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1. Introduction

1.1. The conjecture. In this paper, we will mostly be concerned with proving
and explaining some of the motivation for the following conjecture, due to
Melvin and Morton [MM,Mo]:

Conjecture 1. Let Ĵsl(2); �(K) ∈ Q(q) be the “framing independent colored
Jones polynomial” of the knot K; i.e.; the framing independent Reshetikhin–
Turaev invariant1 [RT] of K colored by the (d = �+1)-dimensional represen-
tation of sl(2). Let ˜ be a formal parameter; let q = e˜; and let [d] denote
the “quantum integer d ”:

[d] =
qd=2 − q−d=2
q1=2 − q−1=2 =

e d˜=2 − e−d˜=2
e˜=2 − e−˜=2 :

Then; expanding Ĵ =[d] in powers of d and ˜ (this is possible by [MM]),

Ĵsl(2); �(K)(e˜)
[d]

=
∑
j;m=0

ajm(K)dj˜m ;

we have:
(1) “Above diagonal ” coe�cients vanish: ajm(K) = 0 if j ¿ m.
(2) “On diagonal ” coe�cients give the inverse of the Alexander–Conway

polynomial:
MM (K)(˜) · A(K)(e˜) = 1 ; (1)

where A(q) is the Alexander–Conway polynomial (in its “Conway ” normaliza-
tion; as in example 2:8) and MM is de�ned by

MM (K)(˜) =
∞∑
m=0

amm(K)˜m :

Notice that the colored Jones polynomial of a knot can be read from the
Jones polynomials of cables of that knot (see, e.g. [MS]), and thus the above
conjecture implies that the Alexander polynomial can be computed from the
Jones polynomial and cabling operations.
Melvin and Morton arrived at (the rather unexpected) Conjecture 1 after

noticing it in some special cases, and by noticing that the two sides of (1)
seem to behave in the same way when acted on by the ‘Adams operations’ of
[B-N2]. In his visit to Cambridge in November 1993, we informed L. Rozansky
of the conjecture, and he was able [Ro1] to �nd a non-rigorous path integral
“proof” of it, which easily leads to a generalization to other Lie algebras, as
shown in Sect. 5. At the end of this introduction we will briey review the
main ideas of Rozansky’s work on the MMR conjecture.

1I.e., Ĵ is obtained from the framing-dependent J either by multiplication of q−C·writhe where C
is the quadratic Casimir number of V�, or by evaluating J on K with its zero framing. We take
the metric on sl(2) to be the trace in the 2-dimensional representation.
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1.2. Preliminaries. Before we can sketch our proof of the MMR conjecture,
let us recall some facts about Vassiliev invariants and chord diagrams, which
are the main tools used in the proof. We follow the notation of [B-N2]; see
also [Val, Va2, BL,Ko1]. A Vassiliev invariant of type m is a knot invariant V
which vanishes whenever it is evaluated on a knot with more than m double
points, where the de�nition of V is extended to knots with double points via
the formula

The algebra V of all Vassiliev invariants (with values in some �xed ring)
is �ltered, with the type m subspace FmV containing all type m Vassiliev
invariants. The associated graded space of V is isomorphic to the space W
of all weight systems. A degree m weight system is a homogeneous linear
functional of degree m on the graded vector space Ar of chord diagrams like
in Fig. 1 divided by the 4T and framing independence relations explained in
Figs. 2 and 3.
Ar is graded by the number of chords in a chord diagram. It is a commu-

tative and co-commutative Hopf algebra with multiplication de�ned by juxta-
position, and with co-multiplication � de�end as the sum of all possible ways
of ‘splitting’ a diagram. The co-algebra structure of Ar de�nes an algebra
structure on W. The Hopf algebra A is de�ned in the same way as Ar , only
without imposing the framing independence relation.
There are natural maps Wm : FmV → GmW = GmAr∗, where Gm obj

denotes the degree m piece of a graded object obj. For a type m Vassiliev

Fig. 1. A chord diagram.

Fig. 2. To get the 4T relations, add an arbitrary number of chords in arbitrary positions (only
avoiding the short intervals marked by a ‘no-entry’ sign �) to all six diagrams in exactly
the same way.

Fig. 3. The framing independence relation: any diagram containing a chord whose endpoints
are not separated by the endpoints of other chords is equal to 0.
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invariant V it is natural to think of Wm(V ) as “the m’th derivative of V ”.
The maps Wm are compatible with the products of the spaces involved. Similar
de�nitions can be made for framed knots, and the image of the corresponding
map Wm will be GmA∗.

1.3. Plan of the proof. It is well known [Gou, B-N1, B-N2, BL, Lin] that the
coe�cients of both the Conway and the Jones polynomials are Vassiliev invari-
ants. Normally, Vassiliev invariants are not determined by their weight systems.
However, in Sect. 2 we explain (following Kassel [Kas] and Le and Murakami
[LM]) that when an invariant comes (in an appropriate sense) from a Lie al-
gebra, it is in fact determined by its weight system. As this is the case for
all the invariants appearing in Conjecture 1 (or rather, in the version of it that
we actually prove Theorem 1), it is enough to prove Conjecture 1 (that is,
Theorem 1) on the level of weight systems.
To do this, we analyze the weight systems of the Conway polynomial and

of the invariant MM . In Sect. 3 we analyze the weight system WC of the
Conway polynomial. We �nd a simple characterization (Theorem 2) of it, and
then we use this characterization to show that WC(D) is the determinant of the
intersection matrix IM(D) (De�nition 3.4) of the chord diagram D. In Sect. 4
we go through a rather complicated analysis of the weight system of MM ,
�nding that it is given by the permanent of the intersection matrix. We then
conclude the proof of the conjecture by showing that, in the sense of weight
systems,

log det IM + log per IM = 0 ; (2)

and thus the two weight systems are inverses of each other. Equation (2) is
proven in the ends of Sects. 3 and 4, where the logarithm of the two weight
systems involved are given in terms of explicit formulas.
In Sect. 5 we use similar techniques to generalize Conjecture 1 to arbitrary

semi-simple Lie algebras. In Sect. 6.1 we discuss a curious relation between
immanants and the algebra generated by the coe�cients of the Conway poly-
nomial, in Sect. 6.2 we sketch how the techniques of Sect. 4 can be used to
get a formula for the weight system of the colored Jones polynomial, and in
Sect. 6.3 we conjecture a generalization of Conjecture 1 beyond the realm of
Lie algebras.
As noted before, we actually prove a variation of Conjecture 1 in which

the normalizations are somewhat ‘better’ from the point of view of Sects. 2
and 5:

Theorem 1. Expanding Ĵ =d in powers of � = d− 1 and ˜;

Ĵ sl(2); �(K)(e˜)
d

=
∑
j;m=0

bjm(K)�j˜m ; (3)

we have:
(1) “Above diagonal ” coe�cients vanish: bjm(K) = 0 if j ¿ m:



On the Melvin–Morton–Rozansky conjecture 107

(2) Up to a constant, “on diagonal ” coe�cients give the inverse of the
Alexander–Conway polynomial:

JJ (K)(˜) · ˜
e˜=2 − e−˜=2 A(K)(e

˜) = 1 ; (4)

where JJ is de�ned by

JJ (K)(˜) =
∞∑
m=0

bmm(K)˜m :

Claim 1.1. Conjecture 1 and Theorem 1 are equivalent.

Proof. Let b′jm be the coe�cients of the expansion of Ĵ =d in powers of d and
˜. It is clear that Theorem 1 restated with b′jm replacing bjm is equivalent to
the original Theorem 1. We have:

∑
ajmdj˜m =

Ĵ
[d]

=
d
[d]

· Ĵ
d
=
e˜=2 − e−˜=2

˜
· d˜
ed˜=2 − e−d˜=2 · ∑ b′jm d

j˜m

(5)
The �rst factor in the right hand side of (5) is a power series in ˜ alone in
which the coe�cient of ˜0 is 1, and thus it (or its inverse) cannot take below-
or on-diagonal terms to go above the diagonal, and it does not change the
coe�cients on the diagonal. The second factor lives entirely on the diagonal and
thus the �rst part of Conjecture 1 is equivalent to the �rst part of Theorem 1.
Restricted to the diagonal, (5) becomes

∑
ammdm˜m =

d˜
ed˜=2 − e−d˜=2 ·∑ b′mmd

m˜m :

At d = 1, we get

MM =
˜

e˜=2 − e−˜=2 · JJ ;
and it is clear that (1) and (4) are equivalent.

1.4. Rozansky’s work. Rozansky arrives at the MMR conjecture using the
path integral interpretation of the Jones polynomial given in Witten’s seminal
paper [Wi]. Needless to say, path integrals have not yet been mathematically
de�ned, but they can be used as a rich source of motivation. In our case they
do in fact lead to the correct conjecture, though our proof of the conjecture
is not a translation of the path integral argument to rigorous math, and we
don’t know how to translate the path integral argument into rigorous math.
For the convenience of the reader we outline Rozansky’s argument below. The
reader may �nd our account somewhat more readable than Rozansky’s [Ro1],
as we have isolated the parts relevant to Conjecture 1 from his (much broader)
paper, and skipped some of the details. We heartily recommend consulting
with [Ro1] (as well as [Ro2, Ro3]) for the missing details and for many other
related results.
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Let us recall Witten’s interpretation of the Jones polynomial. For a framed,
oriented knot K in S3, a choice V� of an irreducible SU (2) representation of
highest weight � and an integer k, Witten introduces the following de�nition:

Z(K; V�; k) =
∫
A

DAe2�ik CS(A)OK;V�(A)

where the (ill de�ned) path integral is over the space A of all SU (2) connec-
tions on the trivial SU (2) bundle over S3; CS :A→ R=Z is the Chern–Simons
action

CS(A) =
1
8�2

∫
S3
tr(A ∧ dA+ 2

3A ∧ A ∧ A) ;

and OK;V� : A → R is the trace in the representation V� of the holonomy of
the connection A along the knot K .
Using non-rigorous quantum �eld theory reasoning, Witten computed

Z(K; V�; k) and found that

Z(K; V�; k) =

√
2

k + 2
sin
(

�
k + 2

)
Jsl(2); V�(K)

(
exp

2�i
k + 2

)
;

where Jsl(2); V� is the framing dependent colored Jones polynomial.
Now take a rational number 0 ¡ a � 1 (so that ka is a weight for many

large integers k). Following Rozansky [Ro1], the path integral Z(K; Vka; k)
(for such k) can be split into an integral over connections on a tubular neigh-
borhood Tub(K) of the knot K and over connections on the complement
S3\Tub(K) with certain boundary conditions on the boundary T 2 = @Tub(K),
followed by an integral over these boundary conditions. With the appropriate
boundary conditions of [EMSS], the integral over the connections on Tub(K)
can be restricted to an integral over at connections, and on those it is propor-
tional to �(I1 − e 2�ia) independently of k, where I1 is the holonomy along a
meridian of K in @Tub(K) and e 2�ia is considered in SU (2) in the usual way.
Therefore

Z(K; Vka; k) =
∫

A[S3\Tub(K)]a
DAe 2�ikCS

′(A) (6)

where the integral is over the connections on S3\Tub(K) with holonomy e 2�ia
along any meridian of K . Here CS ′ is a modi�ed Chern–Simons action dictated
by the boundary conditions.
Rozansky now applies stationary phase approximation to calculate the large

k limit of Z(K; Vka; k). The critical points of CS ′ are the at SU (2) connec-
tions on the knot complement with holonomy e 2�ia around a meridian. Modulo
gauge equivalence, the moduli space of such connections consists of only one
connection Aa, for su�ciently small values of a.

By the stationary phase approximation, the leading order term of the path
integral is proportional to

1√
8�

(
4�2

k

)1
2

(
h0(Aa)−h1(Aa)

)√
�RS(Aa) · e 2�ikCS′(Aa)
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where hj(Aa) is the dimension of the j’th cohomology of S3\Tub(K) with
coe�cients twisted by Aa, and �RS(Aa) is the SU (2) Ray–Singer torsion
of S3\Tub(K) twisted by Aa. Furthermore one can check that h1(Aa) = 0;
h0(Aa) = 1, and CS ′(Aa) = 0. The Ray–Singer torsion splits into three factors,
one for each algebra component of SU (2). The torsion in the Cartan direction
is 1, and in the remaining two directions the torsions are equal, and each con-
tributes the square root of the U (1) ⊂ SU (2) torsion using the representation
of �1(S3\Tub(K)) sending the meridian to e 2�ia ∈ U (1). Summarizing, we get√

2
k + 2

sin
(

�
k + 2

)
Jsl(2); Vka(K)

(
exp

2�i
k + 2

)
∼

k→∞
1√
2k
�RS(S3\Tub(K); e 2�ia) :

Cheeger [Ch] and M�uller [M�u] proved that the Ray–Singer torsion is equal
to the Reidemeister torsion, which by Milnor [Mi] and Turaev [Tu] was shown
to be proportional to the inverse of the Alexander polynomial A(K) of K ,
evaluated at e 2�ia. With the correct constant of proportionality (2 sin �a) in
place and ignoring factors that converge to 1 as k →∞, we get

�
k
Jsl(2); Vka(K)

(
exp

2�i
k

)
−→
k→∞

sin �a
A(K)(e 2�ia)

:

See [Ro1, (2.8) and following paragraph] for an explanation why the J com-
puted here is ‘in zero framing’. Thus J = Ĵ and

� a
∑
j;m=0

bjm(K)(2�i)majkj−m −→
k→∞

sin � a
A(K)(e 2�ia)

:

This proves (on the level of rigor of path integrals) that bjm = 0 if j−m ¿ 0,
and, taking a = ˜=2�i and disregarding all strictly positive powers of k, it also
proves Theorem 1 (on the same level of rigor).

2. A reduction to weight systems

Let us start with some generalities that (sometimes) allow us to deduce equality
of invariants from the equality of their weight systems. In this section, we
mostly interpret and adapt to our needs the deep results of Kassel [Kas] and
Le and Murakami [LM], who followed Kohno [Koh] and Drinfel’d [Dr1, Dr2].

2.1. Canonical Vassiliev invariants. A fundamental (and not too surprising)
result in the theory of Vassiliev invariants is that every degree m weight sys-
tem comes from a type m Vassiliev invariant, and that the resulting Vassiliev
invariant is well-de�ned up to Vassiliev invariants of lower types (see e.g.
[Ko1] and [B-N2]); in other words, the sequence

0→Fm−1V→FmV→ GmAr? → 0 ; (7)

is exact. The standard way of proving this fact is to construct a splitting
Vm : GmAr? → FmV for each m. These splittings can be assembled together
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in a unique way to form a universal Vassiliev invariant Z with values in the
graded completion of Ar , satisfying

Vm(W ) = W ◦ Z (8)

for each degree m weight system W . In fact, usually Z is �rst constructed, and
only then the splittings Vm are de�ned from it via (8).
A-priori, there appears to be no knot theoretic reason to expect that there

would be a preferred choice for the splittings Vm, or, equivalently, for Z . How-
ever, rather surprisingly, it seems that such a preferred choice for Z does exist.
Indeed, for reasons discovered by Drinfel’d [Dr1, Dr2] and elucidated further
by Kassel [Kas] and Le and Murakami [LM], many of the known construc-
tions [B-N3, Ca, Kas, Ko1, LM] of a universal Vassiliev invariant give the same
(hard to compute but rather well behaved) answer.2 Let us call this preferred
universal Vassiliev invariant ZK.

De�nition 2.1. A Canonical type m Vassiliev invariant V is a type m
Vassiliev invariant lying in the image of the splitting of (7) de�ned by ZK.
In a simpler language, let ZKm be the projection of Z

K into GmAr . V is a
canonical type m Vassiliev invariant i�

V = Wm(V ) ◦ ZKm :

De�nition 2.2. Let ˜ be a formal parameter. A Vassiliev power series is an
element

V ∈
∞∑
m=0

(FmV)˜m :

That is to say, it is a power series V = V0 +V1˜+ : : : in which the coe�cient
Vm of ˜m is a Vassiliev invariant of type m. The weight system W (V ) of V
will be the sum of the weight systems of the coe�cients of V (which makes
sense in the graded completion �W of W):

W (V ) =
∞∑
m=0

Wm(Vm) ∈ �W :

De�nition 2.3. A Vassiliev power series V =
∑
Vm˜m is called canonical if

each of its coe�cients Vm is canonical. Equivalently, if ˜deg is the operator
that multiplies every degree m diagram by ˜m and ZK˜

def= ˜deg ◦ZK; then V is
canonical i�

V = W (V ) ◦ ZK˜ :
Obviously, two canonical Vassiliev power series (or canonical Vassiliev

invariants) are equal i� their weight systems are equal. Sometimes, as is the
case in this paper, it is easier to verify equality of weight systems and then

2[B-N2, Pi2] di�er only by a normalization, and the incomplete perturbative Chern–Simons con-
structions [AS1, AS2, B-N1,Ko2] are conjectured to also give the same answer.
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use it to deduce the equality of the corresponding canonical invariants rather
than proving the equality of the invariants directly.

2.2. Examples of canonical Vassiliev power series. In this section we will
establish, through a sequence of examples, that the invariants appearing in
Theorem 1 are canonical.

Example 2.4. The type 0 invariant 1, whose value on all knots (having no dou-
ble points) is 1, is both a canonical type 0 Vassiliev invariant and a canonical
Vassiliev power series. Its weight system � is de�ned by

�(D) =
{
1 if degD = 0 (namely, if D = −→ is the empty diagram) ;

0 otherwise :

Kassel [Kas, Theorem 8.3, Chapter XX] and Le and Murakami [LM, The-
orem 10], using the techniques of Kohno [Koh] and Drinfel’d [Dr1, Dr2], have
shown that the Reshetikhin–Turaev [RT] invariant associated with a semi-
simple Lie algebra g and a representation V (and a metric t on g) is a canonical
Vassiliev power series when evaluated at q = e˜ and expanded in powers of
˜.3 (Both the framed version Jg; V and unframed version Ĵ g; V are canonical; for
the framed version, A has to replace Ar in the de�nitions of this section. For
the unframed version (at least when V is irreducible), simply notice that it can
always be obtained from the framed version by multiplying the Lie algebra by
an Abelian Lie algebra). We will use this crucial result twice, in Example 2.5
and in Example 2.6.

Example 2.5. By [Kas, LM], the invariant Ĵsl(2); � of Conjecture 1 is a canonical
Vassiliev power series, and hence the invariants bjm of Theorem 1 are canonical
of type m, and JJ is a canonical Vassiliev power series. The invariants ajm and
MM are not canonical as [d] depends on ˜.

Example 2.6. The HOMFLY polynomial, de�ned by the relations

H (c-component unlink) =
(
eN˜=2 − e−N˜=2
e˜=2 − e−˜=2

)c
;

is a canonical Vassiliev power series, as it is the Reshetikhin–Turaev invariant
associated with the Lie algebra sl(N ) in its de�ning representation.

Example 2.7. Divide the HOMFLY polynomial by N and take the limit N → 0.
The limit exists because the limit

lim
N→0

eN˜=2 − e−N˜=2
N

= ˜

3Thus they gave an a�rmative answer to problem 4.9 of [B-N2].
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exists. The result is a canonical Vassiliev power series C̃ satisfying

(9)

C̃ (c-component unlink) =

{
˜

e˜=2 −e−˜=2 if c = 1

0 otherwise :

Recall that the Conway polynomial C [Co, Kau] (considered as a polynomial
in ˜) is de�ned by the relations:

(10)

C (c-component unlink) =
{
1 if c = 1

0 otherwise :

Comparing (9) and (10), we see that the Conway polynomial itself is not a
canonical Vassiliev power series, but its renormalized reparametrized version

C̃(˜) =
˜

e˜=2 − e−˜=2 C(e
˜=2 − e−˜=2)

is a canonical Vassiliev power series.

Example 2.8. The Alexander polynomial, de�ned by A(z) = C(z1=2 − z−1=2),
is not a canonical Vassiliev power series, but it becomes canonical when mul-
tiplied by ˜

e˜=2−e−˜=2 and evaluated at z = e
˜ (as this product is C̃).

2.3. Products. The product (in the natural sense) of two Vassiliev power series
is a Vassiliev power series, and the weight system of such a product is the
product of the weight systems of the factors.

Proposition 2.9. The product of any two canonical Vassiliev power series is
a canonical Vassiliev power series.

Proof. It can be shown that the universal Vassiliev invariant ZK is ‘group-like’;
it satis�es �ZK(K) = ZK(K) ⊗ ZK(K) for any knot K . This property is an
immediate consequence of the Kontsevich integral formula for ZK described in
[Ko1, B-N2]4. Now, if V1;2 are canonical, then

(W (V1V2) ◦ ZK˜ )(K)
= (W (V1)W (V2))(ZK˜ (K)) [B-N2, exercise 3.10]

= (W (V1)⊗W (V2))(�ZK˜ (K)) Ar is a Hopf algebra

= (W (V1)⊗W (V2))(ZK˜ (K)⊗ ZK˜ (K)) ZK is group-like

= (W (V1) ◦ ZK˜ )(K)(W (V2) ◦ ZK˜ )(K)
= V1(K)V2(K) ;

and thus V1 · V2 is also canonical.
4A similar but di�erent statement is [LM, Theorem 4].
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It follows from Examples 2.4, 2.5, and 2.8 and from Proposition 2.9 that
both sides of equation (4) are canonical Vassiliev power series, and thus it is
enough to prove (4) (as well as the vanishing of bjm for j ¿ m) on the level
of weight systems. That is, we need to show that

WJJ · WC = � ; (11)

where WJJ is the weight system of JJ; WC is the weight system of C̃ (which
is equal to the weight system of C), and � is as in Example 2.4.

3. The Conway polynomial

3.1. The Conway weight system. The de�ning relations (10) of C, become
the following relations on the level of WC :

In other words, to compute WC of a given chord diagram D, “thicken” all chords
in D into bands, and count the number of cycles in the resulting diagram; if
it is greater than 0; WC(D) is 0, and otherwise it is 1. For example,

These two examples can be combined as in the following de�nition:

De�nition 3.1. An (m1; m2)-caravan or simply a caravan is the chord diagram
�m1Xm2 made of m1 single-hump-camels and m2 double-hump-camels, as in
Fig. 4. It is a chord diagram of degree m = m1 + 2m2.

Proposition 3.2.

WC(an(m1; m2)-caravan) =
{
1 if m1 = 0
0 otherwise .

3.2. The 2T relation. It is clear that WC is invariant under the “2T” or “slide”
relations shown in Fig.5. Indeed, after thickening the chords l and r, it is clear

Fig. 4. An (m1; m2)-caravan.
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Fig. 5. The 2T relations. In these �gures, ellipsis denote possible other chords, while a ‘no-
entry’ sign (	) means that no chords can end in the corresponding interval. For de�niteness,
we drew the ‘far’ end of the chord l left of the chord r, but it can be anywhere else in the
diagram.

Fig. 6. Deriving the relation 2T ′ by sliding l over r.

that it is possible to ‘slide’ l over r as in Fig. 6 without changing the topology
of the resulting diagram.
Let GmD be the set of all chord diagrams of degree m. The following

theorem5 is a characterization of the Conway weight system:

Theorem 2. If a map W : GmD → Z satis�es the 2T relations and the
same ‘initial condition’ as in proposition 3.2, then it is the Conway weight
system WC .

Proof. It is enough to show that modulo 2T relations, every chord diagram D
is equivalent to a caravan. If D has a pair of intersecting chords r1 and r2,
thicken both of them and slide all other chords out and to the left as in Fig. 7.
The result is that a double-hump-camel (an X diagram) is factored out. Use
induction to simplify the rest. If D has no pairs of intersecting chords, than it
must have a ‘small’ chord r, a chord whose endpoints are not separated by the
endpoints of any other chords. Thicken r, and slide all other chords over it and
to the left. The result is that a single-hump-camel (a � diagram) is factored
out. Again, use induction to simplify the rest.

Fig. 7. Factoring out a double-hump-camel. Slide all other chords out following the path
marked by a dotted line.

5P.M. Melvin commented that this is simply the classi�cation theorem for surfaces presented as
‘a box with handles’.
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Exercise 3.3. Show that the space of maps W : GmD → Z satisfying the
2T relations is spanned by the coe�cients of various powers of N in D 7→
Wgl(N );VN (D), where Wgl(N );VN (D) is the weight assigned to D using the Lie
algebra gl(N ) in its de�ning representation VN as in Sect. 4.1 below. Show
that such a map that also satis�es the framing independence relations has to
be proportional to WC .

3.3. The intersection graph and the intersection matrix. In this section, we
will use Theorem 2 to �nd a determinant formula for WC .

De�nition 3.4 (See also [CDL1, CDL2, CDL3]). Let D be a degree m chord
diagram. The labeled intersection graph LIG(D) of D will be the graph whose
vertices are the chords of D; numbered from 1 to m by the order in which they
appear along the ‘base line’ of D from left to right; and in which two vertices
are connected by an edge i� the corresponding two chords in D intersect. The
intersection matrix IM(D) of D is the anti-symmetric variant of the m × m
adjacency matrix of LIG(D) de�ned by

IM(D)ij =

 sign(i − j)
if chords i and j of D intersect (where chords
of D are numbered from left to right),

0 otherwise.

Example 3.5.

Example 3.6. The labeled intersection graph of an (m1; m2)-caravan is the dis-
connected union of m1 single vertices and m2 graphs like •—-•. Its intersection
matrix is block diagonal, with the blocks on the diagonal being m1 copies of
the 1× 1 zero matrix and m2 copies of the matrix ( 0 −1

1 0 ).

Exercise 3.7. Show that if the labeled intersection graph of a chord diagram is
connected, then the diagram is determined by its intersection matrix. Deduce
that in general the intersection matrix determines the class of diagram modulo
4T relations.

Hint 3.8. Start from a connected labeled intersection graph of a chord dia-
gram, remove one vertex so that the resulting graph is still connected (this is
possible!), use induction, and show that there is a unique way to re-install the
missing chord.

In the light of the above exercise, it is not surprising that one can �nd
a formula for the weight system of the Conway polynomial in terms of the
intersection matrix, as found in the theorem below. A mild generalization of
this theorem is in Sect. 6.1. Even though the exercise suggests it should be
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possible, we have not been able to �nd nice formulae for other weight systems
(beyond those of Sect. 6.1) in terms of the intersection matrix.

Theorem 3. For any chord diagram D;

WC(D) = det IM(D)

Proof. Let W : GmD → Z be de�ned by W (D) = det IM(D). By Theorem 2,
it is enough to prove that W satis�es the 2T relations and the initial conditions
of Proposition 3.2. The latter fact is trivial; simply compute the determinant of
the block diagonal matrix in Example 3.6. Let us now prove that W satis�es
the 2T relations. First, notice that W is ‘independent of the basepoint of D’.
That is, if the diagram D2 is obtained from the diagram D1 by moving the
left-most vertex of D1 to the right end,

then W (D1) = W (D2). Indeed, except for the labeling the intersection graphs of
D1 and D2 are the same, and so IM(D2) is obtained from IM(D1) by reversing
all the signs in the �rst row of IM(D1), re-installing it as row number j for
some j, and then doing exactly the same to the �rst column of IM(D1). The
e�ect of the row operations is to multiply det IM(D1) by some sign, and then
the column operations multiply by the same sign once again. The end result is
that det IM(D1) = det IM(D2), as required.

By repeating the above process a few times, we may assume that the chord
l in the 2T ′ relation is chord number 1, and so we need to prove that W (D1) =
W (D2) where D1(D2) is the diagram obtained by ignoring l2(l1) in the
�gure

In this �gure, it is clear that any other chord can intersect either none of
the chords l1; l1 and r, or exactly two of them. Using this and some case-
checking, it is clear that IM(D2) is obtained from IM(D1) by adding its jth
rows to its �rst row, and then doing the same column operation. Therefore
det IM(D1) = det IM(D2), as required. The same argument also proves the
2T ′′ relation.

In the following two exercises, we outline two alternative proofs of
Theorem 3:

Exercise 3.9. (Melvin) Let F be the surface obtained by thickening a chord
diagram D (that is, thicken all chords and the base line), and let @F be its



On the Melvin–Morton–Rozansky conjecture 117

boundary. WC(D) = 1 if H0(@F) = Z, and otherwise, WC(D) = 0. Now con-
sider the following long exact sequence:

H1(F)
p?−→ H1(F; @F)

�−→ H0(@F)
i?−→ H0(F) = Z −→ 0y  (

Poincar�e
duality

)
H 1(F)

We are interested in knowing when H0(@F) = Z, which is when p? is an
epimorphism, which is when  ◦ p? is an epimorphism. Show that in the
basis suggested by the chords of D,  ◦ p? is given by the matrix IM(D),
and use this to deduce Theorem 3. (We wish to thank C. Kassel for re-
minding us that the determinant of an anti-symmetric matrix is always non-
negative).

Exercise 3.10. Deduce theorem 3 from the fact (see e.g. [Kau, Chapter 7]) that
the Alexander polynomial of a knot K is given by det(z−1�− z�T ), where � is
Seifert pairing matrix for some Seifert surface for K , and �T is its transpose.

Hint 3.11. First, take the ‘pre-Seifert surface’ of a speci�c singular embedding
of a chord diagram as in:

Then resolve all the double points to overcrossings and undercrossings, while
extending the ‘pre-Seifert surface’ to a Seifert surface as in:

It is now easy to compute the 2m×2m Seifert pairing matrices of the resulting
surfaces in terms of the m×m intersection matrix of the original chord diagram
and the over/under choices at the double points.

3.4. The logarithm of the Conway weight system. Expanding det IM(D) as
a sum over permutations, we only need to consider those permutations of
chords(D) which map any chord to a di�erent chord intersecting it. Such
permutations can be considered as ‘walks’ on LIG(D). Let us introduce the
relevant terminology:

De�nition 3.12. A Hamilton cycle in LIG(D) is a directed cycle H of length
¿ 1 in LIG(D) containing no repeated vertices. For example; the graph in
example 3.5 has two Hamilton cycles of length 4, four of length 2, and none
of any other length. The descent d(H) of a Hamilton cycle H is the number
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of label-decreases along the cycle. For example; the cycle 1→ 2→ 4 ?→3 ?→1
in Example 3.5 has descent 2, corresponding to the two stared label-decreases.
A cycle decompositions H = ·∪H� is a cover of the vertex set of LIG(D) by
a collection of unordered disjoint Hamilton cycle; and the descent d(H) of H
is de�ned by d(H) =

∑
d(H�).

Expanding det IM(D), and taking account of signs, we �nd that

WC(D) =
∑

H= ·∪�H�
(−1)�H (−1)d(H) ; (12)

where �H is the permutation of the vertices of LIG(D) underlying H . Notice
that if H contains a cycle of odd length, then (−1)d(H) is odd under reversing
the orientation of that cycle, while (−1)�H does not change under that opera-
tion. Therefore, summation can be restricted to cycle decompositions containing
no odd cycles. For such cycle decompositions, (−1)�H = (−1)|H |, where |H |
is the number of cycles in H , and thus

WC(D) =
∑

H= ·∪�H�
(−1)|H |(−1)d(H) : (13)

Recall (see. e.g. [B-N2]) that the algebra structure on weight systems is
de�ned by

(W1 · W2)(D) =
∑

splittings
D=D1 ·∪D2

W1(D1) · W2(D2) : (14)

Using the power series expansion of the exponential function, we �nd that

(expW )(D) =
∑

unordered splittings
D= ·∪D�

∏
�
W (D�) ;

and if W depends on D only through LIG(D), we �nd

(expW )(D) =
∑

unordered splittings
LIG D= ·∪G�

∏
�
W (G�) ;

using the obvious de�nition for a splitting of a labeled graph.

Proposition 3.13.
(logWC)(D) = −∑

H
(−1)d(H) ;

where the sum extends over all Hamilton cycles H covering all the vertices
of LIG(D) (i.e., all cycle decompositions into a single cycle).

Proof. Simply exponentiate both sides of this equation and use the discussion
in the preceeding paragraph to recover (13).

4. Understanding WJJ

The purpose of this section is to understand WJJ , the weight system underlying
the invariant JJ . The invariant JJ , as de�ned in the statement of Theorem 1,
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has to do with the Lie algebra sl(2). So let us start by recalling the relation
between Lie algebras and weight systems.

4.1. Lie algebras and weight systems. Let g be a Lie algebra over some ground
�eld F, let t be a metric (ad-invariant symmetric non-degenerate quadratic
form) on g, and let V be a representation of g. Given this information,
one can construct a weight system [B-N1, B-N2]. Let us recall how this is
done.
Choose some basis {ga}dim g

a=1 of g. Let (tab) be the matrix corresponding to
the metric t in the basis {ga}; that is, tab = t(ga; gb). Let the matrix (tab) be
the inverse of the matrix (tab), and let B ∈ (V?⊗V )⊗(V?⊗V ) = End(V⊗V )
be given by

B =
dim g∑
a;b=1

tabga ⊗ gb :

We will represent B symbolically by the diagram

(15)

With this notation for B, one can view a chord diagram of degree m as a recipe
for how to contract m copies of B and get a tensor T(D) ∈ End V . This is
best explained by an example; see Fig. 8.
One can show (see [B-N1, B-N2]) that the resulting tensor T(D) is inde-

pendent of the choice of the basis of g (indeed, already B is independent of
that choice), is an intertwinner, and that the map D 7→ trT(D) satis�es the 4T
relation, and hence it descends to a map Wg; V :A→ F (the metric t is usually
suppressed from the notation). If V is an irreducible representation and C is

Ŵg; V = Wg⊕u (1); V̂ ;

where V̂ = V⊗√−C and √−C denotes the 1-dimensional representation of the
1-dimensional Lie algebra u(1), in which the unit norm generator acts by
multiplication by

√−C. Notice that the representations V and V̂ are in the same
vector space, and that Ŵg; V (D) can be computed using the same procedure as
in Fig. 8, only everywhere replacing B by B̂, where B̂ = B− C · I .

Fig. 8. The construction of T(D). The B components are as in (15), and pairs of spaces
surrounded by a box should be contracted. The two un-boxed spaces are V? and V , and
thus the result is a tensor in V? ⊗ V = End V .
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Recall from Sect. 2.2 that Jg; V (q) is the (framing dependent) Reshetikhin–
Turaev knot invariant associated with the algebra g and the representation V
(and the metric t), and that (when V is irreducible) Ĵg; V (q) = q−C ·writhe· Jg; V (q)
is its framing independent version. Consider both invariants as Vassiliev power
series in the formal parameter ˜ by substituting q = e˜.

Proposition 4.1. The weight system (in the sense of De�nition 2:2) of Jg; V is
Wg; V and (when V is irreducible) the weight system of Ĵ g; V is Ŵg; V .

Proof. The framing dependent part is in [Pi1]; it follows easily from the
relation R − (R21)−1 = ˜B + o(˜) satis�ed by the quantum Yang–Baxter
matrix R. The framing independent part follows from the fact [B-N2, Exercise
6.33] that the weight system corresponding to a direct sum of Lie algebras (and
tensor products of representations) is the product of the weight systems of the
algebras (and representations) involved, and from a direct (and very simple)
analysis of the weight system of exp(−˜C · writhe) and of the weight system
Wu (1);√−C (see [B-N2, Exercise 6.34]).

Let us now switch from general consideration to the particular case of
g = sl(2) and V = V�.

4.2. Understanding B̂. In one of the standard models6 of the representation V�,
it is spanned by vectors v0; : : : ; v�, satisfying

hvk = (�− 2k)vk ;

yvk = (k + 1)vk+1; and xvk = (�− k + 1)vk−1 ;

where

h =
(
1 0
0 −1

)
; x =

(
0 1
0 0

)
; and y =

(
0 0
1 0

)
(16)

is the standard basis of sl(2). Using the standard scalar product on sl(2)
(〈M1; M2〉 = tr (M1M2)), we have 1

2 〈h; h〉 = 〈x; y〉 = 〈y; x〉 = 1, with all other
scalar products between h; x, and y vanishing.
Therefore,

B̂ = y ⊗ x + x ⊗ y + 1
2h⊗ h− C · I ;

where C, the quadratic Casimir number of V�, is given by C = �(�+2)=2 (see
e.g. [Hu, Exercise 4 in Sect. 23]).

6Here and later in this paper, we follow the notation of [Hu] for Lie algebras and their
representations.
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By an explicit computation, we �nd that

B̂(vk ⊗ vk′) = (k + 1)(�− k ′ + 1)vk+1 ⊗ vk′−1
+ (�− k + 1)(k ′ + 1)vk−1 ⊗ vk′+1
+ 1

2 ((�− 2k)(�− 2k ′)− �(�+ 2))vk ⊗ vk′ (17)

= �(B+ + B− + I)(vk ⊗ vk′) + (terms of degree 0 in �) ; (18)

where

B+ =
∑
�=0;1

(−1)�B+� ; B+� (vk ⊗ vk′) = −(k + 1)vk+� ⊗ vk′−� ;

and

B− =
∑
�=0;1

(−1)�B−� ; B−� (vk ⊗ vk′) = −(k ′ + 1)vk−� ⊗ vk′+� :

Proof of part 1 of Theorem 1. Recall that B̂ = B̂(�) depends on �. We wish
to study this � dependence. The di�erent B̂(�)’s lie in di�erent spaces, but this
is not a serious problem: Let V̂∞ be the vector space spanned by in�nitely
many basis vectors {vk}∞k=0, and extend B̂(�) for all � to be elements of
End (V̂∞ ⊗ V̂∞) using the explicit formula (17). For a chord diagram D;
T(D) ∈ End (V̂∞) can be constructed as before as in Fig. 8 (no in�nite sums
occur!), and when restricted to V̂�, the new de�nition generalizes the old one.

Now that the di�erent B̂(�)’s can be compared, equation (18) shows that
B̂(�) is at most linear in � and thus T(D) is at most of degree m in �, where
m = degD. Taking the trace of an intertwinner (back again in V̂�!) multiplies
by �+ 1, the dimension of V̂�, and that factor is canceled by the denominator
in (3). Finally, by the general considerations of Sect. 2, the result on the level
of knot invariants follows from the level of weight systems.

4.3. Understanding WJJ . Clearly, in computing WJJ (D) for some degree m
chord diagram D, it is enough to consider B+ + B− + I , the coe�cient of
� in B̂. So let T (D) be the operator constructed as in Fig. 8, only with B+

+B−+I replacing B. As T(D) is an intertwinner, T(D) = WJJ (D)I . Similarly,
let T ′(D) be the same, only with B++B− replacing B, and let W ′

JJ (D)I satisfy
T ′(D) = W ′

JJ (D)I . It is easy to verify that WJJ = W
′
JJ · W1, where the product

is taken using the coproduct on A (the space spanned by chord diagrams),
and W1 ∈A? satis�es W1(D) = 1 for any chord diagram D.
Let D be a degree m chord diagram, and let (C)m=1 be the chords of D,

numbered from left to right as in de�nition 3.4. We are interested in computing
T (D)vk(1), or, almost equivalently, T ′(D)vk(1), for some non-negative integer
k(1). Looking again at Fig. 8 and at (18), we see that T ′(D)vk(1) can be
computed as follows:
• Sum over the 4m possible ways of marking the chords (C)m=1 of D by
signs s() ∈ {+;−} and numbers �() ∈ {0; 1}, corresponding to the choice
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between {B+0 ; B+1 ; B−0 ; B−1 }. Take the term marked by (s; �) with a sign∏
(−1)�().

• For each �xed choice of (s; �), add a term determined as follows: Set
k = k(1). ‘Feed’ the marked diagram D(s; �) with the vector vk on the left, and
push it right passing it through the vertices of D. Each vertex corresponds to
some simple operation, dictated by the marking on the chord C connected
to it. The operation is to add or subtract �() to k, and to multiply by either
1 or −(k + 1), using the current value of k for the multiplication. The end
result, as read at the right end of D(s; �), is proportional to the original vk(1);
our term is the corresponding constant of proportionality.
To make the above algorithm more precise and write the result in a closed

form, we need to make some de�nitions. First, number the vertices of D from
left to right, beginning with 1 and ending with 2m. Let i+ (i

−
 ) be the number

of the left (right) end of the chord C, and let the domain of C be

domC = (i+ ; i
−
 ] = {i ∈ N : i+ 5 i ¡ i− } :

Let k(i) be the value of k before passing the i’th vertex. It is easy to check
that

k(i) = k(1) +
∑

{ : i∈dom C}
s()�() :

Our notation is summarized by the following example:

(19)

Using this notation, the algorithm becomes the following formula:

W ′
JJ (D) = (−1)m

∑
s∈{+;−}m
�∈{0;1}m

m∏
=1
(−1)�()(1 + k(i s() ))

De�ne the ‘di�erence’ operators �=��() on polynomials P in the variables �(),
 = 1; : : : ; m by

�P
��()

= P|�()=1 − P|�()=0 : (20)

With this de�nition,

W ′
JJ (D) = (−1)m

∑
s∈{+;−}m

(
m∏
=1

�
��()

)
×
(

m∏
=1

(
1 + k(1) +

∑
{� : i s() ∈dom C�}

s(�)�(�)
))



On the Melvin–Morton–Rozansky conjecture 123

Notice that in the above formula we take the m’th partial di�erence (with
respect to �(1); : : : ; �(m)) of a polynomial of degree at most m in these vari-
ables. By an easy to prove partial di�erence analog of Taylor’s theorem, the
result is the coe�cient of �(1) · · · �(m) in

(−1)m ∑
s∈{+;−}m

m∏
=1

(
1 + k(1) +

∑
{� : i s() ∈dom C�}

s(�)�(�)
)
:

As only one �(�) can be picked up from any factor in the product over
 = 1; : : : ; m, this coe�cient is the (properly signed) number of choices of
an �(�) for each of these ’s, or, in other words,

W ′
JJ (D) = (−1)m

∑
s∈{+;−}m

∑
{�∈Sm:∀ i s() ∈dom C�()}

m∏
=1
s(�()) :

The condition in the summation over the permutation � can be made a little
stronger. Notice that if for a given  both i+ ∈ domC�() and i− ∈ domC�()
(that is, both ends of the chord C are within the domain of the chord �()),
then the terms with s() = (+) cancel the terms with s() = (−) in the above
sum, and thus summation can be restricted to the cases where this does not
happen. In these cases, for each � there is a unique choice for the s()’s for
which ∀ i s() ∈ domC�(). Denote this choice by s(�; ) and get

W ′
JJ (D) =

∑
{�∈Sm :∀ C intersects or equals C�()}

m∏
=1
(−s(�; )) :

Finally, if  = �(), then necessarily s() = (+) and thus s(�; ) = (+).
This means that the possibility ‘C equals C�()’ can be removed from the
above equation by multiplying it by W1. Thus,

WJJ (D) =
∑

{�∈Sm :∀ C intersects C�()}

m∏
=1
(−s(�; )) :

A moment’s reection shows that this formula proves the following propo-
sition:

Proposition 4.2. WJJ (D) is the permanent per IM(D) of the intersection matrix
IM(D) of D. (Recall that the permanent of a matrix is de�ned as a sum over
permutations in exactly the same way as the determinant; only without the
signs).

