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Abstract A classical spin network consists of a ribbon graph (i.e., an abstract graph
with a cyclic ordering of the vertices around each edge) and an admissible coloring of
its edges by natural numbers. The standard evaluation of a spin network is an integer
number. In a previous paper, we proved an existence theorem for the asymptotics of
the standard evaluation of an arbitrary classical spin network when the coloring of
its edges are scaled by a large natural number. In the present paper, we extend the
results to the case of an evaluation of quantum spin networks of arbitrary valency at a
fixed root of unity. As in the classical case, our proofs use the theory of G-functions
of André, together with some new results concerning holonomic and q-holonomic
sequences of Wilf-Zeilberger.
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1 Introduction

1.1 History

Spin networks originally arose from calculations of angular momentum in quantum
mechanics [35]. They were formalized in the sixties by Penrose [25,26] in an attempt to
quantize gravity combinatorially. Similar ideas were developed by Ponzano and Regge
who related the semi-classical expansion of 3D gravity to the Regge action [5,6,24,37].
In recent years, spin networks have played an important role in the development of
loop quantum gravity; see [4,10,27,31] and references therein. In the eighties, quan-
tum spin networks were used by Reshetikhin, Turaev and Viro as building blocks of
combinatorially defined invariants of knotted three-dimensional objects; see [32,33].
Those topological invariants that are collectively called TQFT generalize the famous
Jones [17] polynomial of a knot.

A key problem in classical and quantum spin networks is their asymptotic behavior
for large spins. In the case of the 6 j-symbols Ponzano-Regge [24] conjectured the
leading term of an explicit asymptotic expansion and gave ample numerical evidence.
The Ponzano-Regge conjecture was proven by Roberts [30] using methods of geo-
metric quantization. The existence of a general asymptotic expansion for all classical
spin networks (to all orders in perturbation theory, in a constructive way) was recently
obtained by the authors in [16]. The method of [16] was to convert the problem of
asymptotic expansions to questions in Algebraic Geometry and Number Theory, and
use the highly developed theory of G-functions. An important part in this conversion
was the use of holonomic functions, developed by Zeilberger.
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Asymptotics of quantum spin networks at a fixed root of unity 989

1.2 Classical spin networks

A classical spin network consists of a ribbon graph � (i.e., an abstract graph with
a cyclic ordering of the vertices around each edge) and an admissible coloring γ of
its edges by natural numbers. The standard evaluation 〈�, γ 〉 of a spin network is
an integer number. In a previous paper [16], we proved an existence theorem for the
asymptotics of the sequence 〈�, nγ 〉 of an arbitrary trivalent classical spin network
when the coloring of its edges is scaled by a large natural number n. In addition, we pre-
sented several ways (algebro-geometric, combinatorial, and numerical) for computing
the asymptotics of 〈�, nγ 〉 for large n.

The goal of the present paper is to extend the results of [16] to the case of quantum
spin networks at a fixed root of unity. As in the case of classical spin networks, our
proofs use the theory of G-functions of André. There are two new ingredients which
allow us to use the theory of G-functions. They come from the theory of holonomic
and q-holonomic functions of Wilf-Zeilberger:

(a) Theorem 1.4 which states that the derivative of a q-holonomic sequence with
respect to q is q-holonomic.

(b) Theorem 1.5 which states that the evaluation of a q-holonomic sequence at a
fixed root of unity is holonomic.

1.3 Quantum spin networks

Quantum spin networks differ from their classical versions in two ways:

(a) the underlying graphs � are knotted (i.e., embedded in S3) and not abstract,
(b) their evaluations are polynomials of q, and not simply integer numbers.

Recall that a knotted ribbon graph is an embedded framed graph in S3, of arbitrary
valency, together with a cyclic ordering of the edges around each vertex. We will
restrict ourselves to integer framing so that thickening the graph gives rise to an
oriented surface. A quantum spin network consists of a knotted ribbon graph � together
with a pair of functions γ = (γE , γV ). Here γE : Edges(�) −→ N is an admissible
coloring γ of its edges, and γV : Vert(�) −→ {projectors} a choice of a local projec-
tor at each vertex of �. Local projectors are explained in detail in Sect. 2, and can be
ignored in case � is a trivalent graph.

The standard evaluation 〈�, γ 〉(q) of a quantum spin network is a rational func-
tion of q1/4; see [32]. Recently, Costantino [8] obtained an integrality result for the
standard evaluation of a quantum spin network, namely:

〈�, γ 〉(q) ∈ q
n
4 Z[q± 1

2 ]. (1)

For some n depending on the network. Our first result deals with fixing the fractional
power of q.

Proposition 1.1 For every quantum spin network (�, γ ) there exist a Z/4Z-valued
quadratic form Q(γ ) such that
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〈�, γ 〉(q) = q
1
4 Q(γ )〈〈�, γ 〉〉(q), 〈〈�, γ 〉〉(q) ∈ Z[q±1]. (2)

The above proposition allows us to define a modified evaluation 〈〈�, γ 〉〉(ζ ) ∈ C

that can be evaluated a fixed root of unity ζ . To make 〈〈�, γ 〉〉 well defined we use the
convention that 0 ≤ Q(γ ) ≤ 3. When ζ = 1, it follows from the definitions that
〈〈�, γ 〉〉(1) equals the classical evaluation and is hence independent of the embedding
of � in 3-space. The goal of this paper is to extend the results of [16] to the case of
the standard evaluation of a quantum spin network at a fixed root of unity ζ .

1.4 Sequences of Nilsson type and G-functions

To state our results, we need to recall what is a G-function and what is a sequence
of Nilsson type. Sequences of Nilsson type are discussed in detail in [14]. We recall
some definitions here for the convenience of the reader.

Definition 1.2 We say that a sequence (an) is of Nilsson type if it has an asymptotic
expansion of the form

an ∼
∑

λ,α,β

λnnα(log n)β Sλ,α,βhλ,α,β

(
1

n

)
(3)

where

(a) the summation is over a finite set of triples (λ, α, β),
(b) the growth rates λ are algebraic numbers of equal absolute value,
(c) the exponents α are rational and the nilpotent exponents β are natural numbers,
(d) the Stokes constants Sλ,α,β are complex numbers,
(e) the formal power series hλ,α,β(x) ∈ K [[x]] are Gevrey-1 (i.e., the coefficient of

xn is bounded by Cnn! for some C > 0),
(f) K is a number field generated by the coefficients of hλ,α,β(x) for all λ, α, β.

