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Abstract The colored Jones function of a knot is a sequence of Laurent poly-
nomials that encodes the Jones polynomial of a knot and its parallels. It has
been understood in terms of representations of quantum groups and Witten
gave an intrinsic quantum field theory interpretation of the colored Jones func-
tion as the expectation value of Wilson loops of a 3-dimensional gauge theory,
the Chern–Simons theory. We present the colored Jones function as an eval-
uation of the inverse of a non-commutative fermionic partition function. This
result is in the form familiar in quantum field theory, namely the inverse of a
generalized determinant. Our formula also reveals a direct relation between
the Alexander polynomial and the colored Jones function of a knot and imme-
diately implies the extensively studied Melvin–Morton–Rozansky conjecture,
first proved by Bar–Natan and the first author about 10 years ago. Our results
complement recent work of Huynh and Le, who also give a non-commutative
formulae for the colored Jones function of a knot, starting from a non-commu-
tative formula for the R matrix of the quantum group Uq(sl2); see Huynh and
Le (in math.GT/0503296).
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1 Introduction

1.1 The Jones polynomial of a knot

In 1985, Jones discovered a celebrated invariant of knots, the Jones polynomial,
[14]. Jones’s original formulation of the Jones polynomial was given in terms
of representations of braid groups and Hecke algebras, [14]. It soon became
apparent that the Jones polynomial can be defined as a state sum of a statisti-
cal mechanics model that uses as input a planar projection of a knot, [15,29].
As soon as the Jones polynomial was discovered, it was compared with the
better-understood Alexander polynomial of a knot. The latter can be defined
using classical algebraic topology (such as the homology of the infinite cyclic
cover of the knot complement), and its skein theory can be understood purely
topologically. On the other hand, the Jones polynomial appears to be difficult to
understand topologically, and there is a good reason for this, as was explained by
Witten, [31]. Namely, the Jones polynomial can be thought of as the expectation
value of Wilson loops of a 3-dimensional gauge theory, the Chern–Simons the-
ory; in general, this is hard to understand. Witten’s approach leads to a number
of conjectures that relate limits of the Jones polynomial to geometric invariants
of a knot, such as representations of the fundamental group of its complement
into compact Lie groups. A recent approach to the Jones polynomial in terms
of D-modules and holonomic functions seems to relate well to the hyperbolic
geometry of knot complements, [8,10] and yet another approach to the Jones
polynomial is via the Kauffman bracket skein theory, [16].

The goal of our paper is to present the colored Jones function as an eval-
uation of the inverse of a non-commutative fermionic partition function. This
result is in the form very familiar in quantum field theory, namely the inverse
of a generalized determinant. Hence there should be a quantum field theoretic
derivation of it, which may teach us new things about how to compute path
integrals in topological quantum field theory.

About 10 years ago, Melvin–Morton and Rozansky independently conjec-
tured a relation among the limiting behavior of the colored Jones function of
a knot and its Alexander polynomial (see Corollary 1.5), [25–27]. Bar-Natan
and the first author reduced the conjecture about knot invariants to a statement
about their combinatorial weight systems, and then proved it for all weight
systems that come from semisimple Lie algebras using combinatorial Lie alge-
braic methods, [2]. A combinatorial description of the corresponding weight
systems was obtained in [11]. Over the years, the MMR conjecture has received
attention by many researchers who gave alternative proofs, [4,18,19,28,30].

A comparison of Theorem 1 and Theorem 2 reveals a direct relation between
the Alexander polynomial and the colored Jones function. This should help us
better understand the topological features of the colored Jones function.

We will introduce an auxiliary weighted directed graph, the arc-graph, that
encodes transitions of walks along a planar projection of a knot. Our results
are obtained by studying the non-negative integer flows on this arc-graph and
applying the recently discovered q-MacMahon master theorem of [12].
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1.2 Statement of the main result

Definition 1.1 We consider 5r indeterminates r−i , r+i , u−i , u+i , zi, 1 ≤ i ≤ r. Let A
be a r by r matrix where each indeterminate appears at most once in an entry,
and each entry is an indeterminate times a power of q. We assume q is an inde-
terminate which commutes with all other indeterminates. Moreover we assume
that each column contains at most one u indeterminate, in its first or last entry
different from z. Let L(A) be the set of those columns of A where u appears in
the last non-z-entry.

We define a noncommutative algebra A(A) generated by the indeterminates
which appear in A, modulo the commutation relations specified below. Con-
sider any 2 by 2 minor of A consisting of rows i and i′, and columns j and j′
(where 1 ≤ i < i′ ≤ r, and 1 ≤ j < j′ ≤ r), writing a = aij, b = aij′ , c = ai′j, d =
ai′j′ , we have the following commutation relations (we will use the symbol =q
to denote ‘equality up to a power of q’):

(1) The commutation in each row: ba = q−2ab if b =q u− or a =q u− and
ba = ab otherwise. The same rule is adapted for cd commutation.

(2) The bc commutation: bc = q−1+scb if c =q us, b =q r−+ or
b =q us, c =q r−+ or
c =q us, b =q u−+, d =q r−+, a = z or
b =q us, c =q u−+, a =q r−+, d = z.
bc = q−1+s+s′cb if b =q us, c =q us′ , a =q r−+, d =q r−+, and
bc = q−1cb otherwise.

(3) Finally we require that A is right-quantum (see [12]), i.e.,

ca = qac, db = qbd, ad = da+ q−1cb− qbc.

Note that the commutation relations are such that each monomial in A(A)

can be brought into a q-combination of canonical monomials
∏r

i=1 am1i
1i · · · amri

ri .

Definition 1.2 We define n-evaluation of a canonical monomial
∏r

i=1 am1i
1i · · · amri

ri
to be zero if there is ij with mij > 0 and aij = zk and otherwise

trn

r∏

i=1

am1i
1i · · · amri

ri =
∏

i/∈L(A)

trn am1i
1i · · · amri

ri

∏

i∈L(A)

trn amri
ri · · · am1i

1i ,

and

trn(us0)p0(rs1
i1 )p1 · · · (rsm

im )pm = q−s0p0n
m∏

i=1

pi−1∏

j=0

(1− t−si(n−j−p0−...pi−1)).

We consider a generic planar projection K of an oriented zero framed knot
with r + 1 crossings and with no kinks, together with a special arc decorated
with �. Let K denote the corresponding long knot obtained by breaking the
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special arc. We will order the arcs of K so that they appear in increasing order
as we walk in the direction of the knot, such that the special arc is last. We
will also order the crossings of K such that arc ai ends at the ith crossing, for
i = 1, . . . , r+ 1.

Note that K can be uniquely reconstructed from K, so that any invariant
of knots gives rise to a corresponding invariant of long knots. We consider
transitions of K: when we walk along K, we either go under a crossing (blue
transition), or jump up at a crossing (red transition). Each transition from arc
ai to arc aj is naturally equipped with a non-negative integer rot(ai, aj) which
can be seen from K (see Definition B.6).

We define the r by r transition matrix BK = (bij) as follows.

Definition 1.3

bij =

⎧
⎪⎨

⎪⎩

q−rot(ij)usign(i)
i if j = i+ 1

q−rot(ij)rsign(i)
i if aiajis a red transition

zi otherwise

The next well-known theorem (see e.g. [2]) identifies the Alexander polyno-
mial �(K) of a knot diagram K with the determinant of BK.

Theorem 1 For every knot diagram K we have:

�(K, t) =t det(I − BK)|
q=1,zi=0,usign(i)

i =t−sign(i),rsign(i)
i =(1−t−sign(i))

.

Definition 1.4 The quantum determinant of an r by r matrix A = (aij), intro-
duced in [5], may be defined by

det
q

(A) =
∑

π∈Sr

(−q)−inv(π)aπ(1)1aπ(2)2 . . . aπ(r)r,

where inv(π) equals the number of pairs 1 ≤ i < j ≤ r for which π(i) > π(j).
Moreover we let

Ferm(A) =
∑

J⊂{1,...,r}
(−1)|J| det

q
(AJ)

where AJ is the J by J submatrix of A.