4.4. The logarithm of the JJ weight system

Proposition 4.3.
(log WJJ )(D) =

∑
H
(−1)d(H) ;

where the sum extends over all cycle decompositions of LIG(D) into a single
cycle.
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Proof. Expand per IM(D) as a sum over permutations just as in (12), and get

WJJ (D) =
∑

H=∪�H�
(−1)d(H) :

Now take the logarithm as in Proposition 3.13.

Comparing this with proposition 3.13, we �nd that log WC + log WJJ = 0,
proving equation (11) and concluding the proof of the Melvin–Morton–
Rozansky conjecture.

5. The MMR conjecture for general semi-simple Lie algebras

Let Ĵ = Ĵg; V�(K) ∈ Q(q) be the framing-independent Reshetikhin–Turaev
invariant of the knot K for the semi-simple Lie algebra g and the irreducible
representation V� of g of highest weight �. (The metric on g will be the Killing
form 〈 · ; · 〉). In this section we will prove an analog of Theorem 1 (and thus
of Conjecture 1) for Ĵ .
Choose a Cartan subalgebra h of g, denote by � the set of all roots of g in

h?, and by �+ the set of all positive roots. Let 〈 · ; · 〉 also denote the scalar
product on h? induced by the Killing form.
The following theorem is suggested by the same reasoning as in Sect. 1.4,

only replacing SU (2) by g. The main di�erence is that �RS(Aa) splits into a
product of dim g Abelian torsions, rather than just 3. The torsions along the
Cartan directions are still 1, while those along the negative roots pair with those
along the positive roots to give a product of Alexander polynomials (appearing
under the alias C̃, discussed in Examples 2.7 and 2.8):

Theorem 4. (Proven in Sects.5:1–5:4). Regarding Ĵ (K)(e˜)=dim V� as a power
series in ˜ whose coe�cients are polynomials in �; we have:
(1) The coe�cient Ĵm of ˜m is of degree at most m in �.
(2) If JJg is the power series in ˜ whose degree m coe�cient is the

homogeneous degree m piece of Ĵm; then

JJg(K)(˜) · ∏
�∈�+

C̃(K)(〈�; �〉˜) = 1 : (21)

(Since on a simple Lie algebra every invariant scalar product is a multiple
of the Killing form and the left-hand-side of (21) is clearly multiplicative
under taking the direct sum of Lie algebras, it follows that (21) still holds
when 〈 · ; · 〉 is replaced by an arbitrary invariant scalar product on g, in both
the C̃ part of the equation and in the de�nition of Ĵ .)

As in Sect. 2, it is enough to prove Theorem 4 on the level of weight
systems. Furthermore, in the light of Theorem 1, in order to prove (21) it is
enough to prove that

WJJ;g =
∏
�∈�+

WJJ ◦ 〈�; �〉deg ; (22)

where 〈�; �〉deg is de�ned as in De�nition 2.3.
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5.1. Lie-algebraic preliminaries. Let g = h ⊕ (⊕�∈�L�) be the root space
decomposition of g. Recall (e.g. [Hu]) that h is orthogonal to all the L�’s, that
L� is orthogonal to L� unless �+� = 0 and that one can �nd x� ∈ L�; y� ∈ L−�,
for all � ∈ � so that

Setting h� = [x�; y�], the triple {x�; y�; h�} spans a subalgebra of g iso-
morphic to sl(2) via the map (x�; y�; h�) 7→ (x; y; h), where {x; y; h} are
as in (16). (23)

〈x�; y�〉 = 2=〈�; �〉 : (24)

For any � ∈ h? and � ∈ � ⊂ h?, one has �(h�) = 2〈�; �〉=〈�; �〉. (25)

An additional property worth recalling is

For any �; � ∈ �; [L�; L�] ⊂ L�+� : (26)

Choose a total ordering ¡ of �+ for which �; � ¡ �+� for any �; � ∈ �+.
(For example, you can order the roots by the lengths of their projections on
some generic vector in the fundamental Weyl chamber). Let v0 ∈ V� be a high-
est weight vector; that is, a vector satisfying hv0 = �(h)v0 for all h ∈ h and
x�v0 = 0 for all � ∈ �+. Let Z+�+ = {∑�∈�+ k� �� : ∀� k� ∈ Z+} be the
semi-group of formal linear combinations of symbols ��, one for each � ∈ �+,
with non-negative integer coe�cients. De�ne a map { · } : Z+�+ → h?

by {∑ k� ��} =
∑
k��. Order Z+�+ lexicographically, that is, declare that∑

k� �� ¡
∑
k ′� �� i� for some �; k� ¡ k ′� and k� = k

′
� for all � ¡ �. For any

k ∈ Z+�+, set
vk =

( ∏
�∈�+

yk��
k�!

)
v0 ; (27)

where the k�’s are the coe�cients of k and the product is taken using a
decreasing order for the y�’s, so that, for example, if �¿�, then

vk =

· · · yk��
k�!

· · · y
k�
�

k�!
· · ·
 v0 : (28)

The action of g on V� is given by the following

Lemma 5.1. With the notation as above we have that

hvk = (�− {k})(h)vk ; (29)

y�vk = (k� + 1)vk+ �� +
∑

j∈Z+�+
j¿k+ ��

c1(�; k; j)vj (30)

x�vk =
2

〈�; �〉 〈�; �〉vk− �� +
∑

j∈Z+�+
j¿k− ��

c2(�; �; k; j)vj + O(1) ; (31)

where c1 does not depend on �; c2 is linear in �; and here and in the next
few paragraphs O(1) means terms independent of �.
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The importance of the precise form of the ‘remainder terms’ in the above
lemma will be better understood after reading the proof of Lemma 5.2. We
therefore postpone the proof of Lemma 5.1 to Sect. 5.4.

5.2. Understanding B̂. As in Sect. 4, the key to understanding WJJ;g is to �rst
understand B̂ ∈ End(V̂� ⊗ V̂�), where V̂� = V� ⊗

√−C and
√−C denotes the

1-dimensional representation of the 1-dimensional Lie algebra u(1), in which
the unit norm generator acts by multiplication by

√−C, and C is the quadratic
Casimir number of V�.

Let {hi}ri=1 be the arbitrary 〈 · ; · 〉-orthonormal basis of h. Using (24), we
�nd that

B̂ =
∑
�∈�+

〈�; �〉
2
(x� ⊗ y� + y� ⊗ x�) +

r∑
i=1
hi ⊗ hi − C · I :

Since the quadratic Casimir number C of the representation V� is 〈� + 2�; �〉,
where � = 1=2

∑
�∈�+ � is half the sum of the positive roots [Hu, Exercise 4

in Sect. 23], we also have that(
4∑
i=1
hi ⊗ hi − C

)
vk ⊗ vk′

= (((�− {k})⊗ (�− {k ′})) (∑ hi ⊗ hi)− C)vk ⊗ vk′ by Lemma 5.1

= (〈�− {k}; �− {k ′}〉 − 〈�; �+ 2�〉)vk ⊗ vk′ by Pythagoras’ Theorem

= −〈�; 2�+ {k}+ {k ′}〉vk ⊗ vk′ + O(1)
= − ∑

�∈�+
〈�; �〉(1 + k� + k ′�)vk ⊗ vk′ + O(1) expanding �; {k}; {k ′} :

Using the above formula and Lemma 5.1 we get that

B̂ =
∑
�∈�+

〈�; �〉(B+� + B−� + I) + Brest + O(1) (32)

where
B+� (vk ⊗ vk′) = −(k� + 1)

∑
�=0;1

(−1)�vk+� �� ⊗ vk′−� ��

B−� (vk ⊗ vk′) = −(k ′� + 1)
∑
�=0;1

(−1)�vk−� �� ⊗ vk′+� ��
Brest(vk ⊗ vk′) =

∑
j; j′∈Z+�+
j+j′¿k+k′

c3(�; k; k ′; j; j′)vj ⊗ vj′ ;

and where c3 (which is a simple combination of c1;2) is linear in �.
Since B̂ is at most linear in � we conclude the �rst part of Theorem 4 as

in Sect. 4.2.

5.3. Understanding WJJ;g. Reading Sect. 4.3 once again and looking at Fig. 8,
we see that WJJ;g(D) is a certain summation over all the possible ways of
labeling the chords of D by I; B+� ; B

−
� , or Brest.
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Lemma 5.2. In the summation making WJJ;g(D); terms containing a chord
labeled by Brest can be ignored.

Proof. This statement is best proven by an example. Let k(i) be the value of
k before passing the i’s vertex of D, as in (19) (but notice that now k(i) is in
Z+�+ rather than in Z+). Similarly, let k(7) be the value of k after passing
the sixth vertex (assuming, for the sake for this example, that D is the diagram
in (19)). As T(D) is an intertwinner, it has to be a multiple of the identity
and thus k(7) = k(1). On the other hand, by (32) (and remembering that in as
much as WJJ;g is concerned, we need not care about the O(1) term), we �nd
that

k(1) + k(3)= k(2) + k(4) ;

k(2) + k(5)= k(3) + k(6) ;

k(4) + k(6)= k(5) + k(7) :

Adding these inequalities, we get k(1) = k(7), and this inequality becomes
strict if any of the previous ones is strict. As we know that k(1)= k(7) cannot
be strict, we learn that none of the previous ones is, and thus we can ignore
Brest (as it would correspond to a strict inequality).

Therefore, in computing WJJ;g(D), it is enough to consider∑
�∈�+

〈�; �〉(B+� + B−� + I) : (33)

Nicely enough, the di�erent summands in (33) are ‘decoupled’. For each �; B±�
cares only about the � components of the k(i)’s, and changes only these com-
ponents. This amounts to saying that WJJ;g is the product of the weight systems
corresponding to the di�erent summands. Comparing the de�nition of B±� with
the de�nition of B± in Sect. 4, we �nd that we’ve proven (22) and hence
we’ve proven Theorem 4.

5.4. Proof of Lemma 5.1. (29) is just the well known statement that the
y�’s act as ‘lowering operators’. To prove (30), let us compute y�

∏
�(y

k�
� =k�!)

(using the same convention as in (28) for the ordering of products). To bring
this expression to the form of (27), we need to commute y� to its place, next
to the term yk�� =k�!. This done, the result is

· · ·y� y
k�
�

k�!
· · · = · · · (k� + 1) yk�+1�

(k� + 1)!
· · · ;

explaining the �rst term in (30). However, en route to its place, we needed to
commute y� with various y�’s for which � ¿ �. By (26) and the choice of
the order¡, such commutators are proportional to y’s with even bigger ’s,
explaining the remainder term in (30). To be fair, the resulting y’s also need
to be taken to their respective places, at the cost of some more commutators
proportional to even bigger y�’s, but that doesn’t disturb (30). A complete
argument can be given using the PBW theorem for the subalgebra of g gener-
ated by {y� : � ¿ �}, but we don’t feel this is necessary.
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The proof of (31) is a little harder, but goes along similar lines. Consider

an expression like x�
∏
�(y

k�
� =k�!). Commuting x� all the way to the right, we

get a product that kills the highest weight vector v0. Along the way, we pick
up three kinds of commutators:
(1) First, we pick some [x�; y�]’s, with � ¿ �. By (26), if � ¿ �; [x�; y�]

is proportional to some y, resulting in terms which are products of y’s, and
thus they fall into the third summand of (31), O(1).
(2) We then pick the term containing [x�; yk�� ], which, using (23), gives

∏
�¿�

y
k�
�

k�!
· 1
k�!

(
k�∑
i=1
yi−1� h�yk�−i�

)
· ∏
�¡�

y
k�
�

k�!
:

By (29), applied to v0 this is �(h�)vk− �� + O(1), and by (25), this is

2
〈�; �〉 〈�; �〉vk− �� + O(1) ;

explaining the �rst term in (31).
(3) Finally, we get terms containing [x�; y�]’s, with � ¡ �. By (26), if

�¡�, [x�; y�] is proportional to some x with ¡�. Such x are pushed to the
right recursively using the same procedure we’ve used so far, at the cost of
(at most) terms independent of � and terms linear in �, as in case (2) above,
but with vk− � (or vk− �� for even smaller �) replacing vk− ��. Such terms fall into
the middle term of (31).

6. Odds and ends

6.1. Immanants and the Conway polynomial. Theorem 3 and Proposition 4.2
show (in particular) that both the map D 7→ det IM(D) and the map D 7→
per IM(D) are weight systems. It is tempting to look for common general-
izations of these two weight systems. In this section, which may be of some
independent interest, we sketch just such a generalization. The basic idea is
that just where the character of the alternating representation of the symmet-
ric group Sm is used in the de�nition of det and the character of the trivial
representation is used in the de�nition of per, one can put the character of an
arbitrary representation of Sm:

De�nition 6.1. Let [�] denote the conjugacy class of permutation �. Let ZSm
be the free Z-module generated by the conjugacy classes of Sm. Let ZS? be
the graded Z-module whose degree m piece is ZSm. The natural embedding � :
Sm× Sn → Sm+n makes ZS? an algebra by setting [�][�] = [�(�; �)]: Identifying
ZS? with its dual by declaring each individual conjugacy class [�] to be of
unit norm, the product on ZX? becomes a co-product on ZS?? = ZS?.

Exercise 6.2. Verify that with the above product and co-product ZS? becomes
a graded commutative and co-commutative Hopf algebra, and that the primitive
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elements of ZS? are exactly the classes of cyclic permutations (and thus ZS?
has exactly one generator in each degree).

De�nition 6.3. (Compare with [Lit]) Let M be an m×m matrix. The universal
immanant imm M of M is de�ned by

immM =
∑
�∈Sm

[�]
m∏
i=1
Mi�i ∈ ZSm :

(Exactly the same as the de�nition of det M , only with [�] replacing (−1)�).
Composing the universal immanant with characters of arbitrary representa-

tions of Sm, one gets speci�c complex valued “immanants”. Taking the repre-
sentation to be the alternating representations, one gets det M . Taking it to be
the trivial representation, one gets per M . Much is known about many other
immanants; see e.g. [GJ, St1, St2].
In our context, we will be interested in the universal immanant of the

intersection matrix of a chord diagram. By abuse of notation, we will write
imm D for imm IM(D).

Theorem 5. (1) The map imm: {chord diagrams} → ZS? descends to a well
de�ned map imm: Ar → ZS?.

(2) The thus de�ned imm: Ar → ZS? is a morphism of Hopf algebras.
(3) The image of adjoint map imm? : ZS?? = ZS? → Ar? = W is the

subalgebra of W generated by the weight systems of the coe�cients of the
Conway polynomial.

Proof. (sketch) Let Lm be the degree of m piece of logWC , and let Cm ∈ Sm
be a cyclic permuation. Re-interpreted in our new language, Proposition 3.13
is simply the statement imm?[Cm] = −Lm and equation (14) becomes the
multiplicativity of imm?. It follows that the image of imm? is equal to the
subalgebra of the algebra of functionals on chord diagrams generated by the
Lm’s. As Lm is known to be a weight system and the product of two weight
systems is again a weight system, it follows that the image of imm? is in W
and thus imm descends to Ar . Finally notice that the algebra generated by the
Lm’s is equal to the algebra generated by the weight systems of the coe�cients
of the Conway polynomial.

It is easy to check (or deduce from Theorem 5) the imm?[�] = 0 if � has
a cycle of an odd length. By evaluating imm?[�] on chord diagrams whose
intersection graph is a union of polygons of an even number of sides, one
can see that imm? restricted to permutations with no cycles or odd length is
injective.

Exercise 6.4. Check that if IM(D) is replaced by IM(D)+�I for any non-zero
constant � and Ar and W are replaced by A and A? in the statement of
theorem 5, the theorem remains valid, with the unique element of G1A?

adjoined to the generators of the image of imm?.
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6.2. A curious formula for the weight system of the colored Jones polyno-
mial. (A sketch). The key to the understanding of WJJ in Sect. 4.3 was to
rewrite (17) in a nicer form, equation (18). There is an even nicer form,
however, that also includes the terms independent of �: (suppressing ‘⊗’
symbols)

B̂(vkvk′) = �
(
(k + 1) (vk+1vk′−1 − vkvk′)︸ ︷︷ ︸

part 1

− (k ′ + 1)× (vkvk′ − vk−1vk′+1)︸ ︷︷ ︸
part 2

+vkvk′
)

+ (k − k ′) (vk+1vk′−1 − vk−1vk′+1)︸ ︷︷ ︸
part 3

+vk+1vk′−1 + vk−1vk′+1

− kk ′ (vk+1vk′−1 − 2vkvk′ + vk−1vk′+1)︸ ︷︷ ︸
part 4

:

Following roughly the same steps as in Sect. 4.3, parts 1 and 2 of the above
equation become ‘derivatives’ like in (20). Part 3 also becomes a derivative,
but with an additional factor of 2 as in it ‘�k = 2’. Part 4 becomes a ‘sec-
ond derivative’, and all other parts remain ‘0th order’. These ‘di�erentiations’
mean that we want to look at the coe�cients of certain monomials in the
�’s of Sect. 4.3, and when all the dust settles we remain with the following
(completely self-contained) formula:

Theorem 6. Let D be a chord diagram of degree m; and let i± and domC
be as in Sect. 4:3. Let �() be commuting indeterminates; and let

k(i) =
∑

{:i∈dom C}
�() :

Then WĴ (D) (the weight of D in the weight system of the framing-independent
Reshetikhin–Turaev invariant of sl(2) in the (�+1)st dimensional representa-
tion) is the term independent of all the �()’s in

(�+ 1)
m∏
=1

(
(�+ 2)

(
1 +

k(i+ )− k(i− )
�()

)
− 2 k(i

+
 )k(i

−
 )

�()2

)
:

Exercise 6.5. Deduce the equality WJJ (D) = per IM(D) from the above
theorem.

Arguing similarly but starting from the ‘framed’ B = x⊗y+y⊗x+h⊗h=2,
one �nds that the weight of D in the weight system of the framing-dependent
Reshetikhin–Turaev invariant of sl(2) in the (�+1)st dimensional representation
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is the term independent of all the �()’s in

(�+ 1)
m∏
=1

(
(�+ 2)

(
1 +

�
2
+
k(i+ )− k(i− )

�()

)
− 2 k(i

+
 )k(i

−
 )

�()2

)
:

Remark 6.6. Experimentally (on a computer) we found that the above formulas
appear to be (by far) the best method for computing the corresponding weight
systems. But, in some sense, we do not understand them very well:
(1) Our only proof that the above formulas satisfy the 4T relation is by

tracing them back to sl(2). It would be interesting to �nd a direct proof.
(2) We do not know how to generalize these formulas to other Lie algebras.
(3) We do not know how to view these formulas in the context of

Rozansky’s work. More speci�cally, it should be possible to push exer-
cise 6.5 a little further and get formulas for the ‘sub-diagonal’ invariants
JJn = �mbm−n;m˜m (for small n), and it should be possible to expand (6)
in powers of 1=k using Feynman diagrams. The 1=kn term in (6) should equal
JJn. In this paper we dealt with the case n = 0 but we don’t know how to
deal with higher values of n.

6.3. A further generalization. If, as conjectured in [B-N2], all weight systems
come from Lie algebras, then there should be a way of stating and proving
Theorem 4 without any reference to Lie algebras. We do not have a pre-
cise analog of the statement; without a Lie algebra, it is not clear what � is
and in which space it should be. However, on the level of group representa-
tions,  nV� = Vn�+ (representations of a smaller highest weight), and thus the
Adams operations  n, which have a generalization to arbitrary weight systems
[B-N2], can play a role similar to ‘scaling �’. We thus arrive at the following
conjecture7:

Conjecture 2. Let W be an arbitrary weight system; let n be an integer; and
let Ŵ n = ̂ n?W be the deframed version (as in [B-N2, Exercise 3.16]) of
W ◦  n; where  n is the nth Adams operation on chord diagrams. Then
(1) For any �xed chord diagram D of degree m; Ŵ n(D) is a polynomial

in n of degree at most m.
(2) Let Ŵ n;m(D) be the degree m piece of Ŵ n(D). Then the weight system

Ŵ n;m is in the algebra generated by the coe�cients of the Conway polynomial.

A similar statement should hold on the level of knot invariants, using the
‘0-framing’ of a knot for the Adams operations.

Acknowledgement. We wish to thank N. Bergeron, P. Diaconis, C. Kassel, R.C. Kirby,
H.R. Morton, L. Rozansky, S. Sawin, C.H. Taubes and V.G. Turaev for their many useful
comments. Especially we wish to thank D. Kazhdan for his critical reading and P.M. Melvin
for suggesting Exercise 3.9 and the use of permanents.

7Added in proof: This conjecture was proven in November 1995 by A. Kricher, B. Spence, and
I. Aitchison. See their Melbourne University and Queen Marry and West�eld College preprint,
Cabling the Vassiliev Invariants.
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1 Introduction

1.1 Zeilberger meets Jones

The colored Jones function of a framed knot K in 3–space

JK : N −→ Z[q±1/4]

is a sequence of Laurent polynomials that essentially measures the Jones poly-
nomial of a knot and its cables. This is a powerful but not well understood
invariant of knots. As an example, the colored Jones function of the 0–framed
right-hand trefoil is given by

JK(n) =
q1/2−n/2

1 − q−1

n−1
∑

k=0

q−kn(1 − q−n)(1 − q1−n) . . . (1 − qk−n).

Here JK(n) denotes the Jones polynomial of the 0–framed knot K colored
by the n–dimensional irreducible representation of sl2 , and normalized by
Junknot(n) = (qn/2 − q−n/2)/(q1/2 − q−1/2).

Only a handful of knots have such a simple formula. However, as we shall see
all knots have a multisum formula. Another way to look at the colored Jones
function of the trefoil is via the following 3–term recursion formula:

JK(n) =
qn−1 + q4−4n − q−n − q1−2n

q1/2(qn−1 − q2−n)
JK(n − 1) +

q4−4n − q3−2n

q2−n − qn−1
JK(n − 2)

with initial conditions: JK(0) = 0, JK(1) = 1.

In this paper we prove that the colored Jones function of any knot satisfies a
linear recursion relation, similar to the above one. For a few knots this was
obtained by Gelca and his colleagues [13, 14]. (In [13] a more complicated
5–term recursion formula for the trefoil was established).

Discrete functions that satisfy a nontrivial difference recursion relation are
known by another name: they are q–holonomic.

Holonomic functions were introduced by IN Bernstein [2, 3] and M Saito. The
latter coined the term holonomic, that is a function which is entirely determined
by the law of its differential equation, together with finitely many initial condi-
tions. Bernstein used holonomic functions to prove a conjecture of Gelfand on
the analytic continuation of operators. Holonomicity and the related notion of
D–modules are a tool in studying linear differential equations from the point
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of view of algebra (differential Galois theory), algebraic geometry, and cate-
gory theory. For an excellent introduction on holonomic functions and their
properties, see [5] and [7].

Our approach to the colored Jones function owes greatly to Zeilberger’s work.
Zeilberger noticed that the abstract notion of holonomicity can be applied to
verify, in a systematic and computerized way, combinatorial identities among
special functions, [35] and also [33, 28].

A starting point for Zeilberger, the so-called operator approach, is to replace
functions by the recursion relations that they satisfy. This idea leads in a
natural way to noncommutative algebras of operators that act on a function,
together with left ideals of annihilating operators.

To explain this idea concretely, consider the operators E and Q which act on
a discrete function (that is, a function of a discrete variable n) f : N −→ Z[q±]
by:

(Qf)(n) = qnf(n) (Ef)(n) = f(n + 1).

It is easy to see that EQ = qQE , and that E,Q generate a noncommutative q–
Weyl algebra generated by noncommutative polynomials in E and Q, modulo
the relation EQ = qQE :

A = Z[q±]〈Q,E〉/(EQ = qQE)

Given a discrete function f as above, consider the recursion ideal If = {P ∈
A |Pf = 0}. It is easy to see that it is a left ideal of the q–Weyl algebra. We
say that f is q–holonomic iff If 6= 0.

In this paper we prove that:

Theorem 1 The colored Jones function of every knot is q–holonomic.

Theorem 1 and its companion Theorem 2 are effective, as their proof reveals.

Theorem 2

(a) The E–order of the colored Jones function of a knot is bounded above by

an exponential function in the number of crossings.

(b) For every knot K there exist a natural number n(K), such that n(K) initial

values of the colored Jones function determine the colored Jones function of K .

In other words, the colored Jones function is determined by a finite list. n(K)
is bounded above by an exponential function in the number of crossings.
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Computer calculations are given in Section 6. In relation to (b) above, notice
that the q–Weyl algebra is noetherian; thus every left ideal is finitely generated.
The theorem states more, namely that the we can compute (via elimination) a
basis for the recursion ideal of the colored Jones function of a knot.

Let us end the introduction with some remarks.

Remark 1.1 The colored Jones function can be defined for every simple Lie
algebra g. Our proof of Theorem 1 generalizes and proves that the g–colored
Jones function of a knot is q–holonomic (except for G2 ), see Theorem 6 below.

Remark 1.2 The colored Jones function can be defined for colored links in
3–space. Our proof of Theorem 1 proves that the colored Jones function of a
link is q–holonomic in all variables, see Section 3.1.

Remark 1.3 It is well known that computing J(n) for any fixed n > 1 is a
#P–complete problem. Theorem 1 claims that this sequence of #P–complete
problems is no worse than any of its terms.

Remark 1.4 The proof of Theorem 1 indicates that many statistical me-
chanics models, with complicated partition functions that depend on several
variables, are holonomic, provided that their local weights are holonomic. This
observation may be of interest to statistical mechanics.

1.2 Synonymous notions to holonomicity

We have chosen to phrase the results of our paper mostly using the high-school
language of linear recursion relations. We could have used synonymous terms
such as linear q–difference equations, or q–holonomic functions, or D–modules,
or maximally overdetermined systems of linear PDEs which is more common in
the area of algebraic analysis, see for example [24]. The geometric notion of D–
modules gives rise to geometric invariants of knots, such as the characteristic
variety introduced by the first author in [11]. The characteristic variety is
determined by the colored Jones function of a knot and is conjectured to be
isomorphic to the sl2(C)–character variety of a knot, viewed from the boundary
torus. This, so-called AJ Conjecture, formulated by the first author is known
to hold for all torus knots (due to Hikami, [19]), and infinitely many 2–bridge
knots (due to the second-author, [21]).

Thus, there is nontrivial geometry encoded in the linear recursion relations of
the colored Jones function of a knot.
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1.3 Plan of the proof

In Section 2, we discuss in detail the notion of a q–holonomic function. We give
examples of q–holonomic functions (our building blocks), together with rules
that create q–holonomic functions from known ones.

In Section 3, we discuss the colored Jones function of a link in 3–space, using
state sums associated to a planar projection of the link. The colored Jones
function is built out of local building blocks (namely, R–matrices) associated
to the crossings, which are assembled together in a way dictated by the planar
projection. The main observation is that the R–matrix is q–holonomic in all
variables, and that the assembly preserves q–holonomicity. Theorem 1 follows.
As a bonus, we present the colored Jones function as a multisum of a q–proper
hypergeometric function.

In Section 4 we show that the cyclotomic function of a knot (a reparametriza-
tion of the colored Jones function, introduced by Habiro, with good integrality
properties) is q–holonomic, too. We achieve this by studying explicitly a change
of basis for representations of sl2 .

In Section 5 we give a theoretical review about complexity and computability of
recursion relations of q–holonomic functions, following Zeilberger. These ideas
solve the problem of finding recursion relations of q–holonomic functions which
are given by multisums of q proper hypergeometric functions. It is a fortunate
coincidence (?) that the colored Jones function can be presented by such a
multisum, thus we can compute its recursion relations. Theorem 2 follows.

Section 6 is a computer implementation of the previous section, where we use
Mathematica packages developed by A Riese.

In Section 7 we discuss the g–colored Jones function of a knot, associated to a
simple Lie algebra g. Our goal is to prove that the g–colored Jones function is
q–holonomic in all variables (see Theorem 6). In analogy with the g = sl2 case,
we need to show that the local building block, the R–matrix, is q–holonomic in
all variables. This is a trip to the world of quantum groups, which takes up the
rest of the section, and ends with an appendix which computes (by brute-force)
structure constants of quantized enveloping Lie algebras in the rank 2 case.

1.4 Acknowledgements
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2 q–holonomic and q–hypergeometric functions

Theorem 1 follows from the fact that the colored Jones function can be built
from elementary blocks that are q–holonomic, and the operations that patch
the blocks together to give the colored Jones function preserve q–holonomicity.

IN Bernstein defined the notion of holonomic functions f : Rr −→ C, [2, 3].
For an excellent and complete account, see Bjork [4]. Zeilberger’s brilliant idea
was to link the abstract notion of holonomicity to the concrete problem of algo-
rithmically proving combinatorial identities among hypergeometric functions,
see [35, 33] and also [28]. This opened an entirely new view on combinatorial
identities.

Sabbah extended Bernstein’s approach to holonomic functions and defined the
notion of a q–holonomic function, see [31] and also [6].

2.1 q–holonomicity in many variables

We briefly review here the definition of q–holonomicity. First of all, we need an
r–dimensional version of the q–Weyl algebra. Consider the operators Ei and
Qj for 1 ≤ i, j ≤ r which act on discrete functions f : Nr −→ Z[q±] by:

(Qif)(n1, . . . , nr) = qnif(n1, . . . , nr)

(Eif)(n1, . . . , nr) = f(n1, . . . , ni−1, ni + 1, ni+1, . . . , nr).

It is easy to see that the following relations hold:

QiQj = QjQi EiEj = EjEi

QiEj = EjQi for i 6= j EiQi = qQiEi
(Relq)

We define the q–Weyl algebra Ar to be a noncommutative algebra with pre-
sentation

Ar =
Z[q±1]〈Q1, . . . , Qr, E1, . . . , Er〉

(Relq)
.
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Given a discrete function f with domain Nr or Zr and target space a Z[q±1]–
module, one can define the left ideal If in Ar by

If := {P ∈ Ar|Pf = 0}.

If we want to determine a function f by a finite list of initial conditions, it does
not suffice to ensure that f satisfies one nontrivial recursion relation if r ≥ 2.
The key notion that we need instead is q–holonomicity.

Intuitively, a discrete function f : Nr −→ Z[q±] is q–holonomic if it satisfies
a maximally overdetermined system of linear difference equations with polyno-
mial coefficients. The exact definition of holonomicity is through homological
dimension, as follows.

Suppose M = Ar/I , where I is a left Ar –module. Let Fm be the sub-space of
Ar spanned by polynomials in Qi, Ei of total degree ≤ m. Then the module
Ar/I can be approximated by the sequence Fm/(Fm ∩ I),m = 1, 2, .... It
turns out that, for m >> 1, the dimension (over the fractional field Q(q)) of
Fm/(Fm∩ I) is a polynomial in m whose degree d(M) is called the homological
dimension of M .

Bernstein’s famous inequality (proved by Sabbah in the q–case, [31]) states
that d(M) ≥ r , if M 6= 0 and M has no monomial torsions, ie, any non-trivial
element of M cannot be annihilated by a monomial in Qi, Ei . Note that the
left Ar–module Mf := Ar · f ∼= Ar/If does not have monomial torsion.

Definition 2.1 We say that a discrete function f is q–holonomic if d(Mf ) ≤ r .

Note that if d(Mf ) ≤ r , then by Bernstein’s inequality, either Mf = 0 or
d(Mf ) = r . The former can happen only if f = 0.

Although we will not use in this paper, let us point out an alternative cohomo-
logical definition of dimension for a finitely generated Ar module M . Let us
define

c(M) := min{j ∈ N | ExtjAr
(M,Ar) 6= 0}.

Then the homological dimension d(M) := 2r − c(M) equals to the dimension
d(M) defined above.

Closely related to Ar is the q–torus algebra Tr with presentation

Tr =
Z[q±1]〈Q±1

1 , . . . , Q±1
r , E±1

1 , . . . , E±1
r 〉

(Relq)
.

Elements of Tr acts on the set of functions with domain Zr , but not on the set
of functions with domain Nr . Note that Tr is simple, but Ar is not. If I is a
left ideal of Tr then the dimension of Tr/I is equal to that of Ar/(I ∩ Ar).
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2.2 Assembling q–holonomic functions

Despite the unwelcoming definition of q–holonomic functions, in this paper we
will use not the definition itself, but rather the closure properties of the set of
q–holonomic functions under some natural operations.

Fact 0

• Sums and products of q–holonomic functions are q–holonomic.

• Specializations and extensions of q–holonomic functions are q–holonomic.
In other words, if f(n1, . . . , nm) is q–holonomic, the so are the functions

g(n2, . . . , nm) :=f(a, n2, . . . , nm)

and h(n1, . . . , nm, nm+1) :=f(n1, . . . , nm).

• Diagonals of q–holonomic functions are q–holonomic. In other words, if
f(n1, . . . , nm) is q–holonomic, then so is the function

g(n2, . . . , nm) := f(n2, n2, n3, . . . , nm).

• Linear substitution. If f(n1, . . . , nm) is q–holonomic, then so is the func-
tion, g(n′

1, . . . , n
′
m′), where each n′

j is a linear function of ni .

• Multisums of q–holonomic functions are q–holonomic. In other words, if
f(n1, . . . , nm) is q–holonomic, the so are the functions g and h, defined
by

g(a, b, n2, . . . , nm) :=
b

∑

n1=a

f(n1, n2, . . . , nm)

h(a, n2, . . . , nm) :=

∞
∑

n1=a

f(n1, n2, . . . , nm)

(assuming that the latter sum is finite for each a).

For a user-friendly explanation of these facts and for many examples, see [35, 33]
and [28].

2.3 Examples of q–holonomic functions

Here are a few examples of q–holonomic functions. In fact, we will encounter
only sums, products, extensions, specializations, diagonals, and multisums of
these functions. In what follows we usually extend the ground ring Z[q±1] to
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the fractional field Q(q1/D), where D is a positive integer. We also use v to
denote a root of q , v2 = q .

For n, k ∈ Z, let

{n} := vn − v−n, [n] :=
{n}

{1}
, [n]! :=

n
∏

i=1

[i], {n}! :=

n
∏

i=1

{i}

{n}k :=

{

∏k
i=1{n − i + 1}, if k ≥ 0

0 if k < 0

[

n
k

]

:=

{

{n}k

{k}k
if k ≥ 0

0 if k < 0
.

The first four functions are q–holonomic in n, and the last two, as well as the
delta function δn,k , are q–holonomic in both n and k .

2.4 q–hypergeometric functions

Definition 2.2 A discrete function f : Zr −→ Q(q) is q–hypergeometric iff
Eif/f ∈ Q(q, qn1 , . . . , qnr) for all i = 1, . . . , r .

In that case, we know generators for the annihilation ideal of f . Namely, let
Eif/f = (Ri/Si)|Qi=qni for Ri, Si ∈ Z[q,Q1, . . . , Qr]. Then, the annihilation
ideal of f is generated by SiEi − Ri .

All the functions in the previous subsections are q–hypergeometric.

Unfortunately, q–hypergeometric functions are not always q–holonomic. For
example, (n, k) −→ 1/[n2 + k2]! is q–hypergeometric but not q–holonomic.
However, q–proper-hypergeometric functions are q–holonomic. The latter were
defined by Wilf–Zeilberger as follows, [33, Sec.3.1]:

Definition 2.3 A proper q–hypergeometric discrete function is one of the form

F (n,k) =

∏

s(As; q)asn+bs.k+cs
∏

t(Bt; q)utn+vt.k+wt

qA(n,k)ξk (1)

where As, Bt ∈ K = Q(q), as, ut are integers, bs,ks are vectors of r integers,
A(n,k) is a quadratic form, cs, ws are variables and ξ is an r vector of elements
in K. Here, as usual

(A; q)n :=

n−1
∏

i=0

(1 − Aqi).
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3 The colored Jones function for sl2

3.1 Proof of Theorem 1 for links

We will formulate and prove an analog of Theorem 1 (see Theorem 3 below)
for colored links. Our proof will use a state-sum definition of the colored Jones
function, coming from a representation of the quantum group Uq(sl2), as was
discovered by Reshetikhin and Turaev in [29, 32].

Suppose L is a framed, oriented link of p components. Then the colored Jones
function JL : Np → Z[q±1/4] = Z[v±1/2] can be defined using the representa-
tions of braid groups coming from the quantum group Uq(sl2).

Theorem 3 The colored Jones function JL is q–holonomic.

Proof We will present the definition of JL in the form most suitable for us.
Let V (n) be the n–dimensional vector space over the field Q(v1/2) with basis
{e0, e1, . . . , en−1}, with V (0) the zero vector space.

Fix a positive integer m. A linear operator

A : V (n1) ⊗ · · · ⊗ V (nm) → V (n′
1) ⊗ · · · ⊗ V (n′

m)

can be described by the collection

Ab1,...,bm
a1,...,am

∈ Q(v1/2),

where

A(ea1
⊗ · · · ⊗ eam) =

∑

b1<n′

1
,...,bm<n′

m

Ab1,...,bm
a1,...,am

eb1 ⊗ · · · ⊗ ejm .

We will call (a1, . . . , am, b1, . . . , bm) the coordinates of the matrix entry Ab1,...,bm
a1,...,am

of A, with respect to the given basis.

The building block of our construction is a pair of functions f± : Z5 → Z[v±1/2],
given by

f+(n1, n2;a, b, k)

:= (−1)kv−((n1−1−2a)(n2−1−2b)+k(k−1))/2

[

b + k
k

]

{n1 − 1 + k − a}k,

f−(n1, n2;a, b, k)

:= v((n1−1−2a−2k)(n2−1−2b+2k)+k(k−1))/2

[

a + k
k

]

{n2 − 1 + k − b}k.
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The reader should not focus on the actual, cumbersome formulas. The main
point is that:

Fact 1

• f+ and f− are q–proper hypergeometric and thus q–holonomic in all
variables.

For each pair (n1, n2) ∈ N2 we define two operators

B+(n1, n2),B−(n1, n2) : V (n1) ⊗ V (n2) → V (n2) ⊗ V (n1)

by

(B+(n1, n2))
c,d
a,b := f+(n1, n2; a, b, c − b) δc−b,a−d,

(B−(n1, n2))
c,d
a,b := f+(n1, n2; a, b, b − c) δc−b,a−d,

where δx,y is Kronecker’s delta function. Although the coordinates (a, b, c, d)

of the entry B±(n1, n2))
c,d
a,b of the operators B±(n1, n2) are defined for 0 ≤

a, b ≤ n1 and 0 ≤ c, d ≤ n2 , the above formula makes sense for all non-negative
integers a, b, c, d. This will be important for us. The following lemma is obvious.

Lemma 3.1 The discrete functions B±(n1, n2)
c,d
a,b are q–holonomic with re-

spect to the variables (n1, n2, a, b, c, d).

If we identify V (n) with the simple n–dimensional Uq(sl2)–module, with ei, i =
0, . . . , n − 1 being the standard basis, then B+(n1, n2),B−(n1, n2) are respec-
tively the braiding operator and its inverse acting on V (n1)⊗V (n2). This fact
follows from the formula of the R–matrix, say, in [17, Chapter 3]. In particular,

B−(n1, n2) is the inverse of B+(n1, n2). If one allows a, b, c, d in B±(n1, n2)
c,d
a,b to

run the set N, then B±(n1, n2)
c,d
a,b define the braid action on the Verma module

corresponding to V (n1), V (n2).

Let Bm be the braid group on m strands, with standard generators σ1, ..., σm−1 :

σi = ... ...

i+11 mi

For each braid β ∈ Bm and (n1, . . . , nm) ∈ Nm , we will define an operator
τ(β) = τ(β)(n1, . . . , nm),

τ(β) : V (n1) ⊗ · · · ⊗ V (nm) → V (nβ̄(1)) ⊗ · · · ⊗ V (nβ̄(m)),
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where β̄ is the permutation of {1, . . . ,m} corresponding to β . The operator
τ(β) is uniquely determined by the following properties: For an elementary
braid σi , we have:

τ(σ±1
i ) = id⊗i−1 ⊗B±(ni, ni+1) id⊗m−i−1 .