Definition 1.3 We say that series G(z) = ∑∞
n=0 anzn is a G-function if

(a) the coefficients an are algebraic numbers,
(b) there exists a constant C > 0 so that for every n ∈ N the absolute value of every

Galois conjugate of an is less than or equal to Cn ,
(c) the common denominator of a0, . . . , an is less than or equal to Cn , (where the

common denominator d of a0, . . . , an is the least natural number such that dai

is an algebraic integer for i = 1, . . . , n),
(d) G(z) is holonomic, i.e., it satisfies a linear differential equation with coefficients

polynomials in z.

The following connection between sequences of Nilsson type and G-functions was
observed in [13, Prop.2.5].

Theorem 1.1 [13, Prop.2.5] If G(z) = ∑∞
n=0 anzn is a G-function, then (an) is a

sequence of Nilsson type.

The above existence theorem has a valuable, effective corollary, discussed in detail
in [13].
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Corollary 1.4 If G(z) = ∑∞
n=0 anzn is a G-function, and suppose that we are given

either (a) a linear differential equation for G(z) with coefficients in L[x] for some
number field L, or (b) a linear recursion for (an) with coefficients in L[n], then one
can effectively compute λ, α, β and hλ,α,β(x) ∈ K [[x]] for a number field K such
that the asymptotic expansion (3) holds, for some unknown Stokes constants Sλ,a β .

In other words, a linear recursion for (an) or a linear differential equation for G(z)
allows us to compute the asymptotic expansion (3) to all orders in 1/n, up to a finite
set of unknown Stokes constants. For explicit illustrations of the above corollary, see
[12,38] and also [16, Sec.10] where the authors discuss in detail effective asymptotic
expansions of evaluations of classical spin networks.

1.5 Statement of our results

Let f (r)(q) = dr/dqr f (q) denote the r th derivative of a Laurent polynomial f (q) ∈
Z[q±1].
Theorem 1.2 For every quantum spin network (�, γ ), every complex root of unity ζ

and every natural number r ≥ 0, the sequence 〈〈�, nγ 〉〉(r)(ζ ) is of Nilsson type.

Theorem 1.2 follows from Theorem 1.1 and the following theorem.

Theorem 1.3 For every quantum spin network (�, γ ), every complex root of unity ζ

and every natural number r , the generating function

F�,γ,ζ,r (z) =
∞∑

n=0

〈〈�, nγ 〉〉(r)(ζ )zn (4)

is a G-function.

Theorem 1.3 follows from Theorems 1.4, 1.5 and 1.6 below, which involve struc-
tural properties of the classes of holonomic and q-holonomic sequences and may be
of independent interest. To state them, recall that a sequence ( fn) of complex numbers
is holonomic if it satisfies a linear recursion of the form

cd(n) fn+d + · · · + c0(n) fn = 0 (5)

for all n where c j (n) ∈ K [n] are polynomials in n with coefficients in a number field
K for j = 0, . . . , d with cd 
= 0. Likewise, a sequence ( fn(q)) of rational functions
of q is q-holonomic if it satisfies a linear recursion of the form

cd(qn, q) fn+d(q) + · · · + c0(q
n, q) fn(q) = 0 (6)

for all n where c j (u, v) ∈ K [u, v] are polynomials in two variables u and v for
j = 0, . . . , d with cd 
= 0. Holonomic and q-holonomic sequences were studied in
detail by Zeilberger; see [39,41].
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Theorem 1.4 The derivative with respect to q of a q-holonomic sequence is q-holo-
nomic.

Theorem 1.5 For every q-holonomic sequence fn(q) ∈ Z[q±1] and every complex
root of unity ζ , the evaluation fn(ζ ) is a holonomic sequence.

Let us make some remarks.

Remark 1.5 Theorem 1.5 fails when ζ is not a complex root of unity. For example,
fn(q) = qn2

is q-holonomic and satisfies the recursion fn+1(q) − q2n+1 fn(q) = 0.
On the other hand, fn(ω) is holonomic only when ω is a complex root of unity.
Theorem 1.5 is another manifestation of the importance of roots of unity in Quantum
Topology. See also Sect. 3.

Remark 1.6 Theorems 1.4 and 1.5 presumably hold for multi-variable q-holonomic
sequences fn1,...,nr (q) ∈ Z[q±1]. Multi-variable holonomic and q-holonomic
sequences were introduced and studied in [39,41]. In the present paper, we will not use
them. However, the reader should keep in mind that for every quantum spin network
(�, γ ) the multi-variable sequence γ �→ 〈�, γ 〉(q) is q-holonomic. This follows from
Sect. 2.3 where it is shown that 〈�, γ 〉(q) is a multi-sum of a q-proper hypergeometric
term. By the fundamental theorem of WZ-theory (see [39]), 〈�, γ 〉(q) is q-holonomic
in all γ -variables.

Remark 1.7 The q-holonomic sequence fn(ζ ) in Theorem 1.5 need not be exponen-
tially bounded. For example,

fn(q) =
n∏

k=1

1 − qk

1 − q
∈ Z[q]

satisfies the linear recursion

(q − 1) fn+1(q) − (qn+1 − 1) fn(q) = 0.

Thus, fn(q) is q-holonomic. Its evaluation at ζ = 1 is given by fn(1) = n! which is
holonomic, since it satisfies the linear recursion

fn+1(1) − (n + 1) fn(1) = 0

However, n! is not exponentially bounded.

Despite the above remark, the evaluation of a quantum spin network at a fixed root of
unity is an exponentially bounded sequence.

Theorem 1.6 For every quantum spin network (�, γ ), every complex root of unity ζ

and every natural number r , there exists C > 0 (which depends on �, γ and r ) such
that

|〈〈�, nγ 〉〉(r)(ζ )| ≤ Cn (7)

for all n ∈ N.
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2 Evaluation of quantum spin networks

2.1 Local projectors

We start by defining classical spin networks of arbitrary valency using the notion of
a local projector. A classical spin network will be a pair (�, γ ) of an abstract ribbon
graph � (of arbitrary valency), together with a pair of functions γ = (γE , γV ) where
γE : Edges(�) −→ N is an admissible coloring γ of its edges, and γE : Vert(�) −→
{projectors} a choice of a local projector at each vertex of �. A local projector is
defined as follows. Given an admissible coloring (c1, . . . , cd) of the d edges around
a vertex v of a ribbon graph, place a collection of c1 + · · · + cd points on a disk.
A local projector is a planar way to connect these points with disjoint arcs on the disk
and no U-turns, as in the example shown in Fig. 1.

