also knows by results of Borel and Suslin-Merkurjev [30],
[21], [36] that K3(F ) has the structure

K3(F ) ∼= Zr2(F ) ⊕

{
Z/w2(F )Z if r1(F ) = 0,

Z/2w2(F )Z ⊕ (Z/2Z)r1(F )−1 if r1(F ) ≥ 1,
(9)

where (r1(F ), r2(F )) is the signature of F and w2(F ) is the integer

w2(F ) = 2
∏
p

pνp , νp := max
{
ν ∈ Z | ζpν + ζ−1

pν ∈ F
}
. (10)

For a detailed introduction to the the algebraic K-theory of number fields, see [36].
Theorem 1.2 is then a companion of the following result concerning K3(F ):

Theorem 1.5. Let F be a number field. Then there is a canonical map

cζ : K3(F )/nK3(F ) −→
(
O×S,n/O

×n
S,n

)χ−1

⊂
(
F×n /F

×n
n

)χ−1

(11)

defined using the theory of Chern classes for some finite set S of primes depending only
on F . If n is prime to a certain integer MF depending on F , then the map Rζ is injective

and its image is contained in
(
O×n /O×nn

)χ−1

, and equal to this if n is prime.

We note that the proof of Theorem 1.2 relies upon the precise computation of K3(F ) and
the properties of cζ given above. Finally, in view of the near isomorphism between B(F ) and
K3(F ), one might guess that the two maps Pζ and cζ are the same, at least up to a simple
scalar. This is the content of our next theorem.

Theorem 1.6. For n prime to MF , the map Rζ equals cγζ for some γ ∈ (Z/nZ)×.

The constant γ does not depend on the underlying field — both our construction and the
Chern class map are well behaved in finite extensions, so we can compare the maps over
any two fields with the maps in their compositum. We conjecture that the constant γ is,
up to sign, a small power of 2 that is independent of n. To justify our conjecture, and to
determine γ, it suffices to compute the image under both maps Rζ and cζ of some element
of K3(F )/nK3(F ) of exact order n. For each root of unity ζ of order n, there is a specific
element ηζ (eq. (23)) of the finite Bloch group B(Q(ζ + ζ−1)) that is of exact order n. Using
the relation of the map Rζ to the radial asymptotics of certain q-series called Nahm sums
discussed in Section 8, we will prove

Rζ(ηζ)
4 = ζ (12)

(Theorem 8.5). On the other hand, certain expected functorial properties of the map cζ ,
discussed in Section 5.3 indicate that up to sign and a small power of 2, we have:

cζ(ηζ)
?
= ζ , (13)

and in combination with (12) this justifies our conjecture concerning γ.
The above-mentioned relation between our mod n regulator map on Bloch groups and

the asyptotics of Nahm sums near roots of unity is also an ingredient of our proof of one
direction of Nahm’s conjecture (under some restrictions) relating the modularity of his sums
to torsion in the Bloch group. The argument, described in Section 8.3, uses the full strength
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of Theorem 1.2 and gives a nice demonstration of the usefulness, despite its somewhat
abstract statement, of that theorem.

Theorem 1.2 motivates a mod n (or étale) version of the Bloch group of a number field F ,
defined by

B(F ; Z/nZ) = A(F ; Z/nZ)/(nZ(F ) + C(F )) , (14)

where A(F ; Z/nZ) is the kernel of the map d : Z(F )→ ∧2(F×/F×n) induced by d. This is
studied in Section 6, where we establish the following relation to K2(F ).

Theorem 1.7. The étale Bloch group is related to the original Bloch group by an exact
sequence

0 −→ B(F )/nB(F ) −→ B(F ; Z/nZ) −→ K2(F )[n] −→ 0 , (15)

where K2(F )[n] is the n-torsion in the K-group K2(F ).

There is a corresponding exact sequence (equation (27)) with B(F )/nB(F ) replaced
by K3(F )/nK3(F ) and B(F ; Z/nZ) replaced by a Galois cohomology group.

A large part of the story that we have told here for the Bloch group B(F ) and the third K-
group K3(F ) can be generalized to higher Bloch groups Bm(F ) and K2m−1(F ) with m ≥ 2,
and here the étale version really comes into its own, because the higher Bloch groups as
originally introduced in [37] have several alternative definitions that are only conjecturally
isomorphic and are difficult or impossible to compute rigorously, whereas their étale versions
turn out to have a canonial definition and be amenable to rigorous computations. The study
of the higher cases has many proofs in common with the m = 2 case studied here, but there
are also many new aspects, and the discussion will therefore be given in a separate paper [3]
which is work in progress.

1.3. Nahm’s Conjecture. The near unit constructed in Section 1.1 also appears in con-
nection with the asymptotics near roots of unity of certain q-hypergeometric series called
Nahm sums. These series are defined by

fA,B,C(q) =
∑

m∈Zr≥0

q
1
2
mtAm+Bm+C

(q)m1 · · · (q)mr
,

where A ∈ Mr(Q) is a positive definite symmetric matrix, B an element of Qr, and C a
rational number. Based on ideas coming from characters of rational conformal field the-
ories, Nahm conjectured a relation between the modularity of the associated holomorphic

function f̃A,B,C(τ) = fA,B,C(e2πiτ ) in the complex upper half-plane and the vanishing of a
certain element or elements in the Bloch group of Q. (See [24], [38], and Section 8 for more
details.) This relation conjecturally goes in both directions, but with the implication from
the vanishing of the Bloch elements to the modularity of certain Nahm sums not yet having
a sufficiently precise formulation to be studied. The conjectural implication from modularity
to vanishing of Bloch elements, on the other hand, had a completely precise formulation, as
follows. Let A be as above and (X1, . . . , Xr) the unique solution in (0, 1)r of Nahm’s equation

1 − Xi =
r∏
j=1

X
aij
j (i = 1, . . . , r) .
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Then Nahm shows that the element ξA =
∑r

i=1[Xi] belongs to B(R ∩Q), and his assertion
is the following theorem, which we will prove as a consequence of the injectivity statement
in Theorem 1.2.

Theorem 1.8 (One direction of Nahm’s Conjecture). If the function f̃A,B,C(τ) is modular
for some A, B and C as above, then ξA vanishes in the Bloch group of Q.

We remark that the vanishing condition can be (and often is) stated by saying that ξA is
a torsion element in the Bloch group of the smallest real (but in general not totally real)
number field containing all the Xi, but when we take the image of this Bloch group in the
Bloch group of Q or C, then the torsion vanishes.

1.4. Plan of the paper. In Section 2 we recall the cyclic quantum dilogarithm and use
it, together with some basic facts about Kummer extensions, to define the map Rζ . The
fact that the map Rζ satisfies the 5-term relation follows from some state-sum identities of
Kashaev-Mangazeev-Stroganov [17], reviewed in Section 2.4. The remaining statements of
Theorem 1.2 are deduced from Theorems 1.5 and 1.6.

In Section 3 we recall the basic properties of Chern classes and use them to define the
map cζ and prove Theorem 1.5. Its proof follows from Lemmas 3.1 and 3.5.

The comparison of the maps cζ and Rζ is done via reduction to the case of finite fields.
This reduction is discussed in Section 4, and the proof of Theorem 1.6 is given in Section 5.

In Section 6, we discuss the connection of our map Rζ with Tate’s results on K2(OF ).
The units produced by our map Rζ have also appeared in two related contexts, namely in

the Quantum Modularity Conjecture concerning the asymptotics of the Kashaev invariant at
roots of unity, and in the asymptotics of Nahm sums at roots of unity. In Section 7, we give
examples of the units produced by our map Rζ and compare them with those that appear
in the Quantum Modularity Conjecture. In Section 8, we state the connection of our map
Rζ with the radial asymptotics of Nahm sums at roots of unity and give two applications: a
proof equation (12) (as a consequence of a special modular Nahm sum, the Andrews-Gordon
identity), and a proof of Theorem 1.8.

Remark. During the writing of this paper, we learned that Gangl and Kontsevich in
unpublished work also proposed the map Pζ as an explicit realization of the Chern class
map. Although they did not check in general that the image of Pζ could be lifted to a

suitable element Rζ ∈ (F×n /F
×n
n )χ

−1
, they did propose an alternate proof of the 5-term

identity using cyclic algebras. Goncharov also informs us that he was aware many years ago
that the function Pζ should be an explicit realization of the Chern class map.

2. The maps Pζ and Rζ

Let n be a positive integer, and let F be a field of characteristic prime to n. Let Fn = F (ζn),
and let ζ = ζn ∈ Fn denote a primitive nth root of unity, which we usually consider as fixed
and omit from the notations. For convenience, we will always assume that n prime to 6.

2.1. The map Pζ. Let µ = 〈ζ〉 denote the GF -module of nth roots of unity. Recall that
Fn = F (ζ). The universal Kummer extension is by definition the extension H/Fn obtained
by adjoining nth roots of every element in F . Let Φ = Gal(H/Fn). We have [20, Chpt.VI]:
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Lemma 2.1. The extension H/F is Galois. There is a natural isomorphism

φ : F×/F×n ' Hom(Φ, µ) ' H1(Φ, µ)

given by X 7→ (σ ∈ Φ 7→ σx/x), where x ∈ H× is any element that satisfies xn = X.

Consider the function

Pζ(X) := Dζ(x) ∈ H×/H×n (X ∈ F× r {0, 1}, xn = X) , (16)

where Dζ(x) is the cyclic quantum dilogarithm defined in (8). (We previously defined Pζ(X),
in equation (8) of the induction, as an element of H×, but only its image modulo nth powers
was ever used, and it is more canonical to define it in the manner above.)

Lemma 2.2. The function Pζ : F× → H×/H×n has the following properties.
(a) Pζ(X) is independent of the choice of nth root x of X.
(b) Pζ(1) = 1, and more generally Pζ(X)Pζ(1/X) = 1 for any X ∈ F×n .
(c) Pζ(X) ∈ H×/H×n is invariant under the action of Φ = Gal(H/Fn).

(d) σ(Pζ(X)) = Pζ(X)χ
−1(σ) for all σ ∈ G.

Proof. First note that, because Pζ(X) is defined only up to nth powers, we can replace the
definition (16) by

Pζ(X) =
∏

k mod n

(1 − ζkx)k mod H×
n

(xn = X), (17)

where we can now even include the k = 0 term that was omitted in (8). Part (a) then follows
from the calculation∏

k mod n(1− ζkx)k∏
k mod n(1− ζk+1x)k

=
∏

k mod n

(1− ζkx) = 1−X ∈ F× ⊂ H×
n
.

Similarly, replacing k by −k in the definition of Pζ(1/X), gives

Pz(X)Pz(1/X) =
∏

k mod n

(1− ζkx)k(1− ζ−kx−1)−k =
∏

k mod n

(−ζkx)k = 1 ∈ H×/H×n ,

proving the second statement of (b), and the first statement follows because an element killed
by both 2 and the odd number n in any group must be trivial. (It can also be proved more
explicitly by evaluating Dn(1)n itself for (n, 6) = 1 as the (−1)n(n−1)/2nn, which is an nth
power because (−1)(n−1)/2n is a square in Q(ζn).) For part (c), we note that the effect of an
element σ ∈ Φ on Dζ(x) is to replace x by ζ ix for some i, so the result follows from part (a).
For part (d), we first observe that the statement makes sense because Φ = Gal(H/Fn) is
a normal subgroup of Gal(H/F ) and hence acts trivially on Pζ(X) ∈ H×/H×n by virtue
of (c), so that the quotient G = Gal(Fn/F ) acts on Pζ(X). For the proof, we choose a lift
of σ ∈ G to Gal(H/F ) that fixes x. Then

σPζ(X) =
∏
k

(
1− σ(ζ)kx

)k
=
∏
k

(
1− ζkχ(σ)x

)k
=
∏
k

(
1− ζkx

)kχ(σ)−1

= Pζ(X)χ(σ)−1

,

where all products are over k (mod n) and all calculations are modulo H×n. �
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Remark 2.3. When n is not prime to 6, then we could also make the calculations above

work after replacing the right-hand side of (16) by Pζ(X) =
Dζ(x)

Dζ(1)
. (When (n, 6) = 1 this is

not necessary since an elementary calculation shows that then Dζ(1) ∈ Q(ζ)n.)