In addition, if β = β′β′′ , then τ(β) := τ(β′)τ(β′′). It is well-known that τ(β)
is well-defined.

From Fact 0 and Lemma 3.1 it follows that

Lemma 3.2 For any braid β ∈ Bm , the discrete function τ(β)(n1, . . . , nm),
considered as a function with variables n1, . . . , nm and all the coordinates of

the matrix entry, is q–holonomic.

Let K be the linear endomorphism of V (n1) ⊗ · · · ⊗ V (nm) defined by

K(ei1 ⊗ · · · ⊗ eim) = vn1+···+nm−2i1−···−2im−m ei1 ⊗ · · · ⊗ eim .

The inverse operator K−1 is well-defined.

Corollary 3.3 For any braid β ∈ Bm , the discrete function

τ̃(β) := τ(β)(n1, . . . , nm) × K−1

is q–holonomic in n1, . . . , nm all all of the coordinates of the matrix entry.

In general, the trace of τ̃ (β) is called the quantum trace of τ(β). Although the
target space and source space maybe different, let us define the quantum trace
of τ(β)(n1, . . . , nm)) by

trq(β)(n1, . . . , nm) :=
∑

1≤i≤m

∑

0≤ai<ni

τ̃(β)(n1, . . . , nm)a1,...,am
a1,...,am

.

It follows from Fact 0 that trq(β)(n1, . . . , nm) is q–holonomic in n1, . . . , nm .
Restricting this function on the diagonal defined by ni = nβ̄i, i = 1, . . . ,m, we
get a new function Jβ of p variables, where p is the number of cycles of the
permutation β̄ .

Suppose a framed link L can be obtained by closing the braid β . Then the
colored Jones polynomial JL is exactly Jβ . Hence Theorem 1 follows.

Remark 3.4 In general, JK(n) contains the fractional power q1/4 . If K has
framing 0, then JK′(n) := JK(n)/[n] ∈ Z[q±1]. See [20].
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Remark 3.5 There is a variant of the colored Jones function JL′ of a colored
link L′ where one of the components is broken. If β is a braid as above, let us
define the broken quantum trace tr′β by

tr′q(β)(n1, . . . , nm) :=
∑

2≤i≤m

∑

0≤ai<ni

τ̃(β)(n1, . . . , nm)a1,...,am
a1,...,am

|a1=0.

Restricting this function on the diagonal defined by ni = nβ̄i, i = 1, . . . ,m, we
get a new function Jβ′ of p variables, where p is the number of cycles of the
permutation β̄ .

If L′ denotes the broken link which is the closure of all but the first strand of
β , then the colored Jones function JL′ of L′ satisfies JL′ = Jβ′ .

If L denotes the closure of the broken link L′ , then we have:

JL = JL′ × [λ]

where λ is the color of the broken component of L′ .

3.2 A multisum formula for the colored Jones function of a

knot

In this section we will give explicit multisum formulas for the sl2–colored Jones
function of a knot. The calculation here is computerized in Section 6.

Consider a word w = σǫ1
i1

. . . σǫc

ic
of length m written in the standard generators

σ1, . . . , σs−1 of the braid group Bm with m strands, where ǫi = ±1 for all i.

w gives rise to a braid β ∈ Bm , and we assume that the closure of β is a knot
K . Let K′ denote long knot which is the closure of all but the first strand of β .

A coloring of K′ is a tuple k = (k1, . . . , kc) of angle variables placed at the
crossings of K′ .

Lemma 3.6 There is a unique way to extend a coloring k of K′ to a coloring

of the crossings and part-arcs of K′ such that

• around each crossing the following consistency relations are satisfied:

a

b+k a−k

b

k

b

a+kb−k

a

k

• The color of the lower-left incoming part-arc is 0.
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Moreover, the labels of the part-arcs are linear forms on k.

Proof Start walking along the long knot starting at the incoming part-arc.
At the first crossing, whether over or under, the label of the outgoing part-arc
is determined by the label of the ending part-arc and the angle variable of the
crossing. Thus, we know the label of the outgoing part-arc of the first crossing.
Keep going. Since K′ is topologically an interval, the result follows.

For an example, see Figure 1.

w = σ3
1 β = K′ =

0k

k

k

k

k0

0

0

0

0

Figure 1: A word w , the corresponding braid β , its long closure K′ , and a coloring of
K′

Fix a coloring of K′ determined by a vector k. Let bi(k) for i = 1, . . . ,m
denote the labels of the top part-arcs of β . Let xj(k) and yj(k) denote the
labeling of the left and right incoming part-arcs at the ith crossing of K′ for
j = 1, . . . , c. According to Lemma 3.6, bi(k), xj(k) and yj(k) are linear forms
on k.

It is easy to see that

tr′q(β) =
∑

k≥0

Fw(n,k)

where

Fw(n,k) :=

m
∏

i=2

v
n
2
−bi(k)

c
∏

j=1

fsgn(ǫi)(n, n;xj(k), yj(k)).

is a q–proper hypergeometric function. Remark 3.5 then implies that

Proposition 3.7 The colored Jones function of a long knot K′ is a multisum

of a q–proper hypergeometric function:

JK′(n) =
∑

k≥0

Fw(n,k).
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Remark 3.8 If a long knot K′ is presented by a planar projection D with c
crossings (which is not necessarily the closure of a braid), then similar to the
above there is a q–proper hypergeometric function FD(n,k) of c + 1 variables
such that JK′(n) =

∑

k≥0 FD(n,k). Of course, FD depends on the planar
projection. Occasionally, some of the summation variables can be ignored.
This is the case for the right hand-trefoil (where the multisum reduces to a
single sum) and the figure eight (where it reduces to a double sum).

D Bar-Natan has kindly provided us with a computerized version of Proposition
3.7, [1].

4 The cyclotomic function of a knot is q–holonomic

Habiro [15] proved that the colored Jones polynomial (of sl2 ) can be rearranged
in the following convenient form, known as the cyclotomic expansion of the
colored Jones polynomial: For every 0–framed knot K , there exists a function

CK : Z>0 → Z[q±1]

such that JK(n) =
∞
∑

k=1

CK(k)S(n, k),

where S(n, k) := {n + k − 1}2k−1/(v − v−1) =

∏n+k−1
n−k+1 (vi − v−i)

v − v−1
.

Note that S(n, k) does not depend on the knot K . Note that J is determined
from C and vice-versa by an upper diagonal matrix, thus C takes values in
Q(q). The difficult part of Habiro’s result is CK takes values in Z[q±]. The
integrality of the cyclotomic function is a crucial ingredient in the study of
integrality properties of 3–manifold invariants, [15].

Theorem 4 The cyclotomic function CK : N → Z[q±] of every knot K is

q–holonomic.

Proof Habiro showed that CK(n) is the quantum invariant of the knot K with
color

P ′′(n) :=

∏n−1
i=1 (V (2) − v2i−1 − v1−2i)

{2n − 1}2n−2
,
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where V (n) is the unique n–dimensional simple sl2–module, and (retaining
Habiro’s notation with a shift n → n − 1) P ′′(n) is considered as an element
of the ring of sl2–modules over Q(v).

Using induction one can easily prove that

P ′′(n) =
n

∑

k=1

R(n, k)V (k),

where R(k, n) is given by

R(n, k) = (−1)n−k {2k}

{2n − 1}![2n]

[

2n
n − k

]

.

We learned this formula from Habiro [15] and Masbaum [25]. Since

CK(n) =
∑

k

R(n, k)JK(k)

and R(n, k) is q–proper hypergeometric and thus q–holonomic in both variables
n and k , it follows that CK is q–holonomic.

5 Complexity

In this section we show that Theorem 1 is effective. In other words, we give a
priori bounds and computations that appear in Theorem 2.

5.1 Finding a recursion relation for multisums

Our starting point are multisums of q–proper hypergeometric functions. Recall
the definition 2.3 of a q–proper hypergeometric function F (n,k) from Section
2.4, and let G denote

G(n) :=
∑

k≥0

F (n,k)

throughout this section.

With the notation of Equation (1), Wilf–Zeilberger show that:

Theorem 5 ([33, Sec.5.2])

(a) F (n,k) satisfies a k–free recurrence relation of order at most

J⋆ :=
(4STB2)r

r!
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where B = maxs,t{|bs|, |vt|, |as|, |ut|} + maxµ,ν |aµ,ν | where aµ,ν are the coeffi-

cients of the quadratic form A.

(b) Moreover, G(n) satisfies an inhomogeneous recursion relation of order at

most J⋆ .

Let us briefly comment on the proof of this theorem. A certificate is an operator
of the form

P (E,Q) +
r

∑

i=1

(Ei − 1)Ri(E,E1, . . . , Er, Q,Q1, . . . , Qr)

that annihilates F (n,k), where P and Ri are operators with P a polynomial
in E,Q, with P 6= 0. Here E is the shift operator on n, Ei (for i = 1, . . . , r)
are shift operators in ki , and Q is the multiplication operator by qk and Qi (for
i = 1, . . . , r) are the multiplication operator by qki , where k = (k1, . . . , kr).

The important thing is that P (E,Q) is an operator that does not depend on
the summation variables k. A certificate implies that for all (n,k) we have:

P (E,Q)F (n,k) +
r

∑

i=1

(Gi(n, k1, . . . , ki−1, ki + 1, ki+1, . . . , kr) −

Gi(n, k1, . . . , ki−1, ki, ki+1, . . . , kr)) = 0,

where Gi(n,k) = RiF (n,k). Summing over k ≥ 0, it follows that G(n) satisfies
an inhomogeneous recursion relation PG = error(n). Here error(n) is a sum of
multisums of q–proper hypergeometric functions of one variables less. Iterating
the process, we finally arrive at a homogeneous recursion relation for G.

How can one find a certificate given F (n,k)? Suppose that F satisfies a k–free
recursion relation AF = 0, where A = A(E,Q,E1, . . . , Er) is an operator that
does not depend on the Qi . Then, evaluating A at E1 = . . . Er = 1, we obtain
that

A = A(E,Q, 1, . . . , 1) +

r
∑

i=1

(Ei − 1)Ri(E,Q,E1, . . . , Er)

is a certificate.

How can we find a k–free recursion relation for F ? Let us write

A =
∑

(i,j)∈S

σi,j(Q)EiEj

where S is a finite set, j = (j1, . . . , jr), Ej = Ej1
1 . . . Ejr

r , and σi,j(Q) are
polynomial functions in Q with coefficients in Q(q); see [30]. The condition

Geometry & Topology, Volume 9 (2005)



1270 Stavros Garoufalidis and Thang T Q Lê

AF = 0 is equivalent to the equation (AF )/F = 0. Since F is q–proper
hypergeometric, the latter equation is the vanishing of a rational function in
Q1, . . . , Qr . By cleaning out denominators, this is equivalent to a system of
linear equations (namely, the coefficients of monomials in Qi are zero), with
unknowns the polynomial functions σi,j . For a careful discussion, see [30]. As
long as there are more unknowns than equations, the system is guaranteed to
have a solution. [33] estimate the number of equations and unknowns in terms
of F (n,k), and prove Theorem 5.

Wilf–Zeilberger programmed the above proof, see [28]. As time passes the
algorithms get faster and more refined. For the state-of-the-art algorithms and
implementations, see [26, 27] and [30], which we will use below.

Alternative algorithms of noncommutative elimination, using noncommutative
Gröbner basis, have been developed by Chyzak and Salvy, [8]. In order for have
Gröbner basis, one needs to use the following localization of the q–Weyl algebra

Br =
Q(q,Q1, . . . , Qr)〈E1, . . . , Er〉

(Relq)
.

and Gröbner basis [8].

In case r = 1, B1 is a principal ideal domain [7, Chapter 2, Exercise 4.5]. In that
case one can associate an operator in B1 (unique up to units) that generates
that annihilating ideal of G(n). For a conjectural relation between this operator
for the sl2–colored Jones function of a knot and hyperbolic geometry, see [11].

Let us point out however that none of the above algorithms can find generators
for the annihilating ideal of the multisum G(n). In fact, it is an open problem
how to find generators for the annihilating ideal of G(n) in terms of generators
for the annihilating ideal of F (n,k), in theory or in practice. We thank M
Kashiwara for pointing this out to us.

5.2 Upper bounds for initial conditions

In another direction, one may ask the following question: if a q–holonomic
function satisfies a nontrivial recursion relation, it follows that it is uniquely
determined by a finite number of initial conditions. How many? This was
answered by Yen, [34]. If G is a discrete function which satisfies a recursion
relation of order J⋆ , consider its principal symbol σ(q,Q), that is the coefficient
of the leading E–term. The principal symbol lies in the commutative ring
Z[q±, Q±] of Laurrent polynomials in two variables q and Q. For every n,
consider the Laurrent polynomial σ(q, qn) ∈ Z[q±]. If σ(q, qn) 6= 0 for all n,
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then G is determined by J⋆ many initial values. Since σ(q,Q) 6= 0, it follows
that σ(q, qn) 6= 0 for large enough n. In fact, in [34, Prop.3.1] Yen proves that
σ(q, qn) 6= 0 if n > degq(σ), then σ(q, qn) 6= 0, where the degree of a Laurrent
polynomial in q is the difference between the largest and smallest exponent.
Thus, G is determined by J⋆⋆ := J⋆ + degq(σ) initial conditions.

Yen further gives upper bounds for degq(σ) in terms of the q–hypergeometric
summand, see [34, Thm.2.9] for single sums. An extension of Yen’s work to
multisums, gives a priori upper bounds J⋆⋆ in terms of the q–hypergeometric
summand. These exponential bounds are of theoretical interest only, and in
practice much smaller bounds are found by computer.

5.3 Proof of Theorem 2

Theorem 2 follows from Proposition 3.7 together with the discussion of Sections
5.1 and 5.2.

Our luck with the colored Jones function is that we can identify it with a
multisum of a q–proper hypergeometric function. Are we really lucky, or is
there some deeper explanation? We believe that there is a underlying geomet-
ric reason for coincidence, which in a sense explains the underlying geometry
of topological quantum field theory. We will postpone to a later publication
applications of this principle to Hyperbolic Geometry; [11].

6 In computer talk

In this section we will show that Proposition 3.7 can be implemented by com-
puter.

For every knot, one can write down a multisum formula for the colored Jones
function, where the summand is q–hypergeometric. Occasionally, this multisum
formula can be written as a single sum. There are various programs that can
compute the recursion relations and their orders for multisums. In maple, one
may use qEKHAD developed by Zeilberger [28]. In Mathematica, one may use
the qZeil.m and qMultiSum.m packages of RISC developed by Paule and Riese
[26, 27, 30].
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6.1 Recursion relations for the cyclotomic function of twist

knots

The twist knots Kp for integer p are shown in Figure 2. Their planar projec-
tions have 2|p| + 2 crossings, 2|p| of which come from the full twists, and 2
come from the negative clasp.

...

full twists
p

Figure 2: The twist knot Kp , for integers p . For p = −1, it is the Figure 8, for p = 0
it is the unknot, for p = 1 it is the left trefoil and for p = 2 it is the Stevedore’s ribbon
knot.

Masbaum, [25], following Habiro and Le gives the following formula for the
cyclotomic function of a twist knot. Let c(p, ·) denote the cyclotomic function
of the twist knot Kp. Rearranging a bit Masbaum’s formula [25, Eqn.(35)], we
obtain that:

c(p, n) = (−1)n+1qn(n+3)/2

∞
∑

k=0

(−1)kqk(k+1)p+k(k−1)/2(q2k+1 − 1)
(q; q)n

(q; q)n+k+1(q; q)n−k
(2)

The above sum has compact support for each n. Now, in computer talk, we
have:

Mathematica 4.2 for Sun Solaris

Copyright 1988-2000 Wolfram Research, Inc.

-- Motif graphics initialized --

In[1]:=<< qZeil.m

q-Zeilberger Package by Axel Riese -- c©RISC Linz -- V 2.35 (04/29/03)

For p = −1 (which corresponds to the Figure 8 knot) the program gives:

In[2]:= qZeil[q^(n(n + 3)/2) (-1)^(n + k + 1) q^(-k(k + 1))(q^(2k + 1)

- 1)qfac[q, q, n]/(qfac[q, q, n + k + 1] qfac[q, q, n - k])
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q^(k(k - 1)/2), {k, 0, Infinity}, n, 1]

Out[2]= SUM[n] == SUM[-1 + n]

which means that c(−1, n) = c(−1, n− 1) in accordance to the discussion after
[25, Thm.5.1] which states c(−1, n) = 1 for all n.

For p = 1 (which corresponds to the left hand trefoil) the program gives:

In[3]:= qZeil[q^(n(n + 3)/2) (-1)^(n + k + 1) q^(k(k + 1))(q^(2k + 1)

- 1)qfac[q, q, n]/(qfac[q, q, n + k + 1] qfac[q, q, n - k])

q^(k(k - 1)/2), {k, 0, Infinity}, n, 1]

1 + n

Out[3]= SUM[n] == -(q SUM[-1 + n])

which means that c(1, n) = −qn+1c(1, n − 1) in accordance to the discussion
after [25, Thm.5.1] which states c(1, n) = (−1)nqn(n+3)/2 for all n.

Similarly, for p = 2 (which corresponds to Stevedore’s ribbon knot) the program
gives:

In[4]:= qZeil[q^(n(n + 3)/2) (-1)^(n + k + 1) q^(2k(k + 1))(q^(2k + 1)

- 1)qfac[q, q, n]/(qfac[q, q, n + k + 1] qfac[q, q, n - k])

q^(k(k - 1)/2), {k, 0, Infinity}, n, 1]

Out[4]:= No solution: Increase order by 1

which proves that c(2, n) satisfies no first order recursion relation. It does
satisfy a second order recursion relation, as we find by:

In[5]:= qZeil[q^(n(n + 3)/2) (-1)^(n + k + 1) q^(2k(k + 1))(q^(2k + 1)

- 1) qfac[q, q, n]/(qfac[q, q, n + k + 1] qfac[q, q, n - k])

q^(k(k - 1)/2), {k, 0, Infinity}, n, 2]

2 + 2 n -1 + n

Out[4]= SUM[n] == -(q (1 - q ) SUM[-2 + n]) -

1 + n n 2 n

> q (1 + q - q + q ) SUM[-1 + n]

Thus, the program computes not only a recursion relation, but also the order
of a minimal one. Experimentally, it follows that c(p, n) satisfies a recursion
relation of order |p|, for all p. Perhaps one can guess the form of a minimal
order recursion relation for all twist knots.

Actually, more is true. Namely, the formula for c(p, n) shows that it is a q–
holonomic function in both variables (p, n). Thus, we are guaranteed to find
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recursion relations with respect to n and with respect to p. Usually, recursion
relations with respect to p for fixed n are called skein theory for the nth colored
Jones function, because the knot is changing, and the color is fixed.

Thus, q–holonomicity implies skein relations (with respect to the number of
twists) for the nth colored Jones polynomial of twist knots, for every fixed n.

For computations of recursion relations of the cyclotomic function of twist knots,
we refer the reader to [12].

6.2 Recursion relations for the colored Jones function of the

figure 8 knot

The Mathematica package qMultiSum.m can compute recursion relations for
q–multisums. Using this, we can compute equally easily the recursion relation
for the colored Jones function. Due to the length of the output, we illustrate
this by computing the recursion relation for the colored Jones function of the
Figure 8 knot. Recall from Equation (2) for p = −1 and from the fact that
c(−1, n) = 1 that the colored Jones function of the figure 8 knot is given by:

JK(−1)(n) =

∞
∑

k=0

qnk(q−n−1; q−1)k(q
−n+1; q)k. (3)

In computer talk,

In[6]:= qZeil[q^(n k) qfac[q^(-n-1),q^(-1),k] qfac[q^(-n+1),q,k],

{k,0,Infinity},n,2]

-1 - n n 2 n

q (q + q ) (-q + q )

Out[6]= SUM[n] == ---------------------------- -

n

-1 + q

-2 + n -1 + 2 n

(1 - q ) (1 - q ) SUM[-2 + n]

> ----------------------------------------- +

n -3 + 2 n

(1 - q ) (1 - q )

-2 - 2 n -1 + n 2 -1 + n

> (q (1 - q ) (1 + q )
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4 4 n 3 + n 1 + 2 n 3 + 2 n 1 + 3 n

> (q + q - q - q - q - q ) SUM[-1 + n])/

n -3 + 2 n

> ((1 - q ) (1 - q ))

This is a second order inhomogeneous recursion relation for the colored Jones
function. A third order homogeneous relation may be obtained by:

In[7]:= MakeHomRec[%, SUM[n]]

2 + n 3 n

q (-q + q ) SUM[-3 + n]

Out[7]= ----------------------------- -

2 n 5 2 n

(q + q ) (-q + q )

-2 - n 2 n 8 4 n 6 + n 7 + n 3 + 2 n

> (q (q - q ) (q + q - 2 q + q - q +

4 + 2 n 5 + 2 n 1 + 3 n 2 + 3 n

> q - q + q - 2 q ) SUM[-2 + n]) /

n 5 2 n

> ((q + q ) (q - q )) +

-1 - n n 4 4 n 2 + n 3 + n 1 + 2 n

> (q (-q + q ) (q + q + q - 2 q - q +

2 + 2 n 3 + 2 n 1 + 3 n 2 + 3 n

> q - q - 2 q + q ) SUM[-1 + n]) /

1 + n n

2 n 2 n q (-1 + q ) SUM[n]

> ((q + q ) (-q + q )) + ----------------------- == 0

n 2 n

(q + q ) (q - q )

Of course, we can clear denominators and write the above recursion relation
using the q–Weyl algebra A. Let us end with a matching the theoretical bound
for the recursion relation from Section 5 with the computer calculated bound
from this section. Using Theorem 5, it follows that the summand satisfies a
recursion relation of order J⋆ = 12+12 = 2. This implies that the colored Jones
function of the Figure 8 knot satisfies an inhomogeneous relation of degree 2 as
was found above. The program also confirms that the colored Jones function
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of the Figure 8 knot does not satisfy an inhomogeneous relation of order less
than 2.

7 The colored Jones function for a simple Lie algebra

Fix a simple complex Lie algebra g of rank ℓ. For every knot K and every
finite-dimensional g–module V , called the color of the knot, one can define
the quantum invariant JK(V ) ∈ Z[q±1/2D], where D is the determinant of the
Cartan matrix of g. Simple g–modules are parametrized by the set of dominant
weights, which can be identified, after we choose fixed fundamental weights, with
Nℓ . Hence JK can be considered as a function JK : Nℓ → Z[q±1/2D].

Theorem 6 For every simple Lie algebra other than G2 , and a set of fixed

fundamental weights, the colored Jones function JK : Nℓ → Z[q±1/2D] is q–

holonomic.

Hence the colored Jones function will satisfy some recursion relations, which,
together with values at a finitely many initial colors, totally determine the
colored Jones function JK .

Remark 7.1 The reason we exclude the G2 Lie algebra is technical. Namely,
at present we cannot prove that the structure constants of the multiplication of
the quantized enveloping algebra of G2 with respect to a standard PBW basis,
are q–holonomic; see Remark A.3. We believe however, that the theorem also
holds for G2 .

The proof occupies the rest of this section. We will define JK using representa-
tion of the braid groups coming from the R–matrix acting on Verma modules
(instead of finite-dimensional modules). We then show that the R–matrix is
q–holonomic. The theorem follows from that fact that products and traces of
q–holonomic matrices are q–holonomic.

7.1 Preliminaries

Fix a Cartan subalgebra h of g and a basis {α1, . . . , αℓ} of simple roots for
the dual space h∗ . Let h∗

R
be the R–vector space spanned by α1, . . . , αℓ . The

root lattice Y is the Z–lattice generated by {α1, . . . , αℓ}. Let X be the weight
lattice that is spanned by the fundamental weights λ1, . . . , λℓ . Normalize the
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invariant scalar product (·, ·) on h∗
R

so that (α,α) = 2 for every short root α.
Let D be the determinant of the Cartan matrix, then (x, y) ∈ 1

DZ for x, y ∈ X .

Let si, i = 1, . . . , ℓ, be the reflection along the wall α⊥
i . The Weyl group W is

generated by si, i = 1 . . . , ℓ, with the braid relations together with s2
i = 1. A

word w = si1 . . . sir is reduced if w , considered as an element of W , can not be
expressed by a shorter word. In this case the length l(w) of the element w ∈ W
is r . The longest element ω0 in W has length t = (dim(g) − ℓ)/2, the number
of positive roots of g.

7.1.1 The quantum group U

The quantum group U = Uq(g) associated to g is a Hopf algebra defined over
Q(v), where v is the usual quantum parameter (see [17, 22]). Here our v is
the same as v of Lusztig [22] and is equal to q of Jantzen [17], while our q is
v2 . The standard generators of U are Eα, Fα,Kα for α ∈ {α1, . . . , αℓ}. For a
full set of relations, as well as a good introduction to quantum groups, see [17].
Note that all the Kα ’s commute with each other.

For an element γ ∈ Y , γ = k1α1 + · · · + kℓαℓ , let Kγ := Kk1
α1

. . . Kk1
α1

.

There is a Y –grading on U defined by |Eα| = α, |Fα| = −α, and |Kα| = 0. If
x is homogeneous, then

Kγx = v(α,|x|)xKγ .

Let U+ be the subalgebra of U generated by the Eα , U− by the Fα , and U0

by the Kα . It is known that the map

U− ⊗ U0 ⊗ U+ → U

(x, x′, x′′) → xx′x′′

is an isomorphism of vector spaces.

7.1.2 Verma modules and finite dimensional modules

Let λ ∈ X be a weight. The Verma module M(λ) is a U –module with under-
lying vector space U− and with the action of U that is uniquely determined by
the following condition. Here η is the unit of the algebra U− :

Eα · η = 0 for all α

Kα · η = v(α,λ)η for all α

Fα · x = Fαx for all α ∈ {α1, . . . , αℓ}, x ∈ U−
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If (λ|αi) < 0 for all i = 1, ..., ℓ then M(λ) is irreducible. On the other hand
if (λ|αi) ≥ 0 for all i = 1, ..., ℓ (ie, λ is dominant), then M(λ) has a unique
proper maximal submodule, and the quotient L(λ) of M(λ) by the proper
maximal submodule is a finite dimensional module (of type 1, see [17]). Every
finite dimensional module of type 1 of U is a direct sum of several L(λ).

7.1.3 Quantum braid group action

For each fundamental root α ∈ {α1, . . . , αℓ} there is an algebra automorphism
Tα : U → U , as described in [17, Chapter 8]. These automorphisms satisfy the
following relations, known as the braid relations, or Coxeter moves.

If (α, β) = 0, then TαTβ = TβTα .

If (α, β) = −1, then TαTβTα = TβTαTβ .

If (α, β) = −2, then TαTβTαTβ = TβTαTβTα .

If (α, β) = −3, then TαTβTαTβTαTβ = TβTαTβTαTβTα .

Note that the Weyl group is generated by sα with exactly the above relations,
replacing Tα by sα , and the extra relations s2

α = 1.

Suppose w = si1 . . . sir is a reduced word, one can define

Tw := Tαi1
. . . Tαir

.

Then Tw is well-defined: If w,w′ are two reduced words of the same element
in W , then Tw = Tw′ . This follows from the fact that any two reduced presen-
tations of an element of W are related by a sequence of Coxeter moves.

7.1.4 Ordering of the roots

Suppose w = si1si2 . . . sit is a reduced word representing the longest element
ω0 of the Weyl group. For r between 1 and t let

γr(w) := si1si2 . . . sir−1
(αir).

Then the set {γi, i = 1, ..., t} is exactly the set of positive roots. We totally
order the set of positive roots by γ1 < γ2 < · · · < γt . This order depends on
the reduced word w , and has the following convexity property: If β1, β2 are
two positive roots such that β1 + β2 is also a root, then β1 + β2 is between β1

and β2 . In particular, the first and the last, γ1 and γt , are always fundamental
roots. Conversely, any convex total ordering of the set of positive roots comes
from a reduced word representing the longest element of W .
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7.1.5 PBW basis for U−,U+ , and U

Suppose w = si1 . . . sit is a reduced word representing the longest element of
W . Let us define

er(w) = Tαi1
Tαi2

. . . Tαir−1
(Eαir

),

fr(w) = Tαi1
Tαi2

. . . Tαir−1
(Fαir

).

Then |er| = γr = −|fr|. (We drop w if there is no confusion.)

If γr is one of the fundamental roots, γr = α ∈ {α1, . . . , αℓ}, then er(w) = Eα ,
fr(w) = Fα (and do not depend on w).

For t ≥ j ≥ i ≥ 1 let U−[j, i] be the vector space spanned by f
nj

j f
nj−1

j−1 . . . fni

i ,

for all nj, nj−1, . . . , ni ∈ N and let U+[i, j] the vector space spanned by
eni

i e
ni+1

i+1 . . . e
nj

j , for all nj, nj−1, . . . , ni ∈ N. It is known that U− = U−[t, 1]

and U+ = U+[1, t].

For n = (n1, . . . , nt) ∈ Nt , j = (j1, . . . jℓ) ∈ Zℓ and m = (m1, . . . ,mt) ∈ Nt let
us define fn , Kj and em by

fn(w) := fnt
t . . . fn1

1 , Kj := Kj1α1
. . . Kjℓαℓ

en(w) := en1

1 . . . ent
t .

Then as vector spaces over Q(v)U− , U+ and U have Poincare-Birkhoff-Witt
(in short, PBW) basis

{fn |n ∈ Nt}, {em |m ∈ Nt}, {fnKjem | n,m ∈ Nt, j ∈ Zℓ}

respectively, associated with the reduced word w .

In order to simplify notation, we define S := Nt×Zℓ×Nt , and xσ := fn Kj em .
Thus,

{xσ |σ ∈ S} (4)

is a PBW basis of U with respect to the reduced word w .

7.1.6 A commutation rule

For x, y ∈ U homogeneous let us define

[x, y]q := xy − v(|x|,|y|)yx.

Note that, in general, [y, x]q is not proportional to [x, y]q .

An important property of the PBW basis is the following commutation rule, see
[18]. If i < j then [fi, fj ]q belongs to U−[j − 1, i + 1] (which is 0 if j = i + 1).
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It follows that U−[j, i] is an algebra. This allows us to sort algorithmically non-
commutative monomials in the variables fi . Also two consecutive variables
always q–commute: [fi, fi+1]q = 0.

Similarly, if i < j then [ei, ej ]q belongs to U+[i+1, j−1] (which is 0 if j = i+1).
It follows that U+[i, j] is an algebra, and two consecutive variables always q–
commute, [ei, ei+1]q = 0.

7.2 q–holonomicity of quantum groups

Suppose A : U → U is a linear operator. Using the PBW basis of U (see
Equation (4)), we can present A by a matrix:

A(xσ) =
∑

σ′

Aσ′

σ xσ′ ,

with Aσ′

σ ∈ Q(v). We call (σ, σ′) the coordinates of the matrix entry Aσ′

σ .

Definition 7.2 We say that A is q–holonomic if the matrix entry Aσ′

σ , con-
sidered as a function of (σ, σ′) is q–holonomic with respect to all the variables.

A priori this definition depends on the reduced word w . But we will soon see
that if A is q–holonomic in one PBW basis, then it is so in any other PBW
basis.

7.2.1 q–holonomicity of transition matrix

Suppose xσ(w′) is another PBW basis associate to another reduced word w′

representing the longest element of W . Then we have the transition matrix Mσ′

σ

between the two bases, with entries in Q(v). The next proposition checks that
the entries of the transition matrix are q–holonomic, by a standard reduction
to the rank 2 case.

Proposition 7.3 Except for the case of G2 , the matrix entry Mσ′

σ is q–

holonomic with respect to all its coordinates.

Proof Since any two reduced presentations of an element of W are related
by a sequence of Coxeter moves, it is enough to consider the case of a single
Coxeter move. Since each Coxeter move involves only two fundamental roots
and all Tα ’s are algebra isomorphisms, it is enough to considered the case of
rank 2 Lie algebras. For all rank 2 Lie algebras (except G2 ) we present the
proof in Appendix.
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7.2.2 Structure constants

Recall the PBW basis {xσ |σ ∈ S} of the algebra U . The multiplication in U
is determined by the structure constants c(σ, σ′, σ′′) ∈ Q(v) defined by:

xσxσ′ =
∑

σ′′

c(σ, σ′, σ′′)xσ′′ .

We will show the following:

Theorem 7 The structure constant c(σ, σ′, σ′′) is q–holonomic with respect

to all its variables.

Proof will be given in subsection 7.4.5.

7.2.3 Actions on Verma modules are q–holonomic

Each Verma module M(λ) is naturally isomorphic to U− , as a vector space,
via the map u → u · η . Using this isomorphism we identify a PBW basis of U−

with a basis of M(λ), also called a PBW basis. If u ∈ U , then the action of u
on M(λ) in a PBW basis can be written by a matrix un′

n with entries in Q(v).
We call (n,n′) ∈ Nt × Nt the coordinates of the matrix entry.

Proposition 7.4 For every r with 1 ≤ r ≤ t, the entries of the matrices

ek
r , f

k
r are q–holonomic with respect to k, λ, and the coordinates of the entry.

This Proposition follows immediately from Theorem 7 and Fact 0.

7.3 Quantum knot invariants

7.3.1 The quasi-R–matrix

Fix a reduced word w representing the longest element of W . For each r, 1 ≤
r ≤ t, let

Θr :=
∑

k∈N

ck fk
r ⊗ ek

r ,

where ck = (−1)kv−k(k−1)/2
γr

(vγr − v−1
γr

)k

[k]γr !
.
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Here vγ = v(γ|γ)/2 , and

[k]γ ! =
k

∏

i=1

vi
γ − v−i

γ

vγ − v−1
γ

.

The main thing to observe is that ck is q–holonomic with respect to k . Note
that although Θr is an infinite sum, for every weight λ ∈ X , the action of Θr

on M(λ) ⊗ M(λ) is well-defined. This is because the action of er is locally
nilpotent, ie, for every x ∈ M(λ), there is k such that ek

r · x = 0.

The quasi-R–matrix is:
Θ := ΘtΘt−1 . . . Θ1.

We will consider Θ as an operator from M(λ) ⊗ M(λ) to itself. There is a
natural basis for M(λ) ⊗ M(λ) coming from the PBW basis of M(λ).

Proposition 7.5 The matrix of Θ acting on M(λ) in a PBW basis is q–

holonomic with respect to all the coordinates of the entry and λ.

Proof It’s enough to prove the statement for each Θr . The result for Θr

follows from the fact that the actions of ek
r , f

k
r on M(λ), as well as ck , are

q–holonomic in k and so are all the coordinates of the matrix entries, by Propo-
sition 7.4 .

7.3.2 The R–matrix and the braiding

As usual, let us define the weight on M(λ) by declaring the weight of Fn · η to
be λ −

∑

niγi , where n = (n1, . . . , nt). The space M(λ) is the direct sum of
its weight subspaces.

Let D : M(λ) ⊗ M(λ) → M(λ) ⊗ M(λ) be the linear operator defined by

D(x ⊗ y) = v−(|x|,|y|)x ⊗ y.

Clearly D is q–holonomic; it’s called the diagonal part of the R–matrix, which
is R := ΘD .

The braiding is B := Rσ , where σ(x⊗y) = y⊗x. Combining the above results,
we get the following:

Theorem 8 The entry of the matrix of the braiding acting on M(λ) is q–

holonomic with respect to all the coordinates and λ.

Remark 7.6 Technically, in order to define the diagonal part D , one needs to
extend the ground ring to include a D-th root of v , since (λ, µ), with λ, µ ∈ X ,
is in general not an integer, but belonging to 1

DZ.
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7.3.3 q–holonomicity of quantum invariants of knots

First let us recall the definition of quantum knot invariant.

Using the braiding B : M(λ) → M(λ) one can define a representation of the
braid group τ : Bm → (M(λ))⊗m by putting

τ(σi) := id⊗i−1 ⊗B ⊗ id⊗m−i−1 .

Let ρ denote the half-sum of positive roots. For an element x ∈ U and an
U –module V , the quantum trace is defined as

trq(x, V ) := tr(xK−2ρ, V ).

Suppose a framed knot K is obtained by closing a braid β ∈ Bm . We would
say that the colored Jones polynomial is the quantum trace of τ(β). However,
since M(λ) is infinite-dimensional, the trace may not make sense. Instead, we
will use a trick of breaking the knot. Let K′ denote the long knot which is the
closure of all but the first strand of β .

Recall that τ(β) acts on (M(λ))⊗m . Let

τ(β)(λ)
n′

1 ,...,n′

m
n1 ,...,nm ∈ Z[v±1/D]

be the entries of the matrix τ(β)(λ). We will take partial trace by first putting
n1 = n′

1 = 0 and then take the sum over all n2 = n′
2, . . . ,nm = n′

m . The
following lemma shows that the sum is actually finite.

Lemma 7.7 Suppose n1 = 0. There are only a finite number of collections of

(n2,n3, . . . ,nm) ∈ Nt−1 such that

τ(β)(λ)n1,...,nm
n1,...,nm

is not zero.

Proof Let M ′(λ) be the maximal proper U –submodule of M(λ). Then
L(λ) = M(λ)/M ′(λ) is a finite dimensional vector space. In particular it has
only a finite number of non-trivial weights. Hence, all except for a finite number
of fn,n ∈ Nt, are in M ′(λ).

We present the coefficients B±(λ) graphically as in Figure 3.

Note that if (B±)m1,m2
n1,n2

is not equal to 0, then fm2
can be obtained from fn1

by action of an element in U , and similarly, fm1
can be obtained from fn2

by
action of an element in U . Thus if we move upwards along a string of the braid,
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Figure 3: (B+)m1,m2

n1,n2
and (B−)m1,m2

n1,n2

the basis element at the top can always be obtained from the one at the bottom
by an action of U .

Because the closure of β is a knot, by moving around the braid one can get any
point from any particular point. Because the basis element f0 is not in M ′(λ),
we conclude that if

τ(β)(λ)n1,...,nm
n1,...,nm

is not 0, with n1 = 0, then all the basis vectors fn2
, . . . , fnm are not in M ′(λ),

and there are only a finite number of such collections.

R ecall that 2ρ is the sum of all positive roots. Let us define

JK′(λ) =
∑

n2,...nm∈Nt,n1=0,

(K−2ρ τ(β)(λ))n1 ,...,nm
n1 ,...,nm

.

From q–holonomicity of τ(β)(λ) it follows that JK′(λ) is q–holonomic. JK′(λ)
is a long knot invariant, and is related to the colored Jones polynomial JK of
the knot K by

JK(λ) = JK′(λ) × dimq(L(λ)),

where L(λ) is the finite-dimensional simple U –module of highest weight λ, and
dimq(L(λ)) is its quantum dimension, and is given by the formula

dimq(L(λ)) =
∏

α>0

v(λ+ρ,α) − v−(λ+ρ,α)

v(ρ,α) − v−(ρ,α)
.

Since dimq(L(λ)) is q–holonomic in λ, we see that JK(λ) is q–holonomic. This
completes the proof of Theorem 6.

Remark 7.8 The invariant JK′ of long knots is sometime more convenient.
For example, JK(λ) might contain fractional power of q , but (if K′ has framing
0,) JK′(λ) is always in Z[q±1], see [20]. Also the function JK′ can be extended
to the whole weight lattice.
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7.4 Proof of Theorem 7

7.4.1 rα is q–holonomic

We will need the linear maps rα, r′α : U± → U± , as defined in [17, Chapter 6].
Their restriction to U− is uniquely characterized by the properties:

rα(xy) = rα(x) y + v(α,|x|) x rα(y) r′α(xy) = x r′α(y) + v(α,|x|) r′α(x) y (5)

and for any two fundamental roots α, β , (see [17, Eqn.(6.15.4)]) and

rα(Fn
β ) = r′α(Fn

β ) = δα,β
1 − v2n

α

1 − v2
α

Fn−1
α , (6)

where vα := v(α,α)/2 ; see [17, Eqn.(8.26.2)].

Lemma 7.9 For a fixed α ∈ {α1, . . . , αℓ}, the matrix entries of the operators

(rα)k, (r′α)k : U− → U− are q–holonomic with respect to k and the coordinates

of the matrix entry. Similarly, (rα)k, (r′α)k : U+ → U+ are q–holonomic.

Proof We give a proof for rk
α : U− → U− . The other case is similar.

There is a reduced word w′ = si1 . . . sit representing the longest element ω0

of W such that αi1 = α. Then w = si2 . . . sitsᾱ is another reduced word
representing ω0 , where ᾱ := −ω0(α).

For the PBW basis of U− associated with w it’s known that γt = α, and thus
ft = Fα . According to [17, 8.26.5], for every x in the algebra U−[t − 1, 1], one
has

rα(x) = 0.

Using Equations (5) and (6) and induction, one can easily show that for every
x ∈ U−[t − 1, 1],

(rα)k(fnt
t x) =

k
∏

i=1

1 − v2nt−2i+2
α

1 − v2
α

fnt−k
t x,

This formula, applied to x = f
nt−1

t−1 . . . fn1

1 , proves the statement.