Note that if p is a local projector and n is a natural number, then there is there is a
canonical choice of a local projector np by cabling each arc of p into n arcs. In [21,
p.118], Kuperberg uses the term clasped web space W (c1, . . . , cd) which has a basis
the local projectors defined above. Local projectors are a pictorial way to encode dual
canonical bases for sl2, as was shown in [11]. However, clasped web spaces and dual
canonical bases do not coincide for sl3; see [19]. Finally note that there are alternative
methods of defining multi-valent vertices, for example [3,40]. However our definition
using projectors works without change for Lie algebras of arbitrary rank.

2.2 The standard evaluation of a quantum spin network

Recall from the introduction that a quantum spin network is a pair (�, γ ) where �

is a framed ribbon graph embedded in S3 and γ = (γE , γV ) as in the classical case.
We allow � to have multiple edges and loops and it may be disconnected. Knots and
links are quantum spin networks with zero vertices. However we restrict ourselves
to integral framing of �. In this section we define the evaluation of quantum spin
networks in terms of the Kauffman bracket. Recall that the quantum integer [n] and
the balanced quantum factorial [n]! is defined by

[n] = A2n − A−2n

A2 − A−2 , [n]! =
n∏

k=1

[k] (8)

Fig. 1 An example of a
projector for a degree 4 vertex
with edge coloring (2, 5, 2, 3)
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where

A4 = q. (9)

The Kauffman bracket evaluation is determined by the following rules:

To emphasize the similarity to the evaluation of classical spin networks we use the
explicit expression for the Jones-Wenzl idempotent from [20, Chpt.3]. This is defined
as the following formal sum of braids:

Ab(b−1)
∑

σ∈Sb

A−3
(σ )βσ

Here b is the label of the edge, and for any permutation σ we denote by βσ the unique
negative (with respect to orientation downwards) permutation braid corresponding to
σ . By 
(σ ) we mean the minimal length of σ written as a product of transpositions.
Note that we leave out the quantum factorial [b]! that is used in [20].

Definition 2.1 (a) We say a quantum spin network is admissible if for every vertex
v the projector γV (v) matches the labels of the edges given by γE .

(b) The evaluation 〈�, γ 〉P of a quantum spin network (�, γ ) is defined to be zero
if it is not admissible. An admissible quantum spin network is evaluated by the
following algorithm.
• Use the ribbon structure to thicken the vertices into disks and the edges into

untwisted bands.
• Replace each vertex v by the pattern of the projector γV (v) and replace each

edge by the linear combination of braids as shown in Fig. 2.
• Finally the resulting linear combination of links is evaluated calculating the

Kauffman bracket.

Fig. 2 The rules for evaluating a quantum spin network. Replace vertices and edges to get a linear
combination of links that is evaluated using the Kauffman bracket
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In the case A = −1 this definition agrees with the Penrose evaluation defined in
[16]. For general A the definition agrees with that given in [7,20,22] except for the
missing quantum factorial [b]! in the denominator, one for every edge. The reason for
leaving out this factor is that there is a better way to normalize (see Definition 2.2
below) which results in Laurent polynomials in q1/4 (as opposed to rational func-
tions in q1/4) while the value of 〈�, nγ 〉(q) at a fixed root of unity q grows at most
exponentially with respect to n, see Theorem 1.6.

Definition 2.2 The standard evaluation of a quantum spin network is defined by

〈�, γ 〉 = 1

[I]! 〈�, γ 〉P .

Here [I]! = ∏
v[γV (v)]!, where for a projector [p]! means grouping all strands con-

necting the same two edges and forming the product of the quantum factorials of these
numbers.

Note that with this normalization subdividing an edge colored a into two edges
colored a connected by a vertex whose third edge is colored 0 does not change the
value of the evaluation. This is the way in which the value of the unknot should be
interpreted in order to obtain the correct value (−1)a[a + 1] instead of its quantum
factorial.

We end this section by proving that any quantum spin network evaluation actually
reduces to a trivalent quantum spin network evaluation. Hence all results previously
known in the trivalent case extend to the general case.

Lemma 2.3 Let (�, γ ) be a quantum spin network. There exists a trivalent quantum
spin network (�′, γ ′) such that for all n ∈ N

〈�, nγ 〉 = 〈�′, nγ ′〉.

Proof It is convenient to take a slightly different view of the evaluation algorithm
defined in 2.1. Instead of expanding out the linear combination at every edge, we view
the Jones-Wenzl idempotent as box with arcs coming out. After expanding the vertices
the whole network becomes a number of boxes connected by arcs. The idea is to add
extraneous boxes and to reinterpret the result as the evaluation of a trivalent quantum
spin network. The key property that makes this work is the fundamental fact that once
one includes the factor 1

[b]! in a box with b strands, it becomes an idempotent [22].
Since we’re not using this normalization we get that adding an extra box to b parallel
adjacent arcs coming out of a box multiplies the evaluation by [b]!. This factor will
cancel with the normalization factor due to the trivalent vertices that will be created
in the process.

Let us first describe how to modify a single half-edge pointing into a multivalent
vertex v with projector p. The arcs coming into v from half edge e are grouped into a j

parallel arcs according to the projector p. To the box that already marks the beginning
of e we now add an extra stack of boxes as shown in the middle of Fig. 3. This will
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Fig. 3 Turning an edge into a trivalent network

multiply the Penrose evaluation of � by a factor ae = ([a2]! . . . [an]!)([a1 + a2 . . . +
an−1]! . . . [a1 + a2]![a1]!)

Doing this for every half edge gives just enough boxes to split into a trivalent quan-
tum spin network �′ as shown in the above figure. However the smallest boxes at the
tip of the tree meet another equal sized box on the other side which are not there in
the evaluation of �′. Therefore we have to remove those boxes again, which reduces
the Penrose evaluation by exactly a factor [I]! = [I(�)]!. Therefore,

〈�, γ 〉P
∏

e

ae = [I]!〈�′, γ ′〉P

And hence passing to the standard normalization we find:

〈�, γ 〉 = 〈�, γ 〉P

[I]! = 〈�′, γ ′〉P
∏

e ae
= 〈�′, γ ′〉

concluding the proof. 
�

2.3 Evaluation of spin networks using the shadow formula

In this subsection we describe a way of evaluating spin networks in terms of the shadow
formula. We restrict ourselves to trivalent �. Since � is supposed to be oriented,
we can choose a blackboard framed diagram D of �.

The shadow formula expresses the evaluation in terms of a multi-dimensional sum
of 1 j, 3 j and 6 j-symbols. The latter are the evaluations of three basic spin networks,
shown in Fig. 4.
Let

[
a

a1, a2, . . . , ar

]
= [a]!