We extend the map Pζ to the free abelian group Z(F ) = Z[P1(F )] by linearity as in (7),
with Pζ(0) = Pz(1) = Pζ(∞) = 0.

2.2. The map Rζ. The next proposition associates an element Rζ(ξ) ∈ (F×n /F
×n
n )χ

−1
to

every element of B(F )/nB(F ) as long as (n,wF ) = 1. Recall the group A(F ; Z/nZ) from
subsection 1.1.

Proposition 2.4. (a) For ξ ∈ A(F ; Z/nZ), the image of Pζ(ξ)
wF lifts to F×n /F

×n
n .

(b) The image of Pζ(ξ)
wF admits a unique lift to F×n /F

×n
n on which G acts by χ−1. If n is

prime to wF , then Pζ(ξ) itself admits a unique lift Rζ(ξ) ∈ (F×n /F
×n
n )χ

−1
.

Proof. For part (a), by Hilbert 90 and inflation-restriction, there is a commutative diagram:

H1(Φ, µ) - H1(Fn, µ) - H1(H,µ)Φ δ
- H2(Φ, µ)

F×n /F
×n
n

wwwwwwwww
-
(
H×/H×n

)Φ

wwwwwwwww
That is, there is an obstruction to descending from (H×/H×n)

Φ
to F×n /F

×n
n which lands

in H2(Φ, µ).
We now claim that there is a commutative diagram as follows:

Z(F )
Pζ - (H×/H×n)Φ

∧2(F×/F×n)

d

?
⊂
∪

- H2(Φ, µ) ,

δ

?

where the left vertical map is the one defined in (2) and the bottom horizontal map is the
map induced by the cup product from the isomorphism F×/F×n → H1(Φ, µ) of Lemma 2.1.
Note that the cup product is more naturally a map

∧2H1(Φ, µ) → H2(Φ, µ⊗2), but can be
interpreted as in the theorem by using the trivialization µ ' Z/nZ ' µ⊗2 defined by the
choice of the root of unity ζ.

We now show that the above diagram commutes. By linearity, it suffices to prove this for
elements ξ of the form [X]. Write X = xn and 1−X = yn. For Z ∈ F×/F×n and zn = Z,
let (following Lemma 2.1),

σ(z) = ζφ(z,σ)z.

By definition, we have Pζ([X]) = Dζ(x) modulo nth powers. The obstruction to lifting D(x)
amounts to finding an element u ∈ H× such that Dζ(x)/un ∈ F×n . Such a u would necessarily



BLOCH GROUPS, ALGEBRAIC K-THEORY, UNITS, AND NAHM’S CONJECTURE 9

satisfy (σu
u

)n
=
σDζ(x)

Dζ(x)
=

Dζ(ζ
φ(x,σ)x)

Dζ(x)
=

( φ(x,σ)−1∏
k=0

1− ζkx
y

)n
.

The expression inside the nth power is determined exactly modulo 〈ζ〉. Hence we may define
a cocycle

h = hX : Φ → H×/µ , h(σ) :=

φ(x,σ)−1∏
k=0

1− ζkx
y

.

This gives an element of H1(Φ, H×/µ), which by consideration of the exact sequence

H1(Φ, H×) −→ H1(Φ, H×/〈ζ〉) −→ H2(Φ, µ)

maps to H2(Φ, µ). This is actually an injection, because the first term vanishes by Hilbert 90.
This is the image of δ; explicitly, the class δ(h) ∈ H2(Φ, µ) is given by

δ(h)(σ, τ) =
h(στ)

h(σ)σh(τ)

=
1

h(σ)σh(τ)

φ(x,σ)+φ(x,τ)−1∏
k=0

1− ζkx
y

=
1

h(σ)σh(τ)

φ(x,σ)−1∏
k=0

1− ζkx
y

φ(x,τ)−1∏
k=0

1− ζkζφ(x,σ)x

y

=
1

h(σ)σh(τ)

φ(x,σ)−1∏
k=0

1− ζkx
y

φ(x,τ)−1∏
k=0

1− ζkζφ(x,σ)x

ζφ(y,σ)y
· ζφ(y,σ)

= ζφ(x,τ)φ(y,σ)

On the other hand, the class in H1(Φ, µ) associated to X = xn is the map τ 7→ ζφ(x,τ), and
the class associated to 1−X = yn is the map σ 7→ ζφ(y,σ), and the exterior product of these
two classes in H2(Φ, ζ) is precisely δ(h). The fact that the cup product gives an injection
is an easy fact about the cohomology of abelian groups of exponent n. This concludes the
proof of part (a).

For part (b), suppose that ξ ∈ A(F ; Z/nZ). By the argument above, there certainly
exists an element in F×n /F

×n
n which maps to Pζ(ξ). Let M denote the image of F×n /F

×n
n in

(H×/H×n)Φ, and let S = F×/F×n. We have a short exact sequence as follows:

0 −→ S −→ F×n /F
×n
n −→M −→ 0.

Taking χ−1-invariants is the same as tensoring with Z/nZ(1) and taking invariants. Hence
there is an exact sequence(

F×n /F
×n
n

)χ−1

−→Mχ−1 −→ H1(G,S(1)).

In particular, the obstruction to lifting to a χ−1-invariant element lies in H1(G,S(1)), and
it suffices to prove that this group is annihilated by wF . By construction, the module S
is trivial as a G-module, and hence the action of G on S(1) is via the character χ. Sah’s
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Lemma ([19, Lem.8.8.1]) implies that the self-map of H1(G,S(1)) induced by g − 1 for any
g ∈ Z(G) = G is the zero map. On the other hand, since χ : G→ (Z/nZ)× is the cyclotomic
character, the greatest common divisor of χ(g)− 1 for g ∈ G is wFZ/nZ. In particular, the
group is annihilated by wF . The result follows. �

Remark 2.5. Suppose (wF , n) = 1, and let P ∈ H× be a representative of Pζ(ξ) ∈ H×/H×n.
Then the construction of the element Rζ(ξ) whose existence is asserted by Proposition 2.4
reduces to the problem of finding S ∈ H× such that

(a) P/Sn ∈ F×n , and
(b) the image of P/Sn in F×n /F

×n
n lies in the χ−1-eigenspace,

since then Rζ(ξ) = P/Sn ∈ (F×n /F
×n
n )χ

−1
. In practice, S will be constructed via a Hilbert 90

argument as an additive Galois average, and the difficulty is ensuring that S 6= 0. See
Section 8, where this is done for a particular P constructed as a radial limit of a Nahm sum.

2.3. Reduction to the case of prime powers. In this section, we discuss the compati-
bility of the map Rζ with the prime factorization of n. This will be important in Section 5,
where we consider the relation of our map and the Chern class in K-theory.

Lemma 2.6. Let (n,wF ) = 1 and ζ = ζn as usual. Then the following compatibilities hold:

(1) If (n, k) = 1, then Rζk(X) = Rζ(X)k
−1

.
(2) Let n = qr, and let ζr = ζqn. Then the image of Rζn modulo rth powers is equal to

the image of Rζr(X) under the map(
F×r /F

×r
r

)χ−1

→
(
F×n /F

×r
n

)χ−1

induced by the inclusion.

Proof. The first statement reflects the fact that gRζ = Rg(ζ) for g ∈ G = Gal(Fn/F ). For
the second claim, we calculate

Pζn(X) =
∏

k mod n

(
1− ζknx

)k
=

∏
i mod q
j mod r

(
1− ζri+jn x

)ri+j
≡

∏
i mod q
j mod r

(
1− ζ iqζjnx

)j
=

∏
j mod r

(
1− ζjrxq

)j
= Pζr(X) ,

where the congruence is modulo rth powers. �

Next, we discuss a reduction of the map Pζn to the case that n is a prime power.

Lemma 2.7. Let n = ab with (a, b) = 1 and ζ a primitive nth root of unity. If X ∈
A(F ; Z/nZ), let un = Rζ(X), ua = Rζb(X) and ub = Rζa(X). Then un determines and is
uniquely determined by ua and ub.

Proof. Part (2) of Lemma 2.6 shows that the image of un in F×n /F
×a
n is the image of ua

under the natural map

F×a /F
×a
a → F×n /F

×a
n .
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Equivalently, ua determines un up to an ath power, and similarly ub determines un up to
a bth power. This is enough to determine un completely since a and b are coprime. The
converse is already shown. �

Remark 2.8. Both lemmas hold also for (n,wF ) > 1 if we replace Rζ by RwF
ζ .

2.4. The 5-term relation. In this section, we use a result of Kashaev, Mangazeev and
Stroganov to show that the map Rζ satisfies the 5-term relation, and consequently descends
to a map of the group B(F ; Z/nZ).

Theorem 2.9. Let F be a field and Fn = F (ζ), where ζ is a root of unity of order n prime
to wF and to the characteristic prime of F . Then the map Rζ vanishes on the subgroup
C(F ) ⊂ A(F ; Z/nZ) ⊂ Z(F ) generated by the 5-term relation, and therefore induces a map

B(F ) −→ B(F )/nB(F ) −→ B(F ; Z/nZ)
Rζ−→
(
F×n /F

×n
n

)χ−1

.

Proof. Denote by H the universal Kummer extension as before. Then it suffices to show
that the appropriate product of the functions Dζ is a perfect nth power in H.

Let X, Y, Z ∈ F× be related by Z = (1 − X)/(1 − Y ), and choose nth roots x, y, z of
X, Y, Z. Using the standard notation (x; q)k = (1−x)(1−qx) · · · (1−qk−1x) (q-Pochhammer
symbol) and following the notation of [17] (except that they use w(x|k) for (xζ; ζ)−1

k ), we set

f(x, y | z) =
n−1∑
k=0

(ζy; ζ)k
(ζx; ζ)k

=
∑

k mod n

(ζy; ζ)k
(ζx; ζ)k

zk ∈ H,

where the second equality follows from the relation between x, y, and z. By equation (C.7)
of [17], we have

(ζy)n(1−n)/2 f(x, y | z)n =
Dζ(1)Dζ(yζ/x)Dζ(x/yz)

Dζ(1/x)Dζ(yζ)Dζ(ζ/z)
.

Considering this modulo nth powers, and using Lemma 2.1, we find

1 = Pζ(X)Pζ(Y )−1 Pζ(Y/X)Pζ(Y Z/X)−1 Pζ(Z) .

This is precisely the 5-term relation for the map Pζ , and from the uniqueness clause in
Proposition 2.4 implies the same 5-term relation for the map Rζ . �

2.5. An eigenspace computation. As in Section 1.1, we write G = Gal(Fn/F ), identified
with a subgroup of (Z/nZ)× via the map χ of Equation (4). Since F×n /F

×n
n is an n-torsion

G-module, the χ−1 eigenspace makes sense and is given by(
F×n /F

×n
n

)χ−1

= {x ∈ F×n /F×nn |σx = xχ(σ−1) , for allσ ∈ G} ,

where xχ(σ−1) is computed using any lift of χ(σ−1) ∈ (Z/nZ)× to Z.
In characteristic zero, one can also consider the the action of G on M ⊗Z R, where R is a

Z[G] module that contains the eigenvalues of σ ∈ G. For example, one can take M = O×n
and R = C. If n = p is prime, then one can take R = Zp, which contains the (p − 1)th

roots of unity. In particular, if n = p, then one can define (M ⊗Z Zp)
χ−1

, which will have
the property that

(M ⊗Z Zp)
χ−1

⊗ Z/pZ = (M/pM)χ
−1

.
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Proposition 2.10. (a) Suppose that F is disjoint from Q(ζn). Then there exists an isomor-
phism of G-modules (

O×n ⊗C
)χ−1

= Cr2(F ) . (18)

(b) If, furthermore, n = p is prime, so that χ : G→ (Z/pZ)× admits a natural Teichmüller
lift to Z×p , then

rankZp

(
O×n ⊗ Zp

)χ−1

= r2(F ) .

If in addition χ and χ−1 are distinct characters of G, then(
O×p /O×pp

)χ−1

= (Z/pZ)r2(F ) .

Proof. Part (b) follows easily from part (a) and the above discussion, together with the fact
that if χ 6= χ−1 then the torsion in the unit group (which just comprises roots of unity) is
in the χ-eigenspace and not the χ−1-eigenspace.