7.4.2 Uq(sl2) is q–holonomic

Lemma 7.10 Theorem 7 holds true for g = sl2 .
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Proof The PBW basis for U is FnKjEm , with m,n ∈ N and j ∈ Z. First of
all we know that

Em
α Fn

α =

∞
∑

i=0

[

m
i

]

vα

[

n
i

]

vα

Fn−i
α b(Kα; 2i − n − m, i)Em−i

α ,

where b(Kα; a, i) :=
i

∏

j=1

Kαva−j+1
α − K−1

α v−a+j−1
α

vα − v−1
α

.

Here for any root γ , one defines vγ = v(γ,γ)/2 , and

[

m
i

]

vα

is the usual

quantum binomial coefficient calculated with v replaced by vα .

Hence

(FmKkEn)(Fm′

Kk′

Em′

) =

∞
∑

i=0

Fm+m′−i a(m,k, n,m′, k′, n′, i)En+n′−i,

where

a(m,k, n,m′, k′, n′, i)

= v2k(i−m′)+2k′(i−n)

[

n
i

][

m′

i

]

[i]! b(K; 2i − n − m′, i)Kk+k′

.

The value of the function a is in Z[v±1][K±1]. Consider the coefficient of Kr

in a; one gets a function of m,n, k,m′, n′, k′, i, r with values in Z[v±1] which is
clearly q–holonomic with respect to all variables. The lemma follows.

7.4.3 Ek
α, F k

α : U → U are q–holonomic in k

Proposition 7.11 For a fixed fundamental root α ∈ {α1, . . . , αℓ}, the opera-

tors Ek
α, F k

α : U → U of left multiplication are q–holonomic with respect to k
and all the coordinates of the matrix entry. Similarly, the right multiplication

by Ek
α, F k

α are q–holonomic with respect to k and all the coordinates of the

matrix entry.

Proof (a) Left multiplication by F k
α and right multiplication by Ek

α .

Choose w as in the proof of Lemma 7.9. Then ft = Fα and et = Eα , and
an element of the PBW basis has the form fnt

t xKβyemt
t . It’s clear that left

multiplication by Fα and right multiplication by Eα are q–holonomic.

(b) Left multiplication by Ek
α .
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Choose a reduced word w = si1 . . . sit representing the longest element ω0 that
begins with α: αi1 = α. We have the corresponding PBW basis fi, ei, i =
1, . . . , t with f1 = Fα and e1 = Eα . Thus a typical element of the PBW basis
has the form

xFn1

α KβEm1

α y, (7)

where x = fnt
t . . . fn2

2 , y = em2

2 . . . emt
t . By [17, 8.26.6], since x ∈ U−[t, 2], one

has r′α(x) = 0. Using formula [17, 6.17.1], one can easily prove by induction
that

(Eα)kx =

∞
∑

i=0

vi−ik

[

k
i

]

vα

Ki
α

(vα − v−1
α )i

(rα)i(x)Ek−i
α .

Using this formula one can move the Eα past x in the expression (7), (there
appear rα and Kα ), then one moves Eα past Fα using the sl2 case. The last
step is moving past Kβ is easy, since

EαKβ = v−(β,α)KβEα.

Using Lemmas 7.9 and 7.10, we see that each “moving step” is q–holonomic.
Hence we get the result for the left multiplication by Ek

α .

(c) Right multiplication by F k
α .

The proof is similar. We use the same basis (7) as in the case b). For y , by
Lemma 8.26 of [17], one has rα(y) = 0. Hence using induction based on the
formula (6.17.2) of [17] one can show that

yFn
α =

∞
∑

i=0

v
i(n−i)
α

(v−1
α − vα)i

[

n
i

]

vα

Fn−i
α K−i

α (r′α)i(y).

Using this formula, and the results for r′α (Lemma 7.9) and sl2 (Lemma 7.10)
we can move Fα to the right.

7.4.4 Tα is q–holonomic

Proposition 7.12 For a fixed fundamental root α ∈ {α1, . . . , αℓ}, the braid

operator Tα : U → U and its inverse T−1
α are q–holonomic.

Proof By Proposition 7.3 we can use any PBW basis.

Choose a reduced word w′ = si1 . . . sit representing the longest element ω0

that begins with α: αi1 = α. Then w = si2 . . . sitsᾱ is another reduced word
representing ω0 , where ᾱ is the dual of α: ᾱ = −ω0(α).
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We use fr to denote fr(w), and f ′
r to denote fr(w

′). The relation between the
two PBW basis of w and w is as follows: For 1 ≤ r ≤ t − 1,

Tα(fr) = f ′
r+1, Tα(er) = e′r+1.

Besides, ft = Fα = f ′
1, et = Eα = e′1 .

We will consider the matrix entry of Tα : U → U where the source space is
equipped with the PBW corresponding to w , while the target space with the
PBW basis corresponding to w′ .

From [17, Chapter 8], recall that:

Tα(Fα) = −K−1
α Eα, Tα(Eα) = −FαKα.

Hence

Tα(Fn
α ) = (−1)nvn(n−1)

α K−n
α En

α, Tα(Em
α ) = (−1)mv−m(m−1)

α Fm
α Km

α .

For a basis element xσ = fnt
t . . . fn1

1 Kβem1

1 . . . emt
t , we have

Tα(xσ) = dα(nt,mt) K−nt
α Ent

α × (f ′
t)

mt−1

. . . (f ′
1)

n2Ksαβ(e′1)
m2 . . . (e′t)

mt−1 × Fmt
α Kmt

α ,

where dα(nt,mt) := (−1)nt+mtvnt(nt−1)−mt(m1−1)
α .

The left or right multiplication by Kn
α is q–holonomic with respect to n and

all the coordinates. The left multiplication by Ent , as well as the right mul-
tiplication my Fmt

α is q–holonomic with respect to nt and all coordinates, by
Proposition 7.11. One then can conclude that Tα is q–holonomic.

The proof for T−1
α : U → U is similar. One should use the PBW basis of w′ for

the source, and that of w for the target.

7.4.5 Proof of Theorem 7

It is clear that for each j ∈ Zℓ , the operator Kj : U → U of left multiplication
is q–holonomic.

Fix a reduced word w representing the longest element of W . It suffices to
show that for each 1 ≤ r ≤ t the operators ek

r , f
k
r : U → U (left multiplication)

are q–holonomic with respect to all variables, including k .

This is true if er = Eα and fr = Fα , where α is one of the fundamental
roots, by Proposition 7.11. But any er or fr can be obtained from Eα and
Fα by actions of product of various Tαi

’s. Hence from Proposition 7.12 we get
Theorem 7.
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A Appendix: Proof of Proposition 7.3 for A2 and B2

In this appendix we will prove Proposition 7.3 for the rank 2 Lie algebras A2

and B2 . We will achieve this by a brute-force calculation.

First, let us discuss some simplification, due to symmetry. The transition ma-
trix of U leaves invariant each of U+,U−,U0 . On U0 the transition matrix is
identity. Hence it’s enough to consider the restriction of the transition matrix
in U− and U+ . Furthermore, the Cartan symmetry (the operator τ of [17])
reduces the case of U+ to that of U− .

A.1 The case of A2

There are two fundamental roots denoted by α and β . The set of positive roots
is {α, β, α+β}. The reduced representations of the longest element of the Weyl
group are w = s1s2s1 and w′ = s2s1s2 , where s1 = sα and s2 = sβ .

The total ordering (see Section 7.1.4) of the set of positive roots corresponding
to w and w′ are, respectively:

(γ1, γ2, γ3) = (α,α + β, β)

(γ1′ , γ2′ , γ3′) = (β, α + β, α).

Notice that γi′ = γ3−i for i = 1, . . . , 3.

The PBW basis of U− (see Section 7.1.5) corresponding to w and w′ are,
respectively:

{fm
3 fn

2 fp
1 | m,n, p ∈ N}, {fm

3′ f
n
2′f

p
1′ | m,n, p ∈ N},

where

(f3, f2, f1) = (Fβ , Tα(Fβ) = −v[Fβ , Fα]q = FβFα − vFαFβ , Fα)

(f3′ , f2′ , f1′) = (Fα, Tβ(Fα) = FαFβ − vFβFα, Fβ).

From explicit formulas of [23, section 5] it follows that:

Lemma A.1 The structure constants of U− , in the basis of w , is q–holonomic.

Let us define a scalar product (·, ·) on U− such that the PBW basis of w is an
orthonormal basis. Since

fm′

3′ fn′

2′ f
p′

1′ =
∑

m,n,p

(fm′

3′ fn′

2′ f
p′

1′ , f
m
3 fn

2 fn
1 )fm

3 fn
2 fp

1
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Proposition 7.3 is equivalent to showing that

(fm′

3′ fn′

2′ f
p′

1′ , f
m
3 fn

2 fn
1 )

is q–holonomic in all variables m,n, p,m′, n′, p′ .

Since multiplication is q–holonomic in the PBW basis of w (see Lemma A.1),
it suffices to show that

(fk
i′ , f

m
3 fn

2 fn
1 )

is q–holonomic in k,m, n, p for each i = 1, 2, 3. This is clear for i = 1 or i = 3,
since f1′ = f3 and f3′ = f1 . As for f2′ , an easy induction shows that

fn
2′ = (−v)−n

∞
∑

k=0

v−k(k−3)/2(v − v−1)k
[

n
k

]

fk
3 fn−k

2 fk
1 .

and the statement also holds true for i = 2. This proves Proposition 7.3 for
A2 .

A.2 The case of B2

There are two fundamental roots denoted here by α and β , where α is the
short root. The set of positive roots is {α, β, 2α + β, α + β}. The reduced
representations of the longest element of the Weyl group are w = s1s2s1s2 and
w′ = s2s1s2s1 , where s1 = sα and s2 = sβ .

The total ordering of the set of positive roots corresponding to w and w′ are,
respectively:

(γ1, γ2, γ3, γ4) = (α, 2α + β, α + β, β)

(γ1′ , γ2′ , γ3′ , γ4′) = (β, α + β, 2α + β, α).

Notice that γi′ = γ4−i for i = 1, . . . , 4.

The PBW basis of U− (see Section 7.1.5) corresponding to w and w′ are,
respectively:

{f l
4f

m
3 fn

2 fp
1 | l,m, n, p ∈ N}, {f l

4′f
m
3′ f

n
2′f

p
1′ | l,m, n, p ∈ N},

where

(f4, f3, f2, f1) = (Fβ , FβFα − v2FαFβ,
FβF 2

α

[2]
− vFαFβFα +

v2F 2
αFβ

[2]
, Fα)

(f4′ , f3′ , f2′ , f1′) = (Fα,
v2FβF 2

α

[2]
− vFαFβFα +

F 2
αFβ

[2]
, FαFβ − v2FβFα, Fβ).

It follows from [23] that:

Geometry & Topology, Volume 9 (2005)
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Lemma A.2 The structure constants of U− , in the basis of w , is q–holonomic.

Let us define a scalar product (·, ·) on U− such that the PBW basis of w is an
orthonormal basis. Then Proposition 7.3 is equivalent to

(f l′

4′f
m′

3′ fn′

2′ f
p′

1′ , f
l
4f

m
3 fn

2 fn
1 )

is q–holonomic in all variables l,m, n, p, l′m′, n′, p′ .

Since multiplication is q–holonomic in the PBW basis of w (see Lemma A.2),
it suffices to show that

(fk
i′ , f

l
4f

m
3 fn

2 fp
1 )

is q–holonomic in k, l,m, n, p for each i = 1, 2, 3, 4. This is clear for i′ = 1 or
i′ = 4, since f1′ = f4 and f4′ = f1 . As for i′ = 2 and i′ = 3, the formula of
[22, Section 37.1] shows that

fn
2′ =

n
∑

i=0

(−1)i
v2iF i

βFn
α Fn−i

β

[n − i]β ![i]β !

fn
3′ =

2n
∑

i=0

(−1)i
viF 2n−i

α Fn
β F i

α

[2n − i]![i]!

and since Fα = f4′ and Fβ = f1′ , the cases of i′ = 2′ and i′ = 3′ reduce to the
cases of i′ = 1′ and i′ = 4′ . This proves Proposition 7.3 for B2 .

Remark A.3 If Lemma A.1 holds for G2 , then we can prove Proposition 7.3
for G2 .
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The quantum content of the gluing equations

TUDOR DIMOFTE

STAVROS GAROUFALIDIS

The gluing equations of a cusped hyperbolic 3–manifold M are a system of poly-
nomial equations in the shapes of an ideal triangulation T of M that describe the
complete hyperbolic structure of M and its deformations. Given a Neumann–Zagier
datum (comprising the shapes together with the gluing equations in a particular
canonical form) we define a formal power series with coefficients in the invariant
trace field of M that should (a) agree with the asymptotic expansion of the Kashaev
invariant to all orders, and (b) contain the nonabelian Reidemeister–Ray–Singer
torsion of M as its first subleading “1–loop” term. As a case study, we prove
topological invariance of the 1–loop part of the constructed series and extend it into a
formal power series of rational functions on the PSL.2;C/ character variety of M .
We provide a computer implementation of the first three terms of the series using the
standard SnapPy toolbox and check numerically the agreement of our torsion with the
Reidemeister–Ray–Singer for all 59924 hyperbolic knots with at most 14 crossings.
Finally, we explain how the definition of our series follows from the quantization of
3–dimensional hyperbolic geometry, using principles of topological quantum field
theory. Our results have a straightforward extension to any 3–manifold M with
torus boundary components (not necessarily hyperbolic) that admits a regular ideal
triangulation with respect to some PSL.2;C/ representation.

57M25, 57N10

1 Introduction

1.1 The Kashaev invariant and perturbative Chern–Simons theory

The Kashaev invariant hKiN 2 C of a knot K in 3–space (for N D 2; 3; : : :) is a
powerful sequence of complex numbers determined by the Jones polynomial of the knot
(see [46]) and its cablings; see Turaev [70] and Witten [72]. The Volume Conjecture
of Kashaev and Murakami–Murakami [49; 50; 55] relates the Kashaev invariant of a
hyperbolic knot K with the hyperbolic volume Vol.M / of its complement M DS3nK

(see Thurston [66]):

(1-1) lim
N!1

1

N
log jhKiN j D

Vol.M /

2�
:
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1254 Tudor Dimofte and Stavros Garoufalidis

A generalization of the Volume Conjecture (see Gukov [39]) predicts a full asymptotic
expansion of the Kashaev invariant to all orders in 1=N :

(1-2) hKiN
N!1
� ZM .2� i=N /

for a suitable formal power series

(1-3) ZM .„/D exp
�

1

„
SM;0�

3

2
log „CSM;1C

X
n�2

„
n�1SM;n

�
; „ D

2� i

N
:

The formal power series ZM .„/ in (1-3) is conjectured to coincide with the perturbative
partition function of Chern–Simons theory with complex gauge group SL.2;C/ along
the discrete faithful representation �0 of the hyperbolic manifold M . Combining
such an interpretation with further conjectures of the first author, Gukov, Lenells and
Zagier [17] and the second author and Lê [34; 36] one predicts the following.
� SM;0 D i.VolM C iCSM / 2C=.4�2Z/ is the complexified volume of M (cf

Thurston [67] and Neumann [56]).
� SM;1 is related (see Witten [73], Bar-Natan and Witten [3] and Gukov and

Murakami [40]) to the nonabelian Ray–Singer torsion (see De Loera, Rambau
and Santos [63]), which ought to equal (cf Müller [54]) the combinatorial
nonabelian Reidemeister torsion. More precisely, by Dubois and the second
author [19, Conjecture 1.8] we should have

(1-4) �R
M D 4�3 exp.�2SM;1/ 2E�M ;

where �R
M

is the nonabelian Reidemeister–Ray–Singer torsion of M with respect
to the meridian (see Porti [62] and Dubois [18]), and EM is the invariant trace
field of M .

� For n � 2, the n–loop invariants SM;n are conjectured to lie in the invariant
trace field EM [17; 34].

The generalization (1-2) of the Volume Conjecture has been numerically verified
for a few knots using either state integral formulas for Chern–Simons theory when
available [17] or a numerical computation of the Kashaev invariant and its numerical
asymptotics, lifted to algebraic numbers; see the second author and Zagier [37; 31; 32].

Our goal is to provide an exact, combinatorial definition of the formal power se-
ries ZM .„/ via formal Gaussian integration using the shape parameters and the
Neumann–Zagier matrices of a regular ideal triangulation of M . Our definitions
� express the putative torsion exp.�2SM;1/ and the n–loop invariants SM;n man-

ifestly in terms of the shape parameters zi and the gluing matrices of a regular
ideal triangulation T of M ;

Geometry & Topology, Volume 17 (2013)
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� manifestly deduce that the putative torsion and the n–loop invariants for n� 2

are elements of the invariant trace field;

� explain the difference of ZM .„/ for pairs of geometrically similar knots studied
by Zagier and the second author;

� provide an effective way to compute the n–loop invariants using standard com-
mands of the SnapPy toolbox [13], as demonstrated for nD1; 2; 3 for hyperbolic
knots with at most 14 crossings;

� allow efficient tests of the asymptotics of the Volume Conjecture (1-2), the
“1–loop Conjecture” (1-4) and other conjectures in Quantum Topology.

We note that we only define exp.�2SM;1/ up to a sign, and SM;2 modulo Z=24. All
higher n–loop invariants are defined unambiguously.

Although we give a purely combinatorial definition of ZM .„/ without any knowledge
of state integrals or Chern–Simons theory with complex gauge group, in Section 5 we
explain how our definition follows from the state integral model of the first author [15]
and its perturbative expansion.

1.2 The Neumann–Zagier datum

All manifolds and all ideal triangulations in this paper will be oriented. The volume of a
hyperbolic manifold M , appearing in the Volume Conjecture and contributing to SM;0 ,
is already known to have a simple expression in terms of shape parameters of a regular
ideal triangulation, ie, one that recovers the complete hyperbolic structure of M . (For
extended discussion on regular triangulations, see Section 4.) If T D f�ig

N
iD1

is a
regular ideal triangulation of M with shape parameters zi 2Cnf0; 1g for iD1; : : : ;N ,
then (cf Dupont and Sah [23] and Neumann and Zagier [58])

(1-5) Vol.M /D

NX
iD1

D.zi/;

where D.z/ WD Im.Li2.z// C arg.1 � z/ log jzj is the Bloch–Wigner dilogarithm
function. This formula can also be interpreted as calculating the image of the class
ŒM � WD

P
i Œzi � 2 B of M in the Bloch group B under the natural map DW B!R. An

analogous formula, using the class of M in the “extended” Bloch group yB , gives the
full complexified volume SM;0 ; see Neumann [56; 57], Goette and Zickert [38; 75].

It is natural to ask whether the class of M in B determines not only SM;0 but the
higher SM;n as well. This question was posed to the authors several years ago by D Za-
gier. Subsequent computations [37; 32] indicated that a positive answer was not possible.

Geometry & Topology, Volume 17 (2013)



1256 Tudor Dimofte and Stavros Garoufalidis

For example, there is a family of pairs of pretzel knots ..�2; 3; 3C2p/; .�2; 3; 3�2p//

for pD 2; 3; : : :, as well as the figure-eight knot and its sister, which all have the same
class in the Bloch group (and classes differing by 6–torsion in the extended Bloch
group), but different invariants SM;n for n� 1.

The extra information necessary to determine the SM;n can be described as follows.
Recall that if T is a regular ideal triangulation of M with N tetrahedra, its shapes
z D .z1; : : : ; zN / satisfy a system of polynomial equations, one equation for every
edge, and one imposing parabolic holonomy around the meridian of the cusp [66; 58].
Let us set

(1-6) z0i D .1� zi/
�1; z00i D 1� z�1

i :

The equations can then be written in the form

(1-7) zAz00B WD

NY
jD1

z
Aij

j .1� z�1
j /Bij D˙1; i D 1; : : : ;N;

where A and B are N �N square matrices with integer entries, which we call the
Neumann–Zagier matrices following [58].

Definition 1.1 If T is a regular ideal triangulation of M , its Neumann–Zagier datum
(resp. enhanced Neumann–Zagier datum) is given by the triple

ˇT D .z;A;B/; resp. y̌T D .z;A;B ; f /;

where z is a solution to the gluing equations and f is a combinatorial flattening of T ,
a collection of integers that we define in Section 2.4.

As we will discuss in detail in Section 2, implicit in the above definition is the depen-
dence of ˇT and y̌T on the following choices:

(1) a pair of opposite edges for every oriented ideal tetrahedron (a so-called choice
of quad type).

(2) An edge of T .

(3) A meridian loop in the boundary of M in general position with respect to T .

(4) A combinatorial flattening.

Geometry & Topology, Volume 17 (2013)
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1.3 The 1–loop invariant

Definition 1.2 Given a one-cusped hyperbolic manifold M with regular ideal trian-
gulation T and enhanced Neumann–Zagier datum y̌T we define

(1-8) �T WD ˙
1

2
det.A�z00 CB��1

z /zf
00

z00�f 2EM=f˙1g;

where �z WD diag.z1; : : : ; zN / and �z00 WD diag.z00
1
; : : : ; z00

N
/ are diagonal matrices,

and zf
00

z00�f WD
Q

i zi
f 00

i z00i
�fi .

Note that �T takes value in the invariant trace field of M and is only defined up to a
sign. In Section 3 we will show the following.

Theorem 1.3 �T is independent of the quad type of T , the chosen edge of T , the
choice of a meridian loop, and the choice of a combinatorial flattening.

We now consider the dependence of �T on the choice of a regular ideal triangulation
of M . It is well known that the set X of ideal triangulations of a cusped hyperbolic
manifold is nonempty (see Casler [10]) and connected by 2–3 moves; see for example
Matveev [52; 53] and Piergallini [59]. That is, a sequence of 2–3 moves can be
used to take any one ideal triangulation to any other. The subset X�0

of X of regular
triangulations is also nonempty; see Section 4. Topologically, these are the triangulations
without any univalent edges; see Champanerkar [11], Boyd, Dunfield and Rodriguez-
Villegas [7], Dunfield and the second author [22] and Tillmann [69]. We will prove the
following in Section 3.

Theorem 1.4 �T is constant on every component of X�0
connected by 2–3 moves.

1.4 Expectations

We may pose some questions and conjectures about the 1–loop invariant �T and
the structure of the set X�0

. Let us begin with two questions whose answers are
unfortunately unknown.

Question 1.5 Is X�0
connected by 2–3 moves?

Question 1.6 Is �T constant on the set X�0
?

Geometry & Topology, Volume 17 (2013)



1258 Tudor Dimofte and Stavros Garoufalidis

Clearly, a positive answer to the first question implies a positive answer to the second.

Despite the unknown answer to the above questions, with additional effort we can still
define a distinguished component of X�0

, and thus obtain a topological invariant of M .
Namely, let X EP

M
� X�0

denote the subset that consists of regular refinements of the
canonical (Epstein–Penner) ideal cell decomposition of M [25]. X EP

M
is canonically

associated to a cusped hyperbolic manifold M . A detailed description of X EP
M

is given
by the second author, Hodgson, Rubinstein and Segerman in [35, Section 6]. X EP

M

generically consists of a single element. In Section 4.2 we will show the following.

Proposition 1.7 X EP
M

lies in a connected component of X�0
. Consequently, the value

of �T on X EP
M

is a topological invariant �M of M .

Admittedly, it would be more natural to show that �T is constant on all of X�0
.

Proposition 1.7 appears to be an artificial way to construct a much needed topological
invariant of cusped hyperbolic 3–manifolds.

Our next conjecture compares our torsion �M with the nonabelian Reidemeister tor-
sion �R

M
of M with respect to the meridian defined in [62; 18].

Conjecture 1.8 For all hyperbolic knot complements we have �R
M
D˙�M .

Numerical evidence for the above conjecture is presented in Appendix D using Dun-
field’s computation of �R

M
via SnapPy [21]. Observe that both sides of the equation in

Conjecture 1.8 are algebraic numbers (defined up to a sign) that are elements of the
invariant trace field of M . Moreover, if M has a regular ideal triangulation with N

ideal tetrahedra and its fundamental group is generated with r elements, then �M
and �R

M
are essentially given by the determinant of square matrices of size N and

3r � 3, respectively. It is still unclear to us how to relate these two matrices or their
determinants.

By definition, �R
M
2 E�

M
. Thus, a mild but important corollary of Conjecture 1.8 is

that �M is nonzero. This is a crucial ingredient, necessary for the definition of the
higher loop invariants SM;n using perturbation theory.

1.5 The higher-loop invariants

In this section we define the higher loop invariants ST ;n for n� 2. They are analyzed in
detail in Section 5, using a state integral (5-2). The result, however, may be summarized
as follows. Let us introduce a formal power series

(1-9)  „.xI z/D exp
� X

n;k;2nCk�2>0

„nCk=2�1.�x/kBn

n!k!
Li2�n�k.z

�1/

�
2Q.z/ŒŒx; „1=2��;
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where Bn is the nth Bernoulli number (with B1 D C1=2), and Lm.z/ is the mth

polylogarithm. Note that Lim.z/ 2 .1 � z/�m�1ZŒz� is a rational function for all
nonpositive integers m. This formal series comes from the asymptotic expansion of
the quantum dilogarithm function after removal of its two leading asymptotic terms;
see Barnes [4], Faddeev and Kashaev [28; 27]. The quantum dilogarithm is the Chern–
Simons partition function of a single tetrahedron and its asymptotics are studied in
detail in Section 5.

We fix an enhanced Neumann–Zagier datum y̌T D .z;A;B ; f / of an oriented 1–
cusped manifold M and a regular ideal triangulation T with N tetrahedra. Let
� DAf CBf 00 . We assume that

det.B/¤ 0; �M ¤ 0:

The condition det.B/¤ 0 is always satisfied with a suitable labeling of shapes; see
Lemma A.3. In that case, Lemma A.2 implies that

(1-10) HD�B�1AC�z0 ;

is a symmetric matrix, where �z0 D diag.z0
1
; : : : ; z0

N
/. We define

(1-11) fT ;„.xI z/D exp
�
�
„1=2

2
xT B�1�C

„

8
f T B�1Af

� NY
iD1

 „.xi ; zi/

2Q.z/ŒŒx; „1=2��;

where x D .x1; : : : ;xN /
T and z D .z1; : : : ; zN /. Assuming that H is invertible, a

formal power series f„.x/ 2Q.z/ŒŒx; „1=2�� has a formal Gaussian integration, given
by (cf Bessis, Itzykson and Zuber [6]),

(1-12) hf„.x/i D

R
dxe�1=2xT Hxf„.x/R

dxe�1=2xT Hx
:

This integration is defined by expanding f„.x/ as a series in x , and then formally
integrating each monomial, using the quadratic form H�1 to contract x–indices
pairwise.

Definition 1.9 With the above conventions, we define

(1-13) exp
� 1X

nD2

ST ;n.z/ „
n�1

�
WD hfT ;„.xI z/i:

Remark 1.10 Notice that the result involves only integral powers of „ and each term
is a rational function in the complex numbers z . Moreover, ST ;n 2 �

�3nC3
T QŒz; z0; z00�
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for all n � 2. This follows from the fact that the connected Feynman diagrams that
contribute to ST ;n have at most 3n� 3 edges and each edge (contracted by H�1 )
contributes a factor of det.H/�1 . Thus, we can also write

(1-14) exp
� 1X

nD2

ST ;n„
n�1

�
D 1C

1X
nD1

zST ;n

�3n
T
„

n;

where zST ;n 2QŒz; z0; z00�. Experimentally, it appears that zST ;n have lower complexity
than ST ;n ; see Appendix D.

1.6 Feynman diagrams

A convenient way to organize the above definition is via Feynman diagrams, using
Wick’s Theorem to express each term ST ;n as a finite sum of connected diagrams
with at most n loops, where the number of loops of a connected graph is its first
Betti number. This is well known and explained in detail, eg by Hori, Katz, Klemm,
Pandharipande, Thomas, Vafa, Vakil and Zaslow in [45, Chapter 9], by Polyak in [60]
and in [6].

The Feynman rules for computing the ST ;n , described in Section 5, turn out to be the
following.1 One draws all connected graphs D with vertices of all valencies, such that

(1-15) L.D/ WD .#1–verticesC #2–verticesC #loops/� n:

In each diagram, the edges represent an N �N propagator

(1-16) propagator W …D „H�1;

while each k –vertex comes with an N –vector of factors �.k/i ,

(1-17) �
.k/
i D .�1/k

˛kCn�L.D/X
pD˛k

„p�1Bp

p!
Li2�p�k.z

�1
i /C

�
�

1
2
.B�1�/i k D 1;

0 k � 2;

where ˛k D 1 (resp. 0) if k D 1; 2 (resp. k � 3). The diagram D is then evaluated
by contracting the vertex factors �.k/i with propagators, multiplying by a standard
symmetry factor, and taking the „n�1 part of the answer. In the end, SM;n is the sum
of evaluated diagrams, plus an additional vacuum contribution

(1-18) �.0/ D
Bn

n!

NX
iD1

Li2�n.z
�1
i /C

�1
8
f �B�1Af nD 2;

0 n� 3:

To illustrate the above algorithm, we give the explicit formulas for S2 and S3 below.

1To derive these from (1-12), one should first rescale x!„�1=2x .
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1.7 The 2–loop invariant

The six diagrams that contribute to SM;2 are shown in Figure 1, together with their
symmetry factors.

1
8

1
8

1
12

1
2

1
2

1
2

Figure 1: Diagrams contributing to SM;2 with symmetry factors. The top
row of diagrams have exactly two loops, while the bottom row have fewer
loops and additional 1–vertices and 2–vertices.

Their evaluation gives the following formula for ST ;2 :

(1-19) ST ;2 D coeff
h1

8
�
.4/
i .…ii/

2
C

1

8
…ii�

.3/
i …ij�

.3/
j …jj

C
1

12
�
.3/
i .…ij /

3�
.3/
j C

1

2
�
.1/
i …ij�

.3/
j …jj

C
1

2
�
.2/
i …ii C

1

2
�
.1/
i …ij�

.1/
j ; „

i
C�.0/;

where all the indices i and j are implicitly summed from 1 to N and coeff Œf .„/; „�
denotes the coefficient of „ of a power series f .„/. Concretely, the 2–loop contribution
from the vacuum energy is �.0/D 1

8
f T B�1Af � 1

12

P
i z0i , and the four vertices that

appear only contribute at leading order,

�
.1/
i D

z0i � .B
�1�/i

2
; �

.2/
i D

ziz
02
i

2
;

�
.3/
i D�

ziz
02
i

„
; �

.4/
i D�

zi.1C zi/z
03
i

„
:

(1-20)

We expect ST ;2 to be well-defined modulo Z=24, and this is exactly what happens in
hundreds of examples that we computed.

1.8 The 3–loop invariant

For the next invariant ST ;3 , all the diagrams of Figure 1 contribute, collecting the
coefficient of „2 of their evaluation. In addition, there are 34 new diagrams that satisfy
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the inequality (1-15); they are shown in Figures 2 and 3. Calculations indicate that the
3–loop invariant ST ;3 is well-defined, independent of the regular triangulation T . The
invariants ST ;0; �T ;ST ;2;ST ;3 have been programmed in Mathematica and take as
input a Neumann–Zagier datum available from SnapPy [13].

For the 4–loop invariant, there are 291 new diagrams. A python implementation will
be provided in the future. For large n, one expects about n!2C n diagrams to contribute
to Sn .

Remark 1.11 Note that the n–loop invariant for n� 3 is independent of the combi-
natorial flattening and in fact depends only on .B�1A;B�1�; z/.

1
48

1
16

1
12

1
48

1
16

1
24

1
8 1

12 1
8

1
8

1
16

1
48

1
16

1
16

1
8

Figure 2: Diagrams with three loops contributing to S3
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1
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1
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1
4

1
8

1
4

1
2

1
4

1
4

1
2

1
2

1
6

Figure 3: Diagrams with 1–vertices and 2–vertices contributing to S3

1.9 The Feynman diagrams are stable graphs

During a Master’s Class in Aarhus in February 2013, the second author observed that
the Feynman graphs of our paper can be identified with the stable graphs which appear
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in the Topological Recursion of Eynard–Orantin and the graphs that appear in the
intersection theory of the moduli space of curves; see [26] and Aganagic, Bouchard and
Klemm [1, Figure 1]. We thank Bertrand Eynard and Nicolas Orantin for delivering
the Master’s Class in Aarhus and Jorgen Andersen for organizing it.

Definition 1.12 A stable graph G is an abstract connected graph (with no cyclic order
of the edges around a vertex) with the property that every vertex v of G is attached a
genus gv and a degree (ie, valency) nv such that 2gv � 2C nv > 0. The total degree
of a stable graph is given by

P
v.2gv � 2C nv/D 2g� 2C n where n is the number

of external legs and g is defined to be the genus of G .

Let G.g; n/ denote the (finite) set of stable graphs of genus g with n external legs.
Then

Sg D

X
G2G.g;0/

1

jAut.G/j
hGi:

To explain where the genus comes in our Feynman graphs, observe that �.k/i from
Equation (1-17) for each vertex v has k D nv , and 2gv D p that contributes to
„2gv�1B2gv=.2gv/!Li2�2gv�nv . In other words, 2gv extracts the monomial hp�1

from �.k/ . Notice that since Bodd D 0 (for odd greater than 1) then we must have
p D evenD 2gv .

1.10 Generalizations

There are several natural extensions of the results presented above. First, one could
attempt to prove the independence of the all-loop invariants ZT .„/, including the
entire series of ST ;n s, under 2–3 moves and different choices of Neumann–Zagier
datum. This was done nonrigorously in [15], but a full mathematical argument in the
spirit of Theorems 1.3 and 1.4 is still missing. We hope to address this in future work.

In a different direction, one can extend the formulas for �T and ST ;n to

– manifolds with multiple cusps,

– representations other than the discrete faithful,

– representations with nonparabolic meridian holonomy,

– nonhyperbolic manifolds.
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The only truly necessary condition is that a 3–manifold M have a topological ideal
triangulation T that — upon solving gluing equations and using a developing map —
reproduces some desired representation �W �1.M /! PSL.2;C/. We call such an
ideal triangulation �–regular, and in Section 4 we will briefly discuss most of the
above generalizations. In particular, we will demonstrate in Sections 4.6 and 5.5 how
to extend �T ;ST ;n to rational functions on the character variety of a (topologically)
cusped manifold. The generalization to multiple cusps is also quite straightforward,
but left out mainly for simplicity of exposition.

Acknowledgments The authors wish to thank Nathan Dunfield, Walter Neumann,
Josephine Yu and Don Zagier for many extremely enlightening conversations.

The work of S G is supported by NSF grant DMS-11-05678. The work of T D is
supported primarily by the Friends of the Institute for Advanced Study, and in part by
DOE grant DE-FG02-90ER40542.

2 Mechanics of triangulations

We begin by reviewing the gluing rules for ideal hyperbolic tetrahedra and the equations
that determine their shape parameters. We essentially follow the classic [66; 58], but
find it helpful to work with additive logarithmic (rather than multiplicative) forms of
the gluing equations. Recall that all manifolds and all ideal triangulations are oriented.

2.1 Ideal tetrahedra

Combinatorially, an oriented ideal tetrahedron � is a topological ideal tetrahedron
with three complex shape parameters .z; z0; z00/ assigned to pairs of opposite edges
(Figure 4). The shapes always appear in the same cyclic order (determined by the
orientation) around every vertex, and they satisfy

zz0z00 D�1;(2-1a)

z00C z�1
� 1D 0:(2-1b)

In other words, z0D 1=.1�z/ and z00D 1�z�1 . We call the tetrahedron nondegenerate
if none of the shapes take values in f0; 1;1g, ie, z; z0; z00 2C�nf1g. It is sufficient to
impose this on a single one of the shapes.

Borrowing common terminology from the theory of normal surfaces, cf Burton [8],
Kang and Rubenstein [47; 48] and Tillman [68], we define the quadrilateral type (in
short, quad type) of � to be the distinguished pair of opposite edges labelled by z .
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.1/

.0/

.1/

.z/

z z00

z0

z0

z00 z

Figure 4: An ideal tetrahedron

Clearly, there is a threefold choice of quad type for any oriented ideal tetrahedron.
Different choices correspond to a cyclic permutation of the vector .z; z;0 ; z00/, which
leaves relations (2-1a) invariant.

Geometrically, the shape parameters determine a PSL.2;C/ structure on �. Equiva-
lently, they determine a hyperbolic structure, possibly of negative volume. We can then
describe the ideal hyperbolic tetrahedron � as the convex hull of four ideal points in
hyperbolic three-space H3 , whose cross ratio is z (or z0 , or z00 ). Each shape z fixes
the complexified dihedral angle on the edge it labels, via

(2-2) z D exp.torsionC i angle/;

and similarly for z0 , z00 .

2.2 The gluing matrices

We now discuss an important combinatorial invariant of ideal triangulations, namely the
gluing and Neumann–Zagier matrices, their symplectic properties, and the notion of a
combinatorial flattening. Although these notions are motivated by hyperbolic geometry
(namely the gluing of ideal tetrahedra around their faces and edges to describe a
complete hyperbolic structure on a cusped manifold), we stress that these notions make
sense for arbitrary 3–manifolds with torus boundary, and for triangulations whose
gluing equations may not have solutions in C n f0; 1g.

Let M be an oriented one-cusped manifold with an ideal triangulation T D f�ig
N
iD1

and a choice of quad type.

The choice of quad, combined with the orientation of T and M allow us to attach
variables .Zi ;Z

0
i ;Z
00
i / to each tetrahedron �i . An Euler characteristic argument shows
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that the triangulation has N edges EI , I D 1; : : : ;N . For each edge EI we introduce
a gluing equation of the form

(2-3) EI W

NX
iD1

.GIiZi CG 0IiZ
0
i CG 00IiZ

00
i /D 2� i; I D 1; : : : ;N;

where GIi 2f0; 1; 2g (resp., G 0
Ii

, G 00
Ii

) is the number of times an edge of tetrahedron �i

with parameter Zi (resp., Z0i , Z00i ) is incident to the edge EI in the triangulation. In
addition, we impose the equations

(2-4) Zi CZ0i CZ00i D i�;

for i D 1; : : : ;N . Equations (2-3) are not all independent. For a one-cusped manifold,
every edge begins and ends at the cusp, which implies

PN
ID1GIi D

PN
ID1G 0

Ii
DPN

ID1G 00
Ii
D 2, and therefore that the sum of the left-hand sides of Equations (2-3)

equals 2� iN . This is the only linear dependence in case of one cusp. In general, there
is one relation per cusp of M , as follows from [56, Theorem 4.1].

An oriented peripheral simple closed curve � (such as a meridian) on the boundary
of M , in general position with the triangulation of the boundary torus that comes
from T , also gives rise to a gluing equation. We assume that the curve is simple
(has no self intersections), and set the signed sum of edge parameters on the dihedral
angles subtended by the curve to zero. A parameter is counted with a plus sign (resp.
minus sign) if an angle is subtended in a counterclockwise (resp. clockwise) direction
as viewed from the boundary. These rules are the same as described in [56], and
demonstrated in Section 2.6 below.

Let us choose such a peripheral curve �. We choose a meridian if M is a knot
complement. The gluing equation associated to � then takes the form

(2-5) � W

NX
iD1

.GNC1;iZi CG 0NC1;iZ
0
i CG 00NC1;iZ

00
i /D 0;

with GNC1;i ;G
0
NC1;i

;G 00
NC1;i

2 Z.

2.3 The Neumann–Zagier matrices

The matrices G , G 0 and G 00 have both symmetry and redundancy. We have already
observed that any one of the edge constraints (2-3) can be removed. Let us then ignore
the edge I D N . We can also use (2-4) to eliminate one of the three shapes for
each tetrahedron. We choose this canonically to be Z0i , though which pair of edges is
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labelled Z0i depends on the choice of quad type for the tetrahedron. Then the first N �1

edge equations and the meridian (�) equation are equivalent to

(2-6)
NX

jD1

.Aij Zj CBij Z00j /D i��i ; i D 1; : : : ;N;

where

Aij D

(
Gij �G 0ij I ¤N;

GNC1;j �G 0
NC1;j

i DN;

Bij D

(
G 00ij �G 0ij I ¤N;

G 00
NC1;j

�G 0
NC1;j

i DN;

(2-7)

�i WD

(
2�

PN
jD1 G 0ij i ¤N;

�
PN

jD1 G 0
NC1;j

i DN:
(2-8)

We will generally assume Z , Z00 and � to be column vectors, and we will write
AZCBZ00 D i�� . The matrices .G ;G 0;G 00/ as well as .A;B ; �/ can easily be
obtained from SnapPy [13], as is illustrated in Appendix D.

The Neumann–Zagier matrices A and B have a remarkable property: they are the top
two blocks of a 2N � 2N symplectic matrix [58]. It follows that

(2-9) ABT
DBAT ;

and that the N �2N block .AB/ has full rank. This symplectic property is crucial for
defining the state integral of [15], for defining our formal power series invariant ZM .„/,
and for the combinatorial proofs of topological invariance of the 1–loop invariant. A
detailed discussion of the symplectic properties of the Neumann–Zagier matrices A;B

is given in Appendix A.

2.4 Combinatorial flattenings

We now have all ingredients to define what is a combinatorial flattening.