[a1]! . . . [ar ]! (10)

denote the quantum multinomial coefficient when a1 + . . . ar = a. The value of the
1 j, 3 j and 6 j-symbols is given by the following lemma of [20] (see also, [22,36]),
using our normalization.
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Fig. 4 Three basic spin networks

Lemma 2.4 (a) We have

(b) Let (�, γ ) denote the � spin network admissibly colored by γ = (a, b, c) as in
Fig. 4. Then we have

〈�, γ 〉 = (−1)
a+b+c

2

[
a + b + c

2
+ 1

] [ a+b+c
2

−a+b+c
2 , a−b+c

2 , a+b−c
2

]
(11)

(c) Let denote a tetrahedron labeled and oriented as in Fig. 4 and admissibly
colored by γ = (a, b, c, d, e, f ). Then we have

(12)

where Si are the half sums of the labels in the three quadrangular curves in the
tetrahedron and Tj are the half sums of the thee edges emanating from a given
vertex. In other words, the Si and Tj are given by

S1 = 1

2
(a + d + b + c) S2 = 1

2
(a + d + e + f ) S3 = 1

2
(b + c + e + f )

(13)

T1 = 1

2
(a + b + e) T2 = 1

2
(a + c + f ) T3 = 1

2
(c + d + e)

T4 = 1

2
(b + d + f ).

(14)

In addition to the three basic spin networks above, we choose to consider a
variant of the tetrahedron that represents a crossing. The crossing can be reduced
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Fig. 5 An example spin
network �, γ (left) and its
diagram with encircled crossings
and vertices and a coloring of
the regions

to a 6 j-symbol using the half twist formula, [22].

We are now ready to explain how to evaluate a spin network using the shadow
formula. A blackboard framed diagram of � gives rise to a planar graph D, whose
edges are colored by γ and whose vertices are either vertices of � or crossings. Let
V, E, F, C denote the sets of trivalent vertices, edges, faces and crossings (4-valent
vertices) of D. We will express the evaluation of the quantum spin network as a sum
over all admissible colorings of F by natural numbers. Here admissible means that
for any two faces colored r1, e, r2 and separated by edge e, the numbers (r1, r2, γ (e))
satisfy the triangle inequalities. Moreover the outer face should get color 0.

(15)

The sum is over admissible colorings r of the faces F and the labels of the symbols
in the formula are found from the coloring and γ as follows. The 1 j symbol gets the
color of the face it corresponds to. The theta gets the color of the edge it corresponds
to plus the two colors of the faces it bounds. For every vertex the corresponding 6 j
symbol is colored by the three adjacent faces and the three adjacent edge labels. Finally
every crossing is counted by a skew 6 j-symbol obtained by encircling the crossing
and coloring according to the faces one crosses. For a more elaborate discussion see
[8] (Fig. 5).

Consider the following simple example of a spin network evaluation using the
shadow formula.

Note that one can find the contributing 6 j-symbols from the diagram by encircling
the vertices and crossings. This is useful in keeping track of the labels. Similarly one
could also encircle the edges and faces to obtain the 3 j and 1 j-symbols.
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Asymptotics of quantum spin networks at a fixed root of unity 999

Since the sum is over admissible colors only, we see that in this special case there
is quite some simplification. The fact that the outside color is 0 forces r1 = b, r2 = c.
Actually one can check that after substituting the formulas for the 6 j, 3 j and 1 j-sym-
bols one gets that the answer is 0 unless a = 0 and b = c in which case we get a
twisted unknot.

2.4 Integrality

In [8] it was shown that 〈�, γ 〉 ∈ A f
Z[A±2] for some f depending on (�, γ ).

In this subsection we use the shadow formula to extend this result to prove that actu-
ally 〈�, γ 〉 ∈ AQ(γ )

Z[A±4]. Here Q(γ ) is a quadratic form depending on � in the
labels γ , that takes values in Z/4Z. The proof below will indicate how to obtain an
expression for Q(γ ) from an admissible coloring of the faces of a diagram of �. The
form itself is independent of the choice of diagram, and coloring. By identifying Z/4Z

with {0, 1, 2, 3} we have defined 〈〈�, γ 〉〉 = A−Q(γ )〈�, γ 〉 precisely.

Proof (of Proposition 1.1). Note that by Lemma 2.3 we can restrict ourselves to
trivalent �. Pick any blackboard framed diagram D of (�, γ ) and consider apply-
ing the shadow formula (15). Since by Costantino’s result [8] we already know the
evaluation is a polynomial in A we can look at the degree of the terms in the sum.

Now define φ : Z[A±1] → Z/4Z to be a function such that P(a) ∈ Aφ(P)
Z[A±4].

As a first step we calculate φ for the building blocks of the shadow formula. By divid-
ing the leading powers of the denominator in the formulas for the 6 j-symbol we see
that:

It suffices to show that every term in the shadow formula has the same value of φ

(modulo 4). In order to check this we consider the effect on φ of a term when we
increase one of the variables r by two. This is sufficient since a simple argument
shows that any state can be reached from any other state by repeatedly increasing or
decreasing one of the variables by two.

So let φ(r) be the value of φ on a particular summand in which we ignore the terms
not containing r . With respect to the region labeled r we make a distinction between
the edges and regions directly adjacent to it (notation: e|r or ri |r ) and those edges and
regions transverse to the region r (notation: e ⊥ r ). See also Fig. 6.

Looking at the above formulae for φ and counting the crossings next to r with sign
σ , we get the following expression for φ(r). Here we abused the notation to make ri
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Fig. 6 The region labeled r .
The region r1 the edge e are
transverse to r . The region r2
and the edge e′ are adjacent to r

denote both the face and its value and σ(ri ) is the sign of the corresponding crossing
between r and ri .

φ(r) = r2
(

#adjacent edges + #adjacent vertices + 1

2
#crossings + #unsigned crossings

)

+ r

⎛

⎝2 + 2
∑

e|r
γ (e) + 2

∑

ri |r
ri +

∑

e⊥r

γ (e) +
∑

ri ⊥r

ri + σ(ri )

⎞

⎠

We will show that 
 = φ(r + 2) − φ(r) is divisible by 4. Since modulo 4 we have


 ≡ 2((r + 1)#crossings +
∑

e⊥r

γ (e) +
∑

ri ⊥r

ri + σ(ri )) mod 4

we need to check that the term in brackets is even. To do so we use admissibility and
write congruences modulo 2. By admissibility of the labels at the trivalent vertices and
admissibility of the thetas coming from the edges in the shadow formula respectively
we have:

γ (e) ≡ γ (e′) + γ (e′′) ri ≡ γ (e1) + γ (e2) + r mod 2

Here e, e′, e′′ are the edges at a vertex and e1, e2, r, ri are the edges and two opposite
regions at a crossing. Summing all these identities we see that every edge adjacent to
r appears exactly twice, which shows that

∑

e⊥r

γ (e) +
∑

ri ⊥r

ri ≡ r#crossings mod 2

Finally
∑

ri ⊥r σ(ri ) ≡ #crossings, therefore 
 is divisible by 4 and the proof is
complete. 
�
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3 Proof of Theorems 1.3, 1.4, 1.5 and 1.6

3.1 Behavior of q-holonomic sequences under differentiation

In this section we prove Theorem 1.4.

