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ABSTRACT
We call a cusped hyperbolic 3-manifold tetrahedral if it can be decomposed into regular ideal tetrahe-
dra. Following an earlier publication by three of the authors, we give a census of all tetrahedral man-
ifolds and all of their combinatorial tetrahedral tessellations with at most 25 (orientable case) and 21
(non-orientable case) tetrahedra. Our isometry classification uses certified canonical cell decomposi-
tions (based onwork byDunfield, Hoffman, and Licata) and isomorphism signatures (an improvement
of dehydration sequences by Burton). The tetrahedral census comes in Regina as well as SnapPy
format, and we illustrate its features.

1. Introduction

1.1. Tetrahedral manifolds

We call a cusped hyperbolic 3-manifold tetrahedral if it
can be decomposed into regular ideal tetrahedra. The
combinatorial data of this decomposition is captured in
the combinatorial tetrahedral tessellation which can be
defined simply as an ideal triangulation where all edges
have order 6. ByMostow rigidity, a combinatorial tetrahe-
dral tessellation determines a tetrahedral manifold. How-
ever, there might be several non-isomorphic (i.e., not
related by just relabeling tetrahedra and vertices) combi-
natorial tetrahedral tessellations yielding the same tetra-
hedral manifold. That is why we introduce the two terms
tetrahedral manifold and combinatorial tetrahedral tes-
sellation to distinguish whether we regard isometric or
combinatorially isomorphic objects as equivalent.

The tetrahedral manifold were also called maximum
volume in [Anisov 05, Vesnin et al. 11, Vesnin et al. 14,
Vesnin et al. 15] because they are precisely the ones with
maximal volume among all hyperbolic manifolds with
a fixed number of tetrahedra. Thus, they also appear at
the trailing ends of the SnapPy [Culler et al. 14] cen-
sus manifolds sharing the same letter1 (e.g., m405 to
m412, s955 to s961, v3551, t12833 to t12845,
o9_44249).Moreover, the number of tetrahedra and the
Matveev complexity [Matveev 03] also coincides for these
manifolds.

CONTACT Stavros Garoufalidis stavros@math.gatech.edu School of Mathematics, Georgia Institute of Technology, Atlanta, GA -, USA.
Color versions of one or more of the figures in the article can be found online at www.tandfonline.com/uexm
The case of the letter m is exceptional because it spans several number of tetrahedra for purely historic reasons.

The census of tetrahedral manifolds illustrates a num-
ber of phenomena of arithmetic hyperbolic manifolds
including symmetries visible in the canonical cell decom-
position but hidden by the combinatorial tetrahedral tes-
sellation. In particular, the canonical cell decomposition
might have non-tetrahedral cells.

Several manifolds that have played a key role in the
development of hyperbolic geometry are tetrahedral, e.g.,
the complements of the figure-eight knot, the minimally
twisted 5-chain link (which conjecturally is also the min-
imum volume orientable hyperbolic manifold with 5
cusps), and the Thurston congruence link. The last two
have the special property that their combinatorial tetra-
hedral tessellation is maximally symmetric, i.e., any tetra-
hedron can be taken to any other tetrahedron in every
orientation-preserving configuration via a combinatorial
isomorphism. One of the authors has classified link com-
plements with this special property in previous work
[Goerner 15a].

We also construct several new links with tetrahedral
complement.

1.2. Our results andmethods

Our main goals (see [Goerner 15b] for the data) are the
creation of

(a) The census of combinatorial tetrahedral tessella-
tions up to 25 (orientable case), respectively, 21
(non-orientable case) tetrahedra.

©  Taylor & Francis
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Table . Number of triangulations in the census.

Combinatorial tet.
tessellations Tetrahedral manifolds

Homology
Tetrahedra Orientable Non-or. Orientable Non-or. links

     
     
     
     
     
     
     
     
     
     
     
     
     
     
     
     
     
     
     
  ,  , 
     
  –  – 
  –  – 
  –  – 
  –  – 

(b) The grouping by isometry type and the corre-
sponding canonical cell decompositions.
We ship this as a Regina [Burton 14] file con-
taining triangulations in a hierarchy reflecting the
grouping.

(c) The corresponding census of tetrahedral mani-
folds.
We ship this as a SnapPy census containing
a representative triangulation for each isometry
type. This census can be used just like any other
SnapPy census.

(d) The list of covering maps between the combinato-
rial tetrahedral tessellations.

For (a), we use a new approach differing from the tra-
ditional one that starts by enumerating 4-valent graphs
used first by Callahan–Hildebrand–Weeks [Callahan
et al. 99] or variations of the traditional approach
such as by Burton and Pettersson [Burton and Pet-
tersson 14]. The advantage of our new approach is

that it scales to a substantially higher number of tetra-
hedra because it allows for early pruning of trian-
gulations with edges of wrong order. We also deploy
isomorphism signatures to avoid recounting combinato-
rially isomorphic triangulations. Recall that the isomor-
phism signature is an improvement by Burton [Burton
11] of the (non-canonical) dehydration sequences. It is
a complete invariant of the combinatorial isomorphism
type of a triangulation. Algorithms 1 and 2 used for
the enumeration of combinatorial tetrahedral tessella-
tions are described in Section 2. Isomorphism signatures
of orientable combinatorial tetrahedral tessellations with
at most seven tetrahedra are presented in Table 2.

For (b), we use a new invariant we call the isometry sig-
nature (see Section 3). It is a complete invariant of the
isometry type of a cusped hyperbolic 3-manifold. It is
defined as the isomorphism signature of the canonical
retriangulation of the canonical cell decomposition
[Epstein and Penner 88]. To compute it, we use exact
arithmetic to certify the canonical cell decomposition
even when the cells are not tetrahedral, expanding on
work by Dunfield, Hoffman, and Licata [Dunfield et al.
14].

For (d), we wrote a script that finds combinatorial
homomorphisms from a triangulation to another trian-
gulation.

Several of the techniques here are new and can
be generalized: the isometry signature is an invariant
that is defined for any finite-volume cusped hyperbolic
3-manifolds. It is a complete isometry invariant (and thus
by Mostow rigidity a complete homotopy invariant) that
can be effectively computed and, in general, be certified
whenever the manifold is orientable and the canonical
cell decomposition contains only tetrahedral cells using
hikmot [Hoffman et al. 13].We also provide an improve-
ment of the code provided in [Dunfield et al. 14] to certify
canonical triangulations that is simpler and generalizes to
any number of cusps.

Applying the above discussed methods we obtain the
following result.
Theorem 1.1. The number of combinatorial tetrahedral
tessellations and tetrahedral manifolds up to 25 tetrahedra
for orientable manifolds and up to 21 tetrahedra for non-
orientable manifolds are listed in Table 1 .