Definition 2.1 Given an ideal triangulation T of M , a combinatorial flattening is a
collection of 3N integers .fi ; f

0
i ; f

00
i / 2 Z3 for i D 1; : : : ;N that satisfy

fi Cf
0

i Cf
00

i D 1; i D 1; : : : ;N;(2-10a)
NX

iD1

.GIifi CG 0Iif
0

i CG 00Iif
00

i /D

(
2 I D 1; : : : ;N;

0 I DN C 1:
(2-10b)
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Note that if we eliminate f 0 using Equation (2-10a), a flattening is a pair of vectors
.f; f 00/ 2 Z2N that satisfies

(2-11) Af CBf 00 D �:

Evidently, Equation (2-11) is a system of linear Diophantine equations. Neumann
proved in [56, Lemma 6.1] that every ideal triangulation T has a flattening.

Remark 2.2 Combinatorial flattenings should not be confused with the (geometric)
flattenings of [57, Definition 3.1]. The latter flattenings are coherent choices of loga-
rithms for the shape parameters z; z0; z00 of a complex solution to the gluing equations.
On the other hand, our combinatorial flattenings are independent of a solution to the
gluing equations. In the rest of the paper, the term flattening will mean a combinatorial
flattening in the sense of Definition 2.1.

2.5 The shape solutions to the gluing equations

If we exponentiate the equations (2-4), and set .zi ; z
0
i ; z
00
i /D .e

Zi ; eZ 0
i ; eZ 00

i /, we obtain
that .zi ; z

0
i ; z
00
i / satisfy Equation (2-1a). If we combine the exponentiated equations (2-6)

with the nonlinear relation (2-1b) for each tetrahedron, we obtain

(2-12) zAz00B D zA.1� z�1/B D .�1/� ;

where zA WD
Q

j z
Aij

j . These N equations in N variables are just the gluing equations
of Thurston [66] and Neumann and Zagier [58], and fully capture the constraints
imposed by the gluing. For hyperbolic M , a triangulation T is regular precisely when
one of the solutions to (2-12) corresponds to the complete hyperbolic structure.

2.6 Example: 41

As an example, we describe the enhanced Neumann–Zagier datum of the figure-eight
knot complement M . It has a well known regular ideal triangulation T consisting of
N D 2 tetrahedra, to which we assign logarithmic shape parameters .Z;Z0;Z00/ and
.W;W 0;W 00/.

A map of the boundary of the cusp neighborhood is shown in Figure 5. We have chosen
one of 32 possible cyclic labelings by Z s and W s (ie one of 32 possible quad types).
Each of the edges intersects the cusp twice, so it is easy to read off from Figure 5 that
the edge constraints (2-3) are

E1 W 2ZCZ00C 2W CW 00 D 2� i;

E2 W 2Z0CZ00C 2W 0CW 00 D 2� i:
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z

z00

z0

w

w0

w00

z00

z0

z

w0

w00

w

z

z00

z0

w w00

w0

z00

z0

z

w0

w00

w

�
E2 E1

Figure 5: The boundary of the cusp neighborhood for the figure-eight knot

The sum of the left-hand sides is automatically 4� i , so we can choose to ignore the
second constraint. If we choose the meridian path � as in Figure 5, the meridian
constraint (2-5) is

� W �Z0CW D 0:

Putting together the first edge constraint and the meridian into matrices, we have�
2 2

0 1

��
Z

W

�
C

�
0 0

�1 0

��
Z0

W 0

�
C

�
1 1

0 0

��
Z00

W 00

�
D i�

�
2

0

�
:

Using ZCZ0CZ00 DW CW 0CW 00 D i� to eliminate Z0 and W 0 , we get�
2 2

1 1

��
Z

W

�
C

�
1 1

1 0

��
Z00

W 00

�
D i�

�
2

1

�
:

From this last expression, we can read off

(2-13) A D

�
2 2

1 1

�
; B D

�
1 1

1 0

�
; � D

�
2

1

�
:

The two gluing equations (2-12) are then

(2-14) z2w2z00w00 D 1; zwz00 D�1;

with z00 D 1 � z�1 and w00 D 1 � w�1 . The solution for the complete hyperbolic
structure is z D w D ei�=3 .

Finally, a flattening .fz; f
0

z ; f
00

z Ifw; f
0
w; f

00
w/ 2 Z6 , ie an integer solution to the equa-

tions Af CBf 00 D � and f Cf 0Cf 00 D 1, is given by

(2-15) .fz; f
0

z ; f
00

z Ifw; f
0
w; f

00
w/D .0; 1; 0I 1; 0; 0/:

It is easy to see that every flattening has the form .a; b; 1� a� bI b; a; 1� a� b/ for
integers a; b .
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3 Topological invariance of our torsion

Given a one-cusped hyperbolic manifold M with regular triangulation T D f�ig
N
iD1

and Neumann–Zagier datum y̌T D .z;A;B ; f /, we have proposed the nonabelian
torsion is given by

(3-1) �T WD ˙
1

2
det.A�z00 CB��1

z /zf
00

z00�f 2EM=f˙1g;

where �z D diag.z1; : : : ; zN /, and similarly for �z00 . Since .z; z0; z00/2EM we must
have �T 2EM as well.

After a brief example of how the formula (3-1) works, we will proceed to prove
Theorems 1.3 and 1.4 on the topological invariance of �T . We saw in Section 2 that the
Neumann–Zagier datum depends not only on a triangulation T , but also on a choice of

(1) quad type for T ,

(2) one edge of T whose gluing equation is redundant,

(3) normal meridian path,

(4) flattening f .

We will begin by showing �T is independent of these four choices, and then show it is
invariant under 2–3 moves, so long as the 2–3 moves connect two regular triangulations.

The four choices here are independent, and can be studied in any order. However, in
order to prove independence of flattening, it is convenient to use a quad type for which
the matrix B is nondegenerate. Such a quad type can always be found (Lemma A.3),
but is not automatic. Therefore, we will first show invariance under change of quad
type, and then proceed to the other choices. It is interesting to note that of all the
arguments that follow (including the 2–3 move), independence of flattening is the only
one that requires the use of the full gluing equations zAz00B D .�1/� .

3.1 Example: 41 continued

To illustrate the Equation (1-8), consider the figure-eight knot complement again.
From Section 2.6, we already have one possible choice for the Neumann–Zagier
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matrices (2-13) and a generic flattening (2-15). We use them to obtain

(3-2)

˙�41
D

1

2
det

��
2 2

1 1

��
z00 0

0 w00

�
C

�
1 1

1 0

��
z�1 0

0 w�1

��
w00�1

D
1

2w00
det

�
2z00C z�1 2w00Cw�1

z00C z�1 w00

�
D

1

2w00
det

�
z00C 1 w00C 1

1 w00

�
D

1

2
.z00�w00�1/D

1

2

p
�3;

where at intermediate steps we used z00C z�1�1Dw00Cw�1�1D 0, and at the end
we substituted the discrete faithful solution z D z00 D w D w00 D ei�=3 .

The invariant �41
belongs to the invariant trace field E41

DQ.
p
�3/, and agrees with

the torsion of the figure-eight knot complement [21].

3.2 Independence of a choice of quad type

Now, let us fix a manifold M , a triangulation T with N tetrahedra, and an enhanced
Neumann–Zagier datum y̌T D .z;A;B ; f /.

To prove independence of quad type, it is sufficient to check that �T is invariant under
a cyclic permutation of the first triple of shape parameters .z1; z

0
1
; z00

1
/, while holding

fixed the choice of meridian loop and redundant edge. Let us write z D .z1; : : : ; zN /,
� D .�1; : : : ; �N /

T , f D .f1; : : : ; fN /
T and

(3-3) A D .a1; a2; : : : ; aN /; B D .b1; b2; : : : ; bN /;

in column notation. After the permutation, a new Neumann–Zagier datum is given by
.zz; zA; zB ; zf / where

zz D .z01; z2; : : : ; zN /; zz
0
D .z001 ; z

0
2; : : : ; z

0
N /; zz

00
D .z1; z

00
2 ; : : : ; z

00
N /;(3-4)

zA D .�b1; a2; : : : ; aN /; zB D .a1� b1; b2; : : : ; bN /;

z� D .n1� b1; n2; : : : ; nN /
T :

(3-5)

The new shapes satisfy zz zAzz00 zB D .�1/z� . We also naturally obtain a new flattening
. zf ; zf 0; zf 00/ by permuting

zf D .f 01; f2; : : : ;fN /
T ; zf 0 D .f 001 ; f

0
2; : : : ; f

0
N /

T ;

zf 00 D .f1; f
00

2 ; : : : ; f
00

N /
T
I

(3-6)

this is an integer solution to zA zf C zB zf 00 D z� and zf C zf 0C zf 00 D 1.
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The torsion �T (1-8) consists of two parts, a determinant and a monomial correction.
By making use of the relations z1 C z0

1
�1 � 1 D 0 and z1z0

1
z00

1
D �1, we find the

determinant with the permuted Neumann–Zagier datum to be

(3-7) det. zA�zz00 C zB�
�1
zz /

D det.�b1z1C .a1� b1/z
0�1
1 ; a2z002 C b2z�1

2 ; : : : ; aN z00N C bN z�1
N /

D det.a1z0�1
1 � b1; a2z002 C b2z�1

2 ; : : : ; aN z00N C bN z�1
N /

D�z1 det.a1z001 C b1z�1
1 ; a2z002 C b2z�1

2 ; : : : ; aN z00N C bN z�1
N /

D�z1 det.A�z00 CB��1
z /:

By simply using z1z0
1
z00

1
D�1 and f1Cf

0
1
Cf 00

1
D 1, we also see that the monomial

correction transforms as

(3-8) zz
zf 00
zz00�

zf
D zf

00

z00�f
z0

1
f1z1

�f 0
1

z1
f 00

1 z00
1
�f1

D zf
00

z00�f .�1/f1
.z1z00

1
/�f1z1

f1Cf
00

1
�1

z1
f 00

1 z00
1
�f1

D zf
00

z00�f .�1/f1z�1
1 :

The extra factors z˙1
1

in the two parts of the torsion precisely cancel each other, leading
in the end to

(3-9) det. zA�zz00 C zB�
�1
zz /zz

zf 00
zz00�

zf
D .�1/f1C1 det.A�z00 CB��1

z /zf
00

z00�f :

This is just as desired, showing that the torsion is invariant up to a sign.

3.3 Independence of a choice of edge

We fix M; T ; y̌T D .z;A;B ; f /. In order to choose matrices A;B , we must ignore
the redundant gluing equation corresponding to an edge of T . This was discussed in
Section 2.3. Suppose, then, that we choose a different edge to ignore. For example,
if we choose the .N � 1/st rather than the N th (and keep the same quad type and
meridian path), then we obtain new Neumann–Zagier matrices zA; zB , which are related
to the original ones as

(3-10) zA D P.N�1;N /A; zB D P.N�1;N /B ;
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where

(3-11) P.N�1;N / WD

0BBBBBBB@

1 0 � � � 0 0 0

0 1 � � � 0 0 0
: : :

0 0 � � � 1 0 0

�1 �1 � � � �1 �1 �1

0 0 � � � 0 0 1

1CCCCCCCA
:

Similarly, eliminating the I th rather than the N th edge constraint is implemented by
multiplying with a matrix P.I;N / whose I th row is filled with �1s. Any such matrix
satisfies det P.I;N / D�1.

In the formula for �T , only the determinant part is affected by a change of edge. Then

(3-12) det. zA�z00 C
zB��1

z /D det.P.I;N /.A�z00 CB��1
z //

D� det.A�z00 CB��1
z /;

leading to invariance of �T , up to the usual sign.

3.4 Independence of a choice of meridian path

Recall that an ideal triangulation on M induces a triangulation of its boundary torus @M .
Consider two simple closed meridian loops in @M in general (normal) position with
respect to the triangulation of @M . Recall that these paths are drawn on the triangulated
2–dimensional torus @M where faces of tetrahedra correspond to edges in the 2–
dimensional triangulation, and edges of tetrahedra to vertices. In particular, for a
one-cusped manifold M , every edge of the triangulation intersects a pair of vertices
on the boundary @M .

We can deform one of our meridian paths into the other by using repeated applications
of the fundamental move shown in Figure 6, locally pushing a section of the path
across a vertex of @M . Thus, it suffices to assume that the two paths only differ by
one such move. Suppose that we cross the I th edge (by Section 3.3 we may assume
that I ¤N ), which has a combinatorial gluing constraint

(3-13) XI WD

NX
iD1

.GIiZi CG 0IiZ
0
i CG 00IiZ

00
i /D 2� i;

and that the two tetrahedra where the paths enter and exit the vicinity of the edge
have parameters .Z;Z0;Z00/ and .W;W 0;W 00/, as in the figure. We do not exclude
the possibility that .Z;Z0;Z00/ and .W;W 0;W 00/ both coincide with the same triple
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z0

z00

z

w

w0 w00

r1

rj

s1
s2

sj 0

z0

z00

z

w

w0 w00

r1

rj

s1
s2

sj 0

Figure 6: The fundamental move for changing a meridian path. Here, we
deform through an edge EI with gluing constraint XI D ZCW CR1C

� � �CRj CS1C � � �CSj 0 D 2� i .

.Zi ;Z
0
i ;Z
00
i /, in some cyclic permutation. Then the difference in the logarithmic

meridian equations (2-5) for the two paths will be

(3-14) ı� D˙.XI � .ZCZ0CZ00/� .W CW 0CW 00//:

Note that two logarithmic meridian constraints that differ by (3-14) are compatible and
equivalent, since upon using the additional equations XI D 2� i and ZCZ0CZ00 D

W CW 0CW 00 D i� , we find that ı� D 0. A discretized version of this observation
demonstrates that the same flattening satisfies both discretized meridian constraints.2

If we compute matrices A;B using one meridian path and zA; zB using the other —
keeping quad type, flattening, and edge the same — the change (3-14) implies

(3-15) zA D P
.�/
I
˙1A; zB D P

.�/
I
˙1B ;

where P
.�/
I

is the SL.N;Z/ matrix

(3-16) P
.�/
I
D I CENI ;

ie the identity plus an extra entry “1” in the N th (meridian) row and I th column. Since
det P

.�/
I
D1, this immediately shows that det. zA�z00C

zB��1
z /Ddet.A�z00CB��1

z /,
and so the a change in the meridian path cannot affect �T .

2Note that this would not be the case if we allowed self-intersections of the meridian loops.
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3.5 Independence of a choice of flattening

Now suppose that we choose two flattenings .f; f 0; f 00/ and . zf ; zf 0; zf 00/, both satis-
fying

Af CBf 00 D �; f Cf 0Cf 00 D 1;(3-17)

A zf CB zf 00 D �; zf C zf 0C zf 00 D 1:(3-18)

We may assume that we have a quad type with B nondegenerate. Indeed, by the result
of Section 3.2, flattening invariance in one quad type implies flattening invariance in any
quad type. Moreover, by Lemma A.3 of Appendix A, a quad type with nondegenerate B

always exists. We also note that when B is invertible the matrix B�1A is symmetric
(Lemma A.2).

The determinant in �T is insensitive to the change of flattening. The monomial, on
the other hand, can be manipulated as follows. Let us choose logarithms .Z;Z0;Z00/
of the shape parameters such that AZ CBZ00 D i�� . Then, assuming that B is
nondegenerate, we compute

z
zf 00z00�

zf

zf
00
z00�f

D expŒZ � .f 00� zf 00/�Z00 � .f � zf /�

D expŒ�Z �B�1A.f � zf /� .i�B�1� �B�1AZ/ � .f � zf /�

D expŒ�i�B�1� � .f � zf /�

D expŒ�i�f 00 � .f � zf /� i�B�1Af � .f � zf /�

D expŒ�i�f 00 � .f � zf /C i�f � .f 00� zf 00/�

D expŒi�.f 00 � zf �f � zf 00/�D˙1:

Therefore, the monomial can change at most by a sign, and �T is invariant as desired.
This completes the proof of Theorem 1.3.

3.6 Invariance under 2–3 moves

We finally come to the proof of Theorem 1.4, ie the invariance of �T under 2–3 moves.
We set up the problem as in Figure 7. Namely, we suppose that M has two different
regular triangulations T and eT , with N and N C1 tetrahedra, respectively, which are
related by a local 2–3 move. Let us denote the respective (triples of) shape parameters
as

(3-19) Z WD .X1;X2;Z3; : : : ;ZN /; zZ WD .W1;W2;W3;Z3; : : : ;ZN /:
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We fix a quad type, labeling the five tetrahedra involved in the 2–3 move as in the
figure. We will also assume that when calculating Neumann–Zagier matrices A and
B , we choose to ignore an edge that is not the central one of the 2–3 bipyramid.

x1

x1

x0
1

x0
1

x00
1

x00
1

x2

x2

x0
2

x0
2

x00
2

x00
2

w1

w1

w0
1

w0
1

w00
1

w00
1

w3

w3

w0
3

w0
3

w00
3

w00
3

w2

w2

w0
2w0

2

w00
2

w00
2

Figure 7: The geometry of the 2–3 move: a bipyramid split into two tetrahedra
for triangulation

SN
iD1�i , and three for triangulation

SNC1
iD1

z�i .

There are nine linear relations among the shapes of the tetrahedra involved in the move;
three come from adding dihedral angles on the equatorial edges of the bipyramid

(3-20) W 01 DX1CX2; W 02 DX 01CX 002 ; W 03 DX 001 CX 02;

and six from the longitudinal edges

(3-21)
X1 DW2CW 003 ; X 01 DW3CW 001 ; X 001 DW1CW 002 ;

X2 DW 002 CW3; X 02 DW 001 CW2; X 002 DW 003 CW1:

Moreover, due to the central edge of the bipyramid, there is an extra gluing constraint
in eT :

(3-22) W 01CW 02CW 03 D 2� i:

After exponentiating the relations (3-20)–(3-22), and also using ziz
0
iz
00
i D �1 and

z00i C z�1
i � 1D 0 for every tetrahedron �i and z�i , we find a birational map between

the shape parameters in the two triangulations. Explicitly,�
w01 D x1x2; w

0
2 D

1�x�1
2

1�x1

; w03 D
1�x�1

1

1�x2

�
or�

x1 D
1�w0

2
�1

1�w0
3

; x2 D
1�w0

3
�1

1�w0
2

�
:

(3-23)
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Note that the birational map is well-defined and one-to-one as long as no shape pa-
rameters .x1;x2; w1; w2; w3/ equal 0, 1, or 1. This condition is satisfied so long as
triangulations T and eT are both regular. (A necessary condition is that no univalent
edges are created on one side or the other of the 2–3 move; this is also sufficient when
considering the discrete faithful representation of M .)

We must also choose a flattening in the two triangulations. Let us suppose for
SNC1

iD1
z�i

we have a flattening with (triples of) integer parameters zf D .d1; d2; d3; f3; : : : ; fN /.
This automatically determines a flattening f D .e1; e2; f3; : : : ; fN / for the

SN
iD1�i

triangulation, by simply setting

(3-24)
e1 D d2C d 003 ; e01 D d3C d 001 ; e001 D d1C d 002 ;

e2 D d 002 C d3; e02 D d 001 C d2; e002 D d 003 C d1:

This is a discretized version of the six longitudinal relations (3-21). One can check that
expected relations such as e1C e0

1
C e00

1
D 1 are satisfied by virtue of the discretized

edge constraint d 0
1
C d 0

2
C d 0

3
D 2 (cf (3-22)).

We have all the data needed to calculate �T . Let us start with determinants. In the
triangulation

SN
iD1�i , we write the matrices A and B schematically in columns as

(3-25) A D .a1; a2; ai/; B D .b1; b2; bi/;

with ai meaning .a3; a4; : : : ; aN / and similarly for bi . This leads to a determinant

(3-26) det
�
A�z00 CB��1

z

�
D det.a1x001 C

b1

x1
; a2x002 C

b2

x2
; aiz

00
i C

bi

zi
/:

Alternatively, in the triangulation
SNC1

iD1
z�i , the matrices zA and zB have one extra

row and one extra column. The extra gluing condition (3-22) causes the extra row in
both zA and zB to contain three �1s. Altogether, the matrices take the form

(3-27) zA D

�
�1 �1 �1 0

b1C b2 a1 a2 ai

�
; zB D

�
�1 �1 �1 0

0 a2C b1 a1C b2 bi

�
;

so that

zA�zz00 C zB�
�1
zz D

 
�w00

1
�

1
w1

�w00
2
�

1
w2

�w00
3
�

1
w3

0

.b1C b2/w
00
1

a1w
00
2
C

a2Cb1

w2
a2w

00
3
C

a1Cb2

w3
aiz
00
i C

bi

zi

!

D

 
�1 �1 �1 0

.b1C b2/w
00
1

a1w
00
2
C

a2Cb1

w2
a2w

00
3
C

a1Cb2

w3
aiz
00
i C

bi

zi

!
:
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It is then straightforward to check, using the map (3-23), that

(3-28) . zA�zz00 C zB�
�1
zz /

0BB@
1 �1 �1 0

0 1 0 0

0 0 1 0

0 0 0 1

1CCA
0BBBB@

1 0 0 0

0 1
w0

3
x00

2

x00
1

0

0
w0

2
x00

1

x00
2

1 0

0 0 0 1

1CCCCA
D

�
�1 0

� A�z00 CB��1
z

�
:

The determinant of the last matrix on the left hand side is 1�w0
2
w0

3
D 1�w0

1
�1Dw1 .

Therefore,

(3-29) det. zA�zz00 C zB�
�1
zz /D�w�1

1 det.A�z00 CB��1
z /:

We should also consider the monomial correction. However, with flattenings related as
in (3-24), and with shapes related by the exponentiated version of (3-21), it is easy to
check that

(3-30) zz
zf 00
zz00�

zf
D w1.�1/d

00
2
�e00

1 zf
00

z00�f :

We have thus arrived at the desired result; by combining (3-29) and (3-30), we find

(3-31) det. zA�zz00 C zB�
�1
zz /zz

zf 00
zz00�

zf
D˙ det.A�z00 CB��1

z /zf
00

z00�f ;

so we have that �T is invariant under the 2–3 move. This completes the proof of
Theorem 1.4.

4 Torsion on the character variety

Having given a putative formula for the nonabelian torsion of a cusped hyperbolic
manifold M at the discrete faithful representation �0 , it is natural to ask whether the
formula generalizes to other settings. In this section, we extend the torsion formula
to general representations �W �1.M / �! (P)SL.2;C/ for manifolds M with torus
boundary, essentially by letting the shapes z be functions of � . We also find that some
special results hold when M is hyperbolic and the representations lie on the geometric
component X

geom
M

of the SL.2;C/ character variety.

We will begin with a short review of what it means for a combinatorial ideal triangulation
to be regular with respect to a general representation � . We will also finally prove
Proposition 1.7. Recall that Proposition 1.7 identified a canonical connected subset
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X EP
M

of the set of regular triangulations X�0
of a hyperbolic 3–manifold M . This

result allowed us to construct the topological invariant �M .

We then proceed to define an enhanced Neumann–Zagier datum y̌T D .z;A;B ; f /
suitable for a general representation � , and propose a generalization of the torsion
formula:

(4-1) �T .�/ WD ˙
1

2
det.A�z00 CB��1

z /zf
00

z00�f :

This formula looks identical to (1-8). However, the shape parameters here are promoted
to functions z! z.�/ of the representation � , which satisfy a well known deformed
version of the gluing equations. Moreover, the flattening f is slightly more restricted
than it was previously. We will prove the following in Section 4.5.

Theorem 4.1 The formula for �T .�/ is independent of the choice of enhanced
Neumann–Zagier datum, and is invariant under 2–3 moves connecting �–regular
triangulations.

When M is hyperbolic, it turns out that �0 –regular triangulations are �–regular for
all but finitely many representations � 2 X

geom
M

. Then we can create a topological
invariant �M that is a function on X

geom
M

just as in Proposition 1.7, by evaluating �T .�/
on any triangulation in the canonical subset X EP

M
� X�0

.

In general, there is a rational map from the character variety XM to the zero-locus YM

of the A–polynomial AM .`;m/D 0 (see Cooper, Culler, Gillet, Long and Shalen [12]),
for any M with torus boundary. Therefore, the shapes z and the torsion �T are algebraic
functions on components of the A–polynomial curve YM . When M is hyperbolic and
� 2X

geom
M

, somewhat more is true: the shapes are rational function on the geometric
component Y

geom
M

(Proposition B.1). Then

(4-2) �M 2 C.Y
geom

M
/DQ.m/Œ`�=.Ageom

M
.`;m//;

where A
geom
M

.`;m/ is the geometric factor of the A–polynomial. We will give a simple
example of the function �M for the figure-eight knot in Section 4.6.

4.1 A review of �–regular ideal triangulations

In this section we discuss the �–regular ideal triangulations that are needed to generalize
our torsion invariant. Let M denote a 3–manifold with nonempty boundary and let
�W �1.M / �! PSL.2;C/ be a PSL.2;C/ representation of its fundamental group.
Let X denote the set of combinatorial ideal triangulations T of M . Matveev and
Piergallini independently showed that every two elements of X with at least two ideal

Geometry & Topology, Volume 17 (2013)



1280 Tudor Dimofte and Stavros Garoufalidis

tetrahedra are connected by a sequence of 2–3 moves (and their inverses) [52; 59]. For
a detailed exposition, see [53] and Benedetti and Petronio [5].

Given an ideal triangulation T , let VT denote the affine variety of nondegenerate
solutions (ie, solutions in C n f0; 1g) of the gluing equations of T corresponding to its
edges. There is a developing map

(4-3) VT �!XM ;

where XM WD Hom.�1.M /;PSL.2;C//=PSL.2;C/ denotes the affine variety of all
PSL.2;C/ representations of �1.M /.

Definition 4.2 Fix a PSL.2;C/–representation of M . We say that T 2 X is �–
regular if � is in the image of the developing map (4-3).

Let X� � X denote the set of all �–regular ideal triangulations of M . When M is
hyperbolic, let �0 denote its discrete faithful representation �0 and let X

geom
M
�XM

denote the geometric component of its character variety [66; 58]. We then have the
following result.

Lemma 4.3 (a) T 2 X�0
if and only if T has no homotopically peripheral (ie,

univalent) edges.

(b) If T 2 X�0
, then T 2 X� for all but finitely many � 2X

geom
M

.

Proof Part (a) has been observed several times; see [11], [7, Section 10.3], [69,
Theorem 2.3] and also [22, Remark 3.4]. For part (b), fix T 2 X�0

. Observe that T
is �–regular if the image of every edge3 of T under � does not commute with the
image under � of the peripheral subgroup of M . This is an algebraic condition on � ,
and moreover, when � 2X

geom
M

is analytically nearby �0 , the condition is satisfied. It
follows that the set of points of X

geom
M

that satisfy the above condition is Zariski open.
On the other hand, X

geom
M

is an affine curve [66; 58]. It follows that T is �–regular
for all but finitely many � 2X

geom
M

.

4.2 The Epstein–Penner cell decomposition and its triangulations

Now we consider the canonical ideal cell decomposition of a hyperbolic manifold M

with cusps [25], and finally prove Proposition 1.7. It is easy to see that every convex
ideal polyhedron can be triangulated into ideal tetrahedra with nondegenerate shapes;
see for instance Hodgson, Rubinstein and Segerman [44]. One wishes to know that

3Note that every edge can be completed to a closed loop by adding a path on the boundary T 2 . The
choice of completion does not matter for studying commutation with the peripheral subgroup.
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every two such triangulations are related by a sequence of 2–3 moves. This is a
combinatorial problem of convex geometry which we summarize below. For a detailed
discussion, the reader may consult the book by De Loera, Rambau and Santos [14] and
references therein.

Fix a convex polytope P in Rd . One can consider the set of triangulations of P . When
d D 2, P is a polygon and it is known that every two triangulations are related by a
sequence of flips. For general d , flips are replaced by geometric bistellar moves. When
d � 5, it is known that the graph of triangulations (with edges given by geometric
bistellar flips) is not connected, and has isolated vertices. For d D 3, it is not known
whether the graph is connected.

The situation is much better when one considers regular triangulations of P . In that
case, the corresponding graph of regular triangulations is connected, an in fact it is the
edge set of the secondary polytope of P . When d D 3 and P is convex and in general
position, then the only geometric bistellar move is the 2–3 move where the added edge
that appears in the move is an edge that connects two vertices of P . When d D 3

and P is not in general position, the same conclusion holds as long as one allows for
tetrahedra that are flat, ie, lie on a 2–dimensional plane.

Returning to the Epstein–Penner ideal cell decomposition, let X EP
M

denote the set of
regular (in the sense of polytopes and in the sense of �0 ) ideal triangulations of the
ideal cell decomposition. The above discussion together with the fact that no edge
of the ideal cell decomposition is univalent, implies that X EP is a connected subset
of X�0

. This concludes the proof of Proposition 1.7.

A detailed discussion on the canonical set X EP
M

of ideal triangulations of a cusped
hyperbolic 3–manifold M is given in [35, Section 6].

4.3 Neumann–Zagier datum and the geometric component

Let M be a manifold with torus boundary and T a (combinatorial) ideal triangulation.
The Neumann–Zagier datum ˇT D .z;A;B/ may be generalized for representations
� 2XM besides the discrete faithful.

To begin, choose a representation �W �1.M / �! PSL.2;C/, and, if desired, a lift to
SL.2;C/. Let .�; �/ be meridian and longitude cycles4 on @M , and let .m˙1; `˙1/

be the eigenvalues of �.�/ and �.�/, respectively. For example, for the lift of the

4Recall again that these cycles are only canonically defined for knot complements. In general there
is some freedom in choosing them, but the torsion depends in a predictable way on the choice, cf
Yamaguchi [74].
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discrete faithful representation to SL.2;C/, we have .m; `/D .1;�1/; see Calegari [9].
These eigenvalues define a map

(4-4) XM �! .C�/2=Z2;

whose image is a curve YM , the zero-locus of the A–polynomial AM .`;m/D 0 [12].
We will denote the representation � as �m to emphasize its meridian eigenvalue.

Now, given a triangulation T , and with A , B , and � defined as in Section 2.3, the
gluing equations (2-12) can easily be deformed to account for m ¤ 1. Namely, we
find [58]

(4-5)
NY

jD1

zj
Aij z00j

Bij D .�1/�i m2ıiN :

The developing map (4-3) maps every solution of these equations to a representation
�1.M / �! PSL.2;C/ with meridian eigenvalue ˙m. The triangulation T is �m –
regular if and only if �m is in the image of this map. We can similarly express the
longitude eigenvalue as a product of shape parameters

(4-6)
NY

jD1

zj
2Cj z00j

2Dj D .�1/2��`2;

for some 2Cj ; 2Dj ; 2�� 2Z. Then, if T is a �m –regular triangulation, the irreducible
component of YM containing �m is explicitly obtained by eliminating all shapes zj

from (4-5)–(4-6).

In general, the shapes zj are algebraic functions on components of the variety YM .
However, if M is hyperbolic and T is regular for all but finitely many representations
on the geometric component Y

geom
M

, then the shapes zj become rational functions,
zj 2 C.Y

geom
M

/. We provide a proof of this fact in Appendix B. The field of functions
C.Y

geom
M

/ may be identified with Q.m/Œ`�=.Ageom.`;m//, and the functions zj .`;m/

can easily be obtained from equations (4-5)–(4-6).

4.4 Flattening compatible with a longitude

In this section we define a restricted combinatorial flattening that is compatible with a
longitude.

Recall what is a combinatorial flattening of an ideal triangulation T from Definition 2.1.
Given a simple peripheral curve � on the boundary of M that represents a longitude —
in particular, having intersection number one with the chosen meridian � — we can
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construct the sum of combinatorial edge parameters along �, just as in Section 2.2. It
takes the form

(4-7) � W

NX
iD1

.GNC2;iZi CG 0NC2;iZ
0
i CG 00NC2;iZ

00
i /;

for integer vectors GNC1 , G 0
NC2

, G 00
NC2

. Just as we obtained A , B , and � from the
edge and meridian equations (with or without deformation), we may also now define

Ci D
1

2
.GNC2;i�G 0NC2;i/; Di D

1

2
.G 00NC2;i �G 0NC2;i/;

�� D�
1

2

NX
iD1

G 0NC2;i :

(4-8)

Definition 4.4 A combinatorial flattening .f; f 0; f 00/ is compatible with a longitude
if in addition to Equations (2-10a)–(2-10b), it also satisfies

(4-9) GNC2;if CG 0NC2;if
0
CG 00NC2;if

00
D 0:

Equivalently, a combinatorial flattening compatible with the longitude is a vector
.f; f 00/ 2 Z2N that satisfies

(4-10) Af CBf 00 D �; C �f CD �f 00 D ��:

A combinatorial flattening compatible with a longitude always exists [56, Lemma 6.1].

In the context of functions on the character variety, it is natural to deform the meridian
gluing equation, and simultaneously to introduce a longitude gluing equation, in the
form

� W

NX
iD1

.GNC1;iZi CG 0NC1;iZ
0
i CG 00NC1;iZ

00
i /D 2u;(4-11a)

� W

NX
iD1

.GNC2;iZi CG 0NC2;iZ
0
i CG 00NC2;iZ

00
i /D 2v;(4-11b)

for some complex parameters u and v . Upon exponentiation, these equations reduce
to the expected (4-5)–(4-6) if

(4-12) m2
D e2u; `2

D e2v:

(It is easy to show, following [58], that C and D as defined by (4-10) are the correct
exponents for the exponentiated longitude Equation (4-6).) If M is a knot complement
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and we want to lift from PSL.2;C/ to SL.2;C/ representations, we should take
mD eu and `D�ev and divide (4-11a) by two before exponentiating. This provides
the correct way to take a square root of the exponentiated gluing equation, cf [9].

The remarkable symplectic property of A and B may be extended to C and D , even
though in general C , D are vectors of half-integers rather than integers. Namely, there
exists a completion of .AB/ to a full symplectic matrix

�
A B
C D

�
such that the bottom

rows of C and D are the vectors C and D [58]. In particular, this means that

(4-13) AN �D�BN �C D 1;

where AN ;BN are the bottom (meridian) rows of A;B .

4.5 Invariance of the generalized torsion

We finally have all the required ingredients for the generalized torsion formula. Let M

be a three-manifold with torus boundary, and �mW �1.M / ! (P)SL.2;C/ a repre-
sentation with meridian eigenvalue m. Let T be a �m –regular triangulation of M ,
which exists by Lemma 4.3 at least for a dense set of representations on the geometric
component of the character variety. Choose an enhanced Neumann–Zagier datum
.z;A;B ; f /, with z D z.�m/ satisfying the deformed gluing equations (4-5) and f
satisfying (4-10). Then, as in (4-1), we define

�T .�m/ WD ˙
1

2
det.A�z00 CB��1

z /zf
00

z00�f :

We can now prove Theorem 4.1.

Repeating verbatim the arguments of Section 3, it is easy to see that �T is independent
of a choice of quad type, a choice of an edge of T and a choice of a meridian loop. The
crucial observation is that the equations AZCBZ00 D i�� (including the meridian
equation) are never used in the respective proofs. Therefore, deforming the meridian
equation by u¤ 0 does not affect anything. For the same reason, it is not hard to see
that the formula is invariant under �m –regular 2–3 moves, by repeating the argument
of Section 3.6.

The only nontrivial verification required is that �T is independent of the choice of
flattening. This does use the gluing equations in a crucial way. We check it now for
m¤ 1.

Choose logarithms .Z;Z0;Z00/ of the shape parameters and a logarithm u of m such
that ZCZ0CZ00 D i� and

(4-14) AZCBZ00 D 2uC i��;
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where u denote the N –dimensional vector .0; 0; : : : ; 0;u/T . By independence of quad
type and Lemma A.3, we may assume we are using a quad type with nondegenerate
B . Now, suppose that .f; f 0; f 00/ and . zf ; zf 0; zf 00/ are two different generalized
flattenings. Then

.Z �f 00�Z00 �f /� .Z � zf 00�Z00 � zf /

DZ � .f 00� zf 00/CB�1.AZ � i�� � 2u/ � .f � zf /

DZ � .f 00� zf 00/CZ �B�1A.f � zf /� i�B�1� � .f � zf /�2B�1u � .f � zf /

D�i�B�1� � .f � zf /� 2B�1u � .f � zf /

D i�.f 00 � zf �f � zf 00/� 2B�1u � .f � zf /;

by manipulations similar to those of Section 3.5. The new term 2B�1u � .f � zf / is
now dealt with by completing the Neumann–Zagier matrices .AB/ to a full symplectic
matrix

�
A B
C D

�
2 Sp.2N;Q/, whose bottom row agrees with .C;D/. The symplectic

condition implies that ADT �BC T D I , or B�1 DB�1ADT �C T . Then

B�1u � .f � zf /DB�1ADT u � .f � zf /�C T u � .f � zf /

D u �DB�1A.f � zf /�u �C .f � zf /

D�u � .C .f � zf /CD.f 00� zf 00//

D�u.C � .f � zf /CD � .f 00� zf 00//:

In this last equation, only the bottom row of C and D appears, due to the contraction
with uD .0; 0; : : : ; 0;u/. But this bottom row is precisely what enters the generalized
flattening equations (4-10); since both flattenings satisfy these equations, we must have
B�1u � .f � zf /D 0. Therefore, upon exponentiating, we find

(4-15) zf
00

z00�f D .�1/f
00� zf�f � zf 00z

zf 00z00�
zf
D˙z

zf 00z00�
zf ;

which demonstrates that �T is independent of the choice of flattening. Theorem 4.1
follows.

4.6 Example: 41 continued

We briefly demonstrate the generalized torsion formula, using representations on the
geometric component of the character variety X41

for the figure-eight knot complement.

We may consider the same triangulation as in Section 2.6. The edge and meridian
equations (2-14) are deformed to

(4-16) z2w2z00w00 D 1; zwz00 D�m2;
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z

z00

z0

w

w0

w00

z00

z0

z

w0

w00

w

z

z00

z0

w w00

w0

z00

z0

z

w0

w00

w

�

�

Figure 8: Longitude path for the figure-eight knot complement

with z00 D 1� z�1 , w00 D 1�w�1 as usual. In addition, there is a longitude equation
that may be read off from the longitude path in Figure 8. In logarithmic (combinatorial)
form, we have �2ZC 2Z0 D 2v , or

(4-17) �4Z � 2Z00 D 2v� 2� i;

from which we identify

(4-18) C D .�2; 0/; D D .�1; 0/; �� D�1:

Dividing (4-17) by two and exponentiating, we find

(4-19) z�2z00�1
D `;

with ` D �ev . This is the appropriate square root of (4-6) for lifting the geometric
representations to SL.2;C/. We can easily check it: by eliminating shape parameters
from (4-16) and (4-19), we recover the geometric SL.2;C/ A–polynomial for the
figure-eight knot,

(4-20) A
geom
41

.`;m/Dm4
� .1�m2

� 2m4
�m6

Cm8/`Cm4`2:

We may also use equations (4-16)–(4-19) to express the shape parameters as functions
of ` and m. We find

(4-21) z D�
m2�m�2

1Cm2`
; w D

m2C `

m2�m�2
:

These are functions on the curve Y
geom
41

D fA
geom
41

.`;m/D 0g.

The flattening (2-15) does not satisfy the new longitude constraint C �f CD �f 00D �� ,
so we must find one that does. The choice

(4-22) .fz; f
0

z ; f
00

z Ifw; f
0
w; f

00
w/D .0; 0; 1I 0; 0; 1/
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will work. Repeating the calculation of Section 3.1 with the same A and B but the
new generalized flattening, we now obtain

(4-23)

�41
.�m/D˙

1

2
det

�
z00C 1 w00C 1

1 w00

�
zw

D˙
1

2
.z00w00� 1/zw

D˙
1�m2� 2m4�m6Cm8� 2m4`

2m4.m2�m�2/
:

This is in full agreement with the torsion found by [40; 17]. Note that for fixed m there
are two choices of representation �m on the geometric component of the character
variety; they correspond to the two solutions of A

geom
41

.`;m/D 0 in `.

Remark 4.5 It is interesting to observe that the numerator of Equation (4-23) is
exactly @Ageom

41
=@`. That the numerator of the geometric torsion typically carries a

factor of @Ageom
41

=@` might be gleaned from the structure of “ yA–polynomials” in [17]
and Gukov and Sułkowski [41], and will also be explored elsewhere.

5 The state integral and higher loops

Our explicit formulas for the torsion �T , as well as higher invariants ST ;n , have been
obtained from a state integral model for analytically continued SL.2;C/ Chern–Simons
theory. In this section, we will review the state integral, and analyze its asymptotics in
order to rederive the full asymptotic expansion

(5-1) ZT .„/D „
�3=2 exp

h1

„
ST ;0CST ;1C„ST ;2C„

2ST ;3C � � �
i
;

and to unify the formulas of previous sections. We should point out that this section is
not analytically rigorous, but serves as a motivation for our definition of the all-loop
invariants, and provides a glimpse into the calculus of (complex, finite-dimensional)
state integrals.

The basic idea of a state integral is to cut a manifold M into canonical pieces (ideal
tetrahedra); to assign a simple partition function to each piece (a quantum dilogarithm);
and then to multiply these simple partition functions together and integrate out over
boundary conditions in order to obtain the partition function of the glued manifold M .
A state integral provides a finite-dimensional reduction of the full Feynman path integral
on M .
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Currently, there are two flavors of SL.2;C/ state integrals in the literature. The first,
introduced by Hikami in [42; 43], studied in [17], and made mathematically rigorous
by Andersen and Kashaev in [2], is based on a 3–dimensional lift of the 2–dimensional
quantum Teichmüller theory in Kashaev’s formalism [51]. It uses variables associated
to faces of tetrahedra. The second, developed in [15], explicitly uses shape parameters —
associated to edges of tetrahedra — and constitutes a 3d lift of Teichmüller theory in the
Fock–Chekhov formalism [30]. The two types of state integrals should be equivalent,
though this has only been demonstrated in isolated examples so far; see Spiridonov
and Vartanov [65].

