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ABSTRACT. Using basic topology and linear algebra, we define a plethora of 
invariants of boundary links whose values are power series with noncommuting 
variables. These turn out to be useful and elementary reformulations of an 
invariant originally defined by M. Farber [Fa2]. 

1. INTRODUCTION 

1.1. History and Purpose. In a series of papers, M. Farber used home-logical 
methods to introduce an invariant of boundary links with values in a ring of rational 
functions with noncommuting variables [Fa2]. A similar invariant to that of Farber 
was recently introduced by V. Retakh, C. Reutenauer and A. Vaintrob [RRV] based 
on the notion of quasideterminants. 

The purpose of this paper is to give an interpretation of Farber's invariant as a 
simple invariant of the Seifert matrix of a boundary link, which is more elementary 
and makes calculation more straightforward. From this point of view we will, in fact, 
define a whole spectrum of invariants which take values in non-commutative power 
series rings. Although these invariants all turn out to be determined by Farber's— 
see Theorem 2—it is useful to have the different formulations. An example is given 
by XA—see page 4—which has direct application to the study of the Kontsevich 
integral of a boundary link and its rationality properties, as will be explained in 
subsequent publications [Ga, GK]. XA also gives a natural way to see that Farber's 
invariant determines the natural analog of the Alexander polynomial for a boundary 
link (the classical Alexander polynomial of a boundary link is 0). See Proposition 
1.4. 

We would like to thank Michael Farber for useful discussions. 

1.2. Boundary links and their refinements. All manifolds will be oriented and 
all maps will be smooth and orientation preserving. A boundary link (9-link) in a 
3-manifold is an oriented link which is the boundary of a disjoint union of connected 
surfaces, each with one boundary component. A choice of such surfaces is called a 
Seifert surface of the boundary link. It is well-known that in the case of boundary 
links (unlike the case of knots) the cobordism class, relative boundary, of a Seifert 

The authors were partially supported by NSF grants DMS-98-00703 and DMS-99-71802 respec­
tively, and by an Israel-US BSF grant. 
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surface for a given link is not unique. There are at least two ways to overcome this 
difficulty, as was explained by Cappell-Shaneson [CS] and Ko [K2]: 

• A E-boundary link L (or simply, a Y>-link) in a 3-manifold M is a choice, up 
to isotopy, of Seifert surface E in S3 such that <9E = L . 

• An F-boundary link L of n components (or, simply, an F-link) is a link, up 
to isotopy, equipped with a map cj> : 7Ti (M \ L) —> F where F is the free 
group on n letters and <j) maps a choice of meridians of L to a basis of F. (j) 
is called a splitting map for L. 

It turns out that F-links can be identified with the set of cobordism classes, 
rel boundary, (or tube equivalence classes) of Seifert surfaces— see Gutierrez and 
Smythe [Gu, Sm]. Let An denote the group of automorphisms a of the free group 
F(£i , . . . ,£ n ) that satisfy a(ti) — WiUw^1 for some Wi G F(£ i , . . . , £n), for all i, 
[CS, K2]. An acts on the set of F-links by composition with the splitting map (j). In 
[K2] a simple set of generators for An was given, and the action of these generators 
was described geometrically as what was there called cocooning. It turns out that 
the set of equivalences classes of F-links, modulo the An action, can be identified 
with the set of 9-links. 

We denote by X^ the F-covering of S3 — L associated with Ker0 = n^, the 
intersection of the lower central series of IT = TTI(S3 — L). 

1.3. Seifert matrices of boundary links. There is an algebraic notion of a 
Seifert matrix associated to a E-link of n components, [Kl, K2]. These matrices 
are partitioned into nxn blocks of matrices, corresponding to the link components. 
Let Sei(n) denote the set of matrices A = (Aij) of square matrix blocks Aij for 
i,j — 1 . . . , n, with integer entries, satisfying the conditions 

A^j = Aji for i ^ j and det(Au — A^) = 1 for all i. 