For (a), let F̃ be the Galois closure of F over Q and let Γ = Gal(F̃ /Q). By assumption,

with F̃n = F̃ (ζn), we have Gal(F̃n/Q) = Γ×G = Γ× (Z/nZ)×. From the proof of Dirichlet’s

unit theorem, the unit group of F̃n, tensored with C, decomposes equivariantly as⊕
W

W dim(W |c=1) ,

where W runs over all the non-trivial irreducible representations of Γ × G and c ∈ Γ is
any complex conjugation, which we may take to be (c,−1) ∈ G × (Z/nZ)× for a complex
conjugation c ∈ Γ. The irreducible representations of W are of the form U⊗V for irreducible
representations U of Γ and V of G = (Z/nZ)×. Note that

dim(U ⊗ V |(c,−1) = 1) = dim(U |c = 1) dim(V |c = 1) + dim(U |c = −1) dim(V |c = −1) .

If we take the χ−1-eigenspace under the action of the second factor, the only representation
V of G which occurs is χ−1, on which −1 acts by −1, and hence we are left with(

O×eFn ⊗C
)χ−1

=
⊕
V

V dim(V |c=−1) ,

where the sum runs over all representations V of Γ. In particular, there is an isomorphism
in the Grothendieck group of G-modules[ (

O×eFn ⊗C
)χ−1 ]

+
[
O×eF ⊗C

]
+
[
C
]

=
[
C[G]

]
.

Now take the ∆ = Gal(F̃ /F ) = Gal(F̃n/Fn)-invariant part and take dimensions, we obtain
the equality

dimC

((
O×Fn ⊗C

)χ−1
)

+ (r1 + r2 − 1) + 1 = r1 + 2r2 ,

where (r1, r2) is the signature of F . The result follows. �

3. Chern Classes for algebraic K-theory

In this section, we will define the Chern class map (11).



BLOCH GROUPS, ALGEBRAIC K-THEORY, UNITS, AND NAHM’S CONJECTURE 13

3.1. Definitions. In the following discussion, it will be important to carefully distinguish
canonical isomorphisms from mere isomorphisms. To this end, let ' denote an isomorphism
and = a canonical isomorphism. Let F be a number field, and let O := OF denote the ring
of integers of F . The Tate twist Zp(m) is the free Zp module on which the Galois group GF

acts via the mth power χm of the cyclotomic character. For all m ≥ 1, there exists a Chern
class map:

c : K2m−1(F )→ H1(F,Zp(m)) .

These Chern class maps arise as the boundary map of a spectral sequence, specifically,
the Atiyah–Hirzebruch spectral sequence for étale K-theory. These maps were originally
constructed by Soulé [28], Section II. We may compose this map with reduction mod pi to
obtain a map:

c : K2m−1(F )→ H1(F,Z/piZ(m)).

By the Chinese remainder theorem, we may also piece these maps together to obtain a map:

c : K2m−1(F )→ H1(F,Z/nZ(m))

for any integer n. Let ζ be a primitive nth root of unity, Fn = F (ζ) and write G for the
(possibly trivial) Galois group Gal(Fn/F ). Let µ denote the module of n roots of unity.
There is a canonical injection

χ : G→ Aut(µn) = (Z/nZ)× .

By inflation–restriction, there is a canonical map:

H1(F,Z/nZ(m))→ H1(Fn,Z/nZ(m))G = H1(Fn,Z/nZ(1))χ
1−m

. (19)

For i ≥ 1, there is an invariant wi(F ) ∈ N that we will need. It is defined in terms of Galois
cohomology by

wi(F ) =
∏
p

∣∣H0(F,Qp/Zp(m))
∣∣ ,

Note that w1(F ) is equal to wF , the number of roots of unity in F , and w2(F ) agrees
with (10). We also define

w̃F =
∏
p

∣∣H0(F̃ (ζp + ζ−1
p ),Qp/Zp(1))

∣∣ . (20)

where F̃ is the Galois closure of F over Q. Thus w̃F is divisible only by the finitely many

primes p such ζp belongs to F̃ (ζp + ζ−1
p ). If p|w̃F and p > 2, then p necessarily ramifies in F .

Note that w̃F is always divisible by wF .

Lemma 3.1. The map (19) is injective for integers n prime to wi(F ).

Proof. The kernel of this map is H1(Fn/F,Z/nZ(m)). Assume that this is non-zero. By
Sah’s lemma, this group is annihilated by χi(g)− 1 for any g ∈ G. Equivalently, the kernel
has order divisible by p|n if and only if the elements ai−1 are divisible by p for all (a, p) = 1.
Yet this is equivalent to saying that H0(F,Z/pZ(m)) ⊂ H0(F,Qp/Zp(m)) is non-zero, and
hence p|wi(F ). �
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There is an isomorphism Z/nZ(1) = µ coming from the choice of a given nth root of
unity ζ. By Hilbert 90, for a number field L, there is a canonical isomorphism H1(L, µ) =
L×/L×n, and hence c and ζ give rise to a map:

cζ : K2m−1(F )→
(
F×n /F

×n
n

)χ1−i
. (21)

3.2. The relation between étale cohomology and Galois cohomology. There are
isomorphisms that can be found in Sections 5.2 and 5.4 of [36]

K2m−1(F )⊗ Zp ' K2m−1(OF [1/p]) ' K2m−1(OF )⊗ Zp

for m > 1. These isomorphisms are also reflected in the following isomorphism between étale
cohomology groups and Galois cohomology groups:

H1
ét(OF [1/p],Zp(m)) ' H1(F,Zp(m))

for i ≥ 2. In particular, we may also view the Chern class maps considered above as
morphisms

c : K2m−1(F )⊗ Zp ' K2m−1(OF )⊗ Zp → H1
ét(OF [1/p],Zp(m)).

Theorem 3.2. For p > 2, there is an isomorphism

c : K3(F )⊗ Zp ' K2m−1(OF )⊗ Zp → H1(OF [1/p],Zp(2)).

The rank of K3(F ) is r2.

Sketch. This follows from the Quillen–Lichtenbaum conjecture, as proven by Voevodsky and
Rost (see [36], [35]). In this case, it can also be deduced from the description of torsion
in K3(F ) by Merkur’ev and Suslin [21] (described in terms of w2(F ) above) combined with
Borel’s theorem for the rank (see also Theorem 6.5 of [32]), and the result of Soulé that the
Chern class map is surjective. �

Lemma 3.3. Suppose that p - w2(F ). Then the map

cζ : K3(F )→ K3(F )/nK3(F )→
(
F×n /F

×n
n

)χ−1

(22)

is injective.

Proof. By the Chinese Remainder Theorem, it suffices to consider the case n = pm. In light
of Theorem 3.2, it suffices to show that the map

H1(F,Zp(2))/n→ H1(F,Z/nZ(2))→ F×n /F
×n
n

is injective. The kernel of the first map is H0(F,Zp(2))/n = 0. The kernel of the second
map is, via inflation–restriction, the group H1(Gal(Fn/F ), H0(F,Z/nZ(2))). This group is
certainly zero unless

H0(F,Z/nZ(2)) ⊂ H0(F,Qp/Zp(2))

is non-zero, or in other words, unless p divides w2(F ). �
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3.3. Upgrading from F×n to OFn [1/S]×. The following is a consequence of the finite gen-
eration of K3(F ):

Lemma 3.4. For any field F , there exists a finite set S of primes which avoids any given
finite set of primes not dividing n such that the image of cζ on K3(F )/nK3(F ) may be
realized by an element of O×F (ζ)[1/S].

Proof. Note that without the requirement that S avoids any given finite set of primes not
dividing n, the result is a trivial consequence of the fact that K3(F ) is finitely generated. The
construction of c as a map to units in F×n proceeded via Hilbert 90. In light of Theorem 3.2
above, it suffices to do the same with H1(Fn, µ) replaced by H1

ét(OFn [1/S], µ) for some set S
containing p|n. However, in this case, the class group intervenes, as there is an exact sequence
([22], p.125):

OFn [1/S]×/OFn [1/S]×n → H1
ét(OFn [1/S], µ)→ Pic(OFn [1/S])[n]

where M [n] denotes the n-torsion of M and Pic is the Picard group, which may be identified
with the class group of OFn [1/S]. On the other hand, it is well known that one can represent
generators in the class group by a set of primes avoiding any given finite set of primes,
and hence for a set S including primes for each generator of the class group, the last term
vanishes. �

3.4. Upgrading from S-units to units. We give the following slight improvement on
Lemma 3.4.

Lemma 3.5. Suppose that any prime divisor p of n is odd and divides neither the discrimi-
nant of F nor the order of K2(OF ). Then the image of cζ on K3(F )/nK3(F ) may be realized
by an element of O×n .

Proof. By Lemma 2.7, it suffices to consider the case when n = n is a power of p. Let ζ = ζn.
The fact that p is prime to the discriminant of F implies that F (ζ)/F is totally ramified
at p. The image of cζ factors through H1

ét(O[1/p],Z/nZ(2)), and, via inflation–restriction,
through H1

ét(OF (ζ)[1/p],Z/nZ(1)). The Kummer sequence for étale cohomology gives a short
exact sequence:

OF (ζ)[1/p]
×/OF (ζ)[1/p]

×n → H1
ét(OF (ζ)[1/p],Z/n(1))→ Pic(OF (ζ)[1/p])[n] .

The image of cζ lands in the χ−1-invariant part of the second group. The χ−1-invariant

part Mχ−1
of a G-module M is non-zero if and only if the largest χ−1-invariant quotient Mχ−1

is non-zero. However, by results of Keune [18], there is an injection

(Pic(OF (ζ)[1/p])/pm)χ−1 → K2(OF )/pm .

In particular, the pushforward of the image of cζ to the Picard group is trivial when-
ever K2(OF )⊗Zp is trivial. Since we are assuming that p does not divide the order of K2(OF ),
we deduce that the image of cζ is realized by p-units. We now upgrade this to actual units.
There is an exact sequence:

(OF (ζ))
×/(OF (ζ))

×n → (OF (ζ)[1/p])
×/(OF (ζ)[1/p])

×n →
⊕
v|p

Z/nZ ,
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where the last map is the valuation map. Since p is totally ramified in F (ζ)/F , the action
of G on the final term is trivial. By assumption, the quotient Gal(F (ζp)/F ) is non-trivial,
and hence the χ−1-invariants of the final term are zero. Hence, after taking χ−1-invariants,
we see that the image of cζ comes from a unit. �

3.5. Proof of Theorem 1.5. We have all the ingredients to give a proof of Theorem 1.5.
Fix a natural number n and a primitive nth root of unity ζ. Consider the Chern class map

cζ : K3(F )/nK3(F )→
(
F×n /F

×n
n

)χ−1

.

from (22). When n is coprime to w2(F ), the above map is injective by Lemma 3.3. When
n is coprime to the discriminant ∆F of F and the order of K2(OF ), Lemma 3.5 implies the
above map factors through a map

cζ : K3(F )/nK3(F )→
(
O×n /O×nn

)χ−1

,

where On is the ring of integers of Fn. When n is square-free and coprime to w2(F ), then (9)
and Proposition 2.10 imply that both sides of the above equation are abelian groups isomor-
phic to (Z/nZ)r2(F ). It follows that when n is square-free and coprime to w2(F ) ∆F |K2(OF )|,
then the above map is an injection of finite abelian groups of the same order, and hence an
isomorphism. This concludes the proof of Theorem 1.5. �

4. Reduction to finite fields

As we will see in Section 5, the comparison of the maps cζ and Rζ and the proof of
Theorem 1.6 require a reduction of both maps to the case of finite fields. In this section,
we review the local Chern classes and the Bloch groups of finite fields, and introduce local
(finite field) versions of the maps cζ and Rζ . We will be considering the case that n is a
prime power pm, and will denote by ζ a primitive nth root of unity.

4.1. Local Chern class maps. Let q be a prime of norm q ≡ −1 mod n in OF . The residue
field of OF at q is Fq, and the residue field of OF (ζ) at a prime Q above q is Fq2 = Fq(ζ).
Following Lemma 3.4, suppose that S does not contain any primes dividing q.

Lemma 4.1. There exists a commutative diagram of Chern class maps as follows:

K3(F )/nK3(F )
cζ- (O[1/S]×F (ζ)/O[1/S]×nF (ζ))

χ−1

K3(Fq)/nK3(Fq)
?

===========
cζ,q

F×q2/F
×n
q2 .

?