It is the second state integral that we employ in this paper, due to its explicit dependence
on shape parameters. Indeed, suppose that M is an oriented one-cusped hyperbolic
manifold with a �0 –regular triangulation T and enhanced Neumann–Zagier datum
y̌T D .z;A;B ; f /, with Af CBf 00 D � . We must also assume that B is nondegen-
erate, which (Lemma A.3) is always possible. Then we will5 show in Appendix C that
the state integral of [15] takes the form

(5-2) ZT .„/D

s
8�3

„3 det B

Z
dN Z

.2�„/N=2
ex

NY
iD1

 „.Zi/;

where xD 1
„
Œ1
2
.i�C „

2
/2f �B�1�� .i�C „

2
/Z �B�1�C 1

2
Z �B�1AZ� and  „.Z/

is a noncompact quantum dilogarithm [4; 27], the Chern–Simons partition function of
a single tetrahedron. The integration variables Zi are, literally, the logarithmic shape
parameters of T .

The integration contour of (5-2) is unspecified. A complete, nonperturbative definition
of ZT .„/ requires a choice of contour, and the choice leading to invariance under 2–3
moves (etc.) may be quite subtle. However, a formal asymptotic expansion of the state
integral as in (5-1) does not require a choice of contour. It simply requires a choice
of critical point for the integrand. Then the asymptotic series may be developed via
formal Gaussian integration in an infinitesimal neighborhood of the critical point.

We will show in Section 5.1 that all the leading order critical points of (5-2) are
logarithmic solutions to the gluing equations

(5-3) critical points  ! zA.1� z�1/B D .�1/� ;

with z D exp.Z/. In particular, the critical points are isolated. Then, choosing the
discrete faithful solution to (5-3), we formally expand the state integral to find that

5Here we multiply (C-23) (at uD 0) by an extra, canonical normalization factor .2�=„/3=2 , in order
to precisely match the asymptotics of the Kashaev invariant at the discrete faithful representation.
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� ST ;0 , the evaluation of leading order part of the integrand at the critical point,
is the complex volume of M ;

� exp.�2ST ;1/ is expressed as the determinant of a Hessian matrix

HD�B�1AC��1
1�z;

with a suitable monomial correction, and reproduces the torsion (1-8);
� the higher ST ;n are obtained via a finite-dimensional Feynman calculus, and

explicitly appear as rational functions of shape parameters.

It follows from the formalism of [15], reviewed in Appendix C, that the state inte-
gral (5-2) is only well-defined up to multiplicative prefactors of the form

(5-4) exp
��2

6„
aC

i�

4
bC
„

24
c
�
; a; b; c 2 Z:

This means that we only obtain .ST ;0; �T D4�3e�2ST ;1 ;ST ;2/ modulo .�
2

6
Z; i; 1

24
Z/,

respectively; however, all the higher invariants ST ;n�3 should be unambiguous. More-
over, in Section 3 we saw that the ambiguity in �T could be lifted6 to a sign ˙1.
Although the construction of the asymptotic series (5-1) appears to depend on T , we
certainly expect the following.

Conjecture 5.1 The invariants fST ;ng
1
nD0

are independent of the choice of regular
triangulation and Neumann–Zagier datum (including the choice of quad type with
det B ¤ 0, etc.), up to the ambiguity (5-4), and thus constitute topological invariants
of M .

We now proceed to analyze the critical points and asymptotics of (5-2) in greater detail.
In Section 5.5, we will also generalize the state integral to arbitrary representations,
with nonunit meridian eigenvalue m D eu ¤ 1, and give an example of ST ;2.m/,
ST ;3.m/ as functions on the character variety Y

geom
M

for the figure-eight knot.

5.1 Critical points

We begin by showing that the critical points of (5-2) are indeed solutions to the gluing
equations. For this purpose, we need to know the quantum dilogarithm  „.Z/. The
latter is given by [17, Equation 3.22]

(5-5)  „.Z/D

1Y
rD1

1� qr e�Z

1� .Lq/�rC1e�
LZ

;

6It may also be possible to lift the ambiguities in ST ;0 and ST ;2 by using ordered triangulations, as
in [57; 75].
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for jqj< 1, where

(5-6) q WD exp „; Lq WD exp
�4�2

„
; LZ WD

2� i

„
Z:

The quantum dilogarithm  „.Z/ coincides with the restriction to jqj< 1 of Faddeev’s
quantum dilogarithm [27], as follows from [17, Equation 3.23].  „.Z/ is the Chern–
Simons wavefunction of a single tetrahedron [15]. The quantum dilogarithm has an
asymptotic expansion as „! 0, given by (cf [17, Equation 3.26])

(5-7)  „.Z/
„!0
� exp

1X
nD0

Bn„
n�1

n!
�Li2�n.e

�Z /

D exp
h1

„

�Li2.e�Z /C
1

2
�Li1.e�Z /�

„

12
z0C

„3

720
z.1C z/z03C � � �

i
;

where Bn is the nth Bernoulli number, with B1 D 1=2.

The coefficients of strictly positive powers of „ (ie n� 2) in the expansion are rational
functions of zDeZ , but the two leading asymptotics — the logarithm and dilogarithm —
are multivalued and have branch cuts. In contrast, the function  „.Z/ itself is a
meromorphic function on C for any fixed „ ¤ 0. Branch cuts in its asymptotics arise
when families of poles collide in the „! 0 limit. In the case of purely imaginary „
with Im „> 0 (a natural choice in the analytic continuation of SU.2/ Chern–Simons
theory), a careful analysis of this pole-collision process leads to branch cuts for �Li2
and �Li1 that are different from the standard ones (Figure 9). We indicate the modified
analytic structure of these two functions (really functions of Z rather than e�Z ) with
an extra tilde.

Now, the critical points of the integrand, at leading order7 in the „ expansion, are
solutions to

0D
@

@Zi

�
�
�2

2
f �B�1� � i�Z �B�1�C

1

2
Z �B�1AZC

X
i

�Li2.e�Zi /
�

D�i�.B�1�/i C .B
�1AZ/i � �Li1.e�Zi /;

in other words,

(5-8) AZCB.��Li1.e�Z //D i��:

Since expŒ��Li1.e�Zi /�D 1� z�1
i , we see that every solution to (5-8) is a particular

logarithmic lift of a solution to the actual gluing equations zA.1� z�1/B D .�1/� .

7We treat all subleading terms as perturbations. The exact location of the critical point will acquire
perturbative corrections, described in Section 5.4.
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Im.Z/
4� i

2� i

� i

0

�2� i

�4� i

Li1;2.e�Z /

Re.Z/

Im.Z/
4� i

2� i

� i

0

�2� i

�4� i

�Li1;2.e�Z /

Re.Z/

Figure 9: Rotating the standard branch cuts of Li2.e�Z / and Li1.e�Z / to
produce �Li2.e�Z / and �Li1.e�Z / , as functions of Z . The shaded region
indicates where the standard logarithms of shape parameters for the discrete
faithful representation lie.

It is a lift that precisely satisfies the logarithmic constraints (2-6) of Section 2, with
Z00i D�

�Li1.e�Zi /.

When 0� Im Zi � � , the branches of the standard logarithms and dilogarithms agree
with those of the modified ones. In particular, given the discrete faithful solution to
zA.1� z�1/B D .�1/n , taking standard logarithms immediately produces a solution
to (5-8). Therefore, the discrete faithful representation always corresponds to a critical
point of the state integral.

5.2 Volume

By substituting a solution to (5-8) back into the „�1 (leading order) part of the integrand,
we obtain the following formula for the complex volume of a representation:

(5-9) ST ;0 D�
�2

2
f �B�1� � i�Z �B�1�

C
1

2
Z �B�1AZC

X
i

�Li2.e�Zi /
�

mod
�2

6

�
:

Some manipulation involving the flattening can be used to recast this as

(5-10) ST ;0 D�
1

2
.Z � i�f / � .Z00C i�f 00/C

X
i

�Li2.e�Zi /
�

mod
�2

6

�
;
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where Z00i WD�
�Li1.e�Zi /. It is straightforward to verify that this formula is independent

of the choice of quad type, choice of edge of T , choice of meridian loop, choice of
flattening, and 2–3 moves defines a topological invariant, which agrees with the complex
Chern–Simons invariant of M . Since the complex volume in this form has already
been studied at length in the literature, we suppress the details here.

At the discrete faithful representation, we can remove the “tildes” from the logarithm
and dilogarithm. If we consider the discrete faithful solution to zA.1�z�1/B D .�1/n ,
and take standard logarithms

Zi D log zi ; Z00i D log.1� z�1
i / (with 0� Im Z; Im Z00 � � ),

we find

(5-11) ST ;0 D i.Vol.M /� iCS.M //

D�
1

2
.Z � i�f / � .Z00C i�f 00/C

X
i

Li2.e�Zi /
�

mod
�2

6

�
:

This is a version of the simple formula for the complex volume given in [56]. It is
known that the ambiguity in the volume can be lifted from �2=6 to 2�2 using more
refined methods; see [57; 38; 75] and Dupont and Zickert [24].

5.3 Torsion revisited

Next, we can derive our torsion formula (1-8). The torsion comes from the „0 part in
the asymptotic expansion of the state integral, which has several contributions.

From formal Gaussian integration around a critical point (5-8), we get a determinant
.2�„/N=2.detH/�1=2 , where

(5-12) Hij D�
@2

@Zi@Zj

�
�
�2

2
f �B�1� � i�Z �B�1�

C
1

2
Z �B�1AZC

X
i

�Li2.e�Zi /
�

D .�B�1AC�z0/ij

is the Hessian matrix of the exponent (at leading order „�1 ). Here we define that
�z0 WD diag.z0

1
; : : : ; z0

N
/, with z0i D .1� zi/

�1 as usual. Multiplying the determinant
is the „0 piece of the integrand, evaluated at the critical point. From the „0 part of the
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quadratic exponential, we get

(5-13) exp
�

i�

2
f �B�1� �

1

2
Z �B�1�

�
D exp

�
1

2
f � .B�1AZCZ00/�

1

2
Z � .B�1Af Cf 00/

�
D exp

�
�

1

2
Z �f 00C

1

2
Z00 �f

�
D .zf

00

z00�f /�1=2;

whereas from the quantum dilogarithm at order „0 we find

(5-14) exp
�1

2

X
i

�Li1.e�Zi /
�
D˙

Y
i

1q
1� z�1

i

D˙ det��1=2
z00 :

Combining the determinant .2�„/N=2.detH/�1=2 , the corrections (5-13)–(5-14), and
the overall prefactor

p
8�3=det B.2�„/�N=2 in the integral (5-2) itself, we finally

obtain

(5-15) eS1 D

s
8�3

det B det.�B�1AC�z0/ det�z00zf
00
z00�f

D

s
�8�3

det.A�z00 CB��1
z /zf

00
z00�f

;

up to multiplication by a power of i ; or

(5-16) �M WD 4�3e�2S1 D˙
1
2

det.A�z00 CB��1
z /zf

00

z00�f ;

just as in (1-8). Despite the fact that the original state integral only made sense for
nondegenerate B , the final formula for the torsion is well-defined for any B .

5.4 Feynman diagrams and higher loops

The remainder of the invariants ST ;n can be obtained by continuing the saddle-point
(stationary phase) expansion of the state integral to higher order. The calculation can be
systematically organized into a set of Feynman rules (cf [45, Chapter 9], [6] and [60]).
The resulting formulas — summarized in Section 1 — are explicit algebraic functions
of the exponentiated shape parameters zi , and belong to the invariant trace field EM .

To proceed, we should first recenter the integration around a critical point. Thus, we
replace Z!ZC � and integrate over � , assuming Z to be a solution to (5-8). Using
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[17, Equation 3.26], we expand as follows:

(5-17) ZT .„/D

s
8�3

„3 det B

Z
dN �

.2�„/N=2

NY
iD1

 „.Zi C �i/

� e
1
„
Œ1
2
.i�C„

2
/2f �B�1��.i�C„

2
/.ZC�/�B�1�C1

2
.ZC�/�B�1A.ZC�/�

�

s
8�3

„3 det B
e�

.0/.Z/

�

Z
dN �

.2�„/N=2
exp

h
�

1

2„
� �H.Z/ � �C

1X
kD1

NX
iD1

�
.k/
i .Z/

k!
�k

i

i
:

In this form, the first coefficient �.0/.Z/ can be identified with an overall vacuum
energy, while the rest of the �.k/i .Z/ are vertex factors.

Every �.k/.Z/ here is a series in „, in general starting with a 1=„ term. However, �.1/i

must vanish at leading order „�1 precisely because Z is a solution to the leading
order critical point equations; and we have also already extracted the leading „�1 piece
of �.2/i as the Gaussian integration measure �.1=2„/�H� . Typically, 1–vertices and
2–vertices are absent from a Feynman calculus. Here, however, they appear because
our critical point equation and the Hessian (respectively) are only accurate at leading
order, and incur „–corrections. (Note that the 1–vertices and 2–vertices are counted
separately in (5-19) below.)

The vacuum energy �.0/ contributes to every ST ;n , n � 0. Its leading order „�1

term is just the complex volume (5-10), while the „0 piece contains the corrections
(5-13)–(5-14) to the torsion. At higher order in „, we have

(5-18) �.0/.Z/D
1

„
S0C„

0. � � � /C
„

8
f �B�1Af

C

1X
nD2

„n�1Bn

n!

NX
iD1

Li2�n.z
�1
i /

�
mod

„

24

�
:

Each Sn , n � 2, is calculated by taking the „n�1 part of �.0/ , and adding to it
an appropriate sum of Feynman diagrams. The rules for the diagrams are derived
from (5-17) as follows. There are vertices of all valencies k D 1; 2; : : :, with a vertex
factor given by �.k/i . One draws all connected diagrams (graphs) with

(5-19) # loopsC # 1–verticesC # 2–vertices � n:
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Each k –vertex is assigned a factor �.k/i , and each edge is assigned a propagator

(5-20) propagator W …ij WD „H�1
ij D „.�B�1AC�z0/

�1
ij :

The diagrams are then evaluated by contracting the vertex factors with propagators,
and multiplying by a standard symmetry factor. In each diagram, one should restrict to
the „n�1 term in its evaluation.

Explicitly, using the asymptotic expansion (5-7) of the quantum dilogarithm, we find
that the vertices are

1–vertex: �
.1/
i D�

1

2
.B�1�/i �

1X
nD1

„n�1Bn

n!
Li1�n.z

�1
i /(5-21a)

D�
1

2
.B�1�/i C

z0i
2
C � � � ;

2–vertex: �
.2/
i D

1X
nD1

„n�1Bn

n!
Li�n.z

�1
i /(5-21b)

D
ziz
02
i

2
�
„

12
zi.1C zi/z

03
i C � � � ;

k–vertex: �
.k/
i D .�1/k

1X
nD0

„n�1Bn

n!
Li2�n�k.z

�1
i / .k � 3/:(5-21c)

Note that in �.1/i we could also write B�1� D B�1Af C f 00 . When the inequal-
ity (5-19) is saturated, only the leading order („�1 or „0 ) terms of the vertex factors
(5-21) need be considered. Otherwise, subleading „–corrections may be necessary.

Examples of 2–loop and 3–loop Feynman diagrams were given in Figures 1–3 of
Section 1, along with the entire evaluated expression for ST ;2 .

5.5 n–loop invariants on the character variety

Just as we extended the torsion formula to general representations � 2XM in Section 4,
we may now generalize the entire state integral. The basic result for the higher invari-
ants ST ;n is that their formulas remain completely unchanged. The shapes zi simply
become functions of the representation � , and satisfy the deformed gluing equations
(4-5)–(4-6). One must also make sure to use a generalized flattening whenever it occurs,
just as in Section 4.

We note that, for a hyperbolic knot complement M D S3nK , the generalized Chern–
Simons state integral ZM .uI „/ is expected to match the asymptotic expansion of the
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colored Jones polynomials JN .KI q/. Specifically, one should consider the limit

(5-22) N !1; „! 0; qN
D eN„

D e2u fixed;

where m D eu is the meridian eigenvalue for a geometric representation �m in the
neighborhood of the discrete faithful. This is the full Generalized Volume Conjecture
of [39].

To see how formulas for the generalized invariants ST ;n , n� 0, come about, consider
the state integral at general meridian eigenvalue mD eu . From (C-23) of Appendix C,
we find

(5-23) ZT .uI „/D

r
8�

„3 det B

Z
dN Z

.2�„/N=2

NY
iD1

 „.Zi/e
� 1

2„
Z �B�1AZ ex;

where

xD1
„
Œ2u�DB�1uC.2� iC„/f �B�1uC1

2
.i�C„

2
/2f �B�1��Z�B�1.2uC.i�C„

2
/�/�;

u WD .0; : : : ; 0;u/ and D is the block appearing in any completion of the Neumann–
Zagier matrices .AB/ to

�
A B
C D

�
2 Sp.2N;Q/, such that the bottom row D of D

appears in the longitude gluing equation C �ZCD �Z00 D vC 2� i�� (Section 4.4).
Indeed, since we are contracting with u, only this bottom row of D really matters
in (5-23).

The critical points of the state integral are now given by

(5-24) AZCBZ00 D 2uC i��;

with Z00 WD��Li1.e�Z /. As expected, this is the logarithmic form of the deformed glu-
ing equation (4-5). Thus, all critical points correspond to representations �D�m 2XM .
The multivalued nature of this equation must be carefully studied to make sure desired
solutions actually exist. However, for example, representations on the geometric
component X

geom
M

always exist in a neighborhood of the discrete faithful representation,
if we choose uD log m to be close to zero (and use a regular triangulation).

We then start expanding the state integral around a critical point, setting

(5-25) ZT .uI „/�„
� 3

2 exp
h1

„
ST ;0.u/CST ;1.u/C„ST ;2.m/C„

2ST ;3.m/C� � �
i
:

The leading contribution ST ;0.�/ is given, following some standard manipulations
using the generalized flattening, by

(5-26) ST ;0.u/D uv.u/�
1

2
.Z� i�f / �.Z00C i�f 00/C

NX
iD1

�Li2.e�Z /
�

mod
�2

6

�
:
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Here we write ST ;0 as a function of the logarithmic meridian eigenvalue u, though a
fixed choice of representation � will implicitly fix the choice of longitude eigenvalue
v D log.�`/ as well. Expression (5-26) is a holomorphic version of the complex
volume of a cusped manifold with deformed cusp. Explicitly,

(5-27) ST ;0.u/D i.VolM .u/C iCSM .u//� 2v<.u/:

This is the correct form of the complex volume to use in the Generalized Volume
Conjecture; cf [40].

At first subleading order, we rederive the generalized torsion formula. The calculation
is identical to that of Section 5.3, with the exception of the correction (5-13) coming
from the „0 part of the exponential. This correction now becomes

(5-28) exp
h
f �B�1uC

i�

2
f �B�1� �

1

2
Z �B�1�

i
:

To simplify this correction, we must use Af CBf 00 D � and a deformed gluing
equation AZ CBZ00 D 2uC i�� . The u–dependent part of the gluing equation
cancels the new u–dependent term in (5-28), ultimately leading to the same result

exp
h
f �B�1uC

i�

2
f �B�1� �

1

2
Z �B�1�

i
D .zf

00

z00�f /�1=2;

and therefore the same torsion8

(5-29) �T D 4�e�2ST ;1 D
1

2
det.A�z00 CB��1

z /zf
00

z00�f :

Finally, we can produce a generalized version of the Feynman rules of Section 5.4. We
note, however, that the u–dependent terms in (5-23) do not contribute to either the
vacuum energy �.0/ (at order „1 or higher), the propagator, or the vertex factors �.k/i .
Therefore, the Feynman rules must look exactly the same. The only difference is that
the critical point Equation (5-24) requires us to use shape parameters that satisfy the
generalized gluing equations.

5.6 Example: 41 completed

We may demonstrate the power of the Feynman diagram approach by computing the
first two subleading corrections ST ;2 and ST ;3 for the figure-eight knot complement.

8The normalization of the torsion here differs from the torsion at the discrete faithful by a factor of �2 .
In fact, we intentionally changed the normalization of the entire state integral (5-23) by �2 . This is
because we wanted the state integral to match the asymptotics of the colored Jones polynomials exactly,
and the asymptotics happen to jump by �2 when u¤ 0 , cf [40].
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We can use the same Neumann–Zagier datum described in Section 2.6, along with the
generalized flattening of Section 4.6. Let us specialize to representations �m on the
geometric component of the character variety. Then the two shapes z; w are expressed
as functions on the A–polynomial curve,

(5-30) z D�
m2�m�2

1Cm2`
; w D

m2C `

m2�m�2
;

as in (4-21).

The 2–loop invariant is explicitly given in (1-19) of Section 1. Evaluating this expres-
sion in Mathematica, we find

S41;2 D�
w3.zC1/Cw2..11�8z/z�4/Cw.z�1/.z.zC12/�5/C.z�2/.z�1/2

12.wCz�1/3
:

Upon using (5-30) to substitute rational functions for z and w , the answer may be
most simply expressed as

(5-31) zS41;2D
S41;2C 1=8

�3
41

D�
1

192
.m�6

�m�4
�2m�2

C15�2m2
�m4

Cm6/;

where we have divided by a power of the torsion as suggested in (1-14) of Section 1.
We have also absorbed a constant 1=8, recalling that our formula is only well-defined
modulo Z=24.

In a similar way, we may calculate the 3–loop invariant, finding unambiguously

(5-32) zS41;3 D
S41;3

�6
41

D
1

128
.m�6

�m�4
� 2m�2

C 5� 2m2
�m4

Cm6/:

These answers agree perfectly with the findings of [17], and the comparison there to the
asymptotics of the colored Jones polynomials at general u. Moreover, at the discrete
faithful representation we obtain

(5-33) S41;2 D
11i

72
p

3
D�

11

192�3
41

; S41;3 D�
1

54
D

1

128�6
41

;

in agreement with known asymptotics of the Kashaev invariant.

Appendix A: Symplectic properties of A and B

The N �N Neumann–Zagier matrices A and B form the top half of a symplectic
matrix

�
A B
C D

�
2Sp.2N;Q/ [58]. In this section we discuss some elementary properties

of symplectic matrices.
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Lemma A.1 The N � 2N matrix .AB/ is the upper half of a symplectic matrix if
and only if ABT is symmetric and .AB/ has maximal rank N .

Proof It is easy to see that the rows of .AB/ have zero symplectic product (with
respect to the standard symplectic form on Q2N if and only if ABT is symmetric. In
addition they span a vector space of rank N if and only if .AB/ has maximal rank
N . The result follows.

Lemma A.2 If .AB/ is the upper half of a symplectic matrix and B is nondegenerate,
then B�1A is symmetric.

Proof Lemma A.1 implies that ABT is symmetric, and so is .B/�1ABT ..B/�1/T .

It is not true in general that B is invertible. However, after a possible change of quad
type, we can assume that B is invertible. This is the content of the next lemma.

Lemma A.3 (a) Suppose .AB/ is the upper half of a symplectic 2N �2N matrix.
If A has rank r , then any r linearly independent columns of A and their
complementary N � r columns in B form a basis for the column space of
.AB/.

(b) There always exists a choice of quad type for which B is nondegenerate (for any
fixed choice of redundant edge and meridian path).

Proof For (a) let rank.A/D r �N . Without loss of generality, we may suppose that
the first r columns of A are linearly independent. We want to show that, together with
the last N � r columns of B , they form a matrix of rank N .

If we simultaneously multiply both A and B on the left by any nonsingular matrix
U 2 GL.N;R/, both the symplectic condition and the columns are preserved. This
follows from the fact that

�
U 0
0 U�1;T

�
2 Sp.2N;R/. By allowing such a transformation,

we may assume that A takes the block form

(A-1) A D

�
Ir�r A2

0 0

�
for some A2 . Similarly, we split B into blocks of size r and N � r ,

(A-2) B D

�
B1 B2

B3 B4

�
:

Since .AB/ has full (row) rank, we see that the bottom N � r rows of B must be
linearly independent, ie rank.B3B4/ D N � r . From the symplectic condition of
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Lemma A.1, we also find that B3CB4AT
2
D 0, so that rank.B3B4/� rank.B4/. This

then implies that B4 itself must have maximal rank N � r . Therefore, the last N � r

columns of B are linearly independent, and also independent of the first N columns
of A ; ie the matrix

�
Ir�r B2

0 B4

�
has maximal rank as desired. This concludes the proof

of part (a).

For part (b) let us denote the columns of A and B as ai and bi . A change of quad type
corresponding to a cyclic permutation Zi 7!Z0i 7!Z00i 7!Zi on the i th tetrahedron
permutes the i th columns of A and B as .ai ; bi/ 7! .bi�ai ;�ai/. Therefore, given N

complementary columns of .AB/ that have full rank, we can use such permutations to
move all the columns (up to a sign) into B .

Appendix B: The shape parameters are rational functions on
the character variety

In this Appendix, we prove that the shape parameters of a regular ideal triangulation are
rational functions on Y

geom
M

, the geometric component of the SL2.C/ A–polynomial
curve.

Proposition B.1 Fix a regular ideal triangulation T of a one-cusped hyperbolic mani-
fold M . Then every shape parameter of T is a rational function on Y

geom
M

.

Proof The proof is a little technical, and follows from work of Dunfield [20, Corol-
lary 3.2], partially presented in [7, Appendix]. For completeness, we give the details of
the proof here. We thank N Dunfield for a careful explanation of his proof to us.

Consider the affine variety R.M;SL.2;C// D Hom.�1;SL.2;C// and its algebro-
geometric quotient XM;PSL.2;C/ by the conjugation action of PSL.2;C/. Follow-
ing Dunfield from the Appendix to [7], let xR.M;SL.2;C// denote the subvariety
of R.M;SL.2;C// � P1.C/ consisting of pairs .�; z/ where z is a fixed point of
�.�1.@M //. Let xXM;SL.2;C/ denote the algebrogeometric quotient of xR.M;SL.2;C//
under the diagonal action of SL.2;C/ by conjugation and Möbius transformations
respectively. We will call elements .�; z/ 2 xR.M;SL.2;C// augmented represen-
tations. Their images in the augmented character variety xX .M;SL.2;C// will be
called augmented characters and will be denoted by square brackets Œ.�; z/�. Likewise,
replacing SL.2;C/ by PSL.2;C/, we can define the character variety XM;PSL.2;C /

and its augmented version xXM;PSL.2;C/ .

The advantage of the augmented character variety xXM;SL.2;C/ is that given  2�1.@M /

there is a regular function e that sends Œ.�; z/� to the eigenvalue of �. / corresponding
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to z , using Lemma B.3 below. In contrast, in XM;SL.2;C/ only the trace e C e�1


of �. / is well-defined. Likewise, in xXM;PSL.2;C / (resp. XM;SL.2;C/ ) only e2
 (resp.

e2
 C e�2

 ) is well-defined.

From now on, we will restrict to the geometric component of the character variety
XM;PSL.2;C/ and we will fix a regular ideal triangulation T . In [20, Theorem 3.1]
Dunfield proves that the natural restriction map

XM;PSL.2;C/ �!X@M;PSL.2;C/

of affine curves is of degree 1. The variety X@M;PSL.2;C/ is an affine curve in .C�/2=Z2

and let VM;PSL.2;C/ � .C
�/2 denote the preimage of X@M;PSL.2;C/ of the 2 W 1 map

.C�/2 �! .C�/2=Z2 . The commutative diagram

(B-1)

xXM;PSL.2;C/
//

��

VM;PSL.2;C/

��
XM;PSL.2;C/ // X@M;PSL.2;C/

has both vertical maps of degree 2, and the bottom horizontal map of degree 1. Thus,
it follows that the top horizontal map is of degree 1. In [7, Section 10.3] Dunfield
constructs a degree 1 developing map

VT �! xXM;PSL.2;C/;

which combined with the previous discussion gives a chain of birational curve isomor-
phisms

(B-2) VT �! xXM;PSL.2;C/ �! VM;PSL.2;C/:

Since the shape parameters are rational (in fact coordinate) functions on VT , it
follows that they are rational functions on VM;PSL.2;C/ . Using the regular map
VM;SL.2;C/�!VM;PSL.2;C/ , we obtain that the shape parameters are rational functions
on VM;SL.2;C/ .

Proposition B.1 has the following concrete corollary.

Corollary B.2 Given a regular ideal triangulation T with N tetrahedra, there is a
solution of the shape parameters in Q.m; `/=.A.m; `//.

Lemma B.3 Suppose

AD

�
a b

c d

�
2 SL.2;C/
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and c ¤ 0. Then, � is an eigenvalue of A if and only if z D .�� 2d/=.2c/ is a fixed
point of the corresponding Möbius transformation in P1.C/.

Appendix C: Deriving the state integral

In this Appendix, we explain the connection between the quantization formalism of [15]
and the special state integrals (5-2) and (5-23) that led to all the formulas in the present
paper. We will first review classical “symplectic gluing” of tetrahedra, then extend
gluing to the quantum setting and construct the state integral. There are multiple points
in the construction that have yet to be made mathematically rigorous, which we will
try to indicate.

C.1: Symplectic gluing

The main idea of [15] is that gluing of tetrahedra should be viewed, both classically
and quantum mechanically, as a process of symplectic reduction.

Suppose we have a one-cusped manifold M with a triangulation T D f�ig
N
iD1

. Clas-
sically, each tetrahedron �i comes with a phase space

(C-1) P@�i
D fflat SL.2;C/ connections on @�ig

� f.Zi ;Z
0
i ;Z
00
i / 2Cn.2� iZ/ jZi CZ0i CZ00i D i�g;

with (holomorphic) symplectic structure

(C-2) !@�i
D dZ ^ dZ00;

and a Lagrangian submanifold9

(C-3) L�i
D fflat SL.2;C/ connections that extend to �ig

D feZ 00
C e�Z

� 1D 0g � P@�i
:

When gluing the tetrahedra together, we first form a product

(C-4) L� D L�1
� � � � �L�N

� P� D P@�1
� � � � �P@�N

:

The edge constraints XI WD
PN

iD1.GIiZi CG 0
Ii

Z0i CG 00
Ii

Z00i /� 2� i from (2-3) are
functions on the product phase space P� , and can be used as (holomorphic) moment
maps to generate N � 1 independent translation actions tI . Recall [58] that the

9Explicitly, P@�i
is a space of flat connections on a 4–punctures sphere with parabolic holonomy at

the four punctures; while L�i
is the subspace with trivial holonomy, hence connections that extend into

the bulk of the tetrahedron. See, eg, the first author, Gaiotto and Gukov [16, Section 2].
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logarithmic meridian and longitude holonomies .u; v/ are also functions on P� , which
Poisson-commute with all the edges XI , and so are fixed under these translations.
Then the phase space of M is a symplectic quotient,

(C-5) P@M D fflat SL.2;C/ connections on @M ' T 2
g � f.u; v/ 2Cg

D P�==.tI /;

and the A–polynomial of M (more properly, components of the A–polynomial for
which the triangulation is regular) is the result of pulling the Lagrangian L� through
the quotient,

(C-6) LM D “L�==.tI /”� fAM .ev; eu/D 0g � P@M :

This is quite easy to check using equations (4-5) and (4-6).

C.2: Quantization

Quantum mechanically, we have that each tetrahedron has a Hilbert space H�i
, a

wavefunction Z�i
.Zi/ and a quantum operator yL@�i

that annihilates the wavefunction.
The symplectic-gluing procedure extends to the quantum setting, with appropriate
quantum generalizations of all the above operations. Roughly, one forms a product
wavefunction

(C-7) Z�.Z1; : : : ;ZN /D Z�1
˝ � � �˝Z�N

2H� DH@�1
˝ � � �˝H@�N

;

and restricts the product Hilbert space using N � 1 new polarizations coming from the
edge constraints. The resulting restricted wavefunction is ZM .u/, and it is annihilated
by a quantized version of the A–polynomial; see the second author [39; 33].

To make this more precise, let M again be an oriented one-cusped manifold, and
choose a triangulation T D f�ig

N
iD1

(regular with respect to some desired family
of representations), a quad type, a redundant edge, and a meridian path, just as in
Section 2.

To each tetrahedron �i we associate a boundary Hilbert space H@�i
. It is some

extension10 of L2.R/ that includes the wavefunction

(C-8) Z�i
.Zi I „/ WD  „.Zi/;

where  „.Zi/ is Faddeev’s quantum dilogarithm (5-5) [27]. We also associate to �i

an algebra of operators

(C-9) yA@�i
DCh yZi ; yZ

0
i ;
yZ00i i=.

yZi C
yZ0i C

yZ00i D i� C „
2
/;

10This space has not been mathematically defined yet; constructions of (eg) [2] might prove useful for
achieving this.
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with commutation relations

(C-10) Œ yZi ; yZ
0
i �D Œ

yZ0i ;
yZ00i �D Œ

yZ00i ;
yZi �D „:

Then the quantization of the Lagrangian (C-3) annihilates the wavefunction,

(C-11) yL�i
WD e

yZ 00
i C e�

yZi � 1; yL�i
Z�i
D 0;

where the operators act in the representation

(C-12)
yZi DZi ; yZ00i D „@Zi

I or

e
yZiZ.Zi/D eZiZ.Zi/; e

yZ 00
i Z.Zi/D Z.Zi C„/:

In order to glue the tetrahedra together, we start by forming the product wavefunction
Z�.Z1; : : : ;ZN /D Z�1

.Z1/ � � �Z�N
.ZN /. This is an element of a product Hilbert

space (C-7). Acting on this product Hilbert space is the product yA� of algebras (C-9),
which is simply generated by all the yZi ; yZ

0
i ;
yZ00i , with canonical commutation rela-

tions (C-10) (and operators from distinct tetrahedra always commuting).

Now, following the notation of Sections 2.2 and 4.4, we can define N operators
yXI 2

yA� , one for each independent edge, and one for the meridian:

(C-13) yXI WD

(PN
iD1.GIi

yZi CG 0
Ii
yZ0i CG 00

Ii
yZ00i /� 2� i �„ I D 1; : : : ;N � 1;

GNC1;i
yZi CG 0

NC1;i
yZ0i CG 00

NC1;i
yZ00i I DN:

Similarly, we may define an operator

(C-14) yPN WD
1
2
.GNC2;i

yZi CG 0NC2;i
yZ0i CG 00NC2;i

yZ00i /

corresponding to the longitude. Due to the symplectic structure found in [58], we
know that we may complete the set f yX1; : : : ; yXN ; yPN g to a full canonical basis of the
algebra yA� . We do this by adding N � 1 additional operators yPI , which are linear
combinations of the yZ s, such that

(C-15) Œ yPI ; yXj �D ıIj„; Œ yPI ; yPj �D Œ yXI ; yXj �D 0; 1� I; j �N:

The operators yXI ; yPI have a simple interpretation in terms of a generalized Neumann–
Zagier datum. Namely, if we complete .AB/ and the rows C;D (of Section 4.4) to a
full symplectic matrix

�
A B
C D

�
, then

(C-16)

 
yX
yP

!
D

�
A B

C D

� 
yZ
yZ00

!
� .i� C „

2
/

�
�

�P

�
:
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Here � is precisely the vector of N integers which was introduced in (2-8), while
�P D .�; : : : ;�; ��/, with �� from (4-8). The first N � 1 entries of �P depend on the
precise completion of the canonical basis (or the symplectic matrix), and ultimately
drop out of the gluing construction.

C.3: Quantum reduction

Classically, in order to glue we would want to set the N � 1 edge constraints XI ! 0,
and the meridian XN ! 2u. In Section C.1, these functions were actually used as
moment maps to perform a symplectic reduction. Now we should do the same thing
quantum mechanically. In order to reduce the product wavefunction Z�.Z1; : : : ;ZN /

of (C-7) to the final wavefunction ZM .u/ of the glued manifold M , we must transform
the wavefunction to a representation (or “polarization”) in which the operators yXI

act diagonally (by multiplication). In this representation, the wavefunction depends
explicitly on the XI . The “reduction” then simply requires fixing XI ! .0; : : : ; 0; 2u/.
Schematically,

(C-17) Z�.Z1; : : : ;ZN /
transform
�����! zZ�.X1; : : : ;XN /

fix
7!ZM .u/D zZ�.0; : : : ; 0; 2u/:

The transformation from Z� to zZ� is accomplished — formally — with the Weil
representation R of the affine symplectic group; see Shale [64] and Weil [71]. In
particular, we need R.˛/ for the affine symplectic transformation ˛ in (C-16). In [15,
Section 6], it was discussed in detail how to find R.˛/ by factoring the matrix of
(C-16) into generators. Then, for example, an “S –type” element of the symplectic
group acts via Fourier transform

(C-18) R
��

0 �I

I 0

��
W f .Z/ 7! zf .W /D

Z
dN Z

.2� i„/N=2
e

1
„

Z �W f .Z/;

whereas a “T –type” element acts as multiplication by a quadratic exponential

(C-19) R
��

I 0

T I

��
W f .Z/ 7! zf .W /D e

1
2„

W T T W f .W /:

Affine shifts act either by translation or multiplication by a linear exponential.

In the present case, there is a convenient trick that allows us to find R.˛/ without
decomposing ˛ into generators. We assume that the block B of the symplectic matrix
is nondegenerate, since we know we can always choose a quad type with this property.
For the moment, let us also suppose that the affine shifts vanish, � D �P D 0. Then
the Weil action is

(C-20) R.˛/W Z�.Z/ 7! zZ�.X /D
1

p
det B

Z
dN Z

.2� i„/N=2
exZ�.Z/;
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where x D 1
2„
.X �DB�1X � 2Z �B�1X CZ �B�1AZ/. In particular, it can easily

be verified that this correctly intertwines an action of operators . yZi DZi ; yZ
00
i D„@Zi

/

on Z�.Z/ with an action of operators . yXI DXI ; yPI D„@XI
/ on zZ�.X /. For example,Z

dN Zex.A yZCB yZ00/Z�.Z/D
Z

dN Zex.AZC„B@Z /Z�.Z/

D

Z
dN ZŒ.AZ �„B@Z /e

x �Z�.Z/

D

Z
dN ZXexZ�.Z/

D yX zZ�.X /:

Nonzero affine shifts � and �P further modify the result to

zZ�.X /D
1

p
det B

Z
dN Z

.2� i„/N=2
exp

�
�

1

„
X �

�
i� C

„

2

�
�P

C
1

2„

��
X C

�
i� C

„

2

�
�
�
�DB�1

�
X C

�
i� C

„

2

�
�
�

� 2Z �B�1
�
X C

�
i� C

„

2

�
�
�
CZ �B�1AZ

��
Z�.Z/;

and then, after setting X ! 2uD .0; : : : ; 0; 2u/ as in (C-17), we find

(C-21) ZM .u/D
1

p
det B

Z
dN Z

.2� i„/N=2
exp

h
�

1

„
.2� i C„/��u

C
1

2„

��
2uC

�
i� C

„

2

�
�
�
�DB�1

�
2uC

�
i� C

„

2

�
�
�

� 2Z �B�1
�
2uC

�
i� C

„

2

�
�
�
CZ �B�1AZ

�i NY
iD1

 „.Zi/:

This is the partition function of the one-cusped manifold M , modulo a multiplicative
ambiguity of the form expŒ�

2

6
aC i�

4
bC 1

24
c� for a; b; c 2 Z, which we will say more

about in Section C.5. By construction, this partition function is annihilated by the
quantum yA–polynomial of M .

C.4: Introducing a flattening

In order to obtain the state integral (5-23) appearing in the paper, we can introduce
a generalized flattening (as in Section 4.4) and use it to simplify (C-21). Note that
the discrete-faithful state integral (5-2) follows immediately from (5-23) upon setting
uD .0; : : : ; 0;u/! 0.
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Suppose, then, that we have integers .f; f 00/ that satisfy

(C-22)
�

A B

C D

��
f

f 00

�
D

�
�

�P

�
;

for some �P whose last entry is �� . We will assume that a completed symplectic
matrix

�
A B
C D

�
can be chosen in Sp.2N;Z/ rather than in Sp.2N;Q/. In that case,

since f and f 00 are vectors with integer entries, it follows that �P 2 ZN . Then,

���uC� �DB�1uD�.Cf CDf 00/ �uC.DT Af CDT Bf 00/ �B�1uD f �B�1u;

where we used the symplectic identities DT B DBT D and DT A D I CBT C ; and

� �DB�1� D � �D.f 00CB�1Af /

D � � .Df 00CCf CB�1;T f /

D f �B�1�C � � �P

D f �B�1� .mod Z/;

in a similar way. These relations allow us to write the state integral (C-21) as

(C-23) ZM .u/D
1

p
det B

Z
dN Z

.2�„/N=2
ex

NY
iD1

 „.Zi/;

where xD 1
„
Œ2u �DB�1uC.2� iC„/f �B�1uC 1

2
.i�C „

2
/2f �B�1��ZB�1.2uC

.i� C „
2
/�/�, just as in (5-23). (We drop a factor of

p
i from the measure, since it can

be absorbed in the overall normalization ambiguity.)