Let Sei denote the set of all Seifert matrices. The Seifert matrix associated to a E-
link (resp. F-link, 9-link) is an element of Sei(n), well-defined up to Si -equivalence 
(resp. 5i2-equivalence, S123 equivalence), where S\ stands for congruence, £2 stands 
for stabilization and S3 stands for equivalence under an algebraic action of An on 
Sei(n) defined by Ko [Kl, K2] (see Section 2.1 below). Note that £123 = S12 for 
n < 2, since An consists entirely of inner automorphisms which act trivially on 
Seifert matrices. We have a commutative diagram 

E - l i n k s — • Sei(n)/(5i) 

1 J 
F - links —•+ Sei(n)/(5i2) 

I i 
d - links —> Sei(n)/(Si23) 

Set A = Q[F] the group-ring with rational coefficients and A its completion 
with respect to powers of the augmentation ideal. Then AL = iJ i(X£,Q) is a 
A-module. Let Aab = Q[if], where H is the free abelian group on generators 
(£1, . . . , tn). If X£b denotes the universal abelian covering of S3—L, then Hi (X£b, Q) 
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is a Aab-module. Note that A can be identified with the power series ring in the 
n noncommuting variables xi = U - 1 and Aab with the power series ring in n 
commuting variables X{ — U — 1. A (and also, A, Aab,Aab) are rings with (anti)-
involution given by g -» g = g~x for g G F. Note that xi — — (xi + l ) - 1 ^ . The 
action of An on F extends naturally to A and A and induces the trivial action on 
Aab. Now, we can introduce analytic invariants of the set Sei: Let / G Q((x,z)) 
be a noncommutative power series in two variables. We will say / is admissible if, 
for any non-negative integer n, there are only a finite number of terms in / of total 
^-degree n. The admissible power series form a subring 7£ad of Q((x,z)). Now let 
X — diag(#i , . . . , xn) be a (block) diagonal matrix. Then we let 

Xf : Sei(n) -* A be defined by Xf(A) = tr( /(X, ZA) - f(X, I1/2)) 

where ZA = A(A — A')-1 and Ii/2 is the block diagonal matrix in which half of the 
diagonal entries in each diagonal block are 0 and half are 1. Note that f(X, I1/2)) 
is independent of how the O's and l's are distributed 

Theorem 1. For all admissible f, Xf descends to a map 

Sei(n)/(5i2) -> A. 

Remark 1.1. If / G Z((x,z)) then Xf(A) has integer coefficients. 

Question 1. If a G An, / G 7^ad and A a Seifert matrix, is Xf(a ' A) determined 
by Xf(A) and a? 

Let 7£(ai , . . . , an) denote the subring of Q( (a i , . . . , an)) consisting of the rational 
functions in the noncommuting variables { a i , . . . , an} (see [B]). This can be defined 
as the smallest subring of Q( (a i , . . . , an)) containing the polynomials Q[oi , . . . , an] 
and closed under the operation of taking inverses of special series, i.e. those / with 
constant term / (0 , . . . , 0 ) = 1[B, p.6]. Let 1Z*(x,z) denote the smallest subring 
of 1l(x, z) containing the polynomials and closed under the operation of taking 
inverses of extra-special series, i.e. admissible f(x,z) which satisfy /(0,2) = 1. 
Clearly 1Z*{x,z) C 7Z(x,z). We also note that 7^*(x,z) C 7£ad since it is not hard 
to see that if / is special then / _ 1 is admissible if and only / is extra-special. 

Question 2. Is K*{x,z) = U(x,z) n f t a d ? 

Proposition 1.2. If f(x, z) G 1Z* (x, z), then Xf £ H(x\,..., xn). 