If q = 1 then Ferm(A) = det(I −A). Recall the MacMahon master theorem
[24], known also as the boson-fermion correspondence

1
det(I −A)

=
∞∑

n=0

tr Sn(A),

where Sn(A) is the n-th symmetric power of A.
The main result of this paper is as follows:
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Theorem 2 For every knot diagram K we can construct a matrix B′K from BK by
a permutation of rows and columns so that

Jn(K, q) = qδ(K,n)1/Ferm(B′K),

n-evaluated; δ(K, n) is an integer that can be computed easily from K (see Defi-
nition 3.3).

As an immediate consequence we obtain the seminal Melvin–Morton–
Rozansky Conjecture (MMR in short), whose proof was first given by [2].

Corollary 1.5

lim
n→∞ Jn(K, q1/n) =t

1
�(K, q)

.

Remark 1.6 The computational complexity of the Jones polynomial and its
approximation is studied extensively and as far as we know, this cannot be said
about non-commutative formulas. Hence, it may be enlightening to study our
formula from a computation point of view.

Remark 1.7 Theorem 2 is inspired by work of Le, Zeilberger and the first author
on a q-version of the MacMahon Master Identity, see [12]. Theorem 2 comple-
ments recent and elegant work of Le and Vu, who also give a noncommutative
formulae for the colored Jones function of a knot, starting from a non-com-
mutative formula for the R matrix of the quantum group Uq(sl2); see [13,
Theorem. 1].

2 The zeta function of a graph and the quantum MacMahon
Master theorem

One of main ingredients in our result is combinatorics of non-negative integer
flows on digraphs. They appear in an expression of the zeta function.

Let us recall what is the zeta function of a digraph. We will consider digraphs
(that is, graphs with oriented edges) with weights on their edges.

Let G = (V, E) be a digraph with vertex set V and directed edges E ⊂ V×V,
and let B = (βe)e∈E be a weight matrix for the edges of G. For edge e we denote
by s(e), t(e) the starting and terminal vertex of e. Bass–Ihara–Selberg defined a
zeta function of a graph in analogy with number theory and dynamical systems,
where the analogue of a prime number is a nonperiodic cycle. Let us define the
latter.

A pointed walk on a digraph is a sequence (e1, . . . , ek) of edges such that the
end of one coincides with the beginning of the next; we say that it is pointed at
the beginning of e1, which is also called a base point. A pointed closed walk is
a path whose beginning and end vertex coincide. Two pointed closed walks are
equivalent if they differ on the choice of base point only. By a cycle we will mean
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an equivalence class of pointed closed walks. A cycle c is periodic if c = dn for
some closed walk d and some integer n > 1. Otherwise, it is called nonperiodic.
Let P(G) denote the set of nonperiodic cycles of a digraph G. Using the weight
function, we may define the weight β(c) of a cycle c by β(c) =∏

e∈c β(e).
With the above preliminaries, Bass–Ihara–Selberg [3] define

Definition 2.1 The zeta function ζ(G, B) of a weighted digraph (G, B) is defined
by:

ζ(G, B) =
∏

c∈P(G)

1
1− β(c)

.

It follows by definition that

ζ(G, B) =
∑

c multisubsets of P(G)

β(c)

The actual definition of Bass–Ihara–Selberg uses more special weights for
the edges (each edge is given the same weight), and is used to digraphs which
are doubles (in the sense of replacing an unoriented edge by a pair of oppositely
oriented edges) of undirected graphs.

Foata–Zeilberger proved that the zeta function is a rational function, and in
fact given by the inverse of a determinant. Moreover, the zeta function is given
by a sum over flows.

Definition 2.2 A flow f on a digraph G is a function f : Edges(G) −→ N of the
edges of G that satisfies the (Kirkhoff) conservation law

∑

e begins at v

f (e) =
∑

e ends at v

f (e)

at all vertices v of G. Let f (v) denote this quantity and let F(G) denote the set of
flows of a digraph G.

If β is a weight function on the set of edges of G and f is a flow on G, then

• the weight β(f ) of f is given by β(f ) = ∏
e β(e)f (e), where β(e) is the weight

of the edge e.
• The multiplicity at a vertex v with outgoing edges e1, e2, . . . is given by

multv(f ) =
(f (e1)+f (e2)+...

f (e1),f (e2),...

)
, and the multiplicity of f is given by mult(f ) =

∏
v multv(f ).

• If A is a subset of edges then we let f (A) =∑
e∈A f (e).

Let us summarize Foata–Zeilberger’s theorem [6, Theorem 1.1] here. For the
sake of completeness we include its proof in Appendix 7.3.
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Theorem 3 If (G, B) is a weighted digraph, then

ζ(G, B) = 1
det(I − B)

(1)

=
∑

f∈F(G)

β(f ) mult(f ). (2)

Remark 2.3 For r = 1, the above Theorem states that

1
1− x

=
∞∑

n=0

xn

where x = b11. Thus, Theorem 3 is a version of the geometric series summation.

Another formula for the inverse of a determinant, the MacMahon master
theorem, has been mentioned in the introduction. We will need its quantum
version, proved in [12].

In r-dimensional quantum algebra we have r indeterminates xi (1 ≤ i ≤ r),
satisfying the commutation relations xjxi = qxixj for all 1 ≤ i < j ≤ r. Further
we are given a right-quantum matrix A. We assume that the indeterminates
of A commute with the xi’s. The following theorem has been proven recently
in [12].

Theorem 4 Let A be a right-quantum matrix of size r. For 1 ≤ i ≤ r let
Xi = ∑r

j=1 aijxj, and for any vector (m1, . . . , mr) of non-negative integers let
GA(m1, . . . , mr) be the coefficient of xm1

1 xm2
2 . . . xmr

r in
∏r

i=1 Xmi
i . Then

∞∑

m1,...,mr=0

GA(m1, . . . , mr) = 1/Ferm(A).

3 The arc-graph of a knot projection

Given a knot projection K, we define the arc-graph GK as follows:

• The vertices of GK are in 1-1 correspondence with the arcs of K.
• The edges of GK are in 1-1 correspondence with transitions of K, when we

walk along K and we either go under a crossing (blue edges), or jump up at
a crossing (red edges) according to Fig. 1.

More formally, GK is a weighted digraph defined as follows.
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Fig. 1 From a planar projection to the arc-graph. Transitions in the planar projection are indicated
by dashed paths, and the corresponding edges in the arc-graph are blue (depicted with a small circle
on them) or red

Definition 3.1 The arc-graph GK has r+1 vertices 1, . . . , r+1, r+1 blue directed
edges (v, v+ 1) (v taken modulo r+ 1) and r+ 1 red directed edges (u, v), where
at the crossing u the arc that crosses over is labeled by av.

The vertices of GK are equipped with a sign, where sign(v) is the sign of the
corresponding crossing v of K, and the edges of GK are equipped with a weight.
The edge-weights are specified by matrix WK = (βij) where

βe =
{

t−sign(v) if e = (v, v+ 1),
1− t−sign(v) if e = (v, u).

Here t is a variable. Let WK denote the matrix obtained from WK by deleting
the last row and column. Notice that WK is formally stochastic (i.e., the sum of
the rows of I −WK is zero), but WK is not.

Let (GK, WK) denote the weighted digraph obtained by deleting the r + 1
vertex from GK, together with all edges to and from it. We let VK and EK
denote the set of vertices and edges of GK.

It is clear from the definition that from every vertex of GK, the blue outde-
gree is 1, the red outdegree is 1, and the blue indegree is 1. It is also clear that
GK has a Hamiltonian cycle that consists of all the blue edges. We denote by eb

i
(er

i ) the blue (red) edge leaving vertex i (Fig. 1).

Example 3.2 For the Fig. 8 knot we have:
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Its arc-graph GK with the ordering and signs of its vertices and GK = GK− {4}
are given by

where the blue edges are the ones with circles on them. Moreover,

WK =

⎡

⎢
⎢
⎣

0 t 0 1− t
1− t̄ 0 t̄ 0

0 1− t 0 t
t̄ 0 1− t̄ 0

⎤

⎥
⎥
⎦ .