Proof Consider a q-holonomic sequence fn(q) ∈ Q(q) that satisfies a linear recursion
relation

d∑

j=0

a j (q
n, q) fn+ j (q) = 0

where a j (u, v) ∈ Q[u, v] for j = 0, . . . , d. In the proof, the choice of coefficients
Q[u, v] versus K [u, v] for a number field K does not play an important role, and
therefore we assume K = Q. Differentiate with respect to q. We obtain that

d∑

j=0

a j (q
n, q) f ′

n+ j (q)+nqn−1
d∑

j=0

a j,u(qn, q) fn+ j (q)+
d∑

j=0

a j,v(q
n, q) fn+ j (q)=0

(16)

where a j,u = ∂a j/∂u, a j,v = ∂a j/∂v and f ′(q) = d f (q)/dq. Recall now
that the product and the Q[q]-linear combination of two q-holonomic sequences
is q-holonomic; see [39,41]. Lemma 3.1 implies that for every j , the sequences
(nqn−1a j,u(qn, q) fn+ j (q)) and (a j,v(qn, q) fn+ j (q)) are q-holonomic. It follows that
the second and third sum in Eq. (16) is q-holonomic, i.e., it satisfies a linear recursion
relation with coefficients in Q[qn, q]. Substituting in this linear recursion the first sum
of Eq. (16), it follows that the sequence f ′

n(q) is q-holonomic. 
�
Lemma 3.1 For every fixed integer c, the sequence (nqcn) is q-holonomic.

Proof It is easy to verify that the sequence fn(q) = nqcn satisfies linear recursion
relation

fn+2(q) − 2qc fn+1(q) + q2c fn(q) = 0


�

3.2 Evaluations of q-holonomic sequences at roots of unity are holonomic

Consider a q-holonomic sequence fn(q) ∈ Z[q±1] that satisfies a linear recursion
relation of the form

cd(qn, q) fn+d(q) + · · · + c0(q
n, q) fn(q) = 0 (17)
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for all n where c j (u, v) ∈ Q[u, v] are polynomials in two variables for j = 0, . . . , d.
The field Q of coefficients does not matter here and can be replaced by C without any
change. Fix a complex root of unity ζ . The idea of the proof consists of a lucky case,
and a general case which reduces to a lucky case after sufficient differentiation. The
differentiation trick appears in an efficient algorithm to compute the Kashaev invariant
of some knots in [15], and was also inspired by conversations of the first author with
D. Zagier. Let us first discuss the proof of Theorem 1.5 when ζ = 1. In the lucky case,
the set

S = { j |0 ≤ j ≤ d, c j (1, 1) 
= 0}

is non-empty. Expand (17) as a power series in q − 1. The vanishing of the constant
term implies that fn(1) satisfies a non-trivial linear recursion with constant coefficients

∑

j∈S

c j (1, 1) fn+ j (1) = 0

Thus, the sequence ( fn(1)) is holonomic. In the general case, there exists a unique
natural number s ≥ 0 such that c j (qn, q) = γ j (q − 1)s + O((q − 1)s+1) and some
γ j is nonzero. In other words, c j (qn, q) vanish to order s − 1 at q = 1 for all i , and
some c j (qn, q) does not vanish to order s at q = 1. In that case, observe that

∑

j∈S′
c(s)

j (1, 1) fn+ j (1) = 0

where

S′ = { j |0 ≤ j ≤ d, γ j 
= 0} 
= ∅

and c(s)
j (1, 1) ∈ Q[n]. This concludes the proof of Theorem 1.5 when ζ = 1.

Suppose now that ζ is a complex root of unity of order N . The problem is that
c(s)

j (ζ n, ζ ) is no longer a polynomial of n even when s = 0. To overcome this obsta-
cle, we consider n to be in a fixed arithmetic progression modulo N . In other words,
fix i with 0 ≤ i ≤ N − 1 and replace n by Nn + i in (17). Then, c j (q Nn+i , q) can
be expanded in powers of q − ζ with coefficients in Q(ζ )[n] for all i and j . In other
words, for all i, j we have ci j (q) := c j (q Nn+i , q) ∈ Q(ζ )[n][[q − ζ ]]. Let us con-
sider the column vector xn = ( fNn(ζ ), . . . , fNn+N−1(ζ )) ∈ C

N . If ci, j (ζ ) 
= 0, then
fNn+i+ j (ζ ) is a Q(ζ )[n]-linear combination of fNn+i+ j ′(ζ ) for j ′ 
= j . Of course,
fNn+i+ j (ζ ) is the kth coordinate of xn where k ≡ i + j mod N .

Now we consider two cases. In the lucky Case 1, the following set

S = {(i, j) ∈ [0, N − 1] × [0, d]|ci, j (ζ ) 
= 0}

is non-empty. S defines a graph G(S) as follows. It has vertex set {0, 1, . . . ,

N − 1}, and an edge e between vertices k and k′ iff there exist (i, j), (i, j ′) ∈ S
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such that k ≡ i + j mod N and k′ ≡ i + j ′ mod N . We consider two subcases. In the
very lucky Case 1.1, G(S) is connected. The above discussion implies that the vector
xn and finitely many of its translates, put together in a column vector yn satisfy a first
order linear recursion of the form

yn+1 = A(n)yn

for a square matrix A(n) with coefficients in the field Q(ζ )(n). Lemma 3.2 below
implies that every coordinate of yn is holonomic. It follows that ( fNn+i (ζ )) is holo-
nomic (with respect to n) for every fixed i ∈ [0, N − 1]. Since (an) is holonomic if
and only if (aNn+i ) is holonomic for all i ∈ [0, N −1] (see [29]), it follows that fn(ζ )

is holonomic in the very lucky Case 1.1.
In the not-so-lucky Case 1.2, the set S is non-empty but the graph G(S) is discon-

nected. In that case, differentiate (17) once and consider the pair of column vectors
xr

n = ( f (r)
Nn (ζ ), . . . , f (r)