Proof. By the Chinese Reminder Theorem, we may reduce to the case when n = pm. There
is an isomorphism K3(F )⊗Zp ' K3(OF )⊗Zp (see Theorem 3.2). Let OF,q be the completion
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of OF at q. We have a more general diagram as follows:

K3(OF )/nK3(OF )
cζ- H1

ét(OF [1/p],Z/nZ(2)) - (O[1/S]×F (ζ)/O[1/S]×nF (ζ))
χ−1

K3(OF,q; Zp)/nK3(OF,q; Zp)
?

====
cζ,q

H1
ur(OF,q,Z/nZ(2))

?

============ F×q2/F
×n
q2

?

K3(Fq)/nK3(Fq)

wwwwwwwww
==========

cζ,q
H1(Fq,Z/nZ(2))

wwwwwwwww
============= F×q2/F

×n
q2 .

wwwwwwwww
The image of H1

ét(OF [1/p]) in the cohomology of OF,q for q prime to p lands in the sub-
group H1

ur of unramified classes. This subgroup is precisely the image of H1(O/q,Z/nZ(2))
under inflation. The maps on the right hand side of the diagram are just what one gets
when unwinding the application of Hilbert’s Theorem 90. The identification of the two
lower horizontal lines is a reflection of Gabber rigidity, which implies that K3(OF,q; Zp) '
K3(Fq)⊗ Zp. �

Proposition 4.2. Let F̃ denote the Galois closure of F , and suppose that ζ /∈ F̃ (ζ + ζ−1).
(Equivalently, suppose that n is prime to w̃F of equation 20.)
(a) There is a map:

K3(F )/nK3(F )

⊕
cζ,q-

⊕
F×q2/F

×n
q2

where the sum ranges over all primes q of prime norm q ≡ −1 mod n which split completely
in F , or alternatively runs over all but finitely many primes q ≡ −1 mod n which split
completely in F .
(b) The image of this map is isomorphic to the image of the global map cζ , which is injective
if (n,w2(F )) = 1.
(c) For ξ ∈ K3(F ), the set

{q ⊂ OF [1/S] | cζ,q(ξ) = 0}
(for any finite S) determines the image of ξ up to a scalar.

Proof. It suffices to consider the case when n = pm. Let ξ ∈ K3(F ), and let the class
of cζ(ξ) be represented by an S-unit ε. Because of the Galois action, this gives rise via
Kummer theory to a Z/nZ-extension H of F (ζ+ζ−1), and such that the reduction mod q of ε
determines the element Frobq ∈ Gal(H/F (ζ+ζ−1)). (Explicitly, we have H(ζ) = F (ζ, ε1/n).)
Hence our assumptions imply that any prime q which splits completely in F (ζ+ ζ−1) (which

forces q ≡ ±1 mod n) and is additionally congruent to −1 mod p must split in H. Let H̃

denote the Galois closure of H over Q, and F̃ the Galois closure of F over Q. Note that the

Galois closure of F (ζ + ζ−1) is F̃ (ζ + ζ−1). A prime q splits completely in H if and only if it

splits completely in H̃, and splits completely in F (ζ + ζ−1) if and only if it splits completely
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in F̃ (ζ + ζ−1). We have a diagram of fields as follows:

H̃ H̃(ζ)

F̃ (ζ + ζ−1) F̃ (ζ)

By assumption, we have ζ /∈ F̃ (ζ + ζ−1). Since H/F (ζ + ζ−1) is cyclic of degree n, it follows

that Gal(H̃/F̃ (ζ + ζ−1)) is an abelian p-group. On the other hand, Gal(F̃ (ζ)/F̃ (ζ + ζ−1)) =

Z/2Z. so Gal(H̃(ζ)/F̃ (ζ + ζ−1)) is the direct sum of Z/2Z with a p-group, Let σ ∈
Gal(H̃(ζ)/F̃ (ζ + ζ−1)) ⊂ Gal(H̃/Q) denote an element of order 2p. By the Cebotarev den-

sity theorem, there exist infinitely many primes q ∈ Q with Frobenius element in Gal(H̃/Q)

corresponding to σ. By construction, the prime q splits completely in F̃ (ζ + ζ−1) because

the corresponding Frobenius element is trivial in Gal(F̃ (ζ + ζ−1)/Q). On the other hand,

since σ has order divisible by 2 and by p, it is non-trivial in both Gal(F̃ (ζ)/F̃ (ζ + ζ−1)) =

Gal(Q(ζ)/Q(ζ + ζ−1)) and Gal(H̃/F̃ (ζ + ζ−1)). The first condition implies that q ≡
−1 mod n, and the second condition implies that q does not split completely in H, a
contradiction. The injectivity (under the stated hypothesis) follows from Lemma 3.1. �

Remark 4.3. The condition that ζ /∈ F̃ (ζ+ζ−1) is automatic if p is unramified in F , because

then the ramification degree of Q(ζ) is p− 1 whereas the ramification degree of F̃ (ζ + ζ−1)

is (p− 1)/2 for p odd. If ζ ∈ F̃ (ζ + ζ−1), then there are no primes q which split completely

in F and have norm −1 mod n. In particular, when ζ ∈ F̃ (ζ+ ζ−1), we have B(Fq)⊗Fp = 0
for every prime q which splits completely in F .

4.2. The Bloch group of Fq. In order to make our maps explicit, we must relate the Chern
class map to the Bloch group. Let p > 2 and q > 2 be odd primes such that q ≡ −1 mod n,
where n = pm. For a finite field Fq, the group F×q is cyclic, so

∧2 F×q is a 2-torsion group.
Hence the Bloch group B(Fq) coincides with the pre-Bloch group after tensoring with Fp,
where the pre-Bloch group is defined as the quotient of the free abelian group on Fq r {0, 1}
by the 5-term relation. By [16], the Bloch group B(Fq) is a cyclic group of order q + 1 up
to 2-torsion. Moreover, following [16], one may relate B(Fq) to the cohomology of SL2(Fq)
in degree three, as we now discuss.

There is an isomorphism

H3(SL2(Fq),Z)⊗ Z/nZ ' Z/nZ.

Let us describe this isomorphism more carefully. By a computation of Quillen, we know that
H3(SL2(Fq),Z) is cyclic of order q2 − 1. It follows that the p-part of this group comes from
the p-Sylow subgroup. If one chooses an isomorphism

Fq2 ' (Fq)
2

of abelian groups, one gets a well defined map:

F×q2 = C = AutFq(Fq2)→ GL2(Fq)
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which is well defined up to conjugation. There is, correspondingly, a map C1 → SL2(Fq),
where

C1 = Ker
(
N : F×q2 → F×q

)
.

We refer to both C and C1 as the non-split Cartan subgroup. By Quillen’s computation, we
deduce that there is a canonical map:

C1 = H3(C1,Z)→ H3(SL2(Fq),Z)

which is an isomorphism after tensoring with Z/nZ. There is a canonical isomorphism
C1[n] = µ, where µ denotes the nth roots of unity. Hence to give an element of order p
in H3(SL2(Fq),Z) up to conjugation is equivalent to giving a primitive nth root of unity
ζ ∈ C1 ⊂ C = F×q2 . From [16], there is a canonical map:

H3(SL2(Fq),Z)→ B(Fq) ,

at least away from 2-power torsion, which is an isomorphism after tensoring with Z/nZ.
Given a root of unity ζ, let t denote the corresponding element of SL2(Fq). The corresponding
element of B(Fq), up to six-torsion, is given (see [16], p.36) by:

n−1∑
k=1

[
t(∞)− tk+1(∞)

t(∞)− tk+2(∞)

]
.

This construction yields the same element for ζ and ζ−1. We may represent t by its conjugacy
class in GL2(Fq), which has determinant one and trace ζ + ζ−1 ∈ Fq. The choice of ζ up to
(multiplicative) sign is given by this trace. Note that the congruence condition on q ensures
that the Chebyshev polynomial with roots ζ + ζ−1 has distinct roots which split completely
over Fq. Explicitly, we may choose

t =

(
0 1
−1 ζ + ζ−1

)
= A

(
ζ−1 0
0 ζ

)
A−1, A =

(
ζ ζ−1

1 1

)
.

Let Fk be the Chebyshev polynomials, so Fk(2 cosφ) =
sin kφ

sinφ
. Then

tk(∞) =
Fk−1(ζ + ζ−1)

Fk(ζ + ζ−1)
,

and an elementary computation then shows that the corresponding element in B(Fq) ⊗ Zp

is given by

n−1∑
k=1

[
1− 1

Fk(ζ + ζ−1)2

]
∼

n−1∑
k=1

[(
ζk − ζ−k

ζ − ζ−1

)2
]
,

where ∼ denotes equality in B(Fq)⊗Zp, since [x] = [1− 1/x] up to 3-torsion. (When p = 3,
one may verify directly that the latter term is also a 3-torsion element.)
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4.3. The local Chern class map cζ. In this section, q will denote a prime with q ≡
−1 mod pm which splits completely in F . Let q be a prime above q. There is a natural
map B(F )→ B(OF/q) = B(Fq). The elements [0], [1], and [∞] are trivial elements of B(F )
and B(Fq); the reduction map then sends [x] to [x] under the natural reduction map P1(F )→
P1(Fq).

Lemma 4.4. Let p > 2. There is a commutative diagram as follows:

B(F )/nB(F ) -
⊕

B(Fq)⊗ Z/nZ

K3(F )/nK3(F )

wwwwwwwww
-
⊕

K3(Fq)⊗ Z/nZ

'

======

⊕
cζ,q ⊕

F×q2/F
×n
q2 ,

where the product runs over all primes q of norm q ≡ −1 mod n which split completely in F ,
or alternatively all but finitely many such primes.

Proof. The isomorphism of the left vertical map is a theorem of Suslin [31], and the isomor-
phism of the right vertical map follows from [16]. The fact that the diagram commutes is a
consequence of the fact that both constructions are compatible (and can be seen in group
cohomology). �

Recall that an element x of an abelian groupG is p-saturated if x 6∈ [p]G, where [p] : G→ G
is the multiplication by p map.

Corollary 4.5. There is an algorithm to prove that a set of generators of B(F ) is p-saturated
for p > 2.

Proof. Computing B(Fq) is clearly algorithmically possible. Moreover, we can a priori com-
pute B(F ) ⊗ Zp as an abstract Zp-module. Hence it suffices to find sufficiently many
distinct primes q such that the image of a given set of generators has the same order
as B(F )/nB(F ). �

In light of the commutative diagram of Lemma 4.4, we also use cζ to denote the Chern
class map on B(F )/nB(F ).

4.4. The local Rζ map. Suppose that q ≡ −1 mod p. It follows that the field Fq does not
contain ζp, and so Proposition 2.4 applies to give maps Pζ and Rζ which are well defined
over this field. In particular, since (p, q − 1) = 1, all elements of Fq are p-th powers, and
hence the Kummer extension H is given by H = Fn and Rζ and Pζ coincide.

5. Comparison between the maps cζ and Rζ

The main goal of this section, carried out in the first subsection, is to prove Theorem 1.6.
The main result here is Theorem 5.2, which says that that our mod n local regulator map Rζ,q

gives an isomorphism from B(Fq)⊗ Z/nZ to F×q2 ⊗ Z/nZ for any prime power n and prime

q ≡ −1 (mod n). This implies in particular the existence of a curious “mod-p-q dilogarithm
map” from Fq to Z/nZ, and in Section 5.2, we digress briefly to give an explicit formula
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for this map. In the final subsection, we describe the expected properties of the Chern class
map that would imply the conjectural equality (13) and hence, in conjunction with (12), the
evaluation γ = 2 of the comparison constant γ occurring in Theorem 1.6.

5.1. Proof of Theorem 1.6. Throughout this section, we set n = pm, and let ζ denotes a
primitive nth root of unity. For a prime q ≡ −1 mod n that splits completely in F , and for
a corresponding prime q above q, let Rζ,q denote the map B(OF/q) = B(Fq)→ F×q2/F

×n
q2 .

We have two maps we wish to compare. One of them is

cζ : B(F )/nB(F ) →
(
F×n /F

×n
n

)χ−1

.