Table . Isomorphism signatures for all orientable combinatorial tetrahedral tessellations with n�  tetrahedra.

n Signature Name n Signature Name

 cPcbbbdxm otet  gLLPQccdfeefqjsqqjj otet
 cPcbbbiht otet  gLLPQccdfeffqjsqqsj otet
 eLMkbbdddemdxi otet  gLLPQceefeffpupuupa otet
 eLMkbcddddedde otet  gLMzQbcdefffhxqqxha otet
 eLMkbcdddhxqdu otet  gLMzQbcdefffhxqqxxq otet
 eLMkbcdddhxqlm otet  gLvQQadfedefjqqasjj otet
 fLLQcbcedeeloxset otet  gLvQQbefeeffedimipt otet
 fLLQcbdeedemnamjp otet  hLvAQkadfdgggfjxqnjnbw otet
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Function FindAllTetrahedralTessellations(integer max, bool orientable)
Result: Returns all (non-)orientable tetrahedral tessellations up to combinatorial isomorphism with at mostmax tetrahedra.
result← {} ; /* resulting triangulations */
already_seen← {} ; /* isomorphism signatures encounteredearlier */

Procedure RecursiveFind(Triangulation t)
Result: Searches all triangulations obtained from t by gluing faces or adding tetrahedra.
/* Close order 6 edges and reject unsuitable triangulations */
if FixEdges(t) = “valid” then

/* Skip triangulations already seen earlier */
if isomorphismSignature(t) �∈ already_seen then

already_seen← already_seen ∪ {isomorphismSignature(t)};
if t has no open faces then

/* t orientable by construction if orientable = true */
if t is non-orientable or orientable = true then

result← result ∪ {t};
end

else
/* This choice results in faster enumeration */
choose an open face F1=(tetrahedron, f1) of t adjacent to an open edge of highest order;
if t has less than max tetrahedra then

ResursiveFind(t with a new tetrahedron glued to F1 via an odd permutation)
end
for each open face F2 �= F1 of t do

for each p ∈ S4 do
if p( f1) = f2 then

if p is odd or orientable = false then
RecursiveFind(t with F1 glued to F2 via p);

end
end

end
end

end
end

end
end
RecursiveFind(triangulation with one unglued tetrahedron);
return result

end
Algorithm 1: The main function to enumerate all tetrahedral tessellations.

All combinatorial tetrahedral tessellations and tetrahe-
dralmanifolds indicated inTable 1 are enumerated in sup-
plement files available in [Goerner 15b].

Knots and links with tetrahedral complement are
shown in Figures 3–5.

1.3. Features of the tetrahedral census

Properties of tetrahedral manifolds that make them inter-
esting to study include:

� The tetrahedral manifolds are arithmetic as they are
a proper subset of the commensurability class of
figure-eight knot complement, closed under finite
coverings, see Section 5.2.

� The tetrahedral manifolds are exactly those with
maximal volume among all cusped hyperbolic man-
ifolds with a fixed number of tetrahedra.

� TheirMatveev complexity equals the number of reg-
ular ideal tetrahedra.

� Many combinatorial tetrahedral tessellations hide
symmetries, i.e., there are isometries of the corre-
sponding tetrahedral manifold that are not induced
from a combinatorial isomorphism of the combina-
torial tetrahedral tessellation.

� A substantial fraction of tetrahedral manifolds are
link complements.

2. The enumeration of combinatorial
tetrahedral tessellations

WeuseAlgorithm1 to enumerate the combinatorial tetra-
hedral tessellations. The input is the maximal number of
tetrahedra to be considered and a flag indicating whether
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wewish to enumerate the orientable or the non-orientable
tessellations. The result is a set of ideal triangulations
where each edge has order 6 resulting in manifolds of the
desired orientability.

As pointed out in Section 1 our algorithm differs from
the traditional approach: we recursively try all possible
ways open faces can be face-paired without enumerating
4-valent graphs first. This will, of course, result in many
duplicates, so we keep a set of isomorphism signatures
(see [Burton 11]) of previously encountered triangula-
tions around to prevent recounting. Recall that an isomor-
phism signature is, unlike a dehydration sequence, a com-
plete invariant of the combinatorial isomorphism type of
a triangulation.

The advantage of this approach is that we can insert a
procedure that can prune the search space early on. In our
case, this procedure is given in Algorithm 2 and rejects
ideal triangulations where edges have the wrong order. It
also rejects ideal triangulations with non-manifold topol-
ogy. These can occur when the tetrahedra around an edge
cannot be oriented consistently and the vertex link of the
center of the edge becomes a projective plane RP2.

Function FixEdges(Triangulation t)
Result: t is modified in place. Returns“valid” or “invalid”.
While t has open edge e of order 6

close edge e;
return “valid” if every edge e

• has order < 6(if open) or= 6 (if closed) and
• has no projective plane as vertex link.

end
Algorithm 2: A helper function closing order 6
edges and rejecting triangulations which cannot
result in tetrahedral tessellations.

The algorithm has been implemented using Regina
and we briefly recall how a triangulation is presented. The
vertices of each tetrahedron are indexed 0, 1, 2, 3 and
the faces are indexed by the number of the vertex oppo-
site to it. Triangulations in intermediate stages will have
unpaired faces. We call a face open if it is unpaired, other-
wise closed. A triangulation consists of a number of tetra-
hedra and for each tetrahedron T1 and each face index f1
= 0, ..., 3, we store two pieces of data to encode whether
and how the face F1 = (T1, f1) is glued to another face F2
= (T2, f2) with face index f2 of another (not necessarily
distinct) tetrahedron T2:

(1) A pointer to T2. If F1 is an open face, this pointer
is null.

(2) An element p� S4 such that p(f1)= f2 and the ver-
tex i �= f1 of T1 is glued to p(i) of T2.

The face pairings implicitly determine edge classes.We
call such an edge open if it is adjacent to an open face
(necessarily so exactly two) and otherwise closed. Closing
an open edgemeans gluing the two open adjacent faces by
the suitable permutation.

The source for the implementation is in src/gen
IsomoSigsOfTetrahedralTessellations.cpp.
Table 2 lists a small selection of the resulting combina-
torial tetrahedral tessellations as isomorphism signatures.
The complete list corresponding to Table 1 is available at
[Goerner, data/], also see Section 4.

3. The isometry signature

In the previous section, we enumerated all combinatorial
tetrahedral tessellations with a given maximal number of
tetrahedra up to combinatorial isomorphism. In the next
step, we want to find the equivalence classes of those com-
binatorial tetrahedral tessellations yielding the same tetra-
hedral manifold up to isometry.

We do this by grouping combinatorial tetrahedral tes-
sellations by their isometry signature which we define,
compute, and certify in this section. To summarize, the
isometry signature is the isomorphism signature of the
canonical retriangulation of the canonical cell decompo-
sition. If, however, the canonical cell decomposition has
simplices as cells, we short-circuit and just use the isomor-
phism signature of the canonical cell decomposition itself.
We can certify the isometry signature by using exact com-
putations to determinewhich faces in the proto-canonical
triangulation are transparent.

The code implementing the certified canonical retri-
angulation can be found in src/canonical_o3.py.
The code to group (and name) the combinatorial tetra-
hedral tessellations by isometry signature is in src/
identifyAndNameIsometricIsomoSigsOf
TetrahedralTessellations.py.