Nn+N−1(ζ )) ∈ C
N for r = 0, 1. Consider also the set

Sr = {(i, j) ∈ [0, N − 1] × [0, d] | c(r)
i, j (ζ ) 
= 0}

for r = 0, 1. S0 ∪ S1 gives rise to a graph G(S0 ∪ S1) with vertices pairs (r, k) for
r = 0, 1 and k = 0, . . . , N − 1. There is an edge between (r, k) and (r ′, k′) if there
exist (i, j) ∈ Sr , (i, j ′) ∈ Sr ′

such that k ≡ i + j mod N and k′ ≡ i + j ′ mod N .
Note that by assumption, S0 = S is non-empty, and there is a natural inclusion of
G(S) into G(S0 ∪ S1). In the not-so-lucky Case 1.2, the graph G(S0 ∪ S1) is con-
nected. The argument of Case 1.1 shows that fn(ζ ) is holonomic. If G(S0 ∪ S1) is
disconnected, differentiate (17) once more. It is easy to see that after a finite number t
of differentiations, the graph G(S0 ∪ . . . St ) will be connected and consequently fn(ζ )

is holonomic. Differentiating (17) t times and using induction implies that fn(ζ ) is
holonomic.

This concludes the proof of Theorem 1.5 when S is non-empty. In the unlucky Case
2 where all functions ci, j (q) vanish to first order at q = ζ , there is a natural number

s such that c(s′)
i, j (ζ ) = 0 for all s′ < s and all i, j and in addition c(s)

i, j (ζ ) 
= 0 for some
i, j . In that case, replace S by the set

S′ = {(i, j) |0 ≤ j ≤ d, 0 ≤ i < N − 1, c(s)
i, j (ζ ) 
= 0}

and repeat the above proof.

Lemma 3.2 Consider a sequence of vectors xn ∈ C
l that satisfy a first order linear

recursion of the form

xn+1 = A(n)xn

where A(n) is an l × l matrix with coefficients in C[n]. Then every coordinate of xn

is a holonomic sequence.
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Proof Consider the operators ν and N which act on a sequence (an) by

(νa)n = nan, (Na)n = an+1.

These operators satisfy the commutation relation Nν = νN + N and generate an Ore
ring R = C[ν]〈N 〉. The matrix A(n) defines an R-module M as in [34]. The lemma
follows from the cyclic vector theorem applied to the module M ; see [34, Prop.2.9]
and also [18]. The proof is constructive and can be implemented for example in [1].


�
This finishes the proof of Theorem 1.5. 
�
Note that Theorem 1.5 fails when q is not a root of unity. For example, consider the

q-holonomic sequence an(q) = qn2
and fix q = ω, a complex number which is not

a root of unity. Suppose that the sequence bn = ωn2
is holonomic. So for all natural

numbers n we have

d∑

k=0

ck(n)bn+k = 0

where c j (n) ∈ Q[n]. Dividing by bn we get

d∑

k=0

ck(n)ω2nk+k2 = 0.

Collecting the coefficients of a fixed power of n, we find that there are C1 . . . CD ∈ C

such that

D∑

k=0

Ckω
nk = 0

In other words, for all n, ωn is a root of the polynomial
∑D

k=0 Ck xk . It follows that
ωm = 1 for some m.

3.3 Proof of Theorem 1.6

In this section we prove Theorem 1.6. Recall from Remark 1.7 that this theorem is
special to the quantum spin network evaluations and not valid for general q-holonomic
sequences.

The main ideas that go into the proof of Theorem 1.6 are the following:

(a) its validity for the local building block of quantum spin networks (namely the
quantum 6 j-symbol),

(b) The shadow formula (15) for the evaluation of an arbitrary quantum spin net-
work where the summand is roughly a product of quantum 6 j-symbols divided
by quantum 3 j-symbols,
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Asymptotics of quantum spin networks at a fixed root of unity 1005

(c) a lemma for the growth rate of the coefficients of inverse quantum factorials, in
the spirit of [15, Thm.15].

Let us begin with the first ingredient.

Lemma 3.3 Theorem 1.6 holds for the quantum 6 j -symbols.

Proof Equation (12) shows that fn(q) = 〈 , nγ 〉 is a Laurent polynomial in q1/2

which is written as a one-dimensional sum. Let ||h(q)||1 denote the sum of the absolute
values of a Laurent polynomial in q1/4. It is well known that the quantum binomial
coefficient (10) is a Laurent polynomial in q1/2 with nonnegative integer coefficients.
Moreover, its evaluation at q = 1 is the usual multinomial coefficient. The sum of the
latter is at most ra . It follows that

∥∥∥∥

[
a

a1, a2, . . . , ar

]∥∥∥∥ = a!
a1! . . . ar ! ≤ ra .

Equation (12) and the above inequality conclude the proof of the lemma. 
�
Now consider an arbitrary quantum spin network (�, γ ) and its evaluation fN (q) =
〈�, Nγ 〉(q). Viewing 1 j-symbols as special cases of 6 j-symbols and crossings as a
power of q times a 6 j-symbol, the shadow state-sum formula (15) expresses fN (q)

by

fN (q) =
∑

k∈N P

M(k)

D(k)
(18)

where the summation is over the set of lattice points of N P (for some rational con-
vex polytope P) and M(k) is a product a power of q and of quantum 6 j-symbols at
linear forms of k, and D(k) is a product of quantum factorials at linear forms of k.
The fact that D is a product of quantum factorials only follows from the formula for
the 3 j-symbol, see Eq. (11). We know that fN (q) ∈ Z[q±1/4] by Proposition 1.1.
Theorem 1.5 implies that the exponents of q in 〈�, Nγ 〉(q) are bounded above and
below by quadratic functions of N .

Let (q)n = ∏n
j=1(1 − q j ) for n ∈ N ∪ {∞}. It is well-known that

1

(q)∞
=

∞∑

k=0

pkqk

where pk ∈ N is the number of partitions of k; see [2]. Moreover, for every k and n,
the coefficient of qk in 1/(q)n is a natural number which is at most pk . In addition,
we have

pk ≤ eCk1/2+o(1)

where C = π
√

2/3; see [2]. It follows that the coefficient of qn in 1/D(k) is exponen-
tially bounded by n2, and since n = O(N 2), the coefficient is exponentially bounded
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by N . Since the number of k-summation terms in the state-sum (18) is bounded by a
polynomial function of N , this completes the proof of Theorem 1.6. 
�
Remark 3.4 The above proof is similar in spirit with the proof of [15, Thm.15].