Because B(F ) is a finitely generated abelian group, we may represent the generators of the
image by S-units for some fixed S (at this point possibly depending on n) and consider the
map

cζ : B(F )/nB(F )→ (OF (ζ)[1/S]×/OF (ζ)[1/S]×n)χ
−1

↪→
⊕

F×q2/F
×n
q2 '

⊕
B(Fq),

where the final sum is over all but finitely may primes q of norm q ≡ −1 mod n which split
completely in F . We have the diagram

B(F )/nB(F )
Rζ- (OF (ζ)[1/S]×/OF (ζ)[1/S]×n)χ

−1

⊕
B(Fq)⊗ Z/nZ

?
Rζ,q -

⊕
F×q2/F

×n
q2 .

?

We have already shown, by Cebotarev (Proposition 4.2(b)), that cζ(ξ) for ξ ∈ K3(F ) is
determined up to scalar by the set of primes for which cζ,q(ξ) = 0. Hence the result is a formal
consequence of knowing that the maps Rζ,q are isomorphisms for all q of norm q ≡ −1 mod n.
This is exactly Theorem 5.2 below. �

By (9), the p-torsion subgroup of K3(Q(ζ + ζ−1)) is isomorphic to Z/nZ. On the other
hand, since Q(ζ + ζ−1) is totally real, we have an isomorphism:

K3(Q(ζ + ζ−1))⊗ Zp ' Z/nZ.

Lemma 5.1. Let p > 2 and n = pm. Suppose that q ≡ −1 mod n and q 6≡ −1 mod pn.
The prime q splits completely in Q(ζ + ζ−1). Let Fq denote the residue field at one of the
primes above q. Then the map

K3(Q(ζ + ζ−1))⊗ Zp → B(Fq)⊗ Zp

is an isomorphism.

Proof. A generator of B(Q(ζ + ζ−1))[n] ' K3(Q(ζ + ζ−1)) ⊗ Zp is given explicitly by the
element

ηζ :=
n−1∑
`=1

[(ζ` − ζ−`
ζ − ζ−1

)2
]

(23)
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This follows from Theorem 1.3 of [40]. On the other hand, the reduction modulo any prime
above q generates the latter group, as follows from the discussion in Section 4.2. �

We now prove Theorem 5.2 as mentioned above:

Theorem 5.2. Let n be a prime power and q ≡ −1 mod n. Then the map

Rζ,q : B(Fq)⊗ Z/nZ→ F×q2 ⊗ Z/nZ

is an isomorphism, where ζ is an nth root of unity.

Proof. Note that B(Fq) is cyclic of order q+1 up to 2-torsion, and F×q2 is cyclic of order q2−1.

In particular, for odd primes p with q ≡ −1 mod p, the groups B(Fq)⊗Zp and F×q2 ⊗Zp are

isomorphic to each other and to Zp/(q + 1)Zp. We begin with the following:

Lemma 5.3. Rζ(ηζ) = ζγ ∈ (Q(ζ)×/Q(ζ)×n)χ
−1

for some γ ∈ Zp.

Proof. Write ζn = ζ and let ζ ′ be an n2th root of unity. Consider the image of Rζ′(ηζ′).
Because ηζ is divisible by n in B(Q(ζ ′)+), the image is a nth power. Hence, by the compat-
ibility of the maps R for varying n (Lemma 2.6 (2)), it follows that Rζ(ηζ) lies in the kernel
of the map (

Q(ζ)×/Q(ζ)×n
)χ−1

→
(
Q(ζ ′)×/Q(ζ ′)×n

)χ−1

.

But this kernel consists precisely of nth roots of unity. �

Let ηζ,q ∈ B(Fq) denote the reduction of ηζ in B(Fq). By Lemma 5.1, the image also
generates B(Fq) ⊗ Z/nZ. Since all primes q ≡ −1 mod n split completely in Q(ζ)+, if
γ 6≡ 0 mod p, the result above follows by specialization. We proceed by contradiction and
assume that γ ≡ 0 mod p, which means that the image of the map Pζ,q is divisible by p for
all q of norm q satisfying q ≡ −1 mod n. In particular, to prove the result, it suffices to find
a single such q for which Rζ,q is an isomorphism.

Choose a completely split prime r in Q(ζ). Assume that

ζ ≡ a−1 mod r, ζ 6≡ a−1 mod r2

for some integer a 6= 1. The splitting assumption means that an a satisfying the first
condition exists, replacing a−1 by (a+N(r))−1 if necessary implies the second, because

1

a
− 1

a+N(r)
=

N(r)

a(a+N(r))
6≡ 1 mod r2 .

Let

τ =
n−1∏
k=0

(1− ζka)k ∈ Q(ζ)× .

Lemma 5.4. τ · ζ i is not a perfect pth power for any i.

Proof. The assumption on r implies that all the pth roots of unity are distinct modulo r, and
hence the only factor of τ divisible by r is (1− aζ), which has valuation one. �
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The element τ gives rise, via Kummer theory, to a Z/nZ-extension F/Q(ζ)+. By the
Lemma above, it is non-trivial. Let q ≡ −1 mod n be prime. Then, for a prime q above q,
the element Frobq ∈ Gal(F/Q(ζ)+) fails to generate Z/nZ if and only if τ is a perfect pth
power modulo q. This is equivalent to saying that Frobq generates Gal(F/Q(ζ)+) if and only
if

Rζ,q([a
n]) = Pζ,q([a

n]) =
n−1∏
k=0

(1− aζk)k ∈ F×q2 ⊗ Z/nZ

is a generator. Hence it suffices to find a single q ≡ −1 mod n and q 6≡ −1 mod np with
the desired Frobenius. Such a q exists by Cebotarev density unless 〈τ〉 = 〈ζ〉 mod Q(ζ)×p.
However, this cannot happen by Lemma 5.4. �

Proof of Theorem 1.2. Assume that n is prime to w2(F ). It follows that the Chern class
map gives an injection

K3(F )/nK3(F )→ OFn [1/S]×/OFn [1/S]×n

for some finite set of primes S. If, in addition, we assume that p does not divide w̃F , then
we deduce from Proposition 4.2 that this map can be extended to an injection into the
group

⊕
qB(Fq)/nB(Fq). By Theorem 1.5, this agrees with the map Rζ defined on B(F ),

which is thus injective. If one additionally assumes that n is prime to |∆F ||K2(OF )|, then
by Lemma 3.4 one may additionally assume that the image is precisely the χ−1-invariants
of O×Fn/O

×n
Fn

. �

5.2. Digression: the mod-p-q dilogarithm. Let q be prime, and q+ 1 ≡ 0 mod n with n
a power of p as before. Fix an nth root of unity ζ in Fq2 . Then there is a trivialization
logζ : F×q2 ⊗ Z/nZ ' Z/nZ sending ζ to 1. The isomorphism B(Fq) ⊗ Zp ' Z/nZ of
Theorem 5.2 now gives a curious function, the p-q dilogarithm, which is a function

L : Fq → F×q2 ⊗ Z/nZ
logζ→ Z/nZ

satisfying the 5-term relation. What is perhaps surprising is that the quantum logarithm
suffices to give an explicit formula, as follows.

Proposition 5.5. The function L is given by the formula

L(a) =
∑
bn=a

logζ(b) logζ(1− b) (a ∈ F×q ),

where the sum is over the nth roots b of a in F×q2 .

Proof. Since F×q has order prime to n, the element a has a unique nth power c ∈ F×q .

Then (17) can be rewritten as L(a) =
∑

k mod n k logζ(1 − ζkc). (Note that Rζ = Pζ for

finite fields.) The elements b = ζkc are the nth roots of a in F×q2 , and logζ(b) = k because

c has order prime to n and thus logζ(c) = 0. �
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5.3. The Chern class map on n-torsion in Q(ζ)+. (The following section contains a
speculative digression and is not used elsewhere in the paper.) We have proved that the
maps cζ and Rζ agree up to an invertible element of Z×p . To determine the value of this
ratio, whose conjectural value is 2, we need to compute the images of specific elements
of the Bloch group. More specifically, as explained in the introduction, we need the two
statements (12) and (13). The first of these will be proved below (Theorem 8.5). Here we
want to show that the second is not pure fancy. We shall give a heuristic justification of
why the image of the Chern class map on ηζ should be ζ — at least up to a sign and a
small power of 2 in the exponent. We hope that the arguments of this section could, with
care, be made into a precise argument. However, since the main conjecture of this section
is somewhat orthogonal to the main purpose of this paper, and correctly proving everything
would (at the very least) involve establishing that several diagrams relating the cohomology
of SL2 and PSL2 and GL2 and PGL2 commute up to precise signs and factors of 2. Thus we
content ourselves with a sketch, and enter the happy land where all diagrams commute.

The first subtle point is that the relation between K3(F ) and B(F ) as established by
Suslin is not an isomorphism. There is always an issue with 2-torsion coming from the image
of Milnor K3. However, even for primes p away from 2, there is an exact sequence of Suslin
([31], Theorem 5.2; here F is a number field so certainly infinite):

0→ Tor1(µF , µF )⊗ Z[1/2]→ K3(F )⊗ Z[1/2]→ B(F )⊗ Z[1/2]→ 0,

and hence when p|wF = |µF |, the comparison map is not an isomorphism. (This is one
of the headaches which implicitly us to assume that ζ /∈ F when computing the Chern
class map on B(F ).) This issue arises in the following way. Over the field Q(ζ), the
Bott element provides a direct relationship between K1(F,Z/nZ) and K3(Z,Z/nZ). This
suggests we should push forward ηζ to Q(ζ) and compute the Chern class there. However,
since in B(Q(ζ)), the class ηζ may (and indeed does) become trivial, we instead consider ηζ
as an element of K3(Q(ζ)), and then compute the Chern class map directly in K-theory.

By Theorem 4.10 of Dupont–Sah [7], the diagonal map

x→
(
x 0
0 x−1

)
induces an injection

µC ' H3(µC,Z)→ H3(SL2(C),Z)

whose image is precisely the torsion subgroup. (We shall be more precise about this first
isomorphism below.) Let n be odd, and let ζ be a primitive nth root of unity, let E = Q(ζ),
and let E+ = Q(ζ)+. If µE is the group of nth roots of unity, the map µE → SL2(E) is
conjugate to a map

µE → SL2(E+)

as follows; send ζ to

t = A

(
ζ−1 0
0 ζ

)
A−1, where A =

(
ζ ζ−1

1 1

)
.
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The cohomology of µE with coefficients in Z/nZ is (non-canonically) isomorphic to Z/nZ in
all degrees. More precisely, there is a canonical isomorphism

H1(µE,Z) = H1(µE,Z/nZ) = µE ,

we have H2(µE,Z) = 0, and thus via the Bockstein map H2(µE,Z/nZ) = H1(µE,Z)[n] = µE.
A choice of ζ leads to a choice of element β ∈ H2(µE,Z/nZ) = µE, and hence to an
isomorphism

µE = H1(µE,Z/nZ)
∗β−→ H3(µE,Z/nZ) = H3(µE,Z)

where the isomorphism is given by the Pontryagin product of µE with β ∈ H2(µE,Z/nZ).
These choices induce a map

µE → H3(µE,Z)→ H3(SL2(E+),Z)→ K3(E+)→ B(E+)

which sends ζ to ηζ . That the image of ζ is ηζ follows (for example) by §8.1 of [40]). Implicit
in this statement also is that the Pontryagin product of 1 ∈ Z/nZ = H1(Z/nZ,Z/nZ)
with 1 ∈ H2(Z/nZ,Z/nZ) is exactly the class constructed in Proposition 3.25 of Parry
and Sah [27]. (The maps above are only properly defined modulo 2-torsion, since µ has odd
order this issue can safely be ignored). Denote by ηE+ the corresponding element in K3(E+).
The Chern class maps are compatible with base change, so to compute c(ηE+) it suffices to
compute c(ηE) where ηE ∈ K3(E) is the image of ηE+ under the map K3(E+) → K3(E).
The Chern class map on K1(E) = E× canonically sends ζ ∈ E× to ζ; we would like to
directly connect the Chern class map on K1 with the one on K3 using the Bott element. The
Bott element β ∈ K2(E; Z/nZ) is defined as follows. There is an isomorphism:

µE = ker
(
E×

n−→ E×
)

= π2(E×; Z/nZ) .

The element β is defined as the image of ζ under the composition

π2(BGL1(E); Z/nZ)→ π2(BGL(E); Z/nZ)→ π2(BGL(E)+; Z/nZ) = K2(E; Z/pZ) .

The Bott element induces an isomorphism:

β : K1(E; Z/nZ)→ K3(E; Z/nZ) .