3.1. Definition

Recall that the hyperboloid model of 3-dimensional
hyperbolic space H3 in (3 + 1)-Minkowski space (with
inner product defined by 〈x, y〉 = x0y0 + x1y1 + x2y2 −
x3y3) is given by

S+ = {x = (x0, ..., x3) | x3 > 0, 〈x, x〉 = −1} .

For a cusped hyperbolic manifold M, choose a horo-
torus cusp neighborhood of the same volume for each
cusp. Lift M and the cusp neighborhoods to H3 ∼= S+.
The cusp neighborhoods lift to a π1(M)-invariant set of
horoballs. For each horoball B�S+, there is a dual vector
vB that is light-like (i.e., 〈vB, vB〉 = 0) and such that w �
B⇔〈vB, w〉 > −1. The boundary of the convex hull of all
vB has polygonal faces.

Definition 3.1. The canonical cell decomposition of M is
given by the radial projection of the polygonal faces of the
boundary of the convex hull of all vB onto S+.
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The canonical cell decomposition was introduced by
Epstein and Penner [Epstein and Penner 88]. It does not
depend on a particular choice of cusp neighborhoods as
long as they all have the same volume, or equivalently,
same area.

Definition 3.2. A triangulation which is obtained by sub-
dividing the cells of the canonical cell decomposition and
inserting (if necessary) flat tetrahedra is called a proto-
canonical triangulation. If it contains no flat tetrahedra,
i.e., all tetrahedra are positively oriented, it is called a geo-
metric proto-canonical triangulation.

The result of calling canonize on a SnapPy man-
ifold is a proto-canonical triangulation. If the canonical
cell decomposition has cells which are not ideal tetrahe-
dra (non-regular or regular), there might be more than
one proto-canonical triangulation of the same manifold.
A face of a proto-canonical triangulationwhich is part of a
2-cell of the canonical cell decomposition is called opaque.
Otherwise, a face is called transparent.

Definition 3.3. Consider a 2-cell in the canonical cell
decomposition which is an n-gon. Pick the suspension
of such an n-gon by the centers of the two neighboring
3-cells. These suspensions over all 2-cells form a decom-
position of M into topological diamonds. Each diamond
can be split into n tetrahedra along its central axis. The
result is called the canonical retriangulation.

The canonical retriangulation carries exactly the same
information as the canonical cell decomposition (just
packaged as a triangulation) and thus only depends
on (and uniquely determines) the isometry type of the
manifold. SnapPy uses it internally to compute, for
example, the symmetry group of a hyperbolic manifold
M by enumerating the combinatorial isomorphisms of the
canonical retriangulation ofM. Similarly, SnapPy uses it
to check whether two manifolds are isometric.
Definition 3.4. The isometry signature of M is the iso-
morphism signature of the canonical retriangulation if
the canonical cell decomposition has non-simplicial cells.
Otherwise, it is the isomorphism signature of the canon-
ical cell decomposition itself.

Example 3.5. The triangulation of m004 given in the
SnapPy census already is the canonical cell decomposi-
tion. Thus, the isometry signature of the manifold m004
is the isomorphism signature of the census triangula-
tion, namely cPcbbbiht presented in Table 2. In the
census of tetrahedral hyperbolic manifolds m004 named
otet020001. Recall that this manifold is the figure-eight
knot complement.

The cell decomposition form202 given in theSnapPy
census is not canonical. The isomorphism signature of its

SnapPy triangulation is eLMkbbdddemdxi presented
in Table 2. In the census of tetrahedral hyperbolic man-
ifolds m202 named otet040000. Observe, that otet040000
is the complement of a 2-component link presented in
Figure 3. The isometry signature ofm202 isjLLzzQQc-
cdffihhiiqffofafoaa that is realized by a triangula-
tion with 10 tetrahedra.

3.2. Computation of the tilt

Consider an ideal triangulation T = ∪iTi of a cusped
manifoldMwith a shape assignment for each tetrahedron,
i.e., a zi ∈ C \ {0, 1} determining an embedding of the
tetrahedron Ti as ideal tetrahedron in H3 up to isometry.
If the shapes fulfill the consistency equations (also known
as gluing equations) in logarithmic form and have pos-
itive imaginary parts, we call the triangulation together
with the shape assignment a geometric ideal triangula-
tion. Thurston shows that a geometric ideal triangulation
glues up to a complete hyperbolic structure on M. Given
a geometric ideal triangulation and a face F of it, the tilt
Tilt(F) is a real number defined by Weeks [Weeks 93]
which determines whether a given triangulation is proto-
canonical and which faces are transparent.

We now describe how to compute Tilt(F) following the
notation in [Dunfield et al. 14] and use it to determine the
canonical retriangulation.

... Computation of a cusp cross section
The ideal tetrahedra intersect the boundary of a neigh-
borhood of a cusp in Euclidean triangles and we call the
resulting assignment of lengths to edges a cusp cross sec-
tion. We first compute a cusp cross section Cc for some
neighborhood of each cusp c by picking an edge ej for
each cusp and assigning length ej = 1 to it. We recursively
assign lengths to the other edges by using that the ratio of
two edge lengths is given by the respective |z∗i |where z∗i is
one of the edge parameters zi, z′i = 1

1−zi , z
′′
i = 1− 1

zi
:

el = ek · |z∗i |.

... Computation of the cusp area
We can compute the area of each Euclidean triangle t as

A(t ) = 1
2
e2k · Im(z∗i ),

where ek and z∗i are as above. The cusp area A(Cc) of the
cusp cross section Cc is simply the sum of the areas A(t)
over all its Euclidean triangles t.

... Normalization of the cusp area
We need to scale each cusp cross section to have the same
target area A. The new edge lengths and areas are given
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by

e′l = el ·
√

A
A(Cc)

and A′(t ) = A(t )
A

A(Cc)
.

... Computation of the circumradius for each
Euclidean triangle

Let Ri
v denote the circumradius of the Euclidean triangle

t that is the cross section of the tetrahedron i near vertex
v � {0, 1, 2, 3}. If e′j, e′k, and e′l are the edge lengths of t,
elementary trigonometry implies

Ri
v =

e′je′ke
′
l

4A′(t )
.

... Computation of the tilt of a vertex
Compute

Tilt(i, v ) = Ri
v −

∑
u �=v

Ri
u
Re(z∗i )
|z∗i |

, (3–1)

where z∗i is the edge parameter for the edge from u to v.

... Computation of the tilt of a face
If the face F opposite to vertex v of tetrahedron i is glued
to that opposite of v′ of tetrahedron i′, the tilt of the face
is defined as

Tilt(F ) = Tilt(i, v )+ Tilt(i′, v ′).

... Determination of transparent faces and
canonical retriangulation

Weeks proves that [Weeks 93] a geometric ideal triangu-
lation is a geometric proto-canonical triangulation if all
Tilt(F)� 0. In that case, a face F is transparent if and only
if Tilt(F)= 0.
SnapPy implements an algorithm to compute the

canonical retriangulation. It can be refactored so that it
takes as input the opacities of the faces and is purely com-
binatorial. In case of a geometric (!) proto-canonical tri-
angulation,Weeks’ arguments in the SnapPy code prove
that this algorithm works correctly.