3.4 Proof of Theorem 1.3

Fix a quantum spin network (�, γ ). It follows from the shadow state sum in Sect. 2.3
and Lemma 2.3 that the standard evaluation 〈�, nγ 〉(q) is a sum of a balanced
q-hypergeometric term. Hence, by the fundamental theorem of WZ theory (see [39]),
it follows that 〈�, nγ 〉(q) is q-holonomic. Since 〈〈�, nγ 〉〉(q) = q Q(nγ )/4〈�, nγ 〉(q)

and Q(nγ ) is periodic, 〈〈�, nγ 〉〉(q) is q-holonomic as well.
Fix a complex root of unity ζ , and a natural number r ≥ 0, and let

an = 〈〈�, nγ 〉〉(r)(ζ ). We will apply Theorem 1.5 to check conditions (a)–(d) of
Definition 1.3.

(a) an ∈ Z[ζ ] as follows from Proposition 1.1.
(b) Theorem 1.6 shows that the coefficients 〈〈�, nγ 〉〉(r)(ζ ) of the generating function

are exponentially bounded. The same goes for their Galois conjugates since the
action of the Galois group can only replace the root of unity ζ by another root of
unity, so Theorem 1.6 still applies.

(c) Since an ∈ Z[ζ ] are algebraic integers, their common denominator is 1.
(d) By Theorems 1.4 and 1.5 the coefficients of the power series are holonomic,

hence the series itself is holonomic as well.

This concludes the proof of Theorem 1.3. 
�

4 Examples

In this section we consider various simple examples to illustrate the theorems. For the
sake of simplicity we suppress the function A−Q(γ ) so we choose to work with 〈�, γ 〉,
rather than the more correct 〈〈�, γ 〉〉.

4.1 Evaluations of the q-multinomial coefficients at a root of unity

Lemma 4.1 Let q = e
2π i
N and set ai = Ai N + αi . We have

[
a1 + . . . + an

a1, a2, . . . , an

]
(q) = q

1
2

∑
j<k α j αk−a j ak

(
A1 + . . . + An

A1, A2, . . . , An

)[
α1 + . . . + αn

α1, α2, . . . , αn

]
(q)

(19)

This was proven for Gaussian (asymmetric) binomial coefficients in [9]. The exten-
sion to the multinomial case is straightforward and the power of q appears when one
converts to symmetric multinomial coefficients. Note that the power of q is actually a
sign since α jαk − a j ak = −N (A j Ak N + α j Ak + A jαk).
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Now consider the growth rates of the theta evaluations. Fix and admissible triple
a, b, c ∈ N, and set A = −a+b+c

2 , B = a−b+c
2 , C = a+b−c

2 then we have

At q = 1 we find using Stirling’s formula (see [23])

�1 =
{
(−1)A+B+C (A + B + C)A+B+C

AA B BCC

}

At the N th root of unity we find

〈�, an, bn, cn〉(e 2π i
N ) = P(n)

(� n A
N � + � nB

N � + � nC
N �

� n A
N �, � nB

N �, � nC
N �

)

where P(n) is a periodic function in n of period 2N . Another application of Stirling

shows that �N ⊂ �2N |�1| 1
N , where �N denotes the set of all N th roots of unity.

4.2 The q-difference equation of the regular 6j-symbol

We compute a second order recursion relation for the regular quantum 6 j-symbol

using the q-WZ method, implemented in Mathematica by [28] and used as in [16].
The recursion has the form

2∑

k=0

ck(q, qn)an−k(q) = 0 (20)

where

c0(q, qn) = q2+12n (
q − qn)3 (−1 + qn)5 (

q + qn) (
4q10 + 4q10n + 6q9+n + 4q8+2n − q6+3n

+ 5q7+3n − q8+3n − 6q5+4n − 2q6+4n − 6q7+4n − 4q4+5n + 2q5+5n − 4q6+5n

− 6q3+6n − 2q4+6n − 6q5+6n − q2+7n + 5q3+7n − q4+7n + 4q2+8n + 6q1+9n
)

c1(q, qn) = −q−1+6n (
q − qn)3 (

q − q2n) (
−4q14 − 4q15 + q18n + 7q19n + 10q20n + 10q21n

+ 7q22n + q23n − 10q13+n − 8q14+n − 10q15+n − 10q12+2n + 6q13+2n + 6q14+2n

− 10q15+2n + q10+3n − 9q11+3n + q12+3n + 28q13+3n + q14+3n − 9q15+3n + q16+3n

+ 7q9+4n + 4q10+4n + 14q11+4n + 13q12+4n + 13q13+4n + 14q14+4n + 4q15+4n

+ 7q16+4n + 10q8+5n + 2q9+5n + 22q10+5n + 36q11+5n + 36q13+5n + 22q14+5n

+ 2q15+5n + 10q16+5n + 10q7+6n − 3q8+6n − 16q9+6n + 4q10+6n − 17q11+6n
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− 17q12+6n + 4q13+6n − 16q14+6n − 3q15+6n + 10q16+6n + 7q6+7n − 3q7+7n