Xf satisfies a general duality property. Define anti-involutions / —• / and / —> / 
on Q((x,z)) and Q((^ i , . . . ,xn)) by the properties x = x,x — —x(l + x)~1,'z = z — 
z,xi = xi,Xi — —Xi(l + x^1 and fg — 7jf, fg = gf, and an involution / —> / on 
Q((x,z)) and Q((xi , . . . ,#n)) , by x — x,z = z,Xi = Xi and fg = fg. Note that the 
composition of any two of the maps / —> / , / or / on Q((x i , . . . ,xn)) is equal to 
the third. 

Proposition 1.3. For admissible f, we have that Xf(x,z) — Xj(x i_z\
 an^ Xf ~ Xf-

Therefore we also have Xf(x,z) = Xf(x,i-z)' 
Note that if / is admissible then 

• / , / are admissible, and 
• / (x , 1 — z) is defined (which is not true for every / G Q((x, z))) and admis­

sible. 
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Let / A = log(xz + l) G Q((x,z)). Note that / A is admissible—in fact any 
/ G Q((x,z)) of the form f(x,z) = G(xz), where G(y) G Q((y)), is admissible. 
Let us denote x/A ^v XA- Our interest in XA comes from the fact that it can be 
identified with the "wheels part" of a (version of) the Kontsevich integral of F-links, 
as will be explained in a separate publication, [GK]. For now, let us explain the 
relation between XA and the algebraic topology of the complement of a boundary 
link L. 

Let Ab(L) G Aab/(units), denote the order of the torsion Aab-module Af> = 
torsionAab#i(X£b,Q). 

It is well-known that A6 = Ab(L) satisfies: 

(1) A 6 ( l , . . . , l ) = ±1 and 

(2) A 6 ( t ^ \ . . . , t - x ) is a unit multiple of Ab(tu ... , t n) in Aab. 

It follows that we can choose a unique (normalized) representative in Aab such that 

(1') A 6 ( l , . . . , l ) = l and 
(2') Ab(ft\...,K1) = Ab(t1,...,tn). 

We call this normalized representative the torsion polynomial of L. 

Proposition 1.4. (a) (Abelianization) Ifx*A denotes the abelianization ofxA, 
then 

xib = iogA6eAab. 
where Ab is the torsion polynomial. 

(b) (Realization) For every element A G A with integer coefficients satisfying 
A ( l , . . . , l ) = 1 and A = A, there exists an F-link L with Hi(Xf/,Z) = 
A/(A), where (A) denotes the left ideal generated by X. As a consequence 
every element A of Aab satisfying (1') and (2') can be realized as the torsion 
polynomial of some boundary link. 

(c) (Duality) XA = XA in A/(cyclic), the quotient of A by its subgroup gener­
ated by (ab — ba), for a, b G A. 

Thus, XA3 determines the torsion polynomial. In contrast, the classical multi-
variable Alexander polynomial of a boundary link vanishes, and in general it is not 
known which Laurent polynomials can be realized as the multivariable Alexander 
polynomials of a link. 

For an F-link L, we can think of XA as an analogue of the order of the A-module 
AL (even though the notion of order does not make sense for A-modules). 

Proposition 1.5. If $(x,z) = (xz + l)~1x G Q((x,z)), then x$ is related to 
Farber's \-function [Fa2, Section 2.4] by the formula 

n 

X~X$ = Y^9i(xi-Xi) 
2 = 1 

for some non-negative integers gi. 

Remark 1.6. It follows from Farber's approach that x only depends on the A-module 
AL, and, therefore, this is also true for x$> when $(x, z) — (xz + l ) _ 1 x , since the 
integers gi are half the ranks of the Xi-components of the minimal lattice in AL, as 
is demonstrated in the proof of the above proposition. 

Question 3. Is there some way to see directly that x$ depends only on AL? 
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In [Fa2] it is shown that x ( a nd thus x$) satisfies the duality property x + X — 0. 
We reprove this using Proposition 1.5 and 1.3. 
Proposition 1.7. For any F-link, we have 

X<3> = - X * 

Question 4. (Realization) Can every rational power series p, with integer coeffi­
cients, satisfying the duality property p — — p be realized as x&(L) for some F-link 
L? 

