Pergamon Topology Vol. 37, No. 1, pp. 219-224, 1998
© 1997 Elsevier Science Ltd

Printed in Great Britain. All rights reserved
0040-9383/97 $19.00 + 0.00

PII: S0040-9383(97)00009-8
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In this short note we give lower bounds for the Heegaard genus of 3-manifolds using various TQFT in 2+1
dimensions. We also study the large & limit and the large G limit of our lower bounds, using a conjecture relating
the various combinatorial and physical TQFTs. We also prove, assuming this conjecture, that the set of colored
SU(N) polynomials of a framed knot in 53 distinguishes the knot from the unknot. © 1997 Elsevier Science Ltd

1. INTRODUCTION

In recent years a remarkable relation between physics and low-dimensional topology has
emerged, under the name of topological quantum field theory (TQFT for short).

An axiomatic definition of a TQFT in d + 1 dimensions has been provided by Atiyah—
Segal in [1]. We briefly recall it:

e To an oriented d dimensional manifold X, one associates a complex vector space Z(X).
e To an oriented d + 1 dimensional manifold M with boundary éM, one associates an
element Z(M) € Z(dM).

This (functor) Z usually satisfies extra compatibility conditions (depending on the di-
mension d), some of which are:
e For a disjoint union of d dimensional manifolds X, Y

Z(XUY)=Z(X)RZ(Y).
o For a change of orientation of a (unitary) TQFT we have:
Z(X) = Z(X)*

(where V* is the dual vector space of V.)
e For M = M, Uy M, where oMy = X; UX, 0M; = X, UX, one has

ZM) = (Z(M)), Z(My)) € Im(Z(X, UX, UX LX) — Z(X, UX2))

The above-mentioned axioms for a TQFT in d + 1 dimensions come from an attempt to
axiomatize the path integral (nonperturbative) and the Hamiltonian approach to a quantum
field theory.

An axiomatic definition of a perturbative TQFT in d + 1 dimensions is still missing, but
in the case of the Chern—Simons theory in 2 4+ 1 dimensions there are some attempts [2-4].

From now on, we will concentrate on topological quantum field theories in 2+ 1 dimen-
sions. For a precise definition of them, the reader is refered to [6, 14].
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Any such theory gives invariants of closed 3-manifolds (with values in C), invariants
of framed (labeled) links in 3-manifolds (with values in C), as well as finite-dimensional
representations of the mapping class groups.

The first such theory was constructed using path integrals in the seminal paper of Witten
[15]. We briefly recall the definition, fixing some notation:

Let G be a compact simple simply connected group, and 4 an integer. Let M be a
(2-framed) closed 3-manifold with a framed colored link L. A coloring of the link is the
assignment of a representation of the loop group QG at level £ [7]. Let G — P - M
be the trivial principal G-bundle. We consider the space 7 of all G-connections on P.
Let

CS: sl — R/Z

be the Chern-Simons action. The gauge group ¥ = Map(M, G) of G-automorphisms of P
acts on o/, and for any framed link L colored by A, the holonomy around it gives

(f’[‘,;L rof — C.

The invariant of the framed colored link L is the following partition function:
ZnaiMLA) = | 240G, (a)
o

The subscript ph stands for physics. Needless to say, the above path integrals have not
yet been defined.

Shortly afterwards, a number of topological (combinatorial) definitions appeared in
[11,13]. They depended on a simple Lie group G and a primitive complex root of unity g,
and will be denoted by Zg ,.

The main conjecture is that:

ConsecTurE 1.1, If h is the dual Coxeter number of G, then
Zph,G.k = ZG,exp(2ni/(k+h))

The above conjecture seems ill-defined, as the left-hand side has not yet been defined.
However, taking the large & limit (as £ — oo) and using stationary phase approximation of
the path integral, we arrive at the following conjecture:

Conjecture 1.2, If M is a closed 3-manifold, as k — oc we have:

Z6. expianifk +hy) (M) ~g— oo KOCIDEM(G)2

where f(k) ~y_o0o glk) means 0 < a; <|f(k)/g(k)|<ay as k — oo and 0g(M) is as in
the following definition.

Definition 1.3. For a closed 3-manifold M, and a compact Lie group G, let

(M, a) — BO(M, o)

amGy !

06(M) 1= maxyezsmm)

where A (M) is the smooth part of the moduli space Z¢(M) = Hom(n,(M),G)/G and
h*(M, a) is the dimension of the kth cohomology of M with twisted coefficients.
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Remark 1.4. We will actually only use Conjecture 1.2 in the case of a subsequence of k
approaching infinity. The normalization of 0¢(M) used in Conjecture 1.2 is chosen so that
Corollary 2.3 has a simple form.

Let us give one more definition that we will need in the next section:

Definition 1.5. For a closed 3-manifold M let

B(M) = limy o0 Osun)(M).

2. LOWER BOUNDS FOR THE HEEGAARD GENUS OF 3-MANIFOLDS

We first begin with a lemma:

LemMma 2.1, If Z is a TQFT in 2+ 1 dimensions, and M,N are closed 3-manifolds, then

o Z(MEN)Z(S?) = Z(M)Z(N),
o Z(S? x Sy=1.