For all manifolds we encountered, several random-
ization trials were always sufficient to ensure that the
ideal triangulation returned by SnapPy’s canonize is
always geometric proto-canonical. Thus, the result of the
purely combinatorial canonical retriangulation algorithm
is known to be correct as long as we certify the input to be
a geometric proto-canonical triangulation with certified
opacities of its faces.

Remark 3.6. Even though we can certify the results for all
listed manifolds in the tetrahedral census, it is not known
if

Figure . Subdivision of a cube into  tetrahedra. For a regular ideal
hyperbolic cube, all tetrahedra are again regular ideal. The subdi-
vision introduced additional diagonals on the faces.

� every cusped hyperbolic manifold has a geometric
proto-canonical triangulation,

� every cusped hyperbolic manifold has a geometric
ideal triangulation.

Moreover, it is known that SnapPy’s implementation
can give the wrong canonical retriangulation if we use as
input a non-geometric (!) proto-canonical triangulation.
As pointed out by Burton, the triangulation x101 in the
non-orientable cusped SnapPy census is such an exam-
ple where flat tetrahedra cause SnapPy to give an incor-
rect canonical retriangulation.

It is unclear to the authors which of the following fac-
tors contribute to the incorrect result:

� Numerical precision issues.
� SnapPy’s extension of the above definition of
Tilt(F) to flat tetrahedra (where some A(t) = 0 and
thus Ri

v = ∞) using CIRCUMRADIUS_EPSILON.
� Week’s arguments for the purely combinatorial part
of the canonical retriangulation algorithm seem to
implicitly assume that there are no flat-tetrahedra.

The existence of geometric triangulations of a hyper-
bolic manifold can be proven when some tetrahedra are
allowed to be flat [Petronio and Weeks 00]. It can also be
proven virtually [Luo et al. 08].

Remark 3.7. Call a manifold that can be decomposed
into regular ideal cubes cubical. Recall that a regular ideal
cube can be subdivided into 5 regular ideal tetrahedra, see
Figure 1. However, this does not imply that a cubicalman-
ifold is tetrahedral.

A counter-example is the manifold appearing in the
census as x101 and x103. Its canonical cell decom-
position consists of one regular ideal cube. As Burton
explained [Burton 14], x101 subdivides the cube into 5
regular ideal tetrahedra but needs to insert a flat tetrahe-
dron to match the diagonals on the cube. Thus, it is not
a tetrahedral manifold (but still has a tetrahedral double-
cover ntet100093).
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x103 splits the same cube into 6 non-regular tetrahe-
dra and is a geometric proto-canonical triangulation.

3.3. Certification for tetrahedral manifolds

Let
√
Q+ denote the multiplicative group of all square

roots of positive rational numbers and let Q(
√
Q+) ⊂ C

be the field generated by
√
Q+.

Lemma 3.8. If we pick as target area A = √3, we have for
a geometric proto-canonical triangulation of a tetrahedral
manifold M:

z∗i ∈ Q(
√−3); A(Cc) ∈ Q+

√
3;

|z∗i |, el,A(t ), e′l,A
′(t ),Ri

v ∈
√
Q+; Tilt(F ) ∈ Q(

√
Q+).

Proof. M and thus its universal cover can be decomposed
into regular ideal tetrahedra. The resulting regular tessel-
lation in H3 can be chosen to have vertices at Q(

√−3)
(also see Section 5), thus the shapes of any ideal triangu-
lation ofM are inQ(

√−3).
Develop a cusp cross section constructed above in C

such that the vertices of the edge set to length 1 are at 0 and
1. Then all vertices have complex coordinates inQ(

√−3)
and a fundamental domain inC for the cusp is a parallelo-
gram spanned by two complex numbers inQ(

√−3). The
area A(Cc) of such a parallelogram is inQ+

√
3.

The rest follows from the above formulas. �

We can represent a z∗i exactly by r1 + r2
√−3 with

r1, r2 ∈ Q. We can represent the other quantities exactly
using Corollary 3.10 below.

Lemma 3.9. Let p1, …, pr denote a list of distinct prime
numbers and K = Q(

√
p1, . . . ,

√
pr) denote the corre-

sponding number field. Then,
(a) K/Q is Galois with Galois group G(K/Q) =

(Z/2Z)r.
(b) If Q ⊂ L ⊂ K is a subfield of K such that [L : Q] =

2 then L = Q(
√
pI ) where pI = �i � Ipi for some

nonempty I�{1, …, r}.
(c) TheQ-linear map

Q(
√
p1)⊗Q Q(

√
p2)⊗Q . . .⊗Q Q(

√
pr)→ K,

x1 ⊗ . . .⊗ xr �→
r∏

i=1
xi

is an isomorphism ofQ-vector spaces.

Proof. We will prove this by induction on r. When r = 1
(a) is obvious and (b) follows from the fundamental the-
orem of Galois theory [Lang 02, VI,Thm.1.2].

Assume that the lemma is true for r − 1, and let K1 =
Q(
√
p1, . . . ,

√
pr−1) and K2 = Q(

√
pr). Then, we claim

that K1 ∩ K2 = Q. Indeed, otherwise we have K2�K1 and

by part (b) it follows that Q(
√
pr) = Q(

√
pI ) for some

nonempty subset I�{1, …, r − 1}. So,
√
pr = a+ b

√
pI

for a, b ∈ Q. Squaring, we get

pr = a2 + b2pI, ab = 0.

If a = 0 then pr = b2pI and since I is nonempty, it fol-
lows that p2i divides pr where pi, pr are distinct primes,
a contradiction. If b = 0 then pr = a2 and pr is a prime
number, also a contradiction. This shows that K1 ∩ K2 =
Q. Let K = K1K2 = Q(

√
p1, . . . ,

√
pr) denote the com-

posite field. It follows by [Lang 02, VI,Thm.1.14] that
K is a Galois extension with Galois group G(K/Q) =
G(K1/Q)× G(K2/Q) = (Z/2Z)r. This proves part (a)
of the inductive part. Part (b) follows from part (a) by
the fundamental theorem of Galois theory [Lang 02,
VI,Thm.1.2] and the classification of all index 2 subgroups
of (Z/2Z)r. Part (c) follows from part (a) and the induc-
tion hypothesis. �

Part (c) of Lemma 3.9 implies the following corollary.

Corollary 3.10. Every element in Q(
√
Q+) has a unique

representative of the form

r1
√
n1 + . . .+ rk

√
nk, (3–2)

where ri ∈ Q \ 0 and n1 < …< nk are square-free positive
integers.

Remark 3.11. For the purpose of effective exact computa-
tion, we need an explicit way of adding, subtracting, mul-
tiplying, and dividing expressions of the form (3–2). This
is obvious except for division where we give the following
algorithm: to compute n/d where n and d are two such
forms and d contains a non-rational term r j

√nj, pick a
prime p dividing nj. We can write d as d0 +√pd1 such
that d0 contains no term ri

√
ni with p|ni. We now have

n
d
= n(d0 −√pd1)

(d0 +√pd1)(d0 −√pd1)
= n(d0 −√pd1)

d20 − pd21
.