Definition 3.3 Let K be a knot projection. The writhe of K, ω(K), is the sum of
the signs of the crossings of K, and rot(K) is the rotation number of K, defined
as follows: smoothen all crossings of K, and consider the oriented circles that
appear; one of them is special, marked by �. The number of circles different from
the special one whose orientation agrees with the special one, minus the number
of circles whose orientation is opposite to the special one is defined to be rot(K).
We further let δ(K, n) = 1/2(n2ω(K)+ nrot(K)), and δ(K) = δ(K, 1).

We remark that we define rot(e) for each edge e of GK in Definition B.6.

4 The enhanced arc-graph and the Jones polynomial

In order to express the Jones polynomial as a function of the arc graph, we need
to enhance the arc-graph as follows.

Definition 4.1 (a) We introduce a linear order <v on the set of edges of GK ter-
minating at vertex v as follows. Recall that v corresponds to an arc av of K. If we
travel on av along the orientation of K, we ‘see’ one by one the arcs corresponding
to starting vertices of red arcs entering v: this gives the linear order of red arcs
entering v. Finally there is at most one blue edge entering vertex v, and we make
it less than all the red edges entering v.
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(b) If f is a flow on GK, we define the rotation and excess number of f by:

rot(f ) =
∑

e∈EK

f (e)rot(e), exc(f ) =
∑

v∈VK

sign(v)f (eb
v)

∑

e<ver
v

f (e),

δ(f ) = exc(f )− rot(f ), (3)

where VK and EK are the set of vertices and edges of GK, and rot(e) is defined in
Definition B.6.

Let S(G) denote the set of all subgraphs C of G such that each component
of C is a directed cycle. Note that S(G) may be identified with a finite subset of
F(G) since the characteristic function of C is a flow.

The next theorem, due to Lin–Wang, expresses the Jones polynomial of a
knot projection K in terms of the enhanced arc-graph of K. For the sake of
completeness we include its proof in Appendix A.1.

Theorem 5 [21] For every knot projection K we have:

J(K, t) = tδ(K)
∑

c∈S(GK)

tδ(c)β(c).

We now give a similar formula for the colored Jones function Jn of a knot. We
will normalize the colored Jones function so that it is the constant sequence {1}
for the unknot, and Jn is the quantum group invariant of knots that corresponds
to the (n+ 1)-dimensional irreducible representation of sl2.

Recall the operation of cabling K(n) the knot projection K n times. Recall
that a1, . . . , ar+1 are the arcs of K. Each al is in the cabling replaced by n2 arcs
al

i,j, i, j = 1, . . . , n, with the agreement that the ‘long arcs’ obtained by cabling

arc ak will be ak
1j, j = 1, . . . , n and the ‘small arcs’ obtained by cabling of crossing

k will be denoted by ak
ij for i = 2, . . . , n and j = 1, . . . , n. Note that all crossings

which replace the original crossing k have the same sign, equal to the sign of
the crossing k. (see figure before Lemma 6.2).

We further let K(n) denote the link obtained from K(n) by deletion of the n
special long arcs ar+1

1j , j = 1, . . . , n.

Theorem 6 For every knot K and every n ∈ N, we have

Jn(K, t) = tδ(K,n)
∑

c∈S(GK(n) )

tδ(c)β(c)

where GK(n) is the arc graph of K(n).

Proof Let Vn denote the (n+ 1)-dimensional irreducible representation of the
quantum group Uq(sl2), and let vn denote a highest weight vector of Vn. Then,
there is an inclusion Vn −→ ⊗nV1 that maps vn to a nonzero multiple of ⊗nv1.
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The result follows since cabling K corresponds to tensor product of repre-
sentations and since ω(K(n)) = n2ω(K) and rot(K(n)) = n rot(K). 
�

For an integer m, we denote by

(m)q = qm − 1
q− 1

the quantum integer m. This defines the quantum factorial and the quantum
binomial coefficients by

(m)q! = (1)q(2)q . . . (m)q,
(

m
n

)

q
= (m)q!

(n)q!(m− n)q!

for natural numbers m, n with n ≤ m. We also define

multq(f ) =
∏

v

(
f (v)

f (eb
v)

)

qsign(v)

.

Theorem 7 For every knot projection K we have:

Jn(K, t) = tδ(K,n)
∑

f∈F(GK)

multt(f )tδ(f )
∏

v∈VK

t−sign(v)nf (eb
v)

∏

ered;t(e)=v

×
f (e)−1∏

j=0

(1− t−sign(s(e))(n−j−∑
e′<ve f (e))).

Remark 4.2 It simply follows that the contribution of a flow f to the sum in
Theorem 7 is non-zero only if f (v) ≤ n for each vertex v. Thus, in the above
sum, only finitely many terms contribute. As a result, when n = 1, Theorems 7
and 5 coincide.

5 Proof of Theorem 2

Theorem 7 is used in this section to prove the main Theorem 2. In the rest of
the paper we then prove Theorem 7 from Theorem 6.

5.1 Row and column arcs order

Recall that we fix a generic planar projection K of an oriented knot with r + 1
crossings. We order the arcs of K so that they appear in increasing order as we
walk in the direction of the knot, and we denote by K the long knot obtained
by breaking the arc ar+1. We also order the crossings of K so that arc ai ends at
the ith crossing, for i = 1, . . . , r.
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Definition 5.1

(1) We define two permutations S, T on the set of the arcs of K as follows. For arc
ai of K let T(i) = T(i, 1), . . . , T(i, ki) ( S(i) = S(i, 1), . . . , S(i, ki) respectively)
be the block of arcs of K terminating at (starting from) ai and ordered along
the orientation of ai. Let T (S) be the permutation of the arcs of K defined by
T = T(1, 1), . . . , T(1, k1), . . . , T(r, kr) (S = S(r, kr), . . . , S(r, 1), . . . , S(1, 1)).

(2) We define permutation R of the arcs of K from T as follows: if ai appears in S
before the block S(i) then replace T(i, 1), . . . , T(i, ki) by T(i, ki), . . . , T(i, 1).

(3) Similarly we define permutation C of the arcs of K from S as follows:
if ai appears in S after the block S(i) then replace S(i, ki), . . . , S(i, 1) by
S(i, 1), . . . , S(i, ki).

Definition 5.2 We define matrix B′K = (γij) to be obtained from BK by taking
the rows in the R order and the columns in the C order.

We consider the commutation relations between the variables appearing in
B′K as in the Definition 1.1. In particular, B′K is right-quantum.

5.2 Flows on GK and monomials of GB′K (m1, . . . mr)

We interpret each entry γij with no z indeterminate as arc (ij) of the arc-graph
GK. Then each monomial in GB′K (m1, . . . , mr) corresponds to a flow on GK with
indeg(i) = outdeg(i) = mi, i = 1, . . . , r. If f is such a flow, we denote by G(f ) the
sum of all monomials of

∑
GB′K (m1, . . . , mr) corresponding to f . Summarizing

we can write

Observation 1

∞∑

m1,...,mr=0

GB′K (m1, . . . , mr) =
∑

f

G(f ).

We denote by C(f ) the canonical monomial of a product (in arbitrary order)
of the entries of B′K corresponding to the edges of GK, where the entry corre-
sponding to each edge e appears f (e) times.