C.5: Normalization and invariance

The normalization of Chern–Simons state integrals has always been a subtle issue.
For the integral of [15], ambiguities in the normalization come from two sources: the
projectivity of the Weil representation, and the incomplete invariance of the integral
(even formally) under a change of “quad type” and a 2–3 move.

Let us consider the Weil representation first. We will assume that all symplectic matrices
are in Sp.2N;Z/, and that all shifts involve integers (like � and �P ) times i� C „

2
.

This assumption (which, again, is only an observed property) allows us to improve on
the estimates of [15, Equation (6.6)]. The Weil representation becomes a projective
unitary representation of ISp.2N;Z/'Sp.2N;Z/ËŒ.i�C „

2
/Z�2N on L2.RN /, for „

pure imaginary. Our Hilbert space H˝2N
�

is very close to L2.RN /, so we may hope
that the Weil representation is also unitary projective there. The most severe projective
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ambiguity arises from a violation of expected commutation relations between shifts and
T –type transformations such as (C-19). This leads to projective factors of the form

(C-24) exp
h 1

2„

�
i� C

„

2

�2
a
i
D exp

h�
�
�2

2„
C

i�

2
C
„2

8

�
a
i
; a 2 Z:

With the exception of factors like this, unitarity with respect to the norm

kf k2 D

Z
dN Z

.˙2� i„/N=2
jf .Z/j2

may be used to normalize Weil transformations. For example, the factor in (C-20),
Œ.2� i„/N det B ��1=2 , follows easily from formal manipulations on the integral trans-
formation to demonstrate unitarity.

The lack of complete invariance under a change of quad type (cyclic permutation
invariance) and a 2–3 move can also ruin the normalization of the state integral. The
change of quad type was analyzed, formally, in [15, Section 6.2.1]. A cyclic permutation
of a tetrahedron is accomplished by an affine version of the element ST 2 Sp.2N IZ/,
under the Weil representation. The single-tetrahedron wavefunction transforms as

(C-25)  „.Z/ 7!

Z
dZ
p

2� i„
e

1
2„
.Z2C2ZZ 0�.2� iC„/Z/ „.Z/

D e
�2

6„
˙ i�

4
� „

24 „.Z
0/:

The last equality follows from the Fourier transform of the quantum dilogarithm; see
Faddeev, Kashaev and Volkov [29] and Ponsot and Teschner [61]. This shows that the
tetrahedron wavefunction is invariant under permutations, up to a factor

(C-26) exp
h��2

6„
˙

i�

4
�
„

24

�
a
i
; a 2 Z:

The analysis of the 2–3 move is slightly more involved. It was done in terms of operator
algebra in [15], and then explained in terms of wavefunctions in [16, Section 6.2].
The main idea is that a 2–3 move can be done locally during the gluing procedure, by
performing a formal, “local” transformation on the state integral. The crucial property
involved is the Ramanujan-like identity for the quantum dilogarithm [29; 61], which
expresses three quantum dilogarithms as an integral of two; for example,

(C-27)  „.W
0

1/ „.W
0

2/ „.W
0

3/jW 01CW 0
2
CW 0

3
D2�iC„

�

Z
dZ
p

2�i„
e

1
2„
.Z2C2W 0

2
Z�.2�iC„/.W 0

1
CW 0

2
CZ// „.�Z/ „.Z �W 01/

which holds up to a factor that is again of the type (C-26).
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Putting together all three effects, we find that we might be able to control the overall
normalization of the state integral up to a factor of the form

(C-28) exp
h�2

6„
aC

i�

4
bC
„

24
c
i
; a; b; c 2 Z:

Appendix D: Computer implementation and computations

An enhanced Neumann–Zagier datum is a tuple .z;A;B ; f / attached to a regular
ideal triangulation of a cusped hyperbolic manifold M . The program SnapPy [13]
in its python and sage implementation computes the gluing matrices G ;G 0;G 00 of
Sections 2.4 and 4.4; and therefore it can easily compute an enhanced Neumann–Zagier
datum y̌T D .z;A;B ; f /. The shape parameters z are algebraic numbers computed
numerically to arbitrary precision (eg, 10000 digits) or exactly as algebraic numbers.

A Mathematica module of the authors computes (numerically or exactly) the n–
loop invariants ST ;n for n D 0; 2; 3 as well as our torsion �T given as input the
Neumann–Zagier datum. As an example, consider the hyperbolic knot 912 with
volume 8:836642343 : : : and the SnapPy ideal triangulation with 10 tetrahedra. Its
invariant trace field E912

is Q.x/ where x D�0:06265158 : : :C i1:24990458 : : : is
a root of

x17
� 8x16

C 32x15
� 89x14

C 195x13
� 353x12

C 542x11
� 719x10

C 834x9

� 851x8
C 764x7

� 605x6
C 421x5

� 253x4
C 130x3

� 55x2
C 18x� 3D 0:

E912
is of type Œ1; 8� with discriminant 3 �298171 �5210119 �156953399. Our torsion is

�912
D

1

2
.15� 7x� 15x2

C 55x3
� 67x4

C 81x5
� 43x6

� 112x7
C 303x8

� 488x9

C606x10
� 595x11

C 464x12
� 289x13

C 143x14
� 49x15

C 8x16/

D�3:133657804174628986 : : :C 14:061239582208047255 : : : i:

The two and three-loop invariants simplify considerably when multiplied by �3
912

and �6
912

respectively and are given by

S912;2�
3
912
D

1

26 � 3
.36263� 194718xC 503316x2

� 971739x3
C 1582041x4

� 2152164x5
C 2372779x6

� 2109742x7
C 1426659x8

� 484152x9
� 374803x10

C 836963x11
� 859483x12

C 621288x13
� 326550x14

C 109607x15
� 16840x16/

D 398:62270435384630954 : : :C 948:91209325049603870 : : : i;
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S912;3�
6
912

D
1
27 .2320213� 19092785x1

C 72589953x2
� 186402605x3

C 382362100x4

� 661985976x5
C 982969902x6

� 1258919324x7
C 1402544816x8

� 1359436057x9
C 1134208276x10

� 803313515x11
C 473961630x12

� 225394732x13
C 80872920x14

� 19104127x15
C 2161102x16/

D 71793:64335382669630 : : :C 204530:00105728258992 : : : i:

The norm .N1;N2;N3/D .N.�912
/;N.S912;2�

3
912
/;N.S912;3�

6
912
// of the above al-

gebraic numbers is given by

N1 D
3�298171�5210119�156953399

217
;

N2 D
173137�2497646101 : : : : : : 5575954409 .70 digits/

2102 �317
;

N3 D
1601979456 : : : : : : 5984185143 .100 digits/

2119
:

Recall that although S2;912
is defined modulo an integer multiple of 1=24, S3;912

is
defined without ambiguity and the numerator N3 is a prime number of 103 digits.

For a computation of the Reidemeister torsion �R
M

of the discrete faithful representation
of a cusped hyperbolic manifold M , we use a theorem of Yamaguchi [74] to identify
it with

�R
M D

1

cM

d�R
M
.t/

dt

ˇ̌̌
tD1

where cM is the cusp shape of M and �R
M
.t/ 2 EM Œt˙1� is the torsion polynomial

of M using the adjoint representation of SL.2;C/. Using the hypertorsion package
of N Dunfield (see [21]), we can compute �R

M
as follows:

cd Genus-Comp
sage:import snappy, hypertorsion

def torsion(manifold, precision=100):
M = snappy.Manifold(manifold)
p = hypertorsion.hyperbolic_adjoint_torsion(M, precision)
q = p.derivative()
rho = hypertorsion.polished_holonomy(M, precision)
z = rho.cusp_shape()
torsion = q(1)/z.conjugate()
return [M.name(), torsion]
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For the above example, we have

sage: torsion("9_12",500)
[’L105002’, -3.133657804174628986\ldots
+ 14.061239582208047255\ldots*I]

numerically confirming Conjecture 1.8. Further computations gives a numerical confir-
mation of Conjecture 1.8 to 1000 digits for all 59924 hyperbolic knots with at most 14

crossings.
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SL.n;C/-REPRESENTATIONS OF 3-MANIFOLDS
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Abstract
For a compact 3-manifold M with arbitrary (possibly empty) boundary, we give a
parameterization of the set of conjugacy classes of boundary-unipotent representa-
tions of �1.M/ into SL.n;C/. Our parameterization uses Ptolemy coordinates, which
are inspired by coordinates on higher Teichmüller spaces due to Fock and Goncharov.
We show that a boundary-unipotent representation determines an element in Neu-
mann’s extended Bloch group bB.C/, and we use this to obtain an efficient formula
for the Cheeger–Chern–Simons invariant, and, in particular, for the volume. Com-
putations for the census manifolds show that boundary-unipotent representations are
abundant, and numerical comparisons with census volumes suggest that the volume
of a representation is an integral linear combination of volumes of hyperbolic 3-
manifolds. This is in agreement with a conjecture of Walter Neumann, stating that
the Bloch group is generated by hyperbolic manifolds.
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1. Introduction
For a closed 3-manifold M , the Cheeger–Chern–Simons invariant (see [5], [6]) of a
representation � of �1.M/ in SL.n;C/ is given by the Chern–Simons integral

bc.�/D 1

2

Z
M

s�
�

Tr
�
A^ dAC

2

3
A^A^A

��
2C=4�2Z; (1.1)

where A is the flat connection in the flat SL.n;C/-bundle E� with holonomy �, and
s W M ! E� is a section of E�. Since SL.n;C/ is 2-connected, a section always
exists, and a different choice of section changes the value of the integral by a multiple
of 4�2.

When nD 2, the imaginary part of the Cheeger–Chern–Simons invariant equals
the hyperbolic volume of �. More precisely, if D W fM ! H3 is a developing map
for � and �H3 is the hyperbolic volume form, Im.bc.�// equals the integral of D�.��/
over a fundamental domain for M . In particular, if M DH3=� is a hyperbolic man-
ifold, and � is a lift to SL.2;C/ of the geometric representation �geo W �1.M/!

PSL.2;C/, then the imaginary part equals the volume of M . In fact, in this case we
have

bc.�/D i�Vol.M/C i CS.M/
�
; (1.2)

where CS.M/ is the Chern–Simons invariant of M (with the Riemannian connec-
tion). The invariant Vol.M/C i CS.M/ is often referred to as complex volume. Moti-
vated by this, we define the complex volume VolC of a representation � W �1.M/!

SL.n;C/ by

bc.�/D i VolC.�/; (1.3)

and define the volume of � to be the real part of the complex volume, that is, the
imaginary part of the Cheeger–Chern–Simons invariant. Surprisingly, as we shall see,
the relationship to hyperbolic volume seems to persist even when n > 2.

The set of SL.n;C/-representations is a complex variety with finitely many com-
ponents, and the complex volume is constant on components. This follows from the
fact that representations in the same component have cohomologous Chern–Simons
forms. Hence, for any M , the set of complex volumes is a finite set.

We show that the definition of the Cheeger–Chern–Simons invariant naturally
extends to compact manifolds with boundary, and representations � W �1.M/ !

SL.n;C/ that are boundary-unipotent, that is, take peripheral subgroups to a con-
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jugate of the unipotent group N of upper triangular matrices with 1’s on the diagonal.
We formulate all our results in this more general setup.

The main result of the paper is a concrete algorithm for computing the set of com-
plex volumes. The idea is that the set of (conjugacy classes of) boundary-unipotent
representations can be parameterized by a variety, called the Ptolemy variety, which
is defined by homogeneous polynomials of degree 2. The Ptolemy variety depends on
a choice of triangulation, but if the triangulation is sufficiently fine, then every repre-
sentation is detected by the Ptolemy variety. We show that a point c in the Ptolemy
variety naturally determines an element �.c/ in Neumann’s extended Bloch groupbB.C/, such that if � is the representation corresponding to c, we have

R
�
�.c/

�
D i VolC.�/; (1.4)

where R W bB.C/!C=4�2Z is a Rogers dilogarithm.
There is a canonical group homomorphism

�n W SL.2;C/! SL.n;C/ (1.5)

defined by taking a matrix A to its .n � 1/th symmetric power (see Section 11). The
map �n preserves unipotent elements, and we show that composing a boundary-
unipotent representation in SL.2;C/with �n multiplies the complex volume by

�
nC1
3

�
.

If M D H3=� is a hyperbolic 3-manifold, then the geometric representation �geo

always lifts to a representation in SL.2;C/; but if M has cusps, then lifts are not
necessarily boundary-unipotent. In fact, by a result of Calegari [4], if M has a single
cusp, then any lift of the geometric representation takes a longitude to an element with
trace �2. When n is even, we shall thus, more generally, be interested in boundary-
unipotent representations in

p SL.n;C/D SL.n;C/=h˙I i: (1.6)

Such representations have a complex volume defined modulo �2i , and our algorithm
computes these as well. By studying representations in p SL.n;C/, we make sure
that when M is hyperbolic, there is always at least one representation with nontrivial
complex volume, namely, �n ı �geo.

Walter Neumann has conjectured that every element in the Bloch group B.C/ is
an integral linear combination of Bloch group elements of hyperbolic 3-manifolds.
Since the extended Bloch group equals the Bloch group up to torsion, Neumann’s
conjecture would imply that all complex volumes are, up to rational multiples of
i�2, integral linear combinations of complex volumes of hyperbolic 3-manifolds.
In particular, the volumes should all be integral linear combinations of volumes of
hyperbolic manifolds.
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Our algorithm has been implemented by Matthias Goerner. The algorithm uses
Magma [3] to compute a primary decomposition of the Ptolemy variety and then uses
(1.4) to compute the complex volumes. For nD 2, we have computed primary decom-
positions of the Ptolemy varieties for all census manifolds with at most 8 simplices
(these usually finish within a fraction of a second) and all link complements with at
most 16 simplices in the SnapPy census [7] of knots with up to 11 crossings and links
with up to 10 crossings. When there are more than 16 simplices, some of the com-
putations do not terminate. For nD 3, computations are feasible for many manifolds
with up to four simplices, but, for nD 4, the computations run out of memory for all
manifolds with more than two simplices. It would be interesting to perform numerical
calculations for n� 4. Our computations have revealed numerous (numerical) exam-
ples of linear combinations as predicted by Neumann’s conjecture. To the best of our
knowledge, our examples are the first concrete computations (the first of which were
carried out in 2009) of the Cheeger–Chern–Simons invariant (complex volume) for
n > 2.

1.1. Statement of our results
This section gives a brief summary of our main results. More details can be found in
the paper.

1.1.1. The Ptolemy variety
Let M be a compact, oriented 3-manifold with (possibly empty) boundary, and let
K be a closed 3-cycle (triangulated complex; see Definition 4.1) homeomorphic to
the space obtained from M by collapsing each boundary component to a point. We
identify each of the simplices of K with a standard simplex:

�3n D
®
.x0; x1; x2; x3/ 2R

4
ˇ̌
0� xi � n;x0C x1C x2C x3 D n

¯
: (1.7)

Let �3n.Z/ be the set of points in �3n with integral coordinates, and let P�3n.Z/ be
�3n.Z/ with the four vertex points removed.

Definition 1.1
A Ptolemy assignment on �3n is an assignment P�3n.Z/! C�, t 7! ct , of a nonzero
complex number ct to each (nonvertex) integral point t of �3n such that for each
˛ 2�3n�2.Z/, the Ptolemy relation

c˛03c˛12 C c˛01c˛23 D c˛02c˛13 (1.8)

is satisfied (see Figure 2). Here, ˛ij denotes the integral point ˛C ei C ej . A Ptolemy
assignment on K is a Ptolemy assignment ci on each simplex �i of K such that the
Ptolemy coordinates agree on identified faces.
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Figure 1. A quadrilateral is inscribed in a circle if and only if abC cd D ef .

Figure 2. Ptolemy assignment for nD 3. The Ptolemy relation for ˛D 1000 is
c2001c1110C c2100c1011 D c2010c1101.

Remark 1.2
The name is inspired by the resemblance of (1.8) with the Ptolemy relation between
the lengths of the sides and diagonals of an inscribed quadrilateral (see Figure 1).
In the work of Fock and Goncharov [13], the Ptolemy relations appear as relations
between coordinates on the higher Teichmüller space when the triangulation of a sur-
face is changed by a flip.

It follows immediately from the definition that the set of Ptolemy assignments on
K is an algebraic set Pn.K/, which we shall refer to as the Ptolemy variety.

The extended pre-Bloch group bP .C/ is generated by tuples .u; v/ 2 C2 with
eu C ev D 1, and the extended Bloch group bB.C/� bP .C/ is the kernel of the mapbP .C/!^2.C/ taking .u; v/ to u^v. We refer to Section 3 for a review. Using (1.8),
we obtain that a Ptolemy assignment c on �3n gives rise to an element
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�.c/D
X

˛2�3.n�2/

.ec˛03 Cec˛12 �ec˛02 �ec˛13 ; ec˛01 Cec˛23 �ec˛02 �ec˛13/
2 bP .C/; (1.9)

where the tilde denotes a branch of logarithm (the particular choice is inessential). We
thus have a map

� W Pn.K/! bP .C/; c 7!
X
i

	i�.c
i /; (1.10)

where the sum is over the simplices of K . Let RSL.n;C/;N .M/ denote the set of con-
jugacy classes of boundary-unipotent representations �1.M/! SL.n;C/. The fol-
lowing theorem (as well as Theorem 1.12 below) gives an efficient algorithm for
computing complex volumes. See Section 10 for examples.

THEOREM 1.3 (Proof in Section 9.5)
A Ptolemy assignment c uniquely determines a boundary-unipotent representation
R.c/ 2RSL.n;C/;N .M/. The map � has image in bB.C/, and we have a commutative
diagram

Pn.K/
�

R

bB.C/
R

RSL.n;C/;N .M/
i VolC

C=4�2Z

(1.11)

Moreover, if the triangulation is sufficiently fine (a single barycentric subdivision suf-
fices), then the map R is surjective.

Remark 1.4
We show in Section 9 that there is a one-to-one correspondence between points in
Pn.K/ and generically decorated (see Section 5) boundary-unipotent SL.n;C/-
representations. Under this correspondence, the map R is just the forgetful map
ignoring the decoration. Note that Pn.K/ depends on the triangulation and may be
empty.

Let H � SL.n;C/ denote the group of diagonal matrices, and let h denote the
number of boundary components of M . In Section 4.1, we define an action of Hh on
Pn.K/. We denote the quotient by Pn.K/red. The action only changes the decoration,
and so R factors through Pn.K/red.
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Definition 1.5
A boundary-unipotent representation � W �1.M/ ! SL.n;C/ is peripherally well
behaved if the image of each peripheral subgroup is either trivial or contains an ele-
ment with a maximal Jordan block. If the latter condition holds for each peripheral
subgroup, then we say that � is peripherally nondegenerate.

Remark 1.6
When nD 2, all representations are peripherally well behaved.

THEOREM 1.7 (Proof in Section 9.5)
The image of R W Pn.K/red! RSL.n;C/;N .M/ consists of the set of representations
admitting a generic decoration (see Definition 5.2). If such a representation � is
peripherally nondegenerate, then the preimage in Pn.K/red is a single point; that
is, any two decorations of � differ by the diagonal action. If � is peripherally well
behaved, then any two preimages of R have the same image in bB.C/.
COROLLARY 1.8
A peripherally well-behaved boundary-unipotent representation � in SL.n;C/ deter-
mines an element Œ�
 2 bB.C/ such that R.Œ�
/D i VolC.�/.

Remark 1.9
In general, the preimage of a representation under R can have large dimension.

1.1.2. Hyperbolic manifolds and p SL.n;C/-representations
Let �n W SL.2;C/! SL.n;C/ denote the canonical irreducible representation. Note
that when n is odd, �n factors through PSL.2;C/. If a representation � is in the image
of Pn.K/!RSL.n;C/;N .M/, then we say that Pn.K/ detects �.

THEOREM 1.10 (Proof in Section 11.1)
Suppose that M DH3=� is an oriented, hyperbolic manifold with finite volume and
geometric representation �geo W �1.M/! PSL.2;C/. If the triangulation of K has
no nonessential edges, and if n is odd, then Pn.K/ is nonempty and detects �n ı �geo.

When n is even, �n ı �geo is only a representation in p SL.n;C/ D SL.n;C/=
h˙I i.

Definition 1.11
Let � 2Z2.�3nIZ=2Z/ be a cocycle. A p SL.n;C/-Ptolemy assignment on �3n with
obstruction cocycle � is an assignment of Ptolemy coordinates to the integral points
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of �3n such that

�2�3c˛03c˛12 C �0�3c˛01c˛23 D c˛02c˛13 : (1.12)

Here, �i 2 Z=2ZD h˙1i is the value of � on the face opposite the i th vertex of �3n.
A p SL.n;C/-Ptolemy assignment on K with obstruction cocycle � 2Z2.KIZ=2Z/
is a collection of p SL.n;C/-Ptolemy assignments ci on �i with obstruction class
��i such that the Ptolemy coordinates agree on common faces.

The set of p SL.n;C/-Ptolemy assignments on K with obstruction cocycle � is
an algebraic set P �n .K/, which, up to canonical isomorphism, only depends on the
cohomology class of � . The obstruction class to lifting a boundary-unipotent repre-
sentation in p SL.n;C/ to a boundary-unipotent representation in SL.n;C/ is a class
inH 2.M;@M IZ=2Z/DH 2.KIZ=2Z/. For � 2H 2.KIZ=2Z/, letR�

p SL.n;C/;N .M/

denote the set of (conjugacy classes of) boundary-unipotent representations in
p SL.n;C/ with obstruction class � . If M is hyperbolic, we let �geo 2H

2.KIZ=2Z/

denote the obstruction class of the geometric representation.

THEOREM 1.12 (Proof in Section 9.5)
Let n be even. For each � 2 H 2.KIZ=2Z/, we have a commutative diagram
(bB.C/PSL is defined in Section 3.2)

P �n .K/
�

R

bB.C/PSL

R

R�
p SL.n;C/;N .M/

i VolC
C=�2Z

(1.13)

If the triangulation of K is sufficiently fine, then R is surjective. If M D H3=� is
hyperbolic, and if K has no nonessential edges, then P

�geo
n .K/ detects �n ı �geo.

Remark 1.13
The analogue of Theorem 1.7 also holds, except that the preimage of a peripherally
well-behaved representation is now parameterized byZ1.KIZ=2Z/ (see Section 9.4).

Remark 1.14
If the triangulation has a nonessential edge, all Ptolemy varieties are empty. Hence,
if P �2 .K/ is nonempty for some � , and if M is hyperbolic, then the Ptolemy variety
P �geo.K/ will detect the geometric representation.
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THEOREM 1.15 (Proof in Section 11)
Let � be a peripherally well-behaved representation in SL.2;C/ or PSL.2;C/. The
extended Bloch group element of �n ı � is

�
nC1
3

�
times that of �. In particular, com-

position with �n multiplies complex volume by
�
nC1
3

�
.

1.1.3. The Cheeger–Chern–Simons class
The Cheeger–Chern–Simons invariant can be viewed as a characteristic class
H3.SL.n;C//! C=4�2Z, and the result underlying the proof of commutativity of
(1.11) is Theorem 1.16 below, giving an explicit cocycle formula for the Cheeger–
Chern–Simons class. The formula generalizes the formula in [16] for nD 2. Recall
that a homology class can be represented by a formal sum of tuples .g0; : : : ; g3/. To
such a tuple, we can assign a Ptolemy assignment c.g0; : : : ; g3/ defined by

c.g0; : : : ; g3/t D det
�
¹g0ºt0 [ � � � [ ¹g3ºt3

�
; t D .t0; : : : ; t3/; (1.14)

where ¹giºti denotes the ordered set consisting of the first ti column vectors of gi .
One can always represent a homology class by tuples, such that all the determinants
in (1.14) are nonzero.

THEOREM 1.16 (Proof in Section 8)
The Cheeger–Chern–Simons classbc factors as

H3
�
SL.n;C/

� �
�! bB.C/ R

�!C=4�2Z; (1.15)

where � is induced by the map taking a tuple .g0; : : : ; g3/ to �.c.g0; : : : ; g3// 2bP .C/.
1.1.4. Thurston’s gluing equations
When n D 2, Thurston’s gluing equation variety V.K/ is another variety, which is
often used to compute volume. It is given by an equation for each edge of K and an
equation for each generator of the fundamental groups of the boundary components
of M (see Section 12).

THEOREM 1.17 (Proof in Section 12)
Suppose that M has h boundary components. There is a surjective regular mapa

�2H2.KIZ=2Z/

P �2 .K/! V.K/ (1.16)

with fibers that are disjoint copies of .C�/h.
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Remark 1.18
The Ptolemy variety seems to offer significant computational advantage over the glu-
ing equations, but according to Fabrice Rouillier (private communications) one can
manipulate the gluing equations to mitigate this.

1.2. Neumann’s conjecture
The fact that (1.10) has an image in bB.C/ as opposed to bP .C/ has very interesting
conjectural consequences. It is well known (see, e.g., [25]) that the Bloch group B.C/

is a Q-vector space, and Walter Neumann has conjectured that it is generated by
Bloch invariants of hyperbolic manifolds. More generally, Neumann has proposed
the following stronger conjecture (see [20, Question 2.8]).

CONJECTURE 1.19
Let F � C be a concrete number field which is not in R. The Bloch group B.F / is
generated (integrally) modulo torsion by hyperbolic manifolds with an invariant trace
field contained in F .

Using Theorems 1.3 and 1.12, Conjecture 1.19 implies the following (see Sec-
tion 10, for example).

CONJECTURE 1.20
Let � be a boundary-unipotent representation of �1.M/ in SL.n;C/ or p SL.n;C/.
There exist hyperbolic 3-manifolds M1; : : : ;Mk and integers r1; : : : ; rk such that

VolC.�/D
X

ri VolC.Mi / 2C=i�
2Q: (1.17)

In particular, Vol.�/D
P
ri Vol.Mi / 2R.

Remark 1.21
The Ptolemy coordinates may be considered as a 3-dimensional analogue of Fock
and Goncharov’s A-coordinates (see [13]). They were defined for 3-manifolds in [29]
(under the name ideal cochain) and have subsequently been studied by several other
authors. These include Bergeron, Falbel, and Guilloux [2]; Garoufalidis, Goerner,
and Zickert [14]; and Dimofte, Gabella, and Goncharov [8]. Shape coordinates for
PGL.3;C/-representations have also been used by Falbel [11] and Falbel–Wang [12]
in connection with spherical CR-structures.

1.3. Overview of the paper
Section 2 reviews the Cheeger–Chern–Simons classes for flat bundles. Section 3 gives
a brief review of the two variants of the extended Bloch group, and Section 4 reviews
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the theory, introduced in Zickert [27], of decorated representations and relative funda-
mental classes. In Section 5, we introduce the notion of generic decorations and define
the Ptolemy variety Pn.K/. In Section 6, we construct a chain complex of Ptolemy
assignments and use it to construct a map from H3.SL.n;C/;N / to bB.C/ commut-
ing with stabilization. This shows that a decorated boundary-unipotent representation
determines an element in the extended Bloch group, which is given explicitly in terms
of the Ptolemy coordinates. In Section 7, we show that the extended Bloch group ele-
ment of a decorated, peripherally well-behaved representation is independent of the
decoration, and, in Section 8, we show that the Cheeger–Chern–Simons class is given
as in Theorem 1.16. In Section 9, we show that the Ptolemy variety parameterizes
generically decorated representations, and we give an explicit formula for recovering
a representation from its Ptolemy coordinates. In Section 10, we give some exam-
ples of computations, and we list some interesting findings. Section 11 discusses the
irreducible representations of SL.2;C/, and Section 12 discusses the relationship to
Thurston’s gluing equations when nD 2.

2. The Cheeger–Chern–Simons classes
The Cheeger–Chern–Simons classes (see [5], [6]) are characteristic classes of princi-
pal bundles with connection. For general bundles, the characteristic classes are differ-
ential characters (see [5]), but for flat bundles they reduce to ordinary (singular) coho-
mology classes. In this paper we will focus exclusively on flat bundles. Let F denote
either R or C, and let ƒ be a proper subring of F. Let G be a Lie group over F with
finitely many components. There is a characteristic class SP;u for each pair .P;u/
consisting of an invariant polynomial P 2 I k.GIF/ and a class u 2 H 2k.BGIƒ/,
whose image in H 2k.BGIF/ equals W.P /, where W is the Chern–Weil homomor-
phism

W W I k.GIF/!H 2k.BGIF/: (2.1)

The characteristic class SP;u associates to each flat G-bundle E!M a cohomology
class SP;u.E/ 2H 2k�1.M IF=ƒ/.

2.1. Simply connected, simple Lie groups
If G is simply connected and simple, H 1.GIZ/ and H 2.GIZ/ are trivial, and
H 3.GIZ/Š Z. Hence, by the Serre spectral sequence for the universal bundle, we
have an isomorphism

S W H 4.BGIZ/ŠH 3.GIZ/Š Z (2.2)

called the suspension. The Killing form on G defines an invariant polynomial B 2
I 2.GIF/, and since B is real on the maximal compact subgroup K of G, W.B/ is a
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real class. Hence, there exists a unique positive real number ˛ such that W.˛B/ is a
generator of H 4.BGI4�2Z/.

Definition 2.1
The Cheeger–Chern–Simons class for G is the characteristic class of flat G bundles
defined by S˛B;W.˛B/. We denote it bybc.

2.2. Complex groups and volume
Recall that there is a one-to-one correspondence between flat G-bundles over M and
representations �1.M/!G up to conjugation. This correspondence takes a flat bun-
dle to its holonomy representation. If � W �1.M/! G is a representation, then we
let E� denote the corresponding flat bundle. In the following, G denotes a simply
connected, simple, complex Lie group, and M denotes a closed, oriented 3-manifold.
The following definition is motivated by (1.2).

Definition 2.2
The complex volume VolC.�/ of a representation � W �1.M/!G is defined by

bc.E�/�ŒM 

�
D i VolC.�/ 2C=4�

2Z: (2.3)

The volume Vol.�/ of � is the real part of VolC.�/.

2.3. The universal classes and group cohomology
The Cheeger–Chern–Simons classes are also defined for the universal flat bundle
EGı ! BGı . For an explicit construction, we refer to [10] or [9]. In particular, we
have a class bc 2 H 3.BGı IC=4�2Z/. If � W �1.M/! G is a representation, with
classifying map B� W M !BGı , then we thus have

bc�B���ŒM 

��
D i VolC.�/: (2.4)

It is well known that the homology of BGı is the homology of the chain complex
C� ˝ZŒG� Z, where C� is any free ZŒG
-resolution of Z. A convenient choice of free
resolution is the complex C�, generated in degree n by tuples .g0; : : : ; gn/, and with
boundary map given by

@.g0; : : : ; gn/D
X

.�1/i .g0; : : : ;bgi ; : : : ; gn/: (2.5)

The homology of C� ˝ZŒG� Z is denoted by H�.G/, and so H�.G/ D H�.BGı/.
Theorem 1.16 gives a concrete cocycle formula forbc W H3.SL.n;C//!C=4�2Z.
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2.4. Compact manifolds with boundary
In Section 6.1 below, we construct a natural extension of bc W H3.SL.n;C// !
C=4�2Z to a homomorphism

bc W H3�SL.n;C/;N
�
!C=4�2Z; (2.6)

where N is the subgroup of upper triangular matrices with 1’s on the diagonal.

Definition 2.3
Let � W �1.M/! SL.n;C/ be a boundary-unipotent representation. The complex vol-
ume of � is defined by

bc�B���ŒM;@M

��
D i VolC.�/; (2.7)

where B� W .M;@M/! .B SL.n;C/ı ;BN ı/ is a classifying map for �.

Remark 2.4
Unlike when M is closed, the classifying map is not uniquely determined by �; it
depends on a choice of decoration (see Section 4). The complex volume, however, is
independent of this choice (see Remark 8.5).

2.5. Central elements of order 2
For any simple complex Lie group G, there is a canonical homomorphism (defined
up to conjugation)

�G W SL.2;C/!G: (2.8)

The element sG D �G.�I / is a central element of G of order dividing 2 and equals
.�I /nC1 if G D SL.n;C/ (see, e.g., [13, Corollary 2.1]). Let

pG DG=hsGi: (2.9)

Note that �G descends to a homomorphism PSL.2;C/! pG. The next proposition
and its corollary follow easily from the Serre spectral sequence.

PROPOSITION 2.5
Suppose that sG has order 2. The canonical map p� W H 4.BpGIZ/!H 4.BGIZ/

is surjective with kernel of order dividing 4.

COROLLARY 2.6
There is a canonical characteristic classbc W H3.pG/!C=�2Z.
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Proof
By Proposition 2.5, there exists a canonical class u 2 H 4.BpGI�2Z/ such that
p�.u/DW.P / 2H 4.BGI�2Z/. Definebc D SP;u.

In Section 6.3, we construct a homomorphism

bc W H3�p SL.n;C/;N
�
!C=�2Z; (2.10)

which extends bc to a characteristic class of bundles with boundary-unipotent holon-
omy. The complex volume of a representation in p SL.n;C/ is defined as in Defini-
tion 2.3.

3. The extended Bloch group
We use the conventions of [28]; the original reference is [19].

Definition 3.1
The pre-Bloch group P .C/ is the free abelian group on Cn¹0; 1ºmodulo the five-term
relation

x � y C
y

x
�
1� x�1

1� y�1
C
1� x

1� y
D 0; for x ¤ y 2C n ¹0; 1º: (3.1)

The Bloch group is the kernel of the map � W P .C/!^2.C�/ taking z to z^ .1� z/.

Definition 3.2
The extended pre-Bloch group bP .C/ is the free abelian group on the set

bCD ®.e; f / 2C2 ˇ̌ exp.e/C exp.f /D 1
¯

(3.2)

modulo the lifted five-term relation

.e0; f0/� .e1; f1/C .e2; f2/� .e3; f3/C .e4; f4/D 0 (3.3)

if the equations

e2 D e1 � e0; e3 D e1 � e0 � f1C f0; f3 D f2 � f1;
(3.4)

e4 D f0 � f1; f4 D f2 � f1C e0

are satisfied. The extended Bloch group is the kernel of the mapb� W bP .C/!^2.C/
taking .e; f / to e ^ f .

An element .e; f / 2bC with exp.e/D z is called a flattening with cross-ratio z.
Letting �C denote the roots of unity in C�, we have a commutative diagram:
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0 0 0

0 �C

2 log

�

C=4�iZ

�

C�=�C 0

0 bB.C/
�

bP .C/ b	

�

^2.C/ K2.C/ 0

0 B.C/ P .C/
	

^2.C�/ K2.C/ 0

0 0 0 0

(3.5)

The map � is induced by the map taking a flattening to its cross-ratio, and  is the
map taking e 2C=4�iZ to .e; f C 2�i/� .e; f /, where f 2C is any element such
that .e; f / 2bC.

3.1. The regulator
By fixing a branch of logarithm, we may write a flattening with cross-ratio z as
ŒzIp;q
D .log.z/Cp�i; log.1� z/Cq�i/, where p;q 2 Z are even integers. There
is a well-defined regulator map

R W bP .C/! C=4�2Z;
(3.6)

ŒzIp;q
 7! Li2.z/C
1

2

�
log.z/C p�i

��
log.1� z/� q�i

�
� �2=6:

3.2. The PSL.2;C/-variant of the extended Bloch group
There is another variant of the extended Bloch group using flattenings ŒzIp;q
, where
p and q are allowed to be odd. This group is defined as above using the set

bCodd D
®
.e; f / 2C2

ˇ̌
˙ exp.e/˙ exp.f /D 1

¯
(3.7)

and fits in a diagram similar to (3.5). We use the subscript PSL to denote the variant
allowing odd flattenings. We have an exact sequence

0! Z=4Z! bB.C/! bB.C/PSL! 0: (3.8)

For odd flattenings, the regulator (3.6) is well defined modulo �2Z.
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THEOREM 3.3 (see [16], [19])
There are natural isomorphisms

H3
�
PSL.2;C/

�
Š bB.C/PSL; H3

�
SL.2;C/

�
Š bB.C/ (3.9)

such that the Cheeger–Chern–Simons classes agree with the regulators.

The following result is needed in Section 7. The first part is proved in [28,
Lemma 3.16], and the second has a similar proof, which we leave to the reader.

LEMMA 3.4
For .e; f / 2bC and p;q 2 Z, we have

.eC 2�ip;f C 2�iq/� .e; f /D .qe � pf C 2pq�i/ 2 bP .C/; (3.10)

.eC �ip;f C �iq/� .e; f /D .qe � pf C pq�i/ 2 bP .C/PSL: (3.11)

4. Decorations of representations
In this section, we review the notion of decorated representations introduced in [27].
Throughout the section,G denotes an arbitrary group, not necessarily a Lie group. Let
H be subgroup of G. An ordered simplex is a simplex with a fixed vertex ordering.

Definition 4.1
A closed 3-cycle is a cell complex K obtained from a finite collection of ordered
3-simplices �i by gluing together pairs of faces using order-preserving simplicial
attaching maps. We assume that all faces have been glued and that the space M.K/,
obtained by truncating the �i ’s before gluing, is an oriented 3-manifold with bound-
ary. Let 	i be a sign indicating whether or not the orientation of�i given by the vertex
ordering agrees with the orientation of M.K/.

Note that up to removing disjoint balls (which does not effect the fundamental
group), the manifold M.K/ depends only on the underlying topological space of K
and not on the choice of 3-cycle structure. Also note that, for any compact, oriented
3-manifold M with (possibly empty) boundary, the space cM obtained from M by
collapsing each boundary component to a point has a structure of a closed 3-cycle K
such that M DM.K/.

Let K be a closed 3-cycle, and let M DM.K/. Let L denote the space obtained
from the universal cover fM of M by collapsing each boundary component to a point.
The 3-cycle structure of K induces a triangulation of L and also a triangulation of M
by truncated simplices. The covering map extends to a map L!K , and the action of
�1.M/ on fM by deck transformations extends to an action on L, which is determined
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by fixing, once and for all, a base point in M together with one of its lifts. Note that
the stabilizer of each 0-cell is a peripheral subgroup of �1.M/, that is, a subgroup
induced by inclusion of a boundary component.

Definition 4.2
Let H be a subgroup of G. A representation � W �1.M/ ! G is a .G;H/-
representation if the image of each peripheral subgroup lies in a conjugate of H .

Definition 4.3
Let � be a .G;H/-representation. A decoration (on K) of � is a �-equivariant map

D W L.0/!G=H; (4.1)

where L.0/ is the 0-skeleton of L.

Note that if D.e/D gH , then we have g�1�.Stab.e//g �H , where Stab.e/ is
the stabilizer of e. SinceD is �-equivariant, it follows thatD determines subgroup of
H for each boundary component which is well defined up to conjugation in H .

Definition 4.4
Two decorations of � are equivalent for each boundary component of M , and the
corresponding subgroups of H are conjugate (in H ).

Remark 4.5
If D is a decoration of �, then gD is a decoration of g�g�1. Since we are only
interested in representations up to conjugation, we consider such two decorations to
be equal.

PROPOSITION 4.6
Let E be a flat G-bundle over M whose holonomy representation is a .G;H/-
representation �. There is a one-to-one correspondence between decorations of �
up to equivalence and reductions of E@M to an H -bundle over @M .

Proof
For each boundary component Si of M , choose a base point in Si and a path to the
base point ofM . This determines a lift ei in L of the vertex ofK corresponding to Si
and an identification of �1.Si / with Stab.ei /� �1.M/. If F is a reduction of E@M ,
then the holonomy representations �i W �1.Si /!H of FSi are conjugate to �, and
so there exist gi 2 G such that g�1i �gi D �i . Assigning the coset giH to ei yields
a decoration, which, up to equivalence, is independent of the choice of gi ’s. On the
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other hand, a decoration assigns cosets giH to ei such that g�1i �.Stab.ei //gi �H .
Hence, gi defines an isomorphism of ESi with an H -bundle, which, up to isomor-
phism, depends only on the equivalence class of the decoration.

4.1. The diagonal action
Let NG.H/ denote the normalizer of H in G, and let h denote the number of bound-
ary components of M . There is an action of .NG.H/=H/h on the set of equivalence
classes of decorations given by right multiplication. More precisely, .x1; : : : ; xh/ acts
by taking a decoration D to the decoration D0 defined as follows: If D takes a lift
v of the i th boundary component to gH , then D0 takes v to gxiH . If H D N and
G D SL.n;C/, then NG.H/=H is the group of diagonal matrices. We thus refer to
the action as the diagonal action.

PROPOSITION 4.7
If a boundary-unipotent representation � is peripherally well behaved, then the diag-
onal action on the set of equivalence classes of decorations of � is transitive.

Proof
It is enough to prove this is the case where there is only one boundary component. In
this case, the image of the peripheral subgroup is either trivial or contains an element
with a maximal Jordan block. In the first case, all decorations are equivalent; and in
the second case, the result follows from the fact that, if a subgroup A of N contains
an element with a maximal Jordan form, then the normalizer of A in SL.n;C/ equals
the normalizer of N .

4.2. The fundamental class of a decorated representation
A flat G-bundle over M determines a classifying map M ! BGı , where the ı indi-
cates that G is regarded as a discrete group. It thus follows from Proposition 4.6 that
a decorated representation � W �1.M/!G determines a map

B� W .M;@M/! .BGı ;BH ı/: (4.2)

In particular, � gives rise to a fundamental class

Œ�
DB��
�
ŒM;@M


�
2H3.G;H/; (4.3)

where, by definition, H�.G;H/DH�.BGı ;BH ı/. Note that the fundamental class
is independent of the particular 3-cycle structure on K .