Question 5. For the cyclic module in Proposition 1.4(c), what is x? 

It is interesting, if perhaps disappointing, that this array of invariants are actually 
all determined by the original x of Farber. 

Theorem 2. For any f G Q((x, z)),Xf(L) is completely determined by x(L), and 
therefore depends only on AL . 

Remark 1.8. It is pointed out in [Fa2, Prop. 5.2] that x(^) determines AL when it 
is semi-simple but not otherwise. For example, it follows from [Fa2, Prop. 2.5(c)] 
that x is not sensitive to different extensions of the same modules. In particular, 
for a knot K, xC^O is determined by the Alexander polynomial [Fa2, Section 10.4] 
and it is well-known that there exist knots with the same Alexander polynomial but 
different Alexander modules. 

Finally we consider some examples. If L is an F-link, let V denote the reflection 
(sometimes called mirror image) of L with the natural F-structure induced from 
that of L by the automorphism of F defined by U -* t"1 . If A is a Seifert matrix 
of L then A' is a Seifert matrix for V'. Note that ZA< — I — ZA — SZ'AS~X. 

Proposition 1.9. For any f e Q((x,z)), Xf(L') — Xj(L). In particular x(^ ') — 
X(L). 

For 2-component links we have not been able to find any examples such that 
X(L') ? X(L). 
Question 6. Is x(I>) = x(^) for a n y 2-component F-link? 

On the other hand for 3-component F-links it is not hard to find such examples. 

Proposition 1.10. There exist 3-component F-links such that x(-k') = x(£) ^ 

X(L). 

2. PROOFS 

2.1. Proof of Theorem 1. Let us introduce three moves on the set Sei of Seifert 
matrices: 

Si : Replace A by PAP' for a block diagonal matrix P — diag(Pi, . . . ,P n ) of 
unimodular matrices Pi with integer entries. 

S2 : Replace A by 

A p 0\ (A p 0\ 
p' 0 1 or \p' 0 0 
0 0 0 / \ 0 1 0/ 

for a column vector p, where, for some i, the two new rows are added to 
Aij, 1 < j < n and the two new columns are added to Aji, 1 < j < n. 
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& : The move that generates An-equivalence, where the algebraic action of An 

on Sei(n) is described in [Kl, K2]. 

Note that £i,S2 generate the so-called 5-equivalence of Seifert matrices. 
Given a Seifert matrix A, we define ZA = A(A — A')~x and SA — A — A! (or 

simply, Z and S in case A is clear), following Seifert. Note that S is block-diagonal. 
The behavior of Z under 5-equivalence of A is described by the following elementary 
matrix calculation 

Lemma 2.1. If A %> B = PAP', then ZB = PZAP~X. 

IfA&B, then 

or 

Proof of Theorem 1. We need to show that %/ is invariant under the moves S\ and 

S2. If A & B, then f(X,ZB) = Pf(X,ZA)P~1 thus Xf(B) = xM). If A & 5 , 
then the following identity 

implies that Xf{B) = X/C^)- ^ 

Lemma 2.2. Given an F-link L with a Seifert matrix A, then XZA + I is a 
presentation matrix for AL over A, and for Af> over Aab. 

Proof It is well-known (see [K2]) that a presentation matrix for AL is TA — A1', 
and similarly for Af.. Since TA - A' = (T - I)A + (A- A') = (XZ + I)(A- A'), 
the lemma follows. • 

2.2. Proof of Proposition 1.2. Let 7?/(x, z) denote the subring of lZad consisting 
of all admissible / such that, for any scalar matrix Z of the appropriate size, f(X, Z) 
is a matrix all of whose entries are rational in Q((aJi, . . . ,xn)) . It will suffice to 
show that 7Z*(x, z) C 1U{X, z). To prove this we need to show that if / G 'R,'{x,z) 
is extra-special, then g = f"1 £ 1V(X,Z). 