The new denominator is simpler because it contains no
more terms ri

√
ni with p|ni. Thus, by repeating this pro-

cess we can eliminate all primes in the terms of the
denominator.

When we say using interval arithmetics, we mean:
(1) We convert the exact representation of each quan-

tity inQ(
√
Q+), respectively,Q(

√−3) to an inter-
val [a, b], respectively, a complex interval [a, b] +
[a′, b′]i. These intervals have interval semantics:
the true value of the quantity is guaranteed to be
contained in the interval.

(2) Any operations such as + or log are carried out
such that interval semantics is preserved, i.e., the
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resulting interval is again guaranteed to contain
the true value of the computed quantity.

(3) An inequality involving an interval is considered
certified only if it is true for all values in the inter-
val, e.g., if the interval given for x is [a, b], then x
< 0 is certified only if b < 0.

We can now certify the geometric proto-canonical
triangulation and the opacities of its faces. Our input
is a candidate geometric proto-canonical triangulation
obtained by calling SnapPy’s canonize on a tetrahe-
dral manifold. We first guess exact values zi from the
approximated shapes reported by SnapPy. Using those
guesses, we verify

(1) the rectangular form of the edge equations exactly,
(2) Im(zi) > 0 for each tetrahedron (using interval

arithmetics),
(3) |e| < 10−7 for each edge where e is the error of the

logarithmic formof the edge equation (using inter-
val arithmetics),

(4) all the equations (Section 3.2.1) exactly,
(5) Tilt(F) < 0 (using interval arithmetics) for an

opaque face, respectively, Tilt(F) = 0 (using exact
arithmetics) for a transparent face.

(1) implies that the error in (3) will be a multiple of
2π i so a small enough error implies that the logarithmic
form of the edge equations is fulfilled exactly. Together
with (2), this means that the tetrahedra yield a (not nec-
essarily complete) hyperbolic structure. Completeness is
ensured by (4) which checks that the cusp cross section
is Euclidean. Checking (4) really means verifying that the
recursion process to obtain the edge lengths could con-
struct a consistent result. (5) certifies the geometric proto-
canonical triangulation and the opacities of the faces.

Remark 3.12. Note that in the process, we actually pro-
duce complex intervals for the shapes from SnapPy’s
approximations certified to contain the true values. We
can do this because we know that the shapes are in the
fieldQ(

√−3) and thus can guess exact solutions and ver-
ify them exactly. An alternative method to obtain certi-
fied intervals from approximated shapes is the Krawczyk
test implemented in hikmot [Hoffman et al. 13]. We
could not use it here though, because it cannot deal with
non-orientable manifolds. The edge equations for a non-
orientable manifold are polynomials in z∗i and 1/z̄∗i .

Remark 3.13. We could have also avoided guessing by
tracking SnapPy’s algorithm to obtain a proto-canonical
triangulation. We know that the shapes of the tetrahedral
tessellation are all exactly represented by 1

2 + 1
2

√−3 and
that SnapPy is performing 2–3 and 3–2 moves during
the algorithm.However, this would require changes to the
SnapPea kernel since it does not report the sequence of
moves it performed.

For guessing a rational representation from an approx-
imation, we use the fractions module shipped with
python. It essentially computes the continued fraction
for a given real number and evaluates it at a stage where
the resulting denominator is less than a given bound
(10,000 in our case). For the (complex) interval arith-
metics, we use sage. Our implementation in python
is based on the script given in [Dunfield et al. 14].

3.4. Certification in the generic case

Dunfield, Hoffman, and Licata give an implementation
in [Dunfield et al. 14] to certify a triangulation to be the
canonical cell decomposition (which cannot contain non-
tetrahedral cells). Though not needed here, we want to
point out that their implementation can be both simpli-
fied and generalized to any number of cusps.

They start with certified complex intervals for the
shapes returned by hikmot [Hoffman et al. 13].
But instead of following the complicated procedure in
[Dunfield et al. 14, Section 3.7], one can simply apply
interval arithmetics to the above equations to compute
Tilt(F). The result is an interval [a, b] for each Tilt(F) that
is guaranteed to contain the true value of Tilt(F). If b <

0 for each interval, then the Tilt(F) are certified to be less
than 0, thus the given ideal triangulation is the canonical
cell decomposition.

We provide a version of canonical.py here that
implements this.

4. Results of the implementation of algorithms

We implemented the algorithms described in the previ-
ous section, see [Goerner 15b] for the resulting data. The
longest algorithm to runwas the enumeration of the com-
binatorial tetrahedral tessellations: the orientable case up
to 25 tetrahedra and the non-orientable one up to 21 tetra-
hedra each took about �6 weeks CPU time and �70 Gb
of memory on a Xeon E5-2630, 2.3 Ghz. The number
of resulting combinatorial tetrahedral tessellations and
tetrahedral manifolds are listed in Table 1.

4.1. Names of tetrahedral manifolds

We give the tetrahedral manifolds names such
as “otet080002” (orientable), respectively, “ntet020000”
(non-orientable) with “tet” followed by the number of
tetrahedra and an index. The different combinatorial
tetrahedral tessellations corresponding to the same
tetrahedral manifold are named with an additional index,
e.g., “otet080002#0” and “otet080002#1.” We choose as
canonical representative for an isometry class the first
combinatorial tetrahedral tessellation, e.g., otet080002#0
for the tetrahedral manifold otet080002.
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The indices are canonical: before indexing the
combinatorial tetrahedral tessellations and tetrahe-
dral manifolds, we first sort the combinatorial tetrahedral
tessellations within an isometry class lexicographically
by isomorphism signature and then sort the tetrahe-
dral manifolds lexicographically by the isomorphism
signature of their canonical representative.

4.2. SnapPy census

Our census of tetrahedralmanifolds can be easily accessed
from SnapPy. Simply change to the directory snappy
accompanying this article and type from tetrahe-
dralCuspedCensus import *. The two censuses
TetrahedralOrientableCuspedCensus and

TetrahedralNonorientableCuspedCen-
sus have the same methods as any other census such as
OrientableCuspedCensus. Here are examples of
how to use them:

>>> from tetrahedralCuspedCensus import *
>>> M=TetrahedralOrientableCuspedCensus[’otet02_0000’] # also m003
>>> TetrahedralOrientableCuspedCensus.identify(Manifold(’m004’))
otet02_0001(0,0)
>>> len(TetrahedralOrientableCuspedCensus(tets=5)) # Number with 5 tets
2
>>> for M in TetrahedralOrientableCuspedCensus(tets=5):
... print OrientableCuspedCensus.identify(M)
m410(0,0)
m412(0,0)(0,0)
>>> TetrahedralOrientableCuspedCensus.identify(Manifold("m208"))
>>>

The last example shows that m208 is not a tetrahe-
dral manifold since it has only 5 tetrahedra and thus
would be in the tetrahedral census. Note that SnapPy’s
is_isometric_to is using numerical methods and
can fail to find an isomorphism. To verify that m208 is
not tetrahedral, one can certify its isometry signature2 and
check that it is not in the data files [Goerner 15b] provided
with this paper.