Proof. 1t follows easily from the glueing axioms, as in [15]. |
Now we are ready to state the following theorem:

TueoreM 2.2, If Z is any unitary TQFT in 2 + 1 dimensions, and M is a closed 3-
manifold, then

Z(M)| < Z(S%) !

where g(M) is the Heegaard genus of M, i.e. the genus of a minimal Heegaard splitting.
Furthermore, we have 0 < Z(S3) < 1, thus

_ log|Z(M)|

oM =12 = Jog2(5%)

Proof. Let M = H Uy H be a Heegaard splitting of M, where H is a handelbody of
genus g (A(H) = X,), and f € Diff*(E,). Let u:= Z(H) € Z(%,). Then, we have

1Z(M)| = [{u, fa(u))|
<V{(u,u)(fa(u), f(u)) (by Cauchy Schwarz)
= (u,u) (since Z is unitary)
=Z(#9_, 8% x S
=Z(8* x $'Yz(5*)"9"" (by Lemma 2.1)
— Z(S¥y9*,

The above implies that 0 < Z(S3) < 1. Indeed, otherwise we necessarily have that Z($3) > 1.
Then, for any 3-manifold M, by choosing a Heegaard splitting of large enough genus, the
above implies that Z(M) = 0, which contradicts the fact that Z(S? x S') = 1. Thus, we
deduce that 0 < Z(S®) < 1, and taking a minimal genus Heegaard splitting concludes the
proof of the theorem. |
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Table |
Manifold M g(M) Oc(M) (M)
s? 0 0 0
Ly 1 —~lclde + 1 1
Slai,...,an) n—1 2nug/de — 1 n—1
S'x %, 29+ 1 29 — 1 29— 1

Note: d¢, /g, e are the dimension, rank and number of
positive roots of the Lie group G. L,, is a Lens space
with n1(Ly) = Z/pZ and S(ai,...,a,) is a Seifert fibered
integral homology 3-sphere with singular fibers of orders
ai,...,a, (where a; are coprime integers) [10].

We also have the following:

CoroLLARY 2.3 (Depending on Conjecture 1.2). For a closed 3-manifold M, and a com-
pact simple simply connected group G we have

o g(M)=05(M),
o Og(MAN) = O6(M) + 0G(N).

Proof. For the first part use the previous corollary for the TQFT Z = Zg cxp2ni/(k-+4)) and
the fact that Z(S?) is given by an explicit expression of [8]. For the second part use the
TQFT Z = Zg, exp(2nijik+4)), and Lemma 2.1 and the fact that Z(S?) is given by [8].

Remark 2.4. In Table 1 we calculate a list of values of 85(M) for certain classes of
3-manifolds M for which Conjecture 1.2 has been verified by direct calculation [6].

3. DETECTING THE UNKNOT

In this section we use Conjecture 1.2 to show how the TQFT invariants might detect the
unknot. Fix a framed knot X in S$°. It turns out [9] that given a simple Lie group G, and a
representation 4 of G, there is a rational function Zg(K, 2)(¢) such that for every primitive
complex root of unity g, we have

Z6(K, ANq) = Z6,4(S*, K, 1)

THeoREM 3.1 (Depending on Conjecture 1.2). Let K CS* be a framed oriented knot, and
O be the zero framed unknot in S°. If

ZSU(N)(K’ ;) = ZSU(N)(CCa /)
for all colors A and all N =2 then K = C.

Proof. Let Sli,a/b denote the result of a/b Dehn-surgery on K, where a,b are coprime
integers, with the convention H, (S,%,a/b,Z) = Z/aZ. Using the above-mentioned property of
the colored SU(N) polynomials together with the fact that for any coprime integers a,b
and every primitive complex root of unity ¢, ZSU(N),q(Sf(‘a/b) is a linear combination of
Zsuy,q(S?, K, A) (for suitable 1), we deduce that

Zsuy.g(Sk1/n) = Zsuy.g(Seum) = Zsuw).g(S®)
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for all n € Z,N >2 and all primitive complex roots of unity g. Now use g = exp(2mi/(k+N)),
Conjecture 1.2 and the value of ZSU(N),q(S3) as in [8], to deduce

Osuwy(Sgam) =0 forall N>2, neN.
Lemma 3.2 below implies that
Hom(m((S. ), SU(N)) = {0}

for all N 22 and r € N. Using the fact that ”1(513<,1;n) is a residually finite group for n > 0
(as follows by Thurston [12]) we obtain

T(SE 1) =0

for all n>0. Using the cyclic surgery theorem of Gordon-Luecke [5] the result
follows. O

Lemma 3.2. If (M) = 0 for a simple (simply connected) Lie group G and 3-manifold
M, then Hom(m(M),G) = 0.

Proof. Recall first that for an element o € #{"(M) we have that #°(M, ) is the dimen-
sion of the stabilizer of the image of « in G. Thus

KM, 2) < dim(G)

with equality if and only if the stabilizer of « is G, in other words a € Hom(m (M), Z(G))
where Z(G) is the center of G. Since M is an integral homology 3-sphere, we have that
Hom(n((M),Z(G)) = {0}; thus A%(M, a) = dim(G) if and only if @ = 0, i.e., o is the trivial
group homomorphism.

Recall further that 25" (M) is a smooth (possibly noncompact and nonconnected) mani-
fold. For an element § € Z& (M), the dimension of the component of Z5"(M ) that contains
B is given by h'(M,B) — h°(M, B). Using the assumption that (M) = 0 and the above
equation, we conclude that 2'(M,B) = 0 and K°(M,f) = dim(G); thus B = 0. In other
words, we have that 23"(M) = {0}, and thus (since the singular points in Zg(M) are of
codimension at least one, and since isolated points are smooth) the lemma follows. |

An equivalent formulation of the previous theorem is the following:

CorotLary 3.3 (Depending on Conjecture 1.2). If K CS3 is a framed oriented knot, and
Z(K)=Z(C) for all TQFT Z in 2 + 1 dimensions, then K is the unknot.
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