+ q8+7n + 6q9+7n − 3q10+7n + q11+7n − 3q12+7n + 6q13+7n + q14+7n − 3q15+7n

+ 7q16+7n + q5+8n − 18q6+8n − 31q7+8n − 7q8+8n − 47q9+8n − 37q10+8n

− 37q11+8n − 47q12+8n − 7q13+8n − 31q14+8n − 18q15+8n + q16+8n − 8q5+9n

− 18q6+9n + 4q7+9n − 18q8+9n − 12q9+9n − 8q10+9n − 12q11+9n − 18q12+9n

+ 4q13+9n − 18q14+9n − 8q15+9n − 9q4+10n − 8q5+10n + 9q6+10n − 7q7+10n

+ 13q8+10n + 13q9+10n + 13q10+10n + 13q11+10n − 7q12+10n + 9q13+10n − 8q14+10n

− 9q15+10n − 4q3+11n − 2q4+11n − q5+11n − 13q6+11n − 24q7+11n + 2q8+11n

− 43q9+11n + 2q10+11n − 24q11+11n − 13q12+11n − q13+11n − 2q14+11n − 4q15+11n

+ 11q3+12n + 31q4+12n + 21q5+12n + 44q6+12n + 53q7+12n + 56q8+12n + 56q9+12n

+ 53q10+12n + 44q11+12n + 21q12+12n + 31q13+12n + 11q14+12n − 4q2+13n + 18q3+13n

− 12q4+13n − 14q5+13n − 26q6+13n − 40q7+13n − 36q8+13n − 40q9+13n − 26q10+13n

− 14q11+13n − 12q12+13n + 18q13+13n − 4q14+13n + 11q2+14n + 31q3+14n + 21q4+14n

+ 44q5+14n + 53q6+14n + 56q7+14n + 56q8+14n + 53q9+14n + 44q10+14n + 21q11+14n

+ 31q12+14n + 11q13+14n − 4q1+15n − 2q2+15n − q3+15n − 13q4+15n − 24q5+15n

+ 2q6+15n − 43q7+15n + 2q8+15n − 24q9+15n − 13q10+15n − q11+15n − 2q12+15n

− 4q13+15n − 9q1+16n − 8q2+16n + 9q3+16n − 7q4+16n + 13q5+16n + 13q6+16n

+ 13q7+16n + 13q8+16n − 7q9+16n + 9q10+16n − 8q11+16n − 9q12+16n − 8q1+17n

− 18q2+17n + 4q3+17n − 18q4+17n − 12q5+17n − 8q6+17n − 12q7+17n − 18q8+17n

+ 4q9+17n − 18q10+17n − 8q11+17n − 18q1+18n − 31q2+18n − 7q3+18n − 47q4+18n

− 37q5+18n − 37q6+18n − 47q7+18n − 7q8+18n − 31q9+18n − 18q10+18n + q11+18n

− 3q1+19n + q2+19n + 6q3+19n − 3q4+19n + q5+19n − 3q6+19n + 6q7+19n + q8+19n

− 3q9+19n + 7q10+19n − 3q1+20n − 16q2+20n + 4q3+20n − 17q4+20n − 17q5+20n

+ 4q6+20n − 16q7+20n − 3q8+20n + 10q9+20n + 2q1+21n + 22q2+21n + 36q3+21n

+ 36q5+21n + 22q6+21n + 2q7+21n + 10q8+21n + 4q1+22n + 14q2+22n + 13q3+22n

+ 13q4+22n + 14q5+22n + 4q6+22n + 7q7+22n − 9q1+23n + q2+23n + 28q3+23n + q4+23n

− 9q5+23n + q6+23n − 10q1+24n + 6q2+24n + 6q3+24n − 10q4+24n − 10q1+25n

− 8q2+25n − 10q3+25n − 4q1+26n − 4q2+26n
)

c2(q, qn) = 1

q8

(
1 + qn) (

q2 − q3n)4 (
q4 − q3n)4 (

q2 + q2n + q1+n)4
(
−4q + q3n + 6q4n + 4q5n

+ 6q6n + q7n − 6q1+n − 4q1+2n − 5q1+3n + q2+3n + 2q1+4n + 6q2+4n − 2q1+5n

+ 4q2+5n + 2q1+6n + 6q2+6n − 5q1+7n + q2+7n − 4q1+8n − 6q1+9n − 4q1+10n
)

.

The above recursion can be used to deduce a recursion relation for the sequence an(ζ )

at every fixed root of unity ζ , following and illustrating the proof of Theorem 1.5.
For example, to obtain the recursion of the sequence an(1), use:

c0(q) = −4((−1 + n)3n5(106 − 230n + 115n2))(q − 1)10 + O((q − 1)11)

c1(q) = 4(−1 + n)3(−1 + 2n)(−864 + 4470n + 2114n2 − 51003n3 + 120089n4

− 113505n5 + 37835n6)(q − 1)10 + O((q − 1)11)

c2(q) = − 324((8 − 18n + 9n2)4(−9 + 115n2))(q − 1)10 + O((q − 1)11).
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An alternative method to obtain the recursion relation of the sequence an(ζ ), using
the WZ method, is described in the next section.

4.3 The regular 6j-symbol at roots of unity

The regular 6 j-symbol corresponds to the labeling γ = (2, 2, 2, 2, 2, 2) and set

Equation (12) gives

an =
4n∑

k=3n

(−1)k (k + 1)!
(k − 3n)!4(4n − k)!3 .

Using the WZ method (implemented in Mathematica by [28] and using it as in
[16]) it follows that (an) satisfies the recursion relation

This linear recursion has two complex conjugate formal power series solutions a±,n

where

a+,n = 1

n3/2 (329 + 460i
√

2)n

(
1 + −304 − 31i

√
2

576n
+ 25879 + 18352i

√
2

331776n2

+ 71176912 + 6323071i
√

2

573308928n3 + 5(−2742864803 − 10265264480i
√

2)

660451885056n4

+ −82823449457840 − 12750219708659i
√

2

380420285792256n5

+ −61273664686901989 + 213495822835779152i
√

2

657366253849018368n6 + O

(
1

n7

))

When q = −1, Eq. (12) and Lemma 4.1 imply that bn = 0 for odd n, and

b2n =
4n∑

k=3n

(−1)k k!
(k − 3n)!4(4n − k)!3 .

It follows that the sequence (b2n) satisfies the following recursion relation
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This linear recursion has two complex conjugate formal power series solutions b±,2n

where

b+,2n = 1

n5/2
(329 + 460i

√
2)n

(
1 + −472 − 19i

√
2

576n
+ 105199 + 20632i

√
2

331776n2

+22386472 − 9304565i
√

2

573308928n3 + −30711007135 − 48640734448i
√

2

660451885056n4

+−80744339543960 + 2822061829369i
√

2

380420285792256n5

+17678244315725891 + 219394408835134568i
√

2

657366253849018368n6 + O

(
1

n7

))

5 Open problems

Fix a cubic ribbon graph � with edge set E(�), a complex root of unity ζ , and consider
the generating series

S�,ζ =
∑

γ

〈〈�, γ 〉〉(ζ )
∏

e∈E(�)

zγe
e ∈ Q(ζ )[[ze, e ∈ E(�)]]

In [16, Thm.5], we proved that when ζ = 1, S�,1 is a rational function, i.e., belongs to
the field Q(ze, e ∈ E(�)). It was explained in [16, Thm.6] that the generating series
F�,γ,ζ (4) is a diagonal of S�,ζ , and consequently the rationality of S�,ζ implies that
F�,γ,ζ is a G-function. The rationality of S�,ζ follows from the so-called chromatic
evaluation of classical spin networks. For details, see [16] and also [36]. The chromatic
evaluation seems to break down in the case of complex roots of unity.

Question 5.1 Is it true that for all cubic ribbon graphs � and all complex roots of
unity, S�,ζ is a rational function, i.e., belongs to the field Q(ζ )(ze, e ∈ E(�))?
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