Observation 2 Let C be a summand of
∏r

i=1(
∑

j γijxj)
mi , which contains mi

indeterminates xi, i = 1, . . . , r and contributes to G(f ). For 1 ≤ v ≤ r and
1 ≤ j ≤ f (er

v) let c(C, v, j) be the number of γeb
v
’s which need to be commuted

through the j-th occurrence of γer
v

in order to get C(f ) from C. Then

C = xm1
1 xm2

2 . . . xmr
r q−rot(f )C(f )qexc(f )

r∏

v=1

f (er
v)∏

j=1

qsign(v)c(C,v,j).
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Proof Let Xij = γijxj. Hence C is a summand of the coefficient of xm1
1 xm2

2 . . . xmr
r

in
∏r

i=1(
∑

j Xij)
mi . For each j fixed the γij’s appear ordered in C. In each canon-

ical monomial, the γij’s appear ordered by the second coordinate, and then
by the first coordinate. Hence, in order to get a canonical monomial times
xm1

1 xm2
2 . . . xmr

r from a summand of
∏r

i=1(
∑

j Xij)
mi , we only need to commute

Xij’s so that they are ordered by the second coordinate. This means: if ai appears
in S before (after respectively) the block S(i) then ai appears in C before (after
respectively )the block S(i) BUT ai−1 appears in R after (before respectively)
the block T(i). Hence we need to commute

1. Each Xi−1,i through each Xj−1,j, j ∈ S(i) and each Xk−1,i through each
Xj−1,j, j, k ∈ S(i), R(k) > R(j). The commutation in B′K is such that we
acquire each time qsign(j−1). Hence we acquire in total qexc(f ) since we recall
that exc( f ) =∑

v sign(v)f (eb
v)

∑
e<er

v
f (e).

2. Each Xk−1,i through each Xk−1,k, k ∈ S(i). The commutation in B′K is such
that we acquire in total qsign(k−1)(c(C,k−1,1)+...c(C,k−1,f (er

k−1)).
3. The commutation in B′K is such that if i < i′, j < j′ and Xi,j′ , Xi′,j do not

appear in one of the previous two cases then Xi,j′ , Xi′,j = Xi′,j, Xi,j′ .

This finishes the proof. 
�
Corollary 5.3

G(f ) = C(f )qδ(f )
r∏

v=1

∑

f (eb
v)≥c1≥···≥cf (er

v)≥0

qsign(v)(c1+...cf (er
v)).

Since

∑

f (eb
v)≥c1≥···≥cf (er

v)≥0

qsign(v)(c1+...cf (er
v)) =

(
f (v)

f (eb
v)

)

qsign(v)

,

we have

Corollary 5.4

G(f ) = qδ(f )multq( f )C(f ).

Proof (of Theorem 2) Theorem 7 tells us that

Jn(K, q) = qδ(K,n)
∑

f∈F(GK)

multt( f )tδ(f )
∏

v∈VK

t−sign(v)nf (eb
v)

∏

ered;t(e)=v

×
f (e)−1∏

j=0

(1− t−sign(s(e))(n−(
∑

e′<ve f (e))−j)).
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Comparing this with the Definition 1.2 of the n-evaluation and using Theorem 4,
Observation 2 and Corollary 5.4, we can see that Theorem 2 follows. 
�

6 Cabling of the arc graph

Recall the operation of cabling K(n) the knot projection K n times. Recall that
a1, . . . , ar+1 are the arcs of K. Each al is in the cabling replaced by n2 arcs al

i,j,
i, j = 1, . . . , n, with the agreement that the ‘long arcs’ obtained by cabling arc
ak will be ak

1j, j = 1, . . . , n and the ‘small arcs’ obtained by cabling of crossing

k will be denoted by ak
ij for i = 2, . . . , n and j = 1, . . . , n. Note that all cross-

ings which replace the original crossing k have the same sign, equal to the sign
of the crossing k. We make the following agreement: assume the parallel arcs
al

i,1, . . . , al
i,n go horizontally from left to right. Then al

i,1 is the upmost one. See

figure below for part of Example 3.2 and of its 3-cabled version K(3):

We further let K(n) denote the link obtained from K(n) by deletion of the n
special long arcs ar+1

1j , j = 1, . . . , n.
Next we consider the arc-graph of the cabling of K. For example, part of the

red-blue digraph GK of Example 3.2 and of its 3-cabled version is depicted as
follows:

where vertical edges are blue and horizontal edges are red.
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We now define an n-cabling G(n)
K of the arc-graph GK. Cabling of a planar

projection is a local operation, and so is cabling of a digraph. In the language
of combinatorics, we blow up the vertices of G using a suitable gadget. For a
similar discussion, see also [11, Sect. 4].

Definition 6.1 Fix a red–blue arc-graph GK. Let G(n)
K denote the digraph with

vertices av
j for v a vertex of GK and j = 1, . . . , n. G(n)

K contains blue directed

edges (al
j, al+1

j ) with weight t−εn (where ε ∈ {−1,+1} is the sign of the crossing l)
for each l = 1, . . . , r − 1 and j = 1, . . . , n. Moreover, if (ak, al) is a red directed
edge of GK, then G(n)

K contains red edges (ak
i , al

j) for all i, j = 1, . . . n with weight

t( j−1)(1− t) resp. t−(n−j)(1− t−1), if the sign of the i crossing is−1 resp.+1. Notice
that the weights of the red edges are independent of the index i.

Lemma 6.2 There is a 1–1 correspondence

{admissible subgraphs of GK(n)} ←→ {admissible subgraphs of G(n)
K }.

We will denote the set of admissible even subgraphs of G(n)
K by Sn(GK).

Proof Denote by pk
j path (ak

1j, ak
2j, . . . , ak

nj) of n − 1 blue edges in GK(n) , k =
1, . . . , r and j = 1, . . . , n. There is a natural map GK(n) −→ G(n)

K which contracts
each directed path pk

j into its initial vertex, and deletes all vertices ar+1
ij . For-

getting the weights, it is clear that the result of the contraction coincides with
G(n)

K .
GK(n) has two types of vertices: ak

ij for k = 1, . . . , r + 1 and i, j = 1, . . . , n

and i �= 1 (call these white) and ak
1j, k < r + 1 (call these black). The indegree

of a white vertex is 1, but the indegree of a black vertex may be higher. The
black vertices are the initial vertices of the paths pk

j , hence the vertices of G(n)
K .

Let E{n} and E(n) denote the set of edges of GK(n) and G(n)
K respectively. Then

each edge e of E(n) replaces the unique directed path Pe of GK(n) between the
corresponding black end-vertices of e, which contains no other black vertices.
If E ⊂ E{n} is an admissible even subgraph of GK(n) then E is a vertex-disjoint
union of directed cycles of GK(n) and each directed cycle may be decomposed
into directed paths between the black vertices. If each such directed path is
replaced by a directed edge, we get an admissible even subgraph E′ of G(n)

K .
This gives the 1–1 correspondence between the admissible even subgraphs with-
out the weights. To realize that the weights are correct as well, we only need
to compare the product of the weights in GK(n) along Pe with the weights of e
in G(n)

K . 
�

Theorem 6 and Lemmas B.2, 6.2 imply that:
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Lemma 6.3 For every knot K and every n ∈ N, we have

Jn(K, t) = tnδ(K)
∑

c∈Sn(GK)

tδ(c)β(c).

Our next task is to figure out δ(c) = exc(c)− rot(c) for c ∈ Sn(GK).
The following lemma is clear from the Definition 4.1:

Lemma 6.4 If f is a flow on GK and f̃ is a lift of f to flow on G(n)
K , for some n,

then rot(f ) = rot(̃f ).

6.1 Comparison of excess numbers

Given an admissible subgraph c in G(n)
K , let f be the corresponding flow in GK,

to which c projects, under the projection

π : G(n)
K → GK.

In this section, we compare exc(f ) (in Definition 4.1) with exc(c).
As we will see, the two excess numbers do not agree. In this section we will

determine their difference.
We begin by introducing a partial ordering ≺ on the set of edges of G(n)

K . We
warn the reader that this ordering is different from the ordering <v of the edges
of GK entering vertex v, introduced in Definition 4.1.

Definition 6.5 Consider two edges e and e′ of G(n)
K which start at the vertices ai

j

and ai′
j′ of G(n)

K . We say that e ≺ e′ if

• e, e′ end at the same vertex v and π(e) <v π(e′) in GK, or
• i = i′ and sign(i) = + and j < j′, or
• i = i′ and sign(i) = − and j′ < j

Recall that c ∈ Sn(GK) (c admissible) if and only if c is a collection of vertex
disjoint directed cycles of G(n)

K . Hence the ordering on the edges of c defined in
Definition 6.5 induces a total ordering on each π−1(e), e edge of GK.