Consider the matrix equation f(X,Z)g(X,Z) = I. This defines a system of 
equations for the entries of g(X, Z) of the form 

/ v &rj Uj = Ur 

3 

where arj,br G 7£(xi, . . . , xn). Since / is extra-special, / (0 , Z) = / , which implies 
that, with the correct choice of numbering of the equations, a r j (0 , . . . ,0) — 5rj. 
Now we can apply [FV, Proposition 2.1] to conclude that the solutions y r, which 
are the entries of g(X, Z), are unique and rational. 
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2.3. Proof of Proposition 1.3. It follows from the definition of Z that Z + 
SZ'S-1 = I, where S = A - A'. This implies that 

(1) Z = S{I - Z')S~l 

Thus 

tr f(X, Z) = tr / (X, / - Z;) = t~r/(*, 1 - Z) 

using the facts that S commutes with X, that trY" = t rY' , for any square matrix 
Y and that tr(WY) — tr (YW), if the entries of W commute with the entries of Y. 
Prom this we deduce the first equality. 

The second equality is clear. 
Remark 2.3. Let [7£ad,7£ad] denote the abelian subgroup of the ring 7£ad generated 
by fg - gf for f,g e ftad. It is easy to see that for all / £ [ftad,ftad] we have 
X/ = 0 € A/(cyclic). 

2.4. Proof of Proposition 1.4. To prove (a) first note that the normalized Ab 

can be defined by the equation 

Ab = detCT1/2A - T'^A!) = det((I + X ) - 1 / 2 ( I + XZ)) 

Thus we have 

log A6 = trlog((/ + X ) - 1 / 2 ( / + XZ)) 

= trlog(/ + X ) - 1 / 2 + t r l o g ( / + XZ) 

= trlog(/ + X Z ) - | t r l o g ( J + J f )=XA 

This uses the following lemma, which is probably well-known. 

Lemma 2.4. Suppose that M, Mi, M2 are matrices of the form I+ N over a com­
pleted commutative power series ring, where N has all entries of degree > 0. Then 
we have the following identities. 

(2) tr log(MiM2) = tr log(Mi) + tr log(M2) 

(3) logdet(M) - trlog(M) 

Proof (2) follows from the Campbell-Baker-Haussdorf formula and the fact that 
tr(AB) = tr(.RA) if A, B are matrices over a commutative ring. 

To prove (3), first note that it is obvious if M is triangular. Secondly, it follows 
from (2) that if it is true for Mi and M2, then it is true for MiM2 . Thus if will 
follow from the fact that any such M can be written M — LXJ', where L is lower 
triangular (i.e. kj = 0 if i < j) and U is upper triangular. We prove this by 
induction on the size of M. 

Write M — [ ~ 1, where a is a column vector and 3 is a row vector. By 
\ a M J J 

induction we can write M — u~xa(5 = LU, for triangular matrices L, U. Now we 
define 

- C D --(»"?) 
One checks immediately that M = LU. • 
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(b) follows from a general construction in [Le]. Consider the trivial link LQ C 5 3 

with n components. Then the splitting map 0 is an isomorphism. Consider the 
universal cover X£o of S3 — LQ. Given A = ^2geFag9 satisfying A = A, we can 
construct a simple closed curve 7 in S3 — Lo which is null-homotopic and unknotted 
in 5 3 such that, if 7 is any lift of 7 in X£o then the linking numbers of 7 and its 
translates is given by 

lk(7>07) = cigiig^l 
This construction is described in [Le]. Now do a +l-surgery on 7 to produce E3, 
which, since 7 was unknotted, is diffeomorphic to S3. Let L C S3 be the link 
corresponding to LQ C X3 under such a diffeomorphism. Note that surgery on all 
the lifts of 7 produces an F-covering of S3 — L and so L is canonically a F-link. 
The argument in [Le] shows that # i (X£) = A/(A). 