Hence there is, given our choice of ζ ∈ E, a canonically defined map:

K3(E) E×/E×n

K3(E; Z/nZ)
?

c ζ

-

K1(E,Z/nZ)

β−1

wwwwwwwww
c
- E×/E×n

wwwwwwwwwwwwwwwwwwwwwww
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Here cζ is the composition of the Chern class map to H1(E,Z/nZ(2)) which can be identified
with E×/E×n after a choice of ζ ∈ E. Note that the definition of β also requires a similar
choice. Thus it makes sense to make the following:

Assumption 5.6. The diagram above commutes.

We believe that it should be possible to prove this assumption, at least up to a choice of
sign and a power of 2.

Using Assumption 5.6, we would like to show that cζ(ηE) = ζ, and hence that cζ(ηE+) and
thus cζ(ηζ) are also both equal to ζ. This will follow if, under the Bott element, the class ηE
corresponds to ζ ∈ K1(E; Z/nZ). To prove this, one roughly has to show that the following
square commutes:

µE = H1(µE,Z/nZ)
∗β
- H3(µE,Z/nZ)

E×/E×n = K1(E,Z/nZ)
? β

- K3(E; Z/nZ).
?

The top line comes from the Pontryagin product structure of H1(µE,Z/nZ) = µE with

H2(µE,Z/nZ) = ker(µE
[n]−→ µE) ,

and the bottom line comes from Pontryagin product with the Bott element β coming via the
Bockstein map from

ker(E×
[n]−→ E×) .

We conveniently denote both maps by essentially the same letter in order to be more sugges-
tive. One caveat is that the maps from E× → GL2(E) and µE → SL2(E) considered above

differ slightly in that x is sent to

(
x 0
0 1

)
and

(
x 0
0 x−1

)
respectively; since n is odd such

maps can be compared by comparing the cohomologies of GL, PGL, SL, and PSL respec-
tively; it is quite possible that such comparisons might require that the maps above include
a factor of 2 or −1 at some point.

The above discussion above makes the conjectured equation (13) plausible.

6. The connecting homomorphism to K-theory

In this section, we give a proof of Theorem 1.7. Assume that F is a field of characteristic
prime to p which does not contain a pth root of unity. Recall that Z(F ) is the free abelian
group on F r {0, 1} and C(F ) the subgroup generated by the 5-term relation.

Definition 6.1. Let A(F ; Z/nZ) be the kernel of the map

d : Z(F ) −→
∧2F× ⊗ Z/nZ , [X] 7→ X ∧ (1−X) .

The étale Bloch group B(F ; Z/nZ) is the quotient

B(F ; Z/nZ) = A(F ; Z/nZ)/(nZ(F ) + C(F )) .

It is annihilated by n.
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There is a tautological exact sequence

0→ B(F )→ Z(F )/C(F )→
∧2F× → K2(F )→ 0 .

For appropriately defined R, we may break this into the two short exact sequences as follows:

0 - A(F ) - Z(F ) - R - 0,

0 - B(F )

??
- Z(F )/C(F )

??
- R

wwwwwwwwww
- 0,

0→ R→
∧2F× → K2(F )→ 0. (24)

Similarly, for some Q, we have corresponding short exact sequences:

0 - A(F ) - A(F ; Z/nZ) - Q - 0,

0 - A(F )/(nZ(F ) + C(F ))

??
- A(F ; Z/nZ)/(nZ(F ) + C(F ))

??
- Q/nR

??
- 0

0 - B(F )/nB(F )

wwwwwwwww
- B(F ; Z/nZ)

wwwwwwwww
- Q/nR

wwwwwwwww
- 0,

We have inclusions Q ⊆ R and nR ⊆ Q ⊆ n
∧2F×. From now on, we make the assumption

that the number field F does not contain a pth root of unity for any p dividing n. This
implies from the previous inclusions that Q and R are all p-torsion free for p|n. Tensor the
exact sequence (24) with Z/nZ. The group Tor1(Z/nZ,∧2F×) vanishes by our assumption.
Hence we have an exact sequence:

0→ K2(F )[n]→ R/nR→
∧2F× ⊗ Z/nZ→ K2(F )/nK2(F )→ 0. (25)

Recall that R is the image of Z(F ) in
∧2F× and Q is the image of A(F ; Z/nZ), which is

precisely the kernel of the map from R to
∧2F× ⊗ Z/nZ. It follows that the image of Q

in R/nR is the kernel of the map from R/nR to
∧2F× ⊗ Z/nZ. From the short exact

sequence (25), this may be identified with K2(F )[n]. Since the image of Q in R/nR is
precisely Q/nR, however, this shows that Q/nR ' K2(F ), we obtain the exact sequence:

0 −→ B(F )/nB(F ) −→ B(F ; Z/nZ) −→ K2(F )[n] −→ 0 ,

completing the proof of Theorem 1.7.
The previous result was a diagram chase. The map δ : B(F ; Z/nZ) → K2(F ) can be

given explicitly as follows: Lift [x] ∈ B(F ; Z/nZ) to an element x of A(F ; Z/nZ)/C(F ),
which is unique up to an element of nZ(F ). The image of x in

∧2F× ⊗ Z/nZ is zero by
definition. Hence, because

∧2F× is p-torsion free for p|n, there exists an element y ∈
∧2F×

such that the image of z in
∧2F× is ny, and now y is unique up to an element in the image
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of C(F ). Yet the projection z of y ∈
∧2F× to K2(F ) sends this ambiguity C(F ) to zero,

and so δ([x]) := z ∈ K2(F ) is well defined.

If we assume that n is not divisible by any prime p which divides w2(F ), we have con-
structed a map

Rζ : B(F ; Z/nZ)→ (F×n /F
×n
n )χ

−1 ' H1(F,Z/nZ(2)) . (26)

Taking n = pm for various m, and using the fact that B(F ) is finitely generated and
so proj limB(F )/pmB(F ) = B(F )⊗ Zp, we obtain a commutative diagram as follows:

0 - B(F )/pmB(F ) - B(F ; Z/nZ) - K2(F )[n] - 0

0 - H1(F,Zp(2))/pm
?

- H1(F,Z/nZ(2))
?

- H2(F,Zp(2))[n]
?

- 0,

(27)

The first vertical map is an isomorphism by Theorem 3.2, and the last vertical map is also
an isomorphism by a theorem of Tate [32]. It follows that the map Rζ in equation 26 is an
isomorphism for n prime to w2(F ). This gives a link between our explicit construction of
Chern class maps for K3(F ) and the explicit construction of K2(F ) in Galois cohomology
by Tate [32].

We end this section with a remark on circular units. Let F = Q(ζD). Associated to
a primitive Dth root of unity ζD, Beilinson (see §9 of [15]) constructed special generating
elements of K3(F ), which correspond, on the Bloch group side, to the classes D [ζD] ∈ B(F ).
Soulé [29] proved that the images of these classes under the Chern class map consist exactly
of the circular units. On the other hand, for p not dividing D, we see that the images
of D[ζD] under the maps Rζ are unit multiples of the elements

pm−1∏
k=0

(1− ζk ζD)k ;

these are exactly the compatible sequences of circular units which yield a finite index
subgroup of H1(F,Zp(2)) — the index being directly related to K2(OF ) via the Quillen–
Lichtenbaum conjectures.

7. Relation to quantum knot theory

As was mentioned in the introduction, the initial motivation for expecting a map as
in (5) was the Quantum Modularity Conjecture, which concerns the asymptotics of a twisted
version of the Kashaev invariant of a knot at roots of unity and a subtle transformation
property (verified numerically for many knots and proved in the case of the figure 8 knot) of
certain associated formal power series under the group SL(2,Z). In this section, we give a
summary of this conjecture (a much more detailed discussion is given in [13]) and compare
the near units appearing there with the ones studied in this paper.

Let K be a hyperbolic knot, i.e., an embedded circle in S3 for which the 3-manifold
MK = S3 r K has a hyperbolic structure. This structure is then unique and gives several
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invariants: the volume V(K) ∈ R>0 and Chern-Simons-invariant CS(K) ∈ R/4π2Z of the 3-
manifold MK , the trace field FK = Q

[
{tr(γ)}γ∈Γ

]
where MK = H3/Γ with Γ ⊂ SL(2,C) (the

finitely generated group Γ is only unique up to conjugacy, but the set of traces of its elements
is well-defined), and a fundamental class ξK in the Bloch group B(FK), defined as the class of∑

[zj] in B(FK), where t∆j = MK is any ideal triangulation of MK and zj the cross-ratio of
the four vertices of ∆j. We also have two quantum invariants, the (normalized) colored Jones
polynomial JKN (q) ∈ Z[q, q−1] and the Kashaev invariant 〈K〉N ∈ Q, which are computable
expressions defined for any N ∈ N whose precise definitions, not needed here, we omit.
The Volume Conjecture, due to Kashaev, says that the limit of 1

N
log |〈K〉N | as N →∞

equals 1
2π

V(K), the Complexified Volume Conjecture is the more precise statement

〈K〉N = ev(K)N+o(N) asN →∞, where v(K) = 1
2π

(V(K)−iCS(K)) (this makes sense because
v(K) is well-defined modulo 2πi), and the yet stronger Arithmeticity Conjecture, stated
in [6] and [9], says that there is a full asymptotic expansion

〈K〉N ∼ µ8δ(K)−1/2N3/2 ev(K)N
(

1 + κ1(K)
2πi

N
+ κ2(K)

(2πi

N

)2

+ · · ·
)

(28)

as N → ∞, where δ(K) is a non-zero number related to the Ray-Singer torsion of K and
where δ(K) and κj(K) (j ≥ 1) belongs to the trace field FK . An example, one of the few that
are known rigorously (some other cases have now been proved by Ohtsuki et al; see [26]), is
the expansion

〈41〉N ∼
N3/2

4
√

3
ev(41)N

(
1 +

11π

36
√

3N
+

697π2

7776N2
+

724351π3

4199040
√

3N3
+ · · ·

)
for the knot K = 41 (figure 8), for which FK = Q(

√
−3).

Equation (28) is already a strong refinement of the Volume Conjecture. An even stronger
is the Modularity Conjecture given in [39] and discussed further in [8] and [13]. The
starting point is the famous theorem of H. Murakami and J. Murakami [23] saying that the
Kashaev invariant 〈K〉N , originally defined by Kashaev as a certain state sum, coincides
with the value of the colored Jones polynomial JKN (q) at q = ζN = e2πi/N . We define a
function JK : Q → Q by setting JK(x) = JKN (e2πix) for any N ∈ N with Nx ∈ Z. This is
independent of the choice of N since the values of the colored Jones polynomial JKN (q) at
an nth root of unity q is periodic in N of period n. From the Murakami-Murakami theorem
and since the function JK is Galois-invariant by its very definition, we have

JK
( a
N

)
= σa

(
〈K〉N

)
for any a ∈ (Z/NZ)×,

where σa is the automorphism of Q(ζN) sending ζN to ζaN , so the function JK can be thought
of as a Galois-twisted version of the Kashaev invariant. The Modularity Conjecture describes
its asymptotic behavior of JK(x) as the argument x ∈ Q approaches any fixed rational
number α, not just 0. Specifically, it asserts that there exist formal power series ΦK

α (h) ∈
Q[[h]] (α ∈ Q, periodic in α with period 1), such that for any

(
a b
c d

)
∈ SL(2,Z), we have

JK
∗
(aX + b

cX + d

)
∼ (cX + d)3/2 JK

∗
(X) ev(K)(X+d/c) ΦK

a/c

( 2πi

cX + d

)
(29)
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to all orders in 1/X as X → ∞ in Q with bounded denominator. Here, K∗ is the mir-
ror of K. If we take

(
a b
c d

)
=
(

0 −1
1 0

)
and X = N → ∞, then (29) reduces to 〈K〉N =

JK(1/N) = JK
∗
(−1/N) ∼ N3/2ev(K)NΦK

0

(
2πi
N

)
, so (29) is a generalization of (28) with

ΦK
0 (h) = µ8 δ(K)−1/2 (1 + κ1(K)h+ · · · ).
The Quantum Modularity Conjecture, as already mentioned, was first given in [39], with

detailed numerical evidence for the case of the figure 8 knot, and is further discussed in [8] and
then in much more detail in [13], where this case is proved completely and numerical examples
for several more knots are given. It is perhaps worth mentioning that regarding numerical
evidence, one cannot use the standard SnapPy or Mathematica programs to compute the
colored Jones polynomial (hence the Kashaev invariant) of a knot, since these work for
small values of N (say, N ∼ 20). Instead, we used a finite recursion for the colored Jones
polynomial, whose existence was proven in [9], and concretely computed in several examples
summarized in [8] and [13]. We could then compute the Kashaev invariant numerically to
high precision up to N of the order of 5000, which with suitable numerical extrapolation
techniques made it possible to compute and recognize several terms of the series ΦK

a/c(h)
with high confidence.