This total ordering may be seen from the cabling of the knot in the same way
as the ordering <v of Definition 4.1 may be seen from the knot: if we travel
along an arc ai

j, we see one by one the arcs corresponding to the starting vertices

of edges of π−1(e), where e is an edge of GK. This agrees with the total ordering
on π−1(e) induced by ≺; see figure before 6.2.
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Definition 6.6 Consider two edges e and e′ of G(n)
K which end at the vertices ai

j

and ai′
j′ of G(n)

K .

X(e, e′) =

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

1 if e, e′ = red, e′ ≺ e, sign(s(e)) = +, j < j′

1 if e = red, e′ = blue,
π(e), π(e′) do not start at the same vertex,
e′ ≺ e, sign(s(e)) = +, j < j′

1 if e, e′ = red, e′ ≺ e, sign(s(e)) = −, j′ < j
1 if e = red, e′ = blue,

π(e), π(e′) do not start at the same vertex,
e′ ≺ e, sign(s(e)) = −, j′ < j

0 otherwise

Y(e, e′) =

⎧
⎪⎨

⎪⎩

1 if e = red, e′ = blue,
π(e), π(e′) start at the same vertex, e ≺ e′

0 otherwise

Lemma 6.7 Let c be an admissible subgraph of G(n)
K . Denote by f the flow on

GK which is the projection of c to GK. Then

exc(c) = exc(f )+
∑

e

sign(s(e))

(
∑

e′
X(e, e′)+ Y(e, e′)

)

where the summations of e and e′ are over the set of edges of c and s(e) denotes
the starting vertex of e.

Proof Consider a crossing v of K, and the corresponding n2 crossings of Kn.
We count the contribution to exc(c) of pairs (e, e′) of edges of c such that

• e projects to eb
v (the blue edge that starts at v), and e′ does not project to er

v
(the red edge that starts at v). This gives exc(f ).

• e projects to er
v, and e′ does not project to eb

v . This gives the X-term in the
formula.

• e projects to er
v, and e′ projects to eb

v . This gives the Y-term in the formula.


�

7 Sortings and multiplicities of flows

7.1 Sortings

In this section we introduce one of our key tools, which is a categorification of
multiplicities of the flows on GK. Let f be a flow on GK. If e is an edge of GK
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then we let F(e) ⊂ F be the set of f (e) copies of e; we choose an arbitrary total
order on each F(e).

Let F = ∪e∈EK F(e) and let Fr ⊂ F consists of the union of F(e), e red. Further
let F+r denote the subset of Fr consisting of the red edges which leave a vertex
with + sign, and we let f+r = |F+r |. Analogously we define F−r , . . . .

Definition 7.1 Fix a flow f on GK. A sorting C of f is a function

C : Vertices(GK)→ 2Fr

such that

• C1 is a collection of red edges that terminate in vertex 1, of cardinality f (eb
1).

• For each 2 ≤ i ≤ r, Ci ⊆ Ci−1 ∪ {e ∈ Fr; e terminates in vertex i} of f (eb
i )

elements.

Let C(f ) denote the set of all sortings of f .

Lemma 7.2 Every flow f has mult(f ) sortings.

Proof Use that mult(f , r) = 1, {e ∈ Fr; e terminates in vertex 1} = {e ∈ F; e
terminates in vertex 1} and for each 2 ≤ i < r,

∑
f (e) : e terminates at vertex i

equals |Ci−1 ∪ {e ∈ Fr; e terminates in vertex i}|. 
�
Definition 7.3 We define I(f , n) = {0, . . . , n− 1}Fr . If v ∈ I(f , n) then we define
f−r (v) =∑

e∈F−r ve and we define f+r (v) analogously.

Definition 7.4 (a) Fix a flow f on GK and a natural number n. An n-sorting of
f is a pair P = (C, v) where C ∈ C(f ) and v ∈ I(f , n).
(b) If P = (C, v) is an n-sorting of f then we define its weight b(P) to be

b(P) = tn(f−w −f+w )(1− t)f−r tf
−
r (v)(1− t−1)f+r t−(f+r )(n−1)+f+r (v).

(c) Let Cn(f ) denote the set of all n-sortings of f .

The following lemma states that the n-sortings of f categorify multiplicities
and weights of flows.

Lemma 7.5 For every flow f on GK and every n we have

β(f )|t→tnmult(f ) =
∑

P∈Cn(f )

b(P).

Proof It follows by Lemma 7.2 that

∑

P∈C(f ,n)

b(P) = mult(f )tn(f−b −f+b )(1− t)f−r (1− t−1)f+r

×
⎛

⎝
∑

v∈I(f ,n)

tf
−
r (v)t−(f+r )(n−1)+f+r (v)

⎞

⎠
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by a simple rearrangement

mult(f )tn(f−b −f+b )

⎛

⎝(1− t)f−r
∑

v∈I(f ,n)

tf
−
r (v)

⎞

⎠

⎛

⎝(1− t−1)f+r
∑

v∈I(f ,n)

t−(f+r )(n−1)+f+r (v)

⎞

⎠

by a geometric series summation

β(f )|t→tnmult(f ).


�

7.2 Sortings and the Jones polynomial

Here we define admissible sortings and give a formula for the colored Jones
function in terms of them.

Definition 7.6 Fix a flow f of GK and a natural number n. Let P = (C, v) be an
n-sorting of f . We say that P is admissible if

• For every two edges e, e′ ∈ Fr such that ve = ve′ and e ends in vertex i and e′
ends in vertex j and j ≥ i, there exists an l, i ≤ l < j such that e �∈ Cl.

We denote by ACn(f ) the set of all admissible n-sortings of f , and by Sn(GK, f )
the set of all lifts of f to admissible subgraphs of G(n)

K .

The next lemma explains the notion of admissible sortings.

Lemma 7.7 There is a bijection � from ACn(f ) to Sn(GK, f ) such that β(�(P)) =
b(P). Moreover, if P ∈ ACn(f ) and π is the projection to GK then for each e ∈ EK,
the fixed total order on F(e) agrees with the total order (π−1(e),≺) introduced in
Definition 6.5.

Proof Let P = (C, v), C = (C1, . . . , Cr), and P ∈ ACn(f ). In order to define
�(P) we will define the image �(P, e) for each e ∈ F.

First we determine the ends of the lifts of the red edges as follows: if e ∈ Fr

then we let t(�(P, e)) = at(e)
v(e)+1.

Next we determine the blue edges of �(P) as follows: if 1 ≤ i ≤ r then we let

{s(�(P, e)) | e ∈ F(eb
i )} = {ai

ve+1 | e ∈ Ci}.

This determines the beginnings of the blue edges, and hence also the ends of
the blue edges.

It remains to specify the beginnings of the lifts of the red edges. Since P is
admissible, observe that for each 1 ≤ i ≤ r, there are exactly f (er

i ) vertices ai
j

of indegree 1 in current �(P). Hence it remains to make each of them starting
vertex of exactly one edge �(P, e), e ∈ F(ei

r). This is uniquely determined by the



886 S. Garoufalidis, M. Loebl

‘moreover’ part of the Lemma. This finishes the definition of �. The equality
for the weights follows easily, and the moreover part of the Lemma directly
from the definition of �. To finish the proof we find the inverse to �.

Let c ∈ Sn(GK, f ). We construct �−1(c) = (C(c), v(c)) as follows: Let e be
an edge of GK. There is an order preserving bijection between the fixed total
ordering (F(e), <) and (π−1(e),≺). If e′ is an edge of c then we let e′F be the
corresponding edge of F.

First let e′ be a red edge of c. We let v(c)e′F = j where t(e′) = ai
j+1. Hence v(c)

encodes the ends of the red edges of c.
Next we define a predecessor p(e) for each edge e of c. If e red then p(e) = e.

If e blue then p(e) is the red edge of c which terminates in the starting vertex of
the longest blue path of c whose last edge is e. Note that p(e) always exists and
is unique since c is admissible.