4.3. Regina files

We also provide the census of combinatorial tetrahedral
tessellations as two Regina files (for orientable and non-
orientable) in the Regina directory accompanying this
article. Each file groups the combinatorial tetrahedral

 We plan a future publication describing how to generalize the techniques for
certifying isometry signatures to all cusped hyperbolic manifolds. The third
named author has already incorporated this into SnapPy, beginningwith ver-
sion .., see SnapPy documentation.

tessellations first by number of tetrahedra and then by
isometry class. The container for each isometry class con-
tains the different combinatorial tetrahedral tessellations
as well as the canonical retriangulation.

The Regina files can be inspected using the Regina
GUI or the Regina python API. An example of how
to traverse the tree structure in the file is given in
regina/example.py.

4.4. Morphisms

Similarly to combinatorial isomorphism, we can define
a combinatorial homomorphism between combinatorial
tetrahedral tessellations, but without the requirement that
different tetrahedra in the source go to the different tetra-
hedra in the destination. It assigns to each tetrahedron in
the source a tetrahedron in the destination and a permu-
tation in S4 indicating which vertex of the source tetrahe-
dron is mapped to which vertex of the destination tetra-
hedron. These permutations have to be compatible with

the gluings of the source and destination tetrahedra. If the
tessellations are connected and have no open faces, the
source triangulation needs to have the same number of
or a multiple of the number of tetrahedra as the destina-
tion. Topologically, a combinatorial homomorphism is a
covering map that preserves the triangulation. We have
implemented a procedure to list all combinatorial homo-
morphisms for a pair of triangulations in python.

We give a list of all pairs (M, N) of combinato-
rial tetrahedral tessellations such that there is a com-
binatorial homomorphism from M to N as a text file
data/morphisms.txt. We do not include the triv-
ial pairs (M, M) or pairs (M, N) which factor through
another combinatorial tetrahedral tessellation as those
can be recovered trivially through the reflexive and transi-
tive closure. We also give some of the resulting graphs in
misc/graphs. We discuss an example in more detail
later in Section 5.3.
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5. Properties of tetrahedral manifolds

5.1. Tetrahedral manifolds are arithmetic

Recall that two manifolds (or orbifolds) are
commensurable if they have a common finite cover.
Commensurability is an equivalence relation. The com-
mensurability class of the figure-eight knot complement
m004 consists exactly of the cusped hyperbolic orbifolds
and manifolds with invariant trace field Q(

√−3) that
are arithmetic or, equivalently, that have integral traces
[Maclachlan and Reid 03, Theorems 8.2.3 and 8.3.2].
Thus, tetrahedral manifolds are also arithmetic with the
same invariant trace field since

Lemma 5.1. Tetrahedral manifolds are commensurable to
m004.

More precisely, the commensurability class of m004
also contains the orbifoldR = H3/Isom({3, 3, 6}) where
the Coxeter group Isom({3, 3, 6}) is the symmetry group
of the regular tessellation {3, 3, 6} by regular ideal tetrahe-
dra. This orbifold can be used to characterize the tetrahe-
dral manifolds in this commensurability class:

Lemma 5.2. A manifold M is a covering space ofR if and
only if it is tetrahedral.

Proof. A combinatorial tetrahedral tessellation of amani-
foldM lifts to the tessellation {3, 3, 6} in its universal cover
H3. Thus, π1(M) is a subgroup of the symmetry group
Isom({3, 3, 6}). Consequently,M is a cover ofR.

Conversely, a covering mapM→ R induces a combi-
natorial tetrahedral tessellation on the manifold M with
the standard fundamental domain of R lifting to the
barycentric subdivision of the combinatorial tetrahedral
tessellation. �

5.2. Implications of theMargulis Theorem

Since m004 is arithmetic, Margulis Theorem implies that
its commensurator is not discrete and thus the com-
mensurability class of m004 contains no minimal ele-
ment (with respect to covering) [Neumann and Reid 92a,
Maclachlan and Reid 03,Walsh 11]. In particular,R is not
the minimal element of the commensurability class. We
thus expect to see the following phenomena in the com-
mensurability class containing the tetrahedral manifolds:

� Non-tetrahedral manifolds that are still commensu-
rable with m004. For example, the following man-
ifolds in SnapPy’s OrientableCuspedCensus
up to 8 simplices have this property:

m208,s118,s119,s594,s595,s596,v2873,

v2874.

� Tetrahedral manifolds M with different covering
maps M→ R inducing non-isomorphic combina-
torial tetrahedral tessellations of the same manifold
M.

� Combinatorial tetrahedral tessellations “hiding
symmetries,” defined as follows.

Definition 5.3. A combinatorial tetrahedral tessellation T
hides symmetries if the corresponding tetrahedral mani-
foldM has an isometry that is not induced from a combi-
natorial automorphism of T. In other words, if there is an
isometryM→M that does not commute with the cover-
ing mapM→ R corresponding to T.

In this section, we will illustrate these phenomena
using the tetrahedral census.

Remark 5.4. By definition, the canonical cell decom-
position and thus the canonical retriangulation sees all
isometries, so we can detect this by checking that the
number of combinatorial automorphisms of the canon-
ical retriangulation is higher than those of the com-
binatorial tetrahedral tessellation. To enable the reader
to do this, the Regina file containing the tetrahedral
census [Goerner 15b] includes the canonical retriangu-
lation as well. The combinatorial automorphisms can
be found using the method findAllIsomorphisms
of a Regina triangulation or find_morphisms in
src/morphismMethods.py.

Remark 5.5. The minimum volume orientable cusped
hyperbolic orbifold M = H3/PGL(2,Z[ζ ]) and the
Bianchi orbifold B = H3/PSL(2,Z[ζ ]) of discriminant
D = −3 where ζ = 1+√−3

2 are related to R as follows
with each map being a 2-fold covering [Neumann and
Reid 92b]:

B→M→ R.

Similarly to R being the quotient of H3 by the symme-
try group of the regular tessellation {3, 3, 6}, M corre-
sponds to orientation-preserving symmetries, andB cor-
responds to the symmetry group of the regular tessellation
{3, 3, 6} after two-coloring the regular ideal tetrahedra.

Thus, the manifold covering spaces of M correspond
to the orientable combinatorial tetrahedral tessellations,
and the manifold covering spaces of B correspond to
orientable combinatorial tetrahedral tessellations whose
tetrahedra can be two-colored. Regina displays the dual 1-
skeleton of a triangulation in its UI under “Skeleton: face
pairing graph,” so we can check whether a combinatorial
tetrahedral tessellation is a cover ofB by testing whether
the graph Regina shows is two-colorable. For example,
all orientable combinatorial tetrahedral tessellations with
fewer than 5 tetrahedra are covers ofB. But otet050000 and
otet060000 are not.
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2 otet02_0001#0 otet02_0000#0

otet04_0003#0 m208otet04_0002#0 otet04_0001#0

otet06_0003#0 otet06_0004#0

otet08_0002#1otet08_0002#0otet08_0007#0 otet08_0010#0

tetrahedral

commensurable
but not 
tetrahedral

Figure . A small part of the category T of combinatorial tetrahedral tessellations (solid arrows) and the larger categoryM of manifolds
commensurable with m004 (dashed arrows). Multiple morphisms between two objects are collapsed to just one arrow, automorphisms
and morphisms factoring through another object are dropped.