But already in the constant term of the series ΦK
a/c(h), mysterious roots of algebraic units

appear and those led to the main theorems of this paper. For instance, for the 41 knot, when
a is an integer prime to 5, we have

Φ41

a/5(h) = 3
1
4

(
ε(a)
) 1

10

((
2−ε(a)

1 +ε
(a)
2 +2ε

(a)
3

)
+

2678− 943ε
(a)
1 + 1831ε

(a)
2 + 2990ε

(a)
3

233252
√
−3

h+ · · ·
)
,

where ε(a) = ε
(a)
2 /(ε

(a)
1 )3ε

(a)
3 and ε

(a)
k = 2 cos 2π(6a−5)k

15
. (See [39], p. 670 except that the formula

is given there in terms of log Φ, which makes its coefficients much more complicated.) The

number ε
(a)
k is an algebraic unit in F5 = Q(ζ15), and it is the appearance of the 10th root of

ε(a) that was the origin of the present investigation. In fact, although the unit ε(a) is not a
square in the field Q(ζ15)+ which it generates, its negative is a square in the larger field F5 :√
−ε(a) = 2i sin 2π(6a−5)

15
ε

(a)
2 /ε

(a)
1 .

More generally, when we do numerical calculations for arbitrary knots K, we find:

• the power series ΦK
α (h) (α ∈ Q) belongs to Q[[h]] and has a factorization of the form

ΦK
α (h) = Cα(K)φKα (h) (30)

with Cα(K) ∈ Q and φKα (h) ∈ Fc[[h]], where the number field F is independent of α
(and is in fact is conjecturally the trace field FK of K) and Fc = F (ζc);
• the constant Cα(K) factors as

Cα(K) = µ8c(K)δ(K)−1/2 εα(K)1/c

where µ8c is a 8c root of unity and εα(K) is a unit of Fc;
• the units εα(K) for different rational numbers α and β = kα with the same denom-

inator (assumed prime to some fixed integer depending on K) are related by both
εβ(K) = σk(εα(K)) and εβ(K)k = εα(K) (the latter equality holding modulo cth
powers), where σk ∈ Gal(Fc/F ) is the map sending ζα to ζβ. Compare this double
Galois invariance with (6).
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Notice that the factorization (30) is not canonical, since we can change both the con-
stant Cα and the power series by a unit of Fc and its inverse, so that the formula involves a
slight abuse of notation. Notice also that v depends only on the element of the Bloch group
associated to the knot [25, 14] and so does εα, but not Φα. Specifically, as seen in [13], sister
(or partner) knots do not have the same power series, but do (experimentally) have the same
unit. It is this observation that led us to search for the map (5).

8. Nahm’s conjecture and the asymptotics of Nahm sums at roots of unity

In the previous section, we saw that the near units constructed in this paper from elements
of the Bloch group appear naturally (although in general only conjecturally) in connection
with the asymptotic properties of the Kashaev invariant of knots and its Galois twists. A
second place where these units appear is in the radial asymptotics of so-called Nahm sums,
as was shown in [11] and is quoted (in a simplified form) in Theorem 8.1 below. In this
section, we explain this and give two applications, the proof of Theorem 8.5 and the proof of
one direction of Nahm’s conjecture relating the modularity of Nahm sums to the vanishing
of certain elements in Bloch groups.

Nahm sums are special q-hypergeometric series whose summand involves a quadratic form,
a linear form and a constant. They were introduced by Nahm [24] in connection with charac-
ters of rational conformal field theories, and led to his above-mentioned conjecture concerning
their modularity. They have also appeared recently in quantum topology in relation to the
stabilization of the coefficients of the colored Jones polynomial (see Garoufalidis-Le [10]),
and they are building blocks of the 3D-index of an ideally triangulated manifold due to
Dimofte-Gaiotto-Gukov [5, 4]. Further connections between quantum topological invari-
ants and Nahm sums are given in [12], where one sees once again the appearance of the
units Rζ(ξ)

1/n.
In the first subsection of this section, we review Nahm sums and the Nahm conjecture and

state Theorem 8.1 relating the asymptotics of Nahm sums at roots of unity to the near units
of Theorem 1.2. This is then applied in §8.2 to a particular Nahm sum (namely, the famous
Andrews-Gordon generalization of the Rogers-Ramanujan identities) to prove equation (12)
of the introduction (Theorem 8.5). In the final subsection, we use Theorem 8.1 together
with Theorem 1.2 to give a proof of one direction of Nahm’s conjecture.

8.1. Nahm’s conjecture and Nahm sums. Nahm’s conjecture gives a very surprising
connection between modularity and algebraic K-theory. More precisely, it predicts that the
modularity of certain q-hypergeometric series (“Nahm sums”) is controlled by the vanishing
of certain associated elements in the Bloch group B(Q) = K3(Q).

The definition of Nahm sums and the question of determining when they are modular
were motivated by the famous Rogers-Ramanujan identities, which say that

G(q) :=
∞∑
n=0

qn
2

(q)n
=

∏
n>0

(n
5

)=1

1

1− qn
, H(q) :=

∞∑
n=0

qn
2+n

(q)n
=

∏
n>0

(n
5

)=−1

1

1− qn
,

where (q)n = (1− q) · · · (1− qn) is the q-Pochhammer symbol or quantum n-factorial. These
identities imply via the Jacobi triple product formula that the two functions q−1/60G(q) and
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q11/60H(q) are quotients of unary theta-series by the Dedekind eta-function and hence are
modular functions. (Here and from now on we will allow ourselves the abuse of terminology

of saying that a function f(q) is modular if the function f̃(τ) = f(e2πiτ ) is invariant under
the action of some subgroup of finite index of SL(2,Z).) To see how general this phenomenon
might be, Nahm [24] considered the three-parameter family

fA,B,C(q) =
∑
m≥0

q
A
2
m2+Bm+C

(q)m
(A ∈ Q>0, B, C ∈ Q) (31)

These are formal power series with integer coefficients in some rational power of q, and
are analytic in the unit disk |q| < 1, but they are very seldom modular: apart from the
two Rogers-Ramanujan cases (A,B,C) = (2, 0,− 1

60
) or (2, 1, 11

60
), only five further cases

(1, 0,− 1
48

), (1,±1
2
, 1

24
), (1

2
, 0,− 1

40
) and (1

2
, 1

2
, 1

40
) were known for which fA,B,C is modular, and

it was later proved ([33], [38]) that these are in fact the only ones. Since this list of seven
examples is not very enlightening, Nahm introduced also a higher-order version

fA,B,C(q) =
∑

m∈Zr≥0

q
1
2
mtAm+Bm+C

(q)m1 · · · (q)mr
, (32)

where A = (aij) is a symmetric positive definite r × r matrix with rational entries, B ∈ Qr

a column vector, and C ∈ Q a scalar, and asked for which triples (A,B,C) the function

f̃A,B,C(τ) = fA,B,C(e2πiτ ) is modular. His conjecture gives a partial answer to this question.
To formulate this conjecture, Nahm made two preliminary observations.

(i) Let X = (X1, . . . , Xr) ∈ Cr be a solution of Nahm’s equations

1 − Xi =
r∏
j=1

X
aij
j (1 ≤ j ≤ r) (33)

(or symbolically 1−X = XA), and let F be the field they generate over Q, which will typically
be a number field since (33) is a system of r equations in r unknowns and generically defines
a 0-dimensional variety. Then the element [X] = [X1]+ · · · [Xr] of Z[F ] belongs to the kernel
of the map (2), because

d
(
[X]
)

=
∑
i

(Xi) ∧ (1−Xi) =
∑
i, j

aij (Xi) ∧ (Xj) = 0

by virtue of the symmetry of A. (This calculation makes sense as it stands if A has integer
entries; if the entries are only rational, we have to tensor everything with Q.) Therefore [X]
determines an element of the Bloch group B(F )⊗Q and it makes sense to ask whether this
element vanishes. This is equivalent to the vanishing of the numbers D(σX) =

∑
D(σXi)

for all embeddings σ : F ↪→ C, where D(x) is the Bloch-Wigner dilogarithm function, and
this condition can be either tested numerically to any precision or else verified rigorously by
writing a multiple of [X] as a linear combination of 5-term relations.

(ii) The first remark applies to any symmetric matrix A. If A is positive definite, then
there is a distinguished solution of the Nahm equations, namely the unique solution XA =
(XA

1 , . . . , X
A
r ) with 0 < XA

i < 1 for all i. We denote by ξA the corresponding element [XA]
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of the Bloch group. Then since XA is real, we obtain a further characteristic property when
this element is torsion, namely that the real number L(ξA) =

∑
L(Xi), where L(x) is the

Rogers dilogarithm function as defined below, is a rational multiple of π2. But it can be
shown fairly easily that fA,B,C(e−h) has an asymptotic expansion as eL(ξA)/h+O(1) as h→ 0+

for any B and C (in fact, a full asymptotic expansion of the form eL(ξA)/h+c0+c1h+··· is given
in [38]). Since a modular function must have an expansion ec/h+O(1) with c ∈ Qπ2, this
already gives a strong indication of a relation between the modularity of Nahm sums and
the vanishing (up to torsion) of the associated elements of Bloch groups.

Based on these observations, one can consider the following three properties of a matrix
A as above:

(a) The class [X] ∈ B(C) vanishes for all solutions X of the Nahm equations (33).

(b) The special class ξA ∈ B(C) associated to the solution XA of (33) vanishes.

(c) The function fA,B,C(q) is modular for some B ∈ Qr and C ∈ Q.

Trivially (a)⇒ (b). Nahm’s conjecture (see [24] and [38]) says that (a)⇒ (c) and (c)⇒ (b).
(The possible stronger hypothesis that (b) alone might already imply (c) was eliminated
in [38] using the 2 × 2 matrix A = ( 8 5

5 4 ), and the other possible stronger assertion that
(c) might require (a) was shown to be false by Vlasenko and Zwegers [34] with the coun-

terexample A = ( 3/2 1/2
1/2 3/2 ).) This conjecture had a dual motivation: on the one hand, the

above-mentioned fact that both (b) and (c) force the rationality of L(ξA)/π2, which is most
unlikely to happen “at random,” and on the other hand, a large number of supporting ex-
amples coming from the characters of rational conformal field theories, which are always
modular functions and where the condition in the Bloch group can also be verified in many
cases. Here we are concerned with an extension of the first of these two aspects, namely the
asymptotics of the Nahm sum fA,B,C(q) as q tends radially to any root of unity, not just
to 1.

In order to state the asymptotic formula, we need to define the Rogers dilogarithm. In our
normalization (which is π2/6 minus the standard one as given, for instance, in [38], §II.1A),
this is the function defined on R r {0, 1} by

L(x) =


π2

6
− Li2(x) − 1

2
log(x) log(1− x) if 0 < x < 1,

−L(1/x) if x > 1,
π2

6
− L(1− x) if x < 0

(here Li2(x) =
∑∞

n=1
xn

n2 is the standard dilogarithm) and extended by continuuity to a

function P1(R) → R/π
2

2
Z by sending the three points 0, 1 and ∞ to π2

6
, 0, and −π2

6
. Its

linear extension to Z(R) vanishes on the group C(R) as defined at the beginning of §1.1.
(We comment here that there are several definitions of the Bloch group in the literature, all
the same up to 6-torsion, and that the specific choice made in Definition 1.1, which forces
3[0] = 0, [X]+[1/X] = 0 and [X]+[1−X] = [0] for any field F and any element X of P1(F ),
was chosen precisely so that L is well-defined on B(R) and takes values in the full circle

group R/π
2

2
Z rather than just its quotient R/π

2

6
Z.)

Specifically, let A, B and C be as above let X = XA be the distinguished solution of (33)
as in (ii) and F the corresponding number field, and for each integer n choose a primitive
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nth root of unity ζ, set Fn = F (ζ) and denote by H = Hn the Kummer extension of Fn
obtained by adjoining the positive nth roots xi of the Xi. We are interested in the asymptotic
expansion of fA,B,C(ζe−h/n) as h → 0+. Strictly speaking, this only makes sense if A has
integral coefficients, B is congruent to 1

2
diag(A) modulo Zr, and C ∈ Z, since otherwise

the quadratic function q
1
2
nAnt+nB+C occurring in the definition of fA,B,C is not uniquely

defined. We get around this by picking a representation of ζ as e(a/n) for some a ∈ Z and

interpreting fA,B,C(ζe−h/n) as f̃A,B,C
(
a+i~
n

)
, where ~ = h

2π
. The full asymptotic expansion

of fA,B,C(ζe−h/n) as h → 0+ was calculated in [12] using the Euler-Maclaurin formula,
generalizing an earlier result in [38] for the case n = 1. We do not give the complete
formula here, but only the simplified form as needed for the applications we will give. In the
statement of the theorem we have abbreviated by ∆X the diagonal matrix whose diagonal
is a vector X.