Finally for 1 ≤ i ≤ r let Ci = {p(e)F ; e edge of c that terminates in some ai
j

that is a starting vertex of a blue edge of c}. This finishes the construction of
�−1. 
�
Theorem 8 We have:

Jn(K)(t) = tδ(K,n)
∑

f∈F(GK)

tδ(f )
∑

P∈ACn(f )

texc(P)b(P),

where exc(P) = exc(�(P))− exc(f ).

Proof We have:

Jn(K)(t) = tδ(K,n)
∑

c∈Sn(GK)

tδ(c)β(c)

= tδ(K,n)
∑

f∈F(GK)

tδ(f )
∑

c∈Sn(GK ,f )

texc(c)−exc(f )β(c)

= tδ(K,n)
∑

f∈F(GK)

tδ(f )
∑

P∈ACn(f )

texc(P)b(P)


�

7.3 Proof of Theorem 7

Definition 7.8 Let e ∈ Fr. We define set P(f , e) as follows: if e ∈ F(e′), e1 ∈ F(e′1)
then e1 ∈ P(f , e) if t(e′) = t(e′1) = v and e′1 <v e′, or e′ = e′1 and e1 < e in our
fixed total order of F(e).

Definition 7.9 Let e ∈ Fr. We define

• def1(C, v, e) = |{e′ ∈ P(f , e) : ve′ < ve}|,
• def2(C, v, e) = |{e′ ∈ Cd(e) : ve′ < ve}|, where d(e) is the biggest index such

that d(e) ≥ t(e) and e �∈ Cd(e).

Recall that t(e) denotes the terminal vertex of e.
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Proposition 7.10 Let P = (C, v) be an n-sorting of f . Then

exc(P) =
∑

e∈Fr

δ1(e)+ δ2(e),

where

δ1(e) =
{
|P(f , e)| − def1(C, v, e) if e starts in a + vertex
−def1(C, v, e) if e starts in a − vertex,

δ2(e) =
{
|Cd(e)| − def2(C, v, e) if sign(d(e)) = +
−def2(C, v, e) if sign(d(e)) = −.

Proof Let e ∈ Fr and first assume sign(s(e)) = +. Then

δ1(e) = |P(f , e)| − def1(C, v, e) = |{e′ : e′ ∈ P(f , e) ∩ Fr, ve < ve′ }|
+|{e′ ∈ Ct(e)−1 : ve < ve′ }|.

This equals, by definition 6.6 of function X and by definition of bijection � in
lemma 7.7,

sign(s(�(e)))
∑

e′∈F

X(�(e), �(e′)).

We proceed analogously if sign(s(e)) = −. Hence

∑

e∈Fr

δ1(e) =
∑

e∈Fr

sign(s(�(e)))
∑

e′∈F

X(�(e), �(e′)).

Next we denote, for e ∈ Fr, by D(e)) the red edge of �(P) that starts at vertex
ad(e)

v(e)+1. Note that D is a bijection between Fr and the set of the red edges of
�(P).

Now let sign(d(e)) = +. Then δ2(e) equals the number of e′ ∈ Cd(e) such that
ve < ve′ . This equals sign(d(e))

∑
e′∈F Y(D(e), �(e′)). Again the case sign(d(e)) =

− is analogous.
Hence we get

∑

e∈Fr

δ2(e) =
∑

e∈Fr

sign(d(e))
∑

e′∈F

Y(D(e), �(e′)).

This finishes the proof by lemma 6.7. 
�



888 S. Garoufalidis, M. Loebl

Proof (of Theorem 7)
We use Theorem 8, Lemma 7.7 and Proposition 7.10:

Jn(K)(t) = tδ(K,n)
∑

f∈F(GK)

tδ(f )
∑

P∈AC(f ,n)

texc(P)b(P)

= tδ(K,n)
∑

f∈F(GK)

tδ(f )tn(f−b −f+b )(1− t)f−r (1− t−1)f+r

×
∏

e∈F+r

t−(n−1−|P(f ,e)|) ∏

e∈Fr,sign(d(e))=+
t|Cd(e)|

×
∑

(C,v)∈AC(f ,n)

∏

e∈Fr

tve−def1(C,v,e)−def2(C,v,e).

Let us recall that

mult(f )q =
r−2∏

v=1

(
f (v)

f (eb
v)

)

qsign(v)

.

At this point, we will use Appendix B.1. By Theorem 9 and Theorem 10 we get

Jn(K)(t) = tδ(K,n)
∑

f∈F(GK)

tδ(f )tn(f−b −f+b )(1− t)f−r (1− t−1)f+r t−(n−1)f+r

×
∏

e∈F+r

t|P(f ,e)| ∏

e∈Fr,sign(d(e))=+
t|Cd(e)|

r∏

v=1

(
f (v)

f (eb
v)

)

t−1

∏

e∈Fr

(n− |P(f , e)|)t

= tδ(K,n)
∑

f∈F(GK)

tδ(f )
r∏

v=1

(
f (v)

f (eb
v)

)

t−1

∏

v:sign(v)=+
tf (e

r
v)f (e

b
v)

×tn(f−b −f+b )(1− t)f−r (1− t−1)f+r t−(n−1)f+r
∏

e∈F+r

t|P(f ,e)| ∏

e∈Fr

(n−|P(f , e)|)t

= tδ(K,n)
∑

f∈F(GK)

multt(f )tδ(f )tn(f−b −f+b )(1− t)f−r (1− t−1)f+r

×
∏

e∈Fr

(n− |P(f , e)|)t−sign(s(e))

= tδ(K,n)
∑

f∈F(GK)

multt(f )tδ(f )
∏

v∈VK

t−sign(v)nf (eb
v)

×
∏

ered;t(e)=v

f (e)−1∏

j=0

(1− t−sign(s(e))(n−j−∑
e′<ve f (e))).

This finishes the proof. 
�
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Appendix A. The zeta function of a graph and the Foata–Zeilberger formula

A.1 The Foata-Zeilberger formula

In this section we translate key combinatorial results of Foata and Zeilberger
[6, Theorem 1.1] in the language of our paper, resulting in Theorem 3.

Consider the complete graph Kr with r vertices equipped with a weight martix
B = (bij) of size r with independent commuting variables, and let R = Z[[bij]].
Let X = {x1, . . . , xr} denote an alphabet on r letters and X� denote the set of
words on X.

Recall the notion of a Lyndon word l ∈ X, that is a word which is not a
nontrivial power of another word, and is strictly smaller than any of its cyclic
rearrangements. It follows by definition that

Lemma A.1 There is a 1–1 correspondence between the set of nonperiodic cycles
in Kr and the set of Lyndon words in X.

Given a nonempty word w = x1x2 . . . xm ∈ X, Foata and Zeiberger define a
function βcirc by

βcirc(w) = bx1,x2 bx2,x3 . . . bxm−1,xm bxm,x1

and βcirc(w) = 1 if w is the empty word. Every word w ∈ X has a unique
factorization as

w = l1l2 . . . ln

where li are Lyndon words in nonincreasing order l1 ≥ l2 ≥ · · · ≥ ln. Using this,
Foata and Zeilberger define a map:

βdec : X� −→ R

by βdec(w) = βcirc(l1)βcirc(l2) . . . βcirc(ln) where (l1, . . . , ln) is the unique fac-
torization of w. For example, if X = {1, 2, 3, 4, 5} and w = 34512421231242,
then its factorization is given by (l1, l2, l3) = (345, 1242, 1231242) and βdec(w) =
b3

1,2b2
2,1b2,3b2

2,4b3,1b3,4b2
4,2b4,5b5,3.