Remark 5.6. Related results include: [Bowditch et al. 95]
shows that all once-punctured torus bundles in the com-
mensurability class of the figure eight-knot complement
m004 are actually cyclic covers of the tetrahedral man-
ifolds m003 and m004 and thus tetrahedral. The non-
arithmetic hyperbolic once-punctured torus bundles are
studied in [Goodman et al. 08] where an algorithm is
given to compute the commensurator of a cusped non-
arithmetic hyperbolic manifold. [Reni and Andrei 01]
studies symmetries of or hidden by cyclic branched cov-
erings of 2-bridge knots.

5.3. The category of combinatorial tetrahedral
tessellations

To study the commensurability class containing the tetra-
hedral manifolds, we think of it as a category. For this,
recall the notion of a combinatorial homomorphism from
Section 4.4. On the underlying topological space, a com-
binatorial homomorphism is a covering map.We thus get
two categories with a forgetful functor T →M:

Definition 5.7. The category M of manifolds commensu-
rable with tetrahedral manifolds has as objects manifolds
commensurable with m004 and as morphisms covering
maps.

The category T of combinatorial tetrahedral tessella-
tions has as objects combinatorial tetrahedral tessellations
and as morphisms combinatorial homomorphisms.

We show a small part of these categories in Figure 2
and observe:

� otet040001#0 has two 2-covers (indicated by the
solid arrows) giving two different triangulations
otet080002#0 and otet080002#1. These triangulations

are not combinatorially isomorphic but yield isomet-
ric manifolds (indicated by the dashed line).

� The figure-eight knot complement, otet020001#0,
and its sister, otet020000#0, have a common cover
otet040002#0. More general, any two combinatorial
tetrahedral tessellations have a common cover com-
binatorial tetrahedral tessellation as they are in the
same commensurability class.

� otet020001#0 and otet020000#0 show that the graph
is a poset with more than one minimal element.
In fact, most combinatorial tetrahedral tessellations
in our census are minimal elements and we con-
jecture that there are infinitely many such minimal
elements.

� The figure also shows a manifold m208, which
is non-tetrahedral. However, as with any mani-
fold in this commensurability class, it still has a
tetrahedral covering space, here otet080010#0 (the
arrow has to be dashed because m208 is not
tetrahedral so the map is not a combinatorial
homomorphism).

Remark 5.8. The last example shows that the combina-
torial tetrahedral tessellation otet080010#0 hides symme-
tries as in Definition 5.3. To see this, notice that the cov-
ering space otet080010→ m208 is 2-fold, thus regular and
m208 is the quotient of otet080010 by the groupG = Z/2Z
of deck transformations. IfG preserved the combinatorial
tetrahedral tessellation otet080010#0, the quotient m208
would have an induced combinatorial tetrahedral tessella-
tion. But m208 is not tetrahedral, thus the nontrivial ele-
ment of G is a symmetry of otet080010#0 which is not a
combinatorial homomorphism.



EXPERIMENTAL MATHEMATICS 477

5.4. Canonical cell decompositions

... Examples
The canonical cell decomposition of a tetrahedral mani-
fold can:

� Be a combinatorial tetrahedral tessellation.
Examples: otet020000 and otet100010. The latter
one has two combinatorial tetrahedral tessellations,
otet100010#0 being the canonical cell decomposition.

� Be a coarsening of a combinatorial tetrahedral tes-
sellation.
(I.e., the combinatorial tetrahedral tessellation is a
subdivision of the canonical cell decomposition.)
Example: otet050001. The canonical cell decompo-
sition consist of single regular ideal cube that can
be subdivided into 5 tetrahedra (see Figure 1) such
that the diagonals introduced on the faces are com-
patible. This yields the unique (up to combinatorial
isomorphism) combinatorial tetrahedral tessellation
for this manifold. We elaborate on the relationships
to cubes below.

� Neither of the above.
In which case, the canonical cell decomposition can
still
� Consists of (non-regular) tetrahedra.
Example: otet080010.

� Contain cells which are not tetrahedra.
Example: otet080001. Its canonical cell decomposi-
tion contains some hexahedra obtained by gluing
two non-regular tetrahedra.

... Cubical manifolds
Recall fromRemark 3.7 that amanifold was called cubical
if it can be decomposed into regular ideal cubes. Figure 1
showed that there are two choices of picking alternating
vertices of a cube, which span a tetrahedron and thus
yield a subdivision of a regular ideal cube into 5 regular
ideal tetrahedra. Even though each cube of a combina-
torial cubical tessellation can be subdivided into regular
ideal tetrahedra individually, this only yields a combina-
torial tetrahedral tessellation if the choicesmade are com-
patible with the face-pairings of the combinatorial cubical
tessellation.We saw otet050001 above as an example where
this was possible and x103 in Remark 3.7 as an example
where this was impossible.

If a manifold is both tetrahedral and cubical, the
canonical cell decomposition can actually consist of reg-
ular cubes or regular ideal tetrahedra (or neither). This is
illustrated by the two cubical links given by Aitchison and
Rubinstein [Aitchison and Rubinstein 92]:

� The canonical cell decomposition of the comple-
ment otet100011 of the alternating 4-chain link

L8a21 (see Figure 3) consists of two regular ideal
cubes.

� The complement otet100006 of the other cubical link
L8a20 (see Figure 3) admits two combinatorial
tetrahedral tessellations up to combinatorial isomor-
phism, one of which is equal to the canonical cell
decomposition.

Remark 5.9. Figure 1 also shows that the choice of 5 reg-
ular ideal tetrahedra to subdivide a cube hides symme-
tries of the cube, namely, the rotation by π /2 of the cube
that takes one choice to the other. This rotation is an ele-
ment in the commensurator but not in the normalizer of
Isom({3, 3, 6}) and thus a hidden symmetry ofR. A com-
binatorial tetrahedral tessellation arising as subdivision of
a combinatorial cubical tessellation can hide the symme-
tries of the combinatorial cubical tessellation correspond-
ing to this rotation, i.e., there can be symmetries of the
combinatorial cubical tessellation that are not symmetries
of the combinatorial tetrahedral tessellation.

An example of this is otet100011. Other examples are
obtained by subdividing the cubical regular tessellation
link complements U {4,3,6}1+ζ , U {4,3,6}2 , and U {4,3,6}2+ζ classified
in [Goerner 15a]. By definition, each of these three man-
ifolds can be decomposed into ideal regular cubes such
that each flag of a cube, an adjacent face and an edge adja-
cent to the face can be taken to any other flag by a sym-
metry. In particular, these manifolds contain a symmetry
flipping the diagonals of the faces of the cubes.