For (c), we will use Proposition 1.3 and Remark 2.3. Since / A ( ^ , Z) — \og(l+xz), 
it is easy to see that f&(x,z) — f/±(z,x) mod [7£ad,7£ad]. On the other hand, we 
have 

fA{x, l-z) = log(l + (1 - z)x) = log(l + x - zx) = log((l + zx)(l + x)) 

= log(l + ^ ) + l o g ( l + x ) m o d [ ^ a d , ^ a d ] 

- h{x, z) + log(l + x) mod [ftad, ftad] 

= log(l + xz) + log(l + x) mod [ftad, ftad] 

= U{x,z)+\og{l+x)mod[n^,lVd). 

Proposition 1.3 and Remark 2.3 imply that 

Xu(x,z) = XjA{xA-z) = X/A(x,2) + Xiog(i+*) = X/A + Xiog(i+x) £ A/(cyclic). 

Since XA(^Z) = X/A(*,*) a n d Xiog(i+aO = 05 it follows that XA = XA G A/(cyclic). 
D 

2.5. Proof of Proposition 1.5. Let A be any Seifert matrix for L. We can 
construct a higher-dimensional simple link L in S4/c+3, for some large fc, which 
has a Seifert manifold W yielding A as its Seifert matrix (see, e.g. [K2]). Since the 
Seifert matrix determines the link module, via the presentation matrix TA — A' we 
have AL = # i (X£ ,Q) = Az = H2k+i(X2,Q). Therefore x for AL is the same as 
X for A-£. Now we can do surgery on W to obtain a minimal Seifert manifold V 
for L, whose components are 2/c-connected—see [Fal, Section 6.12] and [Gu]. This 
determines a minimal lattice J for A j , according to [Fa2, p.563-4]. The Seifert 
matrix B determined by V is S-equivalent to A and so x&(L) — tr((IJrXZ)~1X) — 
tr((J + XI^^X), where Z = B(B - B')'1. Note that J = 0 ^ 7 and each 
XiJ is isomorphic to #29+1 (V$), where V̂  is the 2-th component of V. Then, if 
2gi = rank H2q+i(Vi), it is straightforward to check that tr((J + - X T ^ ) - 1 ^ ) — 
Y2i 9i(xi ~ xi). The proof will be completed if we show that x = tr((^ + X Z ) _ 1 X ) . 

Now AL is the A-module with presentation matrix XZ + I, as in Lemma 2.2. The 
generators ar of AL, corresponding to the columns of XZ + / , span the minimal 
lattice J as described in [Fa2, p.564], since B comes from a minimal Seifert manifold. 
If we let Mi — XiAL, then the generators corresponding to the zth column block of 
XZ + I generate Mi since, if ar denotes a generator corresponding to a column in 
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the ith. column block, the r-th row of XZ + I gives the relation ar — —xi ̂  Zrsas. 

(° \ 
Thus, TTi is given by the matrix Pi = / where / is in the (i,i) block, z 

V o) 
is given by the matrix Z' and di is given by the matrix whose ith column block is 
the ith column block of — Z' and the other columns are zero—call this matrix Zi. 
Now, % is given by 

X = ^Yltl(7Tkdai '"9*n)Xan '-XaiXk. 
k n 

But 7Tkdai • - • dan is given by the matrix PkZ'ai • • • Z'an. Note that Z'ai • • • Z'an is 
the matrix with only the an-th column block nonzero and the (r,an) block is 
{-l)nZ'raiZ'aia2- • • Z'an_ian. Multiply this by Pfc, giving a matrix whose only 
nonzero entries are in the (fc, an) block, and equal to {-l)nZ'k a Z'ai^2 • • • Zf

an_liCLn. 
Thus, we have a nonzero trace only if k = an, giving 

n a i , . . . , a n 

= /-^ 2-^/ \ ) ^T\Zan,an-iZan_uan-2 ' ' ' Zai,an)xan ' ' ' ^ax
xarh 

n a i , . . . , a n 

= E E (-1)ntr((XZ)«n,an-1(XZ)a„_ltan_2.--(XZ)ait<Xa,n,an) 
n a i , . . . , a n , a ^ 