Foata and Zeilberger define another map

βvert : X� −→ R

as follows: if w = x1x2 . . . xm is a word and w̃ = x̃1̃x2 . . . x̃m is the rearrangement
of the letters of w in nondecreasing order, then they define

βvert(w) = b̃x1,x1 b̃x2,x2 . . . b̃xm,xm .
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In [6, Theorem 1.1] they show that

1
det(I − B)

=
∑

w∈X�

βdec(w) (4)

=
∏

c∈P(Kr)

1
1− β(c)

(5)

=
∑

w∈X�

βvert(w) ∈ R (6)

Let us now translate (6). Write a word w and its rearrangement w̃ as an array

�(w) =
[

w̃
w

]

A rearrangement w̃ of a word w is always of the form w̃ = 1n1 2n2 . . . rnr , and
gives rise to a function fw : Edges(Kr) −→ N on the edges of Kr defined by

fw((i, j)) is the number that the column vector
[

i
j

]

appears in �(w). Since w̃ is

a rearrangement of w, it follows that fw is a flow. It follows from 4 that this
map X� −→ F(Kr) is onto, and it is easy to see that given an flow γ on Kr, the
preimage under this map consists of mult(γ ) words with the same βvert weight,
equal to the weight of γ . This together with Eq. (6) implies that

1
det(I − B)

=
∑

f∈F(Kr)

β(f ) mult(f ). (7)

This, together with a specialization of the variables imply Theorem 3.

Appendix B. A state sum for the Jones polynomial

In this section we review the proof of Theorem 5. The Jones polynomial V of a
link is determined by the skein theory:

together with the initial condition V(unknot)(q) = q + q−1. We will be using a
normalized version of the Jones polynomial defined by

J(K)(t) = V(K)(t1/2)/V(unknot)(t1/2).
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We review a state sum definition of the Jones polynomial V discussed by
Turaev [29] (see also [14]) and further studied by Lin and Wang [21]. We recall
the details of Turaev’s general state sum construction, adapted to our special
case.

Definition B.1 Fix a planar projection K of a knot.
(a) Let PK denote the planar digraph obtained from K by turning each crossing
into a vertex. We call the edges of PK partarcs of K.
(b) A state s of K is the assignment of 0 or 1 to each partarc of K, such that at
each crossing, the multiset of labels of the incoming edges equals to the multiset
of labels of outgoing edges. In other words, at each crossing (positive or negative)
a state looks like one of the following pictures,

where edges colored by 0 or 1 are depicted as dashed or solid respectively.
(c) The local weight 
v(s) of a vertex v of PK of a state s is given by

where R+ and R− = (R+)−1 is the R-matrix of the quantum group Uq(sl2) given
by:

(R+)
0,0
0,0 = (R+)

1,1
1,1 = −q (R+)

1,0
0,1 = (R+)

0,1
1,0 = 1 (R+)

0,1
0,1 = q̄− q

(R−)
0,0
0,0 = (R−)

1,1
1,1 = −q̄ (R−)

1,0
0,1 = (R−)

0,1
1,0 = 1 (R−)

1,0
1,0 = q− q̄

where q̄ = q−1 and all other entries of the R matrix are zero.
(d) The weight 
(s) of a state s is defined by


(s) =
∏

v


v(s).

Note that (R−)
0,1
0,1 = (R+)

1,0
1,0 = 0.

(e) A state s is admissible iff 
(s) �= 0.

There is an involution s → sc of states of K, obtained by interchanging
0 by 1’s.
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Lemma B.2 (a) There is a 1–1 correspondence

{ states of K} ←→ { even subgraphs of PK}.

(b) There is a 1–1 correspondence

{ admissible states of K} ←→ { collections of vertex-disjoint cycles of GK}.

Proof A state s gives rise to an even subgraph of the PK (whose edges are the
ones colored by 1 in s), also denoted by s. Part (a) follows.

Since every vertex of PK has outdegree 2, it follows that the involution
of states corresponds to the operation of taking the complement of an even
subgraph in PK.

For part (b), observe that an admissible even subgraph s of PK gives rise
to an even subgraph of the arc-graph GK with each indegree at most one: this
follows since as mentioned above, (R+)

0,1
0,1 = (R−)

1,0
1,0 = 0, and so if we walk on

s along the orientation of K, we never ‘jump down’; hence whenever we get to
an arc of K, we traverse it (along its orientation) until its end. Hence we can get
to each arc at most once and s corresponds to an even subgraph of GK where
each indegree is at most one.

Conversely, an even subgraph of GK gives rise to a flow on PK. This flow
will be an admissible even subgraph of PK if each indegree is at most one. The
following figure illustrates the excluded possibilities, where the value of the flow
is shown on the partarcs:


�
Definition B.3 An even subgraph G of GK is admissible if each indegree is at
most one. In other words, G is a vertex-disjoint collection of directed cycles. Let
S(GK) denote the collection of admissible subgraphs of the arc-graph GK.

Next we define rotation and excess numbers of states.
Definition B.4 (a) The rotation number rot(s) of a state s is the number of coun-
terclockwise circles colored by 1 minus the number of clockwise circles colored
by 1, obtained from smoothening of s, i.e., by the replacement:

at all crossings of s.
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(b) The excess number exc(s) of a state s is the sum of the signs of the crossings
where all four edges are colored by 1 in s.

With these preliminaries, the Jones polynomial is given by the state sum

V(K)(q) = (−q2)−ω(K)
∑

s admissible

qrot(sc)−rot(s)
(s).

It was observed by Lin and Wang that the local weights of the R-matrix are
proportional, up to a power of q to the weights of a random walk on K. This is
formalized in the following Lemma:

Lemma B.5 [21, Lemma 2.3] For an admissible state s of K, we have:


(s) = (−q)ω(K)q2exc(s)β(s)|t→q2 .

Proof First note that β(s) is well defined since by Lemma B.2 there is a 1–1
correspondence between admissible states of K and even admissible subgraphs
of GK, and each even subgraph is naturally a flow on GK.

Consider the following table of a state around a positive crossing:

and around a negative crossing:

Here, β(s) of a state s equals to the weight of the 1-part of s.
Inspection of these tables reveals that given a state s and a crossing of sign

ε = ±1, we have R = (−q)εq2exc+errβ. Taking a product over all vertices, we
obtain that


(s) = (−q)ω(K)q2exc(s)+err(s)β(s)|t→q2 .

It remains to show that qerr(s) = 1. err(s) is computed from a smoothening
smooth(s) of s, which consists of a number of transversely intersecting circles
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colored by 0 or 1. Any two transverse planar circles intersect on an even num-
ber of points, which can be paired up by paths on each circle. A case by case
argument shows that err(s) = 1. Some cases of the local contributions to ‘err’
and their pairwise canceling is shown by:

This concludes the proof of the lemma. 
�
The involution on the set of states of K has further consequences discovered

by Lin and Wang. Fix a partarc of K that borders the unbounded region of the
planar projection and mark it by �. Let F ′(K−�) denote the set of all admissible
states of K where � is colored by 0.

We will show first that

J(K)(t) = tδ(K)
∑

s∈F ′(K−�)

tδ(s)β(s). (8)

We recall that δ(K) = 1/2(−ω(K)+ rot(K)) and δ(s) = exc(s)− rot(s).
Consider a long knot Klong depicted as a box and the two ways of closing it

to obtain a knot K as follows:

Let ai denote V(Klong) with boundary conditions i, for i = 0, 1. Then, the two
ways of closing Klong give:

V(K)(q) = qa0 + q−1a1 = q−1a0 + qa1

from which follows that a0 = a1 and thus V(K)(q) = (q+q−1)a0 = V(unknot)a0.
Thus, (8) follows.

Next we introduce the rotation and excess numbers of a collection of vertex
disjoint cycles of GK, using Lemma B.2.
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B.1 Rotation and excess numbers

We observe that there is an integer function rot on the set of the edges of
GK so that for each admissible state s and its corresponding (see Lemma B.2)
admissible subgraph c of GK, rot(s) =∑

e∈c rot(e).

Definition B.6 There is a Gauss map d : K→ S1 which together with the orien-
tation of K and the counterclockwise orientation of S1 induces a map

H1(PK, Z) −→ H1(S
1, Z) ∼= Z.

The above composition is defined to be the rotation number rot. We can think of
the rotation number as an element of H1(PK, Z) represented by a 1-cocyle, that
is a map

rot : Edges(PK) −→ Z.

Consider now the arc-graph GK of K. There is a canonical map

Edges(GK) −→ 2Edges(PK)

defined as follows: if (i, j) is an edge of GK, consider the ith crossing of PK, and
start walking on the part of the arc aj in a direction of the orientation of K, until
the end of the arc aj. This defines a collection of part-arcs that we associate to
the edge (i, j) of GK. Taking the sum of the rotation numbers of these part-arcs,
defines a map

rot : Edges(GK) −→ Z.