Theorem 8.1. [12] Let (A,B,C) be as above. Then for every positive integer n (coprime to
a finite set of primes that depend on A and B) and for every primitive nth root of unity ζ,
we have

fA,B,C
(
ζ e−h/n

)
= µω eL(ξA)/nh

(
Φζ(h) + O(hK)

)
(34)

for all K > 0 as h → 0+, where ω2 ∈ F×, µ24n = 1 and Φζ(h) = ΦA,B,C,ζ(h) is an explicit
power series satisfying the two properties Φζ(h)n ∈ Fn[[h]] and Pζ(ξA)1/n Φζ(h) ∈ Hn[[h]].
Moreover, if Φζ(0)n 6= 0, then its image in F×n /F

×n
n belongs to the χ−1 eigenspace.

Remark 8.2. If n is prime to 6, then we can choose µ to be a 24th root of unity, since the
nth roots of unity are contained in Fn and can be absorbed into the power series Φ.

Corollary 8.3. If Φζ(0) 6= 0, then the product of the power series Φζ(h) with ε1/n for any
unit ε representing Rζ(ξA) belongs to Fn[[h]] .

Proof. Let ε ∈ F×n denote a representative of Rζ(ξA). On the one hand, Theorem 8.1 and
Remark 2.5 imply that Φζ(0)ε1/n ∈ F×n . On the other hand, Theorem 8.1 and our assumption
implies that (Φζ(h)/Φζ(0))n ∈ Fn[[h]]. Since Φζ(h)/Φζ(0) is a power series with constant
term 1, it follows that Φζ(h)/Φζ(0) ∈ Fn[[h]]. Combining both conclusions, it follows that
ε1/nΦζ(h) ∈ Fn[[h]]. �

Remark 8.4. In the theorem, we do not assert that the power series Φ cannot vanish
identically (which is why we wrote an equality sign and Φ(h) + O(hK) in (34) rather than
writing an asymptotic equality sign and putting simply Φ(h) on the right), and indeed this
often happens, for instance, when fA,B,C is modular and we are expanding at a cusp not
equivalent to 0. Of course, the corollary is vacuous if Φ vanishes.

8.2. Application to the calculation of Rζ(ηζ). In this subsection, we apply Theorem 8.1
and its corollary to a specific Nahm sum to prove equation (12) in the introduction.

Theorem 8.5. Let n be positive and prime to 6 and ηζ be the n-torsion element in B(Q(ζ)+)
defined by (23), where ζ is a primitive nth root of unity. Then Rζ(ηζ)

4 = ζ .

Proof. Set An =
(
2 min(i, j)

)
1≤i,j≤r, where r = n−3

2
, and let fn be the Nahm sum fAn,0,0

of order r. By a famous identity of Andrews and Gordon [1], which reduces to the first
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Ramanujan-Rogers identity when n = 5, we have the product expansion

fn(q) =
∏
k>0

2k 6≡0,±1 ( mod n)

1

1− qk
. (35)

and this is modular up to a power of q for the same reason as for G(q) = f5(q) (quotient
of a theta series by the Dedekind eta-function). This modularity allows us to compute its
asymptotics as q → ζn, and by comparing the result with the general asymptotics of Nahm
sums as given in 8.1, we will obtain the desired evaluation of ηn. We now give details.

It is easy to check that all solutions X of the Nahm equation 1−X = XAn have the form

X = (X1, . . . , Xr), Xk =
(1− ζ2k)(1− ζ2k+4)

(1− ζ2k+2)2

with ζ a primitive n root of unity, and hence form a single Galois orbit. The distinguished

solution XAn ∈ (0, 1)r corresponds to ζ = e(1/n) = ζn. From 1 − Xk = ( ζ−ζ−1

ζk+1−ζ−k−1 )2 and

the functional equation L(1−X) = π2

6
− L(X) we find

L(XAn) =
1

2

∑
0<`<n

(
π2

6
− L

(
sin2(π/n)

sin2(`π/n)

))
=

(n− 3)π2

6n
,

the final equality being a well-known identity for the Rogers dilogarithm of which a proof
can be found at the end of [38], §II.2C. Denote the right-hand side of this by −4π2Cn and

set f̃n(τ) = qCnfn(q). Using the Jacobi theta function and Jacobi triple product formula

θ(τ, z) =
∑

n∈Z + 1/2

(−1)[n] qn
2/2 yn = q1/8 y1/2

∞∏
n=1

(
1− qn

)(
1− qny

)(
1− qn−1y−1

)
(where =(τ) > 0, z ∈ C, q = e(τ), and y = e(z)), together with the Dedekind eta-function
η(τ) = q1/24

∏
n>0(1− qn), we can rewrite (35) as

fn(τ) = −q(r+1)2/2n θ(nτ, (r + 1)τ)

η(τ)
,

which in conjunction with the standard transformation properties of θ and η implies that
fn(τ) is a modular function (with multiplier system) on the congruence subgroup Γ0(n) of
SL(2,Z). We need only the special case τ 7→ τ

nτ+1
, where the transformation law is given by

fn

( τ

nτ + 1

)
= e

(n− 3

24

)
fn(τ) , (36)

whose proof we sketch for completeness. The well-known modular transformation properties
of θ and η under the generators T =

(
1 1
0 1 ) and S =

(
0 −1
1 0 ) of SL(2,Z) are given by

θ(τ + 1, z) = e(1/8) θ(τ, z) , θ(−1/τ, z/τ) =
√
τ/i e(z2/2τ) θ(τ, z)

η(τ + 1) = e(1/24) η(τ) , η(−1/τ) =
√
τ/i η(τ) .
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Hence, using
T∼ and

S∼ to denote an equality up to an elementary factor (the product of
a power of τ with the exponential of a linear combination of 1, τ and z2/τ) that can be
deduced from the T - or S-transformation behavior of the function in question, we have

θ
( nτ

nτ + 1
,
(r + 1)τ

nτ + 1

)
T∼ θ

( −1

nτ + 1
,
(r + 1)τ

nτ + 1

)
S∼ θ (nτ + 1, (r + 1)τ)

T∼ θ (nτ, (r + 1)τ) ,

η
( τ

nτ + 1

)
S∼ η

(
−n− 1

τ

)
T∼ η

(
−1

τ

)
S∼ η(τ) .

Inserting all omitted factors and dividing the first equations by the second, we obtain (36).
Now applying (36) to τ = 1+i~

n
, with ~ = h

2π
, where h positive and small, we find

fAn,0,Cn
(
ζne
−h/n) = fn

(1 + i~
n

)
= e

(n− 3

24

)
fn

(−1 + i/~
n

)
= e

( n
24
− 1

8
+

1

24n
− 1

8n2

)
eL(XAn )/nh

(
1 + O

(
e−4π2/nh

))
. (37)

Taking the 8n-th power of this and combining with Theorem 8.1 and its Corollary 8.3, we
find that Rζ(ξAn)8 = e(1/n) ∈ (F×n /F

×n
n )χ

−1
. On the other hand, using the same identity

1 − Xk = ( ζ−ζ−1

ζk+1−ζ−k−1 )2 as before, we find that the Bloch element ξAn associated to the

distinguished real solutions XAn of the Nahm equation is equal to twice the Bloch element
ηζ defined in (23). This completes the proof of Theorem 8.5. �

8.3. Application to Nahm’s conjecture. In this final subsection, we give an application
of the asymptotic Theorem 8.1 and Theorem 1.2 to proving one direction of Nahm’s con-
jecture about the modularity of Nahm sums. The notations and assumptions are as before,
but for convenience we repeat them here.

Let A ∈Mr(Q) be a positive definite symmetric matrix, B ∈ Qr, and C ∈ Q. We denote
XA = (X1, . . . , Xr) denote the unique solution in (0, 1)r to the Nahm equation, by F = FA
the real number field generated by the Xi and by ξA =

∑
i[Xi] ∈ B(FA) the corresponding

element of the Bloch group. Finally, when we say that FA,B,C is modular, we mean that

the function f̃(τ) = fA,B,C(e(τ)) is invariant with respect to a subgroup of finite index of
SL(2,Z).

Theorem 8.6. If fA,B,C(τ) is a modular function, then ξA ∈ B(FA) is a torsion element.

Proof. On p. 56 of [38] it is shown that any Nahm sum has an expansion near q = 1 of the
form

fA,B,C(e−ε) = eL(ξA)/ε
(
K + O(ε)) (ε→ 0), (38)

where K (given explicitly in eq. (29) of [38]) is a non-zero algebraic number some power of
which belongs to F = FA and where the error term O(ε) can be replaced by O(e−c/ε) with
some c > 0 if fA,B,C is assumed to be modular ([38], eq. (28)). Notice that in this case the

number λ = L(ξA)/4π2 must be rational, since the modularity of f̃(τ) = fA,B,C(e(τ)) implies

that the function f̃(−1/τ) is invariant under some power of
(

1 1
0 1

)
.
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Now assume that f̃ is modular with respect to a finite index subgroup Γ of SL(2,Z). Then
for h→ 0+, ~ = h

2π
, and any γ =

(
a b
c d

)
∈ Γ, taking ε = dh

1−ic~ , we find

fA,B,C(e−ε) = f̃
( iε

2π

)
= f̃

(aiε/2π + b

ciε/2π + d

)
= f̃

(b+ i~
d

)
= fA,B,C(ζe−h/d),

where ζ = e(b/d), and now comparing the asymptotic formulas (38) and (34) (with n = d),
we find

µ eL(ξA)/hd Φ(h) = eL(ξA)/dh
(
Ke(λc/d) + O(h)

)
or Φζ(0) = µ−1Ke(λc/d), with λ ∈ Q as above. This implies in particular that Φζ(0) 6= 0,
and now, using that some bounded power of both µ and K belong to Fn, we deduce that
Φ(0)r belongs to Fn for some fixed integer r > 0 independent of n = d. We can also assume
that d is prime to M for any fixed integer M , since by intersecting Γ with the full congruence
subgroup Γ(M), we may assume that Γ is contained in Γ(M). This shows that there are
infinitely many integers n and primitive nth roots of unity ζ for which Φζ(0)r in Theorem 8.1
is a non-zero element of Fn. Now Corollary 8.3 implies that the rth power of Rζ(ξA) has
trivial image in F×n /F

×n
n for infinitely many n, and in view of the injectivity statement in

Theorem 1.2 this proves that ξA is a torsion element in the finitely generated group B(F ). �

Remark 8.7. The proof of the theorem would have been marginally shorter if we had as-
sumed that fA,B,C was a modular function on a congruence subgroup, rather than just a
subgroup of finite index of SL(2,Z). We did not make this assumption since it was not
needed, but should mention that fA,B,C , if modular at all, is expected automatically to be
modular for a congruence subgroup, because it has a Fourier expansion with integral coeffi-
cients in some rational power of q and a standard conjecture says that the Fourier expansion
of a modular function on a non-congruence subgroup of SL(2,Z) always has unbounded
denominators.

Remark 8.8. Conversely, we could have stated Theorem 8.6 in an apparently more general
form by writing “modular form” instead of “modular function.” We did not do this since it
is easy to see that if a Nahm sum is modular at all, it is actually a modular function, because
if it were a modular form of non-zero rational weight k, there would be an extra factor h−k

in the right-hand side of (38).
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