= E(-1)" ̂ ((xz)nx) =tr ((xz + i)-xx). 
n 

D 

2.6. Proof of Proposition 1.7. It is easy to see that $(x, z) — $(x,z). Further­
more, since t r$ (X, I1/2) satisfies the asserted duality statements, we can omit this 
part of the definition of x$ in the following. We have: 

$(z, 1 - z) = (1 + x(l - z ^ x = (1 + x - xzYxx = (1 + x^) _ 1 ( l + x) _ 1 x 

= - ( 1 + xz)~lx = -<£>(x, z) = -l>(x, 2). 

Proposition 1.3 implies that x$ = X$(:M_Z) = ~X<| = ~X$ = ~X$- • 

2.7. Proof of Theorem 2. It suffices to consider the case where / is a monomial, 
say 

f = xfozeixfl --'Zekxfk 

where e$ > 0 for 1 < i < k and / i > 0 i f 0 < i < f c . Note that we have a general 
formula 

(4) t r / ( * , £ ) = E tv(Z^)ili2(Z^)i2i3---(Z^)ikilx{°ix{^--x{^x^ 

where {Ze)ij denote the (i, j)-block of Ze. Now we associate with / another mono­
mial / ' G Q((x,y,z)) by replacing each zei in / by {zy)ei~1z1 for every 1 < i < k 
and replacing each x^ by x, for every 0 < i < k (even when /o or /& is zero). 
Now consider t r / ' ( X , Y, Z), where Y = diag(yi, . . . , yn) is a matrix identical to 
X in which each xi is replaced by a new variable y*. It is not hard to see, using 
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equation (4), that tr/ '( .X, Y, Z) and / determine t r / ( X , Z) by replacing each Xj 
in tr /'(-X", y, Z) with the appropriate power of Xj and each T/̂  by 1. Furthermore, 
again using equation (4), tr f'(X, X, Z) and / determine tr f {X, Y", Z) since / tells 
us which Xi in / ' (X , X, Z) to replace by yi to obtain tr f'(X, Y, Z). 

Finally we note that / ' (# , x, z) is a monomial of the form (xz)kx, and so coincides, 
up to sign, with the degree k + 1 part of $. Thus t r / ' ( X , X , Z) is determined by 
tr $(X, Z). This completes the proof. D 

2.8. Proof of Propositions 1.9 and 1.10. Since t r / ( X , SZ'S'1) = tr f(X,Z') = 
t r / (X, Z), we conclude that Xf{L') — Xj{L)- Since $ = <£, it follows from Propo­
sition 1.5 that x(I /) — x(£). This proves Proposition 1.9. 

For Proposition 1.10 let us consider the matrix 

A = 

where S = ( n j and M is any 2 x 2-matrix satisfying M — M' = S. This is 

a Seifert matrix for some F-link L. 
Then 

ZA = 

where N = MS. From the general formula 

ZT^yZ;) = y ^ t r X^ Zjixi2Xi2 - • • 3?^ ZiikixXix — / ^V^r Zj%xi2 ' ' ' ^i^ix )^i\ %i2 ' ' ' %ik^ii 

which follows from equation (4), we can see that tr<>(Z^) = ^ m a m m , summing 
over non-commutative monomials m = Xixxi2 • • -x^x^, where a m = (—l) r t rM s 

with r — # { j : i^+i > ij} and s — # { j : ij — ij+i}. Thus, for example if 
m = x\X2X^X\ then a m = 2 whereas if m = x\x$X2X\ then a m = —2. Thus 
X$(A) ^ X$(^4) and we have the desired example. 
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