Next we show that exc′ of next definition agrees with exc of Definition 4.1.

Definition B.7 Let c be an admissible subgraph of GK. We let exc′(c) equal to
exc(s), where s is the corresponding admissible state (see Definition B.4 and
Lemma B.2 for the correspondence).

Lemma B.8 For every admissible subgraph c of GK, we have:

exc′(c) = exc(c).

Proof exc′(c) is the sum of sign(v) where all 4 edges incident to a crossing v of
K belong to c:
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We will translate this in the language of the arc-graph GK, using Figure 1. A
crossing v as above determines a unique vertex of GK (corresponding to the
arc av ending at v) and a unique pair of edges (e, e′) of GK: e is the blue edge
that starts at v, and e′ is the unique edge of c that ends in w and signifies the
transition on the arc aw. The result follows. 
�
Proof (of Theorem 5)

Assume (after possibly changing the orientation of the knot, which does not
change the Jones polynomial) that we mark by � the last partarc of an arc of K.
Lemma B.2, (8), and subsection B.1 conclude the proof of Theorem 5. 
�

Appendix C. A combinatorial counting of structures

In this section we consider structures on a set [k] = {1, . . . , k}, and their combi-
natorial countings.

Definition C.1 Let k be a positive integer. A k-structure is a pair S = (A, B) such
that

• A = (A1, . . . , Al), B = (B1, . . . , Bl) for some l, Ai, Bi ⊂ [k], Ai �= ∅ for all i,
• A is a partition of {1, . . . , k} such that for every i < j, x ∈ Ai, y ∈ Aj we have

x < y.
• Bi ⊂ ∪j<iAj. In particular B1 = ∅.
• B is monotonic. That is, if x ∈ Bj ∩Ai then for each j ≥ j′ > i, x ∈ Bj′ ,

Lemma C.2 The number of k-structures S such that |Ai| = ai and |Bi| = bi for
i = 1, . . . , l is

l∏

i=2

(
ai−1 + bi−1

bi

)

.

Proof Bi is an arbitrary subset of Ai−1 ∪ Bi−1 of bi elements. 
�
Definition C.3 Let S be a k-structure, v ∈ {0, . . . , n − 1}{1,...,k} and i ∈ Ax for
some x ≤ l.

• We let |S| = (a, b), where a = (|A1|, . . . , |Al|) and b = (|B1|, . . . , |Bl|).
• We let m(|S|, i) be the number of j ∈ Ax∪Bx such that j < i. Note that m(|S|, i)

equals bi plus the number of elements of Ax that are smaller than i and hence
it depends only on |S|.

• We denote by def1(S, v, i) the number of j ∈ Ax ∪ Bx such that j < i and
vj < vi,

• we denote by def2(S, v, i) the number of j ∈ Bd(i)+1 such that vj < vi; d(i) is
the minimum index so that d(i) ≥ i and i /∈ Bd(i)+1.

Definition C.4 Let S be a k-structure. We let V(S, n) = {v ∈ {0, . . . , n− 1}{1,...,k};
if {i, j} ⊂ Am ∪ Bm for some m then vi �= vj}.
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The following Theorem follows by comparing the definitions.

Theorem 9 Let f be a flow on arc-graph GK. Recall that fr(v) =∑
f (e) over all

red edges of GK terminating in vertex v of GK, and fb(v) is defined analogously
for the blue edges. We consider set Fr linearly ordered, first by the terminal ver-
tices, and then by ordering ≺ which induces a linear ordering on the set ∪F(e),
over red edges e entering the same vertex (see Definition 6.5).

There is a natural bijection between ACn(f ) and the set of all pairs (S, v) where
S is an |Fr|-structure, |S| = ((fr(1), . . . , fr(r))(fb(1), . . . , fb(r))) and v ∈ V(S, n).

Theorem 10

∑

S:|S|=(a,b)

∑

v∈V(S,n)

k∏

i=1

tvi−def1(S,v,i)−def2(S,v,i) =
k∏

i=1

(n−m(i))t

l−1∏

i=1

(
ai + bi

bi+1

)

t−1
.

In the proof we will use the following proposition.

Proposition C.5 Let S be a k-structure. Then

∑

v∈V(S,n)

k∏

i=1

tvi−def1(S,v,i) =
k∏

i=1

(n−m(|S|, i))t.

Proof Use induction on k. The inductive step follows from the following claim:
Claim Let m(k) < n and fix different numbers v1, . . . , vm(k) between 0 and n−1.
Then

•
∑

vk:vk �=vi,i≤m(k)

tvk−def1(v,k) = A− B+ C,

where A =∑
vk:vk �=vi,i≤m(k) tvk , B =∑m(k)

i=1 tn−i, and C =∑m(k)

i=1 tvi .

• A+ C =∑
0≤z≤n−1 tz and A− B+ C = 1−tn−m(k)

1−t .

Note that the second part is simply true.
Let v′1 < · · · < v′m(k)

be a reordering of v1, . . . , vm(k). We may write v′1 =
n− i1, . . . , v′m(k)

= n− im(k), 1 ≤ im(k) < · · · < i1. The LHS becomes

A− tn−i1+1 − · · · − tn−i2−1 − tn−i2+1 − · · · − tn−im(k)−1 − tn−im(k)+1 − · · · − tn−1

+tn−i1 + · · · + tn−i2−2 + tn−i2−1 + · · · + tn−m(k)−1.

This equals to the RHS of the equality we wanted to show. The Proposition
simply follows from the Claim. 
�
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Proof (of Theorem 10)
We let a′i =

∑
j≤i ai.

∑

S:|S|=(a,b)

∑

v∈V(S,n)

k∏

i=1

tvi−def1(S,v,i)−def2(S,v,i)=
∑

B2⊂A1

∑

v1,...,va1

a1∏

i=1

tvi−def1(v,i)−def2(B2,v,i)

×
∑

B3,...,Bl

∑

va1+1,...,vk

k∏

i=a1+1

tvi−def1(v,i)−def2(B3,...,Bl ,v,i)

=
∑

v1,...,va1

a1∏

i=1

tvi−def1(v,i)
∑

B2⊂A1

a1∏

i=1

t−def2(B2,v,i)

×
∑

B3,...,Bl

∑

va1+1,...,vk

k∏

i=a1+1

tvi−def1(v,i)−def2(B3,...,Bl ,v,i)

=
∑

v1,...,va1

a1∏

i=1

tvi−def1(v,i)
∑

B2⊂A1

a1∏

i=1

t−def2(B2,v,i)

× · · · ×
∑

va′l−2+1,...,va′l−1

a′l−1∏

i=a′l−2+1

tvi−def1(v,i)
∑

Bl

a′l−1∏

i=a′l−2+1

t−def2(Bl ,v,i)

×
∑

va′l−1+1,...,vk

k∏

i=a′l−1+1

tvi−def1(v,i).

The last sum may be expressed using Proposition C.5, and we get

∑

v1,...,va1

a1∏

i=1

tvi−def1(v,i)
∑

B2⊂A1

a1∏

i=1

t−def2(B2,v,i)

× · · · ×
∑

va′l−2+1,...,va′l−1

a′l−1∏

i=a′l−2+1

tvi−def1(v,i)
∑

Bl

a′l−1∏

i=a′l−2+1

t−def2(Bl ,v,i) ×
k∏

i=a′l−1+1

(n−m(i))t

=
k∏

i=a′l−1+1

(n−m(i))t
∑

v1,...,va1

a1∏

i=1

tvi−def1(v,i)
∑

B2⊂A1

a1∏

i=1

t−def2(B2,v,i)

× · · · ×
a′l−1∏

i=a′l−2+1

(n−m(i))t

(
al−1 + bl−1

bl

)

t−1

=
k∏

i=1

(n−m(i))t

l−1∏

i=1

(
ai + bi

bi+1

)

t−1
.


�
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