... Canonical combinatorial tetrahedral
tessellations

We call a combinatorial tetrahedral tessellation a regular
tessellation if it corresponds to a regular covering space of
R orM. This is equivalent to saying that the combinato-
rial automorphisms act transitively on flags consisting of
a tetrahedron, an adjacent face and an adjacent edge (we
drop the vertex in the flag to allow chiral combinatorial
tetrahedral tessellations) [Goerner 15a].

Lemma 5.10. Consider a combinatorial tetrahedral tessel-
lation T. T is equal to the canonical cell decomposition of
the corresponding tetrahedral manifold M if T is a regular
tessellation or if M has only one cusp. In particular, a tetra-
hedral manifold with only one cusp has a unique combina-
torial tetrahedral tessellation. If T is equal to the canonical
cell decomposition, then T hides no symmetries.

Proof. Recall from Section 3.1 that the canonical cell
decomposition relies on choosing cusp neighborhoods of
the same volume for each cusp. If T is regular, then each
cusp neighborhood intersects T in the same triangula-
tion. This is also true if M has only one cusp and there
is only one cusp neighborhood to choose. Thus, each end
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otet020001(K4a1) otet040000 otet040001(L6a2) otet080002(L10n46)

otet100006(L8a20) otet100042(L10n88) otet100008(L11n354) otet100011(L8a21)

otet100014(L10n101) otet100028(L12n2201) otet100027(L10n113)

otet100043(L12n1739) otet080009(L14n38547) otet080001(L14n24613)

otet080005 otet100007 otet100003 otet100025

Figure . The tetrahedral links with at most  tetrahedra.

of a tetrahedron intersects the cusp neighborhoods in the
same volume. T lifts to the regular tessellation {3, 3, 6} of
H3 and the cusp neighborhoods lift to horoballs with the
same symmetry. Hence, the canonical cell decomposition
is equal toT. The other statement follows from the canon-
ical cell decomposition not hiding any symmetries by def-
inition. �

Remark 5.11. For some cubical tessellations such as
U {4,3,6}1+ζ , U {4,3,6}2 , and U {4,3,6}2+ζ , we can partition the cusps
into twodisjoint sets such that no edge connects two cusps
of the same set. If, in the construction of the canonical
cell decomposition, we now pick for cusps in one set cusp

neighborhoods of a volume slightly different from those
for cusps in the other set, we no longer obtain the cubical
tessellation but one of the two subdivided combinatorial
tetrahedral tessellations depending on which set of cusps
we favored.

6. Tetrahedral links

6.1. Some facts about tetrahedral links

Consider a cusped 3-manifold M, i.e., the interior of
a compact 3-manifold M̄ with boundary ∂M̄ a disjoint
union of tori. We say that M is a homology link comple-
ment if the long exact sequence in homology associated
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Figure . The tetrahedral links with  tetrahedra.

to (M̄, ∂M̄) is isomorphic to that of the complement of
a link in S3. Let i : ∂M̄→ M̄ denote the inclusion of the
boundary.We thank C. Gordon for pointing out to us that
(b) implies (d).

Lemma 6.1. Let M be a cusped 3-manifold. The following
are equivalent:

(a) M is a homology link complement.
(b) H1(M;Z) = Zc where c is the number of cusps.
(c) The cuspidal homology Hcusp

1 (M) =
H1(M̄;Z)/Im(i∗) vanishes.

(d) M is the complement of a link in an integral homol-
ogy sphere.

Proof. (a) implies (b) since H1(∂M̄) ∼= Z2c determines c
andH1(M) = Zc for a link complement in S3. The equiva-
lence of (b) and (c) was shown in [Goerner 15a, Lem.6.9].
To prove that (b) implies (d), we work by induction on
c. For c = 0, M is a homology sphere and thus the com-
plement of the empty link. Assuming it is true for c −
1, pick a component T of ∂M̄ and let H be the image of

H1(T;Z) in H1(M̄;Z) under the map induced by inclu-
sion. By Poincare duality,H has rank 1 or 2 (apply [Bredon
97, Chapter VI, Theorem 10.4] to M̄ with all boundary
components but T Dehn-filled). Now we claim that H
contains a rank 1 direct summand of H1(M̄;Z) (so one
can now do a Dehn filling on T to reduce c by 1). For if
not, thenH is contained in pH1(M̄;Z) for some prime p.
ThenH1(T;Zp)maps trivially inH1(M̄;Zp), contradict-
ing duality.

It is left to show that (d) implies (a). This follows easily
from Alexander duality [Burde and Zieschang 85]. �

A homology linkM is the complement of a link in the
3-sphere if and only if there is aDehn-filling of it with triv-
ial fundamental group. In that case, the filling is a homo-
topy 3-sphere, hence a standard 3-sphere (by Perelman’s
Theorem), and the link is the complement of the core
of the filling. SnapPy can compute the homology of a
hyperbolic manifold as well as a presentation of its fun-
damental group, before or after filling. Note that links are
in general not determined by their complement, i.e., there
are 3-manifolds that arise as the complement of infinitely
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Figure . The remarkable link otet.

many different links [Gordon and Luecke 89]. On the
other hand, the only tetrahedral knot is the figure-eight
knot. This follows from the fact that tetrahedralmanifolds
are arithmetic, and the only arithmetic knot is the figure-
eight knot [Reid 91, Theorem 2].

6.2. A list of tetrahedral links

Of the 124 orientable tetrahedral manifolds with at most
12 tetrahedra, 27 are homology links and SnapPy iden-
tified 13 of them with link exteriors in its census. Of the
remaining 14 homology links,

� otet040000 is the Berge manifold, the complement of
a link in [Martelli and Petronio 06],

� 11 are link complements, with corresponding links
shown in Figures 3 and 4.
(These links were found by drilling some curves
until the manifold could be identified as a comple-
ment of a link in SnapPy’s HTLinkExteriors.
We then found a framing of some components of
the link such that Dehn-filling gives back the tetra-
hedral manifold. This gives us a Kirby diagram of
the tetrahedral manifold. Using the Kirby Calcula-
tor [Swenton 14], we successfully removed all Dehn-
surgeries and obtained a link.)

� otet080003 and otet100023 (with 2 and 1 cusps, respec-
tively) are not link complements.
(This can be shown using fef_gen.py based on
[Martelli et al. 14] and available from [Ichihara and
Masai 14] to list all exceptional slopes and then com-
pute homologies for those.)

The data in Table 1 also suggest:

Conjecture 6.2. Every tetrahedral link complement has
an even number of tetrahedra (i.e., a corresponding com-
binatorial tetrahedral tessellation has an even number of
tetrahedra).

6.3. A remarkable tetrahedral link

Of the 11,580 orientable tetrahedral manifolds with at
most 25 tetrahedra, 885 are homology links, and have at
most 7 cusps. There is a unique tetrahedral manifold with
7 cusps, otet200570, which is a link complement, and a 2-
fold cover of the minimally twisted 5-chain link L10n113
= otet100027. This remarkable link is shown in Figure 5.
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