Recall that M is triangulated by truncated simplices. By restriction, a .G;H/-
cocycle on M determines a .G;H/-cocycle on each truncated simplex �i . Let
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B�.G;H/ denote the chain complex generated in degree n by .G;H/-cocycles on a
truncated n-simplex. As proved in [27, Section 3], B�.G;H/ computes the homology
groups H3.G;H/. Note that a .G;H/-cocycle on M determines (up to conjugation)
a decorated .G;H/-representation.

PROPOSITION 4.8 ([27, Proposition 5.10])
Let � be a .G;H/-cocycle on M representing a decorated .G;H/-representation �.
The cycle X

	i��i 2B3.G;H/ (4.4)

represents the fundamental class of �.

5. Generic decorations and Ptolemy coordinates
In all of the following, G D SL.n;C/, and N is the subgroup of upper triangular
matrices with 1’s on the diagonal. A .G;N /-representation � W �1.M/!G is called
boundary-unipotent. For a matrix g 2G and a positive integer i � n 2N, let ¹gºi be
the ordered set consisting of the first i column vectors of g.

Definition 5.1
A tuple .g0N; : : : ; gkN/ of N -cosets is generic if, for each tuple t D .t0; : : : ; tk/ of
nonnegative integers with sum n, we have

ct WD det
� k[
iD0

¹giºti

�
¤ 0; (5.1)

where the determinant is viewed as a function on ordered sets of n vectors in Cn. The
numbers ct are called Ptolemy coordinates.

Definition 5.2
A decoration of a boundary-unipotent representation is generic if, for each simplex�
of L, the tuple of cosets assigned to the vertices of � is generic.

For a set X , let C�.X/ be the acyclic chain complex generated in degree k by
tuples .x0; : : : ; xk/. If X is a G-set, then the diagonal G-action makes C�.X/ into a
complex of ZŒG
-modules. Let C gen

� .G=N/ be the subcomplex of C�.G=N/ gener-
ated by generic tuples.

PROPOSITION 5.3
The complex C gen

� .G=N/˝ZŒG�Z computes the relative homology. If � W �1.M/!G
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is a generically decorated representation, then the fundamental class of � is repre-
sented by X

	i .g
i
0N;g

i
1N;g

i
2N;g

i
3N/ 2 C

gen
3 .G=N/; (5.2)

where .gi0N; : : : ; g
i
3N/ are the cosets assigned to lifts e�i of the �i ’s.

Proposition 5.3 is proved in Section 9. The idea is that a generic tuple canonically
determines a .G;N /-cocycle on a truncated simplex. Hence, C gen

� .G=N/˝ZŒG� Z is
isomorphic to a subcomplex of B3.G;N /, and the representation (5.2) of the funda-
mental class is then an immediate consequence of (4.4).

PROPOSITION 5.4
After a single barycentric subdivision ofK , every decoration of a boundary-unipotent
representation � W �1.M/!G is equivalent to a generic one.

Proof
After a barycentric subdivision ofK , every simplex� ofK has distinct vertices and at
least three vertices of � are interior (link is a sphere). Fix lifts ei 2L of each interior
vertex of K . Since the stabilizer of a lift of an interior vertex is trivial, assigning
any coset giH to ei yields an equivalent decoration. Since the gi ’s can be chosen
arbitrarily, the result follows.

5.1. The geometry of the Ptolemy coordinates
We canonically identify each ordered k-simplex with a standard simplex

�kn D
°
.x0; : : : ; xk/ 2R

kC1
ˇ̌̌
0� xi � n;

kX
iD0

xi D n
±
: (5.3)

Recall that a tuple .g0N; : : : ; gkN/ has a Ptolemy coordinate for each tuple of
k C 1 nonnegative integers summing to n. In other words, there is a Ptolemy coor-
dinate for each integral point of �kn. We denote the set of integral points in �kn by
�kn.Z/.

Definition 5.5
A Ptolemy assignment on �kn is an assignment of a nonzero complex number ct to
each integral point t of�kn such that the ct ’s are the Ptolemy coordinates of some tuple
.g0N; : : : ; gkN/ 2 C

gen
k
.G=N/. A Ptolemy assignment onK is a Ptolemy assignment

on each simplex �i of K such that the Ptolemy coordinates agree on identified faces.
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Figure 3. The integral points on �3n for nD 2, 3, and 4. The indicated subsimplices correspond
to ˛D .0; 1; 0; 0/ and ˛D .0; 1; 1; 0/.

Note that a generically decorated boundary-unipotent representation determines
a Ptolemy assignment on K . In Section 9, we show that every Ptolemy assignment is
induced by a unique decorated representation.

LEMMA 5.6
The number of elements in �k

l
.Z/ is

�
lCk
k

�
.

Proof
The map .a0; : : : ; ak/ 7! ¹a0 C 1; a0 C a1 C 2; : : : ; a0 C � � � C ak�1 C kº gives a
bijection between �k

l
.Z/ and subsets of ¹1; : : : ; l C kº with k elements.

Let ei , 0 � i � k, be the i th standard basis vector of ZkC1. For each ˛ 2

�kn�2.Z/, the points ˛ C 2ei in �kn span a simplex �k.˛/, whose integral points
are the points ˛ij WD ˛ C ei C ej (see Figure 3). We refer to �k.˛/ as a subsimplex
of �kn . By Lemma 5.6, �3n has

�
nC3
3

�
integral points and

�
nC1
3

�
subsimplices.

PROPOSITION 5.7 ([13, Lemma 10.3])
The Ptolemy coordinates of a generic tuple .g0N;g1N;g2N;g3N/ satisfy the
Ptolemy relations

c˛03c˛12 C c˛01c˛23 D c˛02c˛13 ; ˛ 2�3n�2.Z/: (5.4)

Proof
Let ˛ D .a0; a1; a2; a3/ 2�3n�2.Z/. By performing row operations, we may assume
that the first n� 2 rows of the n� .n� 2/ matrix�

¹g0ºa0 ; ¹g1ºa1 ; ¹g2ºa2 ; ¹g3ºa3
�

(5.5)

are the standard basis vectors. Letting xi and yi denote the last two entries of
.gi /aiC1, the Ptolemy relation for ˛ is then equivalent to the (Plücker) relation
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det

�
x0 x3

y0 y3

�
det

�
x1 x2

y1 y2

�
C det

�
x0 x1

y0 y1

�
det

�
x2 x3

y2 y3

�

D det

�
x0 x2

y0 y2

�
det

�
x1 x3

y1 y3

�
; (5.6)

which is easily verified.

Note that the Ptolemy coordinate assigned to the i th vertex of�kn is det.¹giºn/D
det.gi /D 1. We shall thus often ignore the vertex points. Let P�kn.Z/ denote the non-
vertex integral points of �kn . The following is proved in Section 9.

PROPOSITION 5.8
For every assignment c W P�3n.Z/!C�, t 7! ct satisfying the Ptolemy relations (5.4),
there is a unique Ptolemy assignment on �3n whose Ptolemy coordinates are ct .

COROLLARY 5.9
The set of Ptolemy assignments on K is an algebraic set Pn.K/ called the Ptolemy
variety. Its ideal is generated by the Ptolemy relations (5.4) (together with an extra
equation, making sure that all Ptolemy coordinates are nonzero).

Remark 5.10
It thus follows that Definition 5.5 agrees with Definition 1.1 when k D 3. When k > 3
and n > 2 there are further relations among the Ptolemy coordinates. We shall not
need these here.

5.2. The diagonal action and the reduced Ptolemy variety
If d0; : : : ; d3 are diagonal matrices with di D diag.di0; : : : ; di;n�1/, then it follows
from (5.1) that if the Ptolemy coordinates of a tuple .g0N; : : : ; g3N/ are ct , then the
Ptolemy coordinates c0t of the tuple .g0d0N; : : : ; g3d3N/ are given by

c0t D ct

t0Y
kD0

d0k

t1Y
kD0

d1k

t2Y
kD0

d2k

t3Y
kD0

d3k : (5.7)

We therefore have an action of Hh on Pn.K/, which agrees with the action in Sec-
tion 4.1. The quotient Pn.K/red is called the reduced Ptolemy variety.

5.3. p SL.n;C/-Ptolemy coordinates
When n is even, a p SL.n;C/-Ptolemy assignment on �kn may be defined as in Def-
inition 5.5. Note, however, that the Ptolemy coordinates are now defined only up to
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a sign. Since we are mostly interested in 3-cycles, the following definition is more
useful.

Definition 5.11
Let�D�3n, and let � 2Z2.�IZ=2Z/ be a cellular 2-cocycle. A p SL.n;C/-Ptolemy
assignment on � with obstruction cocycle � is an assignment c W P�3n.Z/!C� satis-
fying the p SL.n;C/-Ptolemy relations

�2�3c˛03c˛12 C �0�3c˛01c˛23 D c˛02c˛13 : (5.8)

Here, �i 2 Z=2ZD h˙1i is the value of � on the face opposite the i th vertex of �.
A p SL.n;C/-Ptolemy assignment on K with obstruction cocycle � 2Z2.KIZ=2Z/
is a p SL.n;C/-Ptolemy assignment ci on each simplex �i of K such that the
Ptolemy coordinates agree on identified faces, and such that the obstruction cocycle
of ci is ��i .

Note that, for each � 2 Z2.KIZ=2Z/, the set of p SL.n;C/-Ptolemy assign-
ments on K form a variety P �n .K/. We show in Section 9 that this variety depends
only on the cohomology class of � in H 2.KIZ=2Z/DH 2.M;@M IZ=2Z/ and that
the Ptolemy variety parameterizes generically decorated boundary-unipotent
p SL.n;C/-representations whose obstruction class to lifting to a boundary-unipotent
SL.n;C/-representation is � . The diagonal action (5.7) is defined on P �n .K/ as well,
and the quotient is denoted by P �n .K/red. Note that when � is the trivial cocycle
taking all 2-cells to 1, P � .K/D P.K/.

5.4. Cross-ratios and flattenings
For x 2 Cn¹0º, let ex D log.x/, where log is some fixed (set theoretic) section of the
exponential map.

Given a Ptolemy assignment c on �3nD2, we endow �3nD2 with the shape of an
ideal simplex with cross-ratio z D c03c12

c02c13
and a flattening

�.c/D .ec03Cec12 �ec02 �ec13;ec01Cec23 �ec02 �ec13/ 2 bP .C/: (5.9)

By Propositions 5.7 and 5.8, a Ptolemy assignment on �3n induces a Ptolemy
assignment c˛ on each subsimplex �3.˛/. We thus have a map

� W Pn.K/! bP .C/; c 7!
X
i

	i
X

˛2�3
n�2

.Z/

�.ci˛/: (5.10)

Similarly, we have a map P �n .K/! bP .C/PSL defined by the same formula. We next
prove that these maps have image in the respective extended Bloch groups.
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Remark 5.12
The shapes associated to a Ptolemy assignment satisfy equations resembling
Thurston’s gluing equations. This is studied in [14].

6. A chain complex of Ptolemy assignments
LetP tn

k
be the free abelian group on Ptolemy assignments on�kn. The usual boundary

map induces a boundary map P tn
k
! P tn

k�1
, and the natural map C gen

� .G=N/! P tn�
taking a tuple .g0N; : : : ; gkN/ to its Ptolemy assignment is a chain map. The result
below is proved in Section 9.

PROPOSITION 6.1
A generic tuple is determined up to the diagonalG-action by its Ptolemy coordinates.

COROLLARY 6.2
The natural map induces an isomorphism

C
gen
� .G=N/˝ZŒG� ZŠ P t

n
� : (6.1)

In particular, H�.G;N /DH�.P tn� /.

LEMMA 6.3
Let c 2 P tn

k
be a Ptolemy assignment, and let ˛ 2�kn�2.Z/. The Ptolemy coordinates

c˛ij , i ¤ j are the Ptolemy coordinates of a unique Ptolemy assignment c˛ on the
subsimplex �k.˛/.

Proof
For 1 � k � 3, this follows from Proposition 5.8. For k > 3, the result follows by
induction, using the fact that 5 Ptolemy coordinates on �32 determine the last.

A Ptolemy assignment c on �kn thus induces a Ptolemy assignment c˛ on each
subsimplex. We thus have maps

J nk W P t
n
k ! P t2k ; c 7!

X
˛2�k

n�2
.Z/

c˛: (6.2)

For a Ptolemy assignment c 2 P tn
k

, let ci 2 P tnk�1 be the induced Ptolemy

assignment on the i th face of �kn; that is, we have @.c/D
Pk
iD0.�1/

ici . Note that

.ci /.a0;:::;ak�1/ D c.a0;:::;ai�1;0;ai ;:::;ak�1/i 2 P t
2
k�1: (6.3)
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Figure 4. The dotted lines in the left figure indicate cˇ0 , cˇ1 , and cˇ2 for k D 2. The triangle in
the right figure indicates cˇ0 for k D 3. Here, nD 3 and ˇD 0.

For ˇ 2�kn�3.Z/, let cˇ i D c.ˇCei /i 2 P t
2
k�1

, and define @ˇ .c/ 2 P t2k�1 by

@ˇ .c/D

kX
iD0

.�1/icˇ i 2 P t
2
k�1: (6.4)

The geometry is explained in Figure 4.

PROPOSITION 6.4
Let c 2 P tn

k
. We have

@
�
J nk .c/

�
� J nk�1

�
@.c/

�
D

X
ˇ2�k

n�3
.Z/

@ˇ .c/ 2 P t
2
k�1: (6.5)

Proof
By (6.3), we have

@
�
J nk .c/

�
� J nk�1

�
@.c/

�
D

kX
iD0

.�1/i
X

˛2�k
n�2

.Z/

c˛i �

kX
iD0

.�1/i
X

˛2�k
n�2

.Z/

aiD0

c˛i

D

kX
iD0

.�1/i
X

˛2�k
n�2

.Z/

ai>0

c˛i

D
X

ˇ2�k
n�3

.Z/

kX
iD0

.�1/ic.ˇCei /i

D
X

ˇ2�k
n�3

.Z/

@ˇ .c/ (6.6)

as desired.
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6.1. The map to the extended Bloch group
We wish to define a map

� W H3
�
SL.n;C/;N

�
! bB.C/: (6.7)

Lettingex denote a logarithm of x, we consider the maps

� W P t23 ! ZŒbC
; c 7! .ec03Cec12 �ec02 �ec13;ec01Cec23 �ec02 �ec13/ (6.8)

� W P t22 !^
2.C/; c 7! �ec01 ^ec02Cec01 ^ec12 �ec02 ^ec12Cec02 ^ec02: (6.9)

Remark 6.5
The termec02 ^ec02 vanishes in ^2.C/, but over general fields this term is needed.

LEMMA 6.6 ([28, Lemma 6.9])
Let ZŒcFT
 be the subgroup of ZŒbC
 generated by the lifted five-term relations. There
is a commutative diagram

P t24
@

�ı@

P t23
@

�

P t22




ZŒcFT
 ZŒbC
 b	
^2.C/

(6.10)

It follows that � induces a map � W H3.SL.2;C/;N /! bB.C/. This map equals
the map defined in [27, Section 7]. The fact that � is independent of the choice of
logarithm is proved in [27, Remark 6.11] and also follows from Proposition 7.7 below.

LEMMA 6.7
For each c 2 P tn4 and each ˇ 2�4n�3.Z/, we have

�
�
@ˇ .c/

�
D 0 2 bP .C/: (6.11)

Proof
Let .ei ; fi /D �.cˇ i / be the flattening associated to cˇ i . We prove that the flattenings
satisfy the five-term relation by proving that the equations (3.4) are satisfied. We have

e0 DecˇC.1;1;0;0;1/CecˇC.1;0;1;1;0/ �ecˇC.1;1;0;1;0/ �ecˇC.1;0;1;0;1/;
e1 DecˇC.1;1;0;0;1/CecˇC.0;1;1;1;0/ �ecˇC.1;1;0;1;0/ �ecˇC.0;1;1;0;1/; (6.12)

e2 DecˇC.1;0;1;0;1/CecˇC.0;1;1;1;0/ �ecˇC.1;0;1;1;0/ �ecˇC.0;1;1;0;1/;
and it follows that e2 D e1 � e0 as desired. The other four equations are proved simi-
larly.
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LEMMA 6.8
For each c 2 P tn3 and each ˇ 2�3n�3.Z/, �.@ˇ .c//D 0 2 ^

2.C/.

Proof
We have

�.cˇ0/D�ecˇC.1;1;1;0/ ^ecˇC.1;1;0;1/CecˇC.1;1;1;0/ ^ecˇC.1;0;1;1/
�ecˇC.1;1;0;1/ ^ecˇC.1;0;1;1/CecˇC.1;1;0;1/ ^ecˇC.1;1;0;1/: (6.13)

Using this together with the similar formulas for �.cˇ i /, we obtain thatX
.�1/i�.cˇ i /D 0 2 ^

2.C/;

proving the result.

COROLLARY 6.9
The map � ı J n3 induces a map

� W H3
�
SL.n;C/;N

�
! bB.C/: (6.14)

Proof
Using Proposition 6.4, this follows from Lemma 6.7 and Lemma 6.8.

Remark 6.10
For nD 3, this map agrees with the map considered in [29, Section 7.1].

Definition 6.11
The extended Bloch group element of a decorated .G;N /-representation � is defined
by �.Œ�
/, where Œ�
 2H3.SL.n;C/;N / is the fundamental class of �.

Note that, if the decoration of � is generic and c is the corresponding Ptolemy
assignment, then the extended Bloch group element is given by �.c/, where � W
Pn.K/! bP .C/ is given by (5.10).

PROPOSITION 6.12
The map � W Pn.K/! bP .C/ has an image in bB.C/.
Proof
If c 2 Pn.K/ is a Ptolemy assignment on K , then we have a cycle ˛ D

P
i 	ic

i 2

P tn3 , and one easily checks that �.c/ as defined in (5.10) equals �.Œ˛
/. This proves
the result.
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6.2. Stabilization
We now prove that the map � W H3.SL.n;C/;N /! bB.C/ respects stabilization. We
regard SL.n� 1;C/ as a subgroup of SL.n;C/ via the standard inclusion adding a 1
as the upper-left entry.

Let � W M.n;C/!M.n � 1;C/ be the map sending a matrix to the submatrix
obtained by removing the first row and last column. The subgroup Dk.SL.n;C/=N /
of C gen

k
.SL.n;C/=N / generated by tuples .g0N; : : : ; gkN/ such that the upper-left

entry of each gi is 1 and such that�
�.g0/N; : : : ; �.gk/N

�
2 C

gen
k

�
SL.n� 1;C/=N

�
(6.15)

form an SL.n� 1;C/-complex. Consider the SL.n� 1;C/-invariant chain maps

� W D�
�
SL.n;C/=N

�
! P tn�1� ; i W D�

�
SL.n;C/=N

�
! P tn� ; (6.16)

where the first map is induced by � and the second is induced by the inclusion
D�.SL.n;C/=N /! C

gen
� .SL.n;C/=N /. Let Dk DDk.SL.n;C/=N /˝ZŒSL.n�1;C/�

Z.

LEMMA 6.13
The maps � ı � and � ı i from D3 to bP .C/ agree on cycles.

Proof
Let c 2Dk be induced by a tuple .g0N; : : : ; gkN/ 2Dk.SL.n;C/=N /, and let cI be
the collection of Ptolemy coordinates associated to .N;g0N; : : : ; gkN/. Since some
Ptolemy coordinates may be zero, cI is not necessarily a Ptolemy assignment. Note,
however, that cI˛ is a Ptolemy assignment for each .a0; : : : ; akC1/ 2 �

kC1
n�2 .Z/ with

a0 D 0. Note also that cI˛ 2 P t
2
kC1

depends only on c. Hence, there is a map

P W Dk! P t2kC1; c 7!
X

˛2�
kC1
n�2

.Z/

a0D0

cI˛ : (6.17)

We wish to prove the following:

@P.c/CP@.c/D J nk
�
i.c/

�
� J n�1k

�
�.c/

�
C

X
ˇ2�

kC1
n�3

.Z/

b0D0

@ˇ .c
I / 2 P t2kC1: (6.18)

Given this, the result follows immediately from Lemma 6.7.
One easily verifies that

cI.1;b0;:::;bk/ D �.c/.b0;:::;bk/ 2 P t
n�1
k ; .b0; : : : ; bk/ 2�

k
n�3.Z/; (6.19)

cI.0;a0;:::;ak/ D i.c/.a0;:::;ak/; .a0; : : : ; ak/ 2�
k
n�2.Z/: (6.20)
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Using this, one has

@P.c/CP@.c/D
X

˛2�k
n�2

.Z/

i.c/˛ C

kC1X
iD1

.�1/i
X

˛2�
kC1
n�2

.Z/

a0D0

cI˛i

C

kX
iD0

.�1/i
X

˛2�
kC1
n�2

.Z/

a0D0;aiC1D0

cI˛iC1

D
X

˛2�k
n�2

.Z/

i.c/˛ C

kC1X
iD1

.�1/i
X

˛2�
kC1
n�2

.Z/

a0D0;ai>0

cI˛i

D
X

˛2�k
n�2

.Z/

i.c/˛ C
X

ˇ2�
kC1
n�3

.Z/

b0D0

kC1X
iD1

.�1/icI
ˇ i

D
X

˛2�k
n�2

.Z/

i.c/˛ �
X

ˇ2�
kC1
n�3

.Z/

b0D0

cI
ˇ0
C

X
ˇ2�

kC1
n�3

.Z/

b0D0

@ˇ .c
I /

D J nk
�
i.c/

�
� J n�1k

�
�.c/

�
C

X
ˇ2�

kC1
n�3

.Z/

b0D0

@ˇ .c
I /: (6.21)

This proves (6.18), and hence the result.

PROPOSITION 6.14
The map � W H3.SL.n;C/;N /! bB.C/ respects stabilization.

Proof
First, note that � induces an isomorphism D0.SL.n;C/=N / Š C 0.SL.n � 1/=N /.
Using a standard cone argument, one easily checks that D�.SL.n;C/=N / is a free
SL.n � 1;C/-resolution of Ker.D0.SL.n;C/=N / ! Z/. Hence, D� computes
H�.SL.n� 1;C/;N /, and the result follows from Lemma 6.13.

6.3. p SL.n;C/-Ptolemy assignments
When n is even, define pP tn� to be the complex of Ptolemy coordinates of
generic tuples in p SL.n;C/=N . The Ptolemy coordinates are defined as in (5.1)
and take values in C�=h˙1i. As in (6.1), we have an isomorphism C

gen
� .p SL.n;C/=
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N/p SL.n;C/ Š pP t
n
� . For c 2 C�=h˙1i let ec 2 C be the image of some fixed set-

theoretic section of C
exp
��! C� ! C�=h˙1i, for example, 1

2
log.x2/ (the particular

choice is inessential). The map

� W pP t23 ! ZŒbCodd
; c 7! .ec03Cec12�ec02�ec13;ec01Cec23�ec02�ec13/ (6.22)

induces a map H3.PSL.2;C/;N / ! bB.C/PSL, which agrees with the map con-
structed in [27, Section 3]. By precomposing � with the map pJ n3 W pP t

n
3 ! pP t23

defined as in (6.2), we obtain a map

� W H3
�
p SL.n;C/;N

�
! bB.C/PSL; (6.23)

which commutes with stabilization. This proves that a decorated boundary-unipotent
representation in p SL.n;C/ determines an element in bB.C/PSL. The proofs of the
above assertions are identical to their SL.n;C/-analogues.

7. Invariance under the diagonal action
We now show that the extended Bloch group element of a decorated representation is
invariant under the diagonal action. We first prove that we can choose logarithms of
the Ptolemy coordinates independently, without affecting the extended Bloch group
element.

Definition 7.1
Let c W P�kn.Z/! C� be a Ptolemy assignment. A lift of c is an assignment ec W
P�kn.Z/!C such that exp.ec /D c.

For any liftec of a Ptolemy assignment c on �32, we have a flattening

�.ec /D .ec03Cec12 �ec02 �ec13;ec01Cec23 �ec02 �ec13/ 2bC: (7.1)

Definition 7.2
The log-parameters of a flattening .e; f / 2bC are defined by

wij D

8̂̂<
ˆ̂:
e if ij D 01 or ij D 23;

�f if ij D 12 or ij D 03;

�eC f if ij D 02 or ij D 13:

(7.2)

LEMMA 7.3
Letec W P�32.Z/!C be a lifted Ptolemy assignment, and let wij be the log-parameters
of �.ec /. Fix i < j 2 ¹0; : : : ; 3º, and letec 0 be the lifted Ptolemy assignment obtained
fromec by adding 2�

p
�1 toecij . Then
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�.ec 0 /� �.ec /D .wij C 2�p�1ıij /; (7.3)

where ıij is 1 if ij D 02 or 13 and 0 otherwise.

Proof
Denote the flattening �.ec / by .e; f /. If ij D 03 or 12, it follows from (7.1) that
�.ec 0 /D .e C 2�p�1;f /. Similarly, �.ec 0 /D .e; f C 2�p�1/ if ij D 01 or 23,
and �.ec 0 /D .e � 2�p�1;f � 2�p�1/ if ij D 02 or 13. By Lemma 3.4,

.eC 2�
p
�1;f /� .e; f /D .�f /;

.e; f C 2�
p
�1/� .e; f /D .e/; (7.4)

.e � 2�
p
�1;f � 2�

p
�1/D .�eC f C 2�

p
�1/:

This proves the result.

Letec be a lift of a Ptolemy assignment c. For each ˛ 2�3n�2.Z/,ec induces a liftec˛ of c˛ . Consider the element

� D
X

˛2�k
n�2

.Z/

�.ec˛/ 2 bP .C/: (7.5)

Fix a point t0 2 P�kn.Z/. We wish to understand the effect on � of adding 2�
p
�1 toect0 . This changes � into an element � 0 2 bP .C/. Let wij .˛/ denote the log-parameters

of �.ec˛/. Note that t0 either lies on an edge, on a face, or in the interior of �3n.

LEMMA 7.4
Suppose that t0 is on the edge ij of �3n. Then

� 0 � � D 
�
wij .˛/C 2�

p
�1ıij

�
; (7.6)

where ˛D t � ei � ej (i.e., ˛ is such that t0 is an edge point of �3.˛/).

Proof
This follows immediately from Lemma 7.3.

LEMMA 7.5
Suppose that t0 is on a face opposite vertex i . Then � 0 � � D .�1/i.� C 2�

p
�1/,

where � is given by

� Dec�i .0;�1;1/ �ec�i .0;1;�1/ � .ec�i .�1;0;1/ �ec�i .1;0;�1//
Cec�i .�1;1;0/ �ec�i .1;�1;0/; (7.7)

where �i inserts a zero as the i th vertex.
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Proof
For simplicity, assume i D 0. The other cases are proved similarly. There are exactly
three ˛’s for which t0 is an edge point of �3.˛/. These are

˛0 D t0 � .0; 0; 1; 1/; ˛1 D t0 � .0; 1; 0; 1/; ˛2 D t0 � .0; 1; 1; 0/: (7.8)

Note thatect D .ec˛0/23 D .ec˛1/13 D .ec˛2/12. Since adding 2�
p
�1 toect0 leavesec˛

unchanged unless ˛ 2 ¹˛0; ˛1; ˛2º, Lemma 7.3 implies that

� 0 � � D 
�
w23.˛0/

�
C 

�
w13.˛1/C 2�

p
�1
�
C 

�
w12.˛2/

�
: (7.9)

One easily checks that

w23.˛0/Dec.1;0;�1;0/Cec.0;1;0;�1/ �ec.1;0;0;�1/ �ec.0;1;�1;0/;
w13.˛1/Dec.1;0;0;�1/Cec.0;�1;1;0/ �ec.1;�1;0;0/ �ec.0;0;1;�1/; (7.10)

w12.˛2/Dec.1;�1;0;0/Cec.0;0;�1;1/ �ec.1;0;�1;0/ �ec.0;�1;0;1/;
from which the result follows.

LEMMA 7.6
If t0 is an interior point, � 0 D � .

Proof
If t0 is an interior point, then there are six ˛’s for which t0 is an edge point of �3.˛/.
These are ˛0, ˛1, and ˛2 as defined in (7.8), as well as

˛3 D t0 � .1; 1; 0; 0/; ˛4 D t0 � .1; 0; 1; 0/; ˛5 D t0 � .1; 0; 0; 1/: (7.11)

Again, by Lemma 7.3,

� 0 � � D 
�
w23.˛0/

�
C 

�
w13.˛1/C 2�

p
�1
�
C 

�
w12.˛2/

�
C 

�
w01.˛3/

�
C 

�
w02.˛4/C 2�

p
�1
�
C 

�
w03.˛5/

�
: (7.12)

Using (7.10) (and similar formulas for w01.˛3/, w02.˛4/, and w03.˛5/), we see that
all terms in (7.12) cancel out. Hence, � 0 D � .

PROPOSITION 7.7
Let c be a Ptolemy assignment on K . For any liftec of c, the element

�.ec /DX
i

X
˛2�k

n�2
.Z/

	i�.ec i˛ / 2 bP .C/ (7.13)

is independent of the choice of lift. In particular, if c is the Ptolemy assignment of a
decorated representation �, then �.ec / is the extended Bloch group element of �.
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Proof
Let ec and ec 0 be lifts of c. Let t0 2 P�3n.Z/. We wish to prove that �.ec /D �.ec 0 /. It
is enough to prove this when ec 0 is obtained from ec by adding 2�

p
�1 to ect . If t0

is an interior point, then the result follows immediately from Lemma 7.6. If t0 is a
face point, then t0 lies in exactly two simplices of K , and it follows from Lemma 7.5
that the two contributions to the change in �.ec / appear with opposite signs (by (3.5),
2.2�

p
�1/D 0). Suppose that t0 is an edge point. Let C be the 3-cycle obtained

by gluing together all the �3.˛/’s having t0 as an edge point, using the face pairings
induced from K . Let e be the (interior) 1-cell of C containing t0. The argument in
[27, Theorem 6.5] shows that the total log-parameter around e is zero. It thus follows
from Lemma 7.4 that adding 2�

p
�1 to ect0 changes �.ec / by 2-torsion, which is

trivial if and only if the number n of simplices in C for which t is a 02 edge or a
13 edge is even. Consider a curve � in C encircling e. The vertex ordering induces
an orientation on each face of each simplex of C , such that when � passes through
two faces of a simplex in C , the two orientations agree unless e is a 02 edge or a 13
edge. Since M is orientable, it follows that n is even. The second statement follows
by lettingec D log c.

PROPOSITION 7.8
The extended Bloch group element of a decorated boundary-unipotent representation
is invariant under the diagonal action.

Proof
The argument is local. Let c be a Ptolemy assignment on �3n, and let c 0 be obtained
from c by the diagonal action. By (5.7), we have

c0t D ct

t0Y
kD0

d0k

t1Y
kD0

d1k

t2Y
kD0

d2k

t3Y
kD0

d3k (7.14)

for diagonal matrices di D diag.di0; : : : ; di;n�1/. Letting log denote a logarithm, andec a lift of c, define a liftec 0 of c0 by

ec 0t Dect C
t0X
kD0

log.d0k/C
t1X
kD0

log.d1k/C
t2X
kD0

log.d2k/C
t3X
kD0

log.d3k/: (7.15)

Using this, one easily checks that �.c˛/D �.c0˛/ for each i and each ˛ 2�3n�2.Z/.
Applying this local argument to each simplex, the result follows from Proposition 7.7.
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COROLLARY 7.9
The extended Bloch group element of a peripherally well-behaved boundary-
unipotent representation � is independent of the decoration.

Proof
By performing a barycentric subdivision if necessary, we may assume that any decora-
tion is generic. Since � is peripherally well behaved, the diagonal action is transitive
on equivalence classes of decorations. Since equivalent decorations have the same
fundamental class, the result follows.

7.1. p SL.n;C/-decorations
Let n be even. All results in this section have natural analogs for p SL.n;C/. The
proofs of these are obtained by replacing 2�

p
�1 by �

p
�1, and logarithms by lifts

of C
exp
��!C�=h˙1i.

8. A cocycle formula forbc
Let i� W H3.SL.n;C//!H3.SL.n;C/;N / denote the natural map. We wish to prove
that the composition

H3
�
SL.n;C/

� i�
�!H3

�
SL.n;C/;N

� �
�! bB.C/ R

�!C=4�2Z (8.1)

equals the Cheeger–Chern–Simons class bc. Note that i� is induced by the map
.g0; : : : ; g3/ 7! .g0N; : : : ; g3N/.

We shall make use of the canonical isomorphisms

H3
�
SL.n;C/

�
ŠH3

�
SL.3;C/

�
ŠH3

�
SL.2;C/

�
˚KM3 .C/: (8.2)

The first isomorphism is induced by stabilization (see [24]) and the second isomor-
phism is the ˙-eigenspace decomposition with respect to the transpose-inverse invo-
lution on SL.3;C/ (see [22]).

LEMMA 8.1 (Suslin [24])
Let H � SL.3;C/ be the subgroup of diagonal matrices. The KM3 .C/ summand of
H3.SL.3;C// is generated by the elements B��.ŒT 
/, where T D S1�S1�S1 is the
3-torus and � W �1.T /!H is a representation.

LEMMA 8.2
Let T D S1 � S1 � S1, and let � W �1.T /!H be a representation. The extended
Bloch group element Œ�
 2 bB.C/ of � is trivial.
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Figure 5. Triangulation of @C .

Proof
We regard T as a cube C with opposite faces identified and triangulate C as the cone
on the triangulation on @C indicated in Figure 5 with cone point in the center. We
order the vertices of each simplex by codimension; that is, the 0-vertex is the cone
point, the 1-vertex is a face point, and so on. Let � W �1.T /! H be a representa-
tion, and pick a decoration of � by cosets in general position (the triangulation is such
that this is always possible). Note that, for every 3-simplex � of T , there is a unique
opposite 3-simplex�opp, such that the faces opposite the cone point are identified. We
may assume that the cone point is decorated by the coset N . If a simplex � is deco-
rated by the cosets .N;g0N;g1N;g2N/, then the simplex �opp must be decorated by
the cosets .N;dg0N;dg1N;dg2N/, where d is the image of the generator of �1.T /
pairing the faces of � and �opp. It thus follows from (5.2) that the fundamental class
is represented by a sum of terms of the form

.N;dg0N;dg1N;dg2N/� .N;g0N;g1N;g2N/ 2 C
gen
3

�
SL.n;C/=N

�
: (8.3)

Let c and c0 be the Ptolemy assignments associated to the tuples .N;g0N;g1N;
g2N/ and .N;dg0N;dg1N;dg2N/. Letting d D diag.d1; : : : ; dn/, we have c0t D
ct
Qn
iDt0

di . Fix a liftec of c, and consider the lift

ec 0t Dect C nX
iDt0

log.di / (8.4)

of c0. One now checks that �.ec 0˛ /D �.ec˛/ for all ˛ 2 P�kn.Z/, so �.ec /��.ec 0 /D 0.
This proves the result.

THEOREM 8.3
The composition R ı � ı i� equalsbc.
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Proof
Since � commutes with stabilization, it follows from [16] that R ı � ı i� D bc
on H3.SL.2;C//. Since bc is zero on KM3 .C/ (this follows from Lemma 8.1 and
[5, Theorem 8.22]), the result follows from (8.2) and Lemma 8.2.

Remark 8.4
By defining bc D R ı � W H3.SL.n;C/;N /! C=4�2Z, we have a natural extension
of the Cheeger–Chern–Simons class to bundles with boundary-unipotent holonomy,
and we can define the complex volume as in Definition 2.3.

Remark 8.5
The fact that the complex volume is independent of the choice of decoration can
be seen as follows: We can regard bc as a map Pn.�3/! C=4�2Z, and a simple
computation shows that the holomorphic 1-form dbc involves only coordinates on
the boundary of �3. Hence, for a closed 3-cycle K ,bc W Pn.K/!C=4�2Z is locally
constant. The result now follows from the fact that the space of decorations of a
representation is path-connected.

9. Recovering a representation from its Ptolemy coordinates
We now show that a Ptolemy assignment on K determines a generically decorated
boundary-unipotent representation, which is given explicitly in terms of the Ptolemy
coordinates. The idea is that a Ptolemy assignment canonically determines a .G;N /-
cocycle on M .

9.1. The generic .G;N /-cocycle of a tuple

Definition 9.1
An .n � n/-matrix A is counterdiagonal if the only nonzero entries of A are on the
lower-left to upper-right diagonal; that is, Aij D 0 unless j D n� iC1. If Aij D 0 for
j > n� iC1 (resp., j < n� iC1), then A is upper (resp., lower) countertriangular.

Given subsets I;J of ¹1; : : : ; nº, let AI;J denote the submatrix of A whose rows
and columns are indexed by I and J , respectively. If jI j D jJ j, then let jAjI;J denote
the minor det.AI;J /. Let I c denote ¹1; : : : ; nº n I .

Recall that the adjugate Adj.A/ of a matrix A is the matrix whose ij th entry is
.�1/iCj jAj¹j ºc ;¹iºc . It is well known that Adj.A/D det.A/A�1. The following result
by Jacobi (see, e.g., [1, Section 42]) expresses the minors of Adj.A/ in terms of the
minors of A.
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LEMMA 9.2
Let I;J be subsets of ¹1; : : : ; nº with jI j D jJ j D r . We haveˇ̌

Adj.A/
ˇ̌
I;J
D .�1/

P
.I;J / det.A/r�1jAjJ c ;Ic ; (9.1)

where
P
.I; J / is the sum of the indices occurring in I and J .

Definition 9.3
A matrix A 2GLn.C/ is generic if jAj¹k;:::;nº;¹1;:::;n�kC1º ¤ 0 for all k 2 ¹1; : : : ; nº.

Note that A is generic if and only if the Ptolemy coordinates of .N;AN/ are
nonzero. The following is a generalization of [27, Lemma 3.5].

PROPOSITION 9.4
Let A 2 GLn.C/ be generic. There exist unique x 2 N and y 2 N such that q D
x�1Ay is counterdiagonal. The entries of x, y, and q are given by

qn;1 D An;1;
(9.2)

qn�jC1;j D .�1/
j�1 jAj¹n�jC1;:::;nº;¹1;:::;j º

jAj¹n�jC2;:::;nº;¹1;:::;j�1º
for 1 < j � n;

xij D
jAj¹i;jC1;:::;nº;¹1;:::;n�jC1º

jAj¹j;:::;nº;¹1;:::;n�jC1º
for j > i; (9.3)

yij D .�1/
iCj
jAj
¹n�jC2;:::;nº;¹1;:::;bi;:::;j º

jAj¹n�jC2;:::;nº;¹1;:::;j�1º
for j > i: (9.4)

Proof
It is enough to prove existence and uniqueness of x and y in N such that Ay and
x�1A are upper and lower countertriangular, respectively. Suppose that Ay is upper
countertriangular. Then the vector y¹1;:::;j�1º;¹j º consisting of the part above the coun-
terdiagonal of the j th column vector of y must satisfy

A¹n�jC2;:::;nº;¹1;:::;j�1ºy¹1;:::;j�1º;¹j ºCA¹n�jC2;:::;nº;¹j º D 0: (9.5)

The existence and uniqueness of y, as well as the given formula for the entries, now
follow from Cramer’s rule. Since x�1A is lower countertriangular if and only if A�1x
is upper countertriangular, the existence and uniqueness of x follows. The explicit for-
mula for the entries follows from Jacobi’s identity (9.1) and the formula for the entries
of y. To obtain the formula for the entries of q, note that qn�jC1;j D .Ay/n�jC1;j .
Hence, qn;1 DAn;1, and, for 1 < j � n,
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qn�jC1;j D

j�1X
iD1

An�jC1;iyi;j CAn�jC1;j

D

Pj
iD1.�1/

iCjAn�jC1;i jAj¹n�jC2;:::;nº;¹1;:::bi;:::;j º
jAj¹n�jC2;:::;nº;¹1;:::;j�1º

D .�1/j�1
jAj¹n�jC1;:::;nº;¹1;:::;j º

jAj¹n�jC2;:::;nº;¹1;:::;j�1º
;

where the second equality follows from (9.4).

For a generic matrix A, let xA, yA, and qA be the unique matrices provided by
Proposition 9.4. Given cosets giN , gjN , gkN , define

qij D qg�1
i
gj
; ˛ijk D .xg�1

i
gj
/�1xg�1

i
gk
: (9.6)

Definition 9.5
The generic cocycle of a generic tuple .g0N; : : : ; gkN/ is the .G;N /-cocycle on a
truncated simplex � defined by labeling the long edges by qij and the short edges by
˛i
jk

(see Figure 6).

PROPOSITION 9.6
The diagonal left G-action on C gen

k
.G=N/ is free when k � 1, and the chain complex

C
gen
��1.G=N/˝ZŒG� Z computes relative homology.

Proof
By Proposition 9.4, every generic tuple .g0N; : : : ; gkN/ may be uniquely written as

g0xg�1
0
g1
.N;q01N;˛

0
12q02N; : : : ; ˛

0
1kq0kN/: (9.7)

Figure 6. A .G;N /-cocycle on a truncated 3-simplex.
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This proves that the G-action is free. Also note that, for each generic tuple .g0N; : : : ;
gkN/, there exists a coset gN such that .gN;g0N; : : : ; gkN/ is generic. Hence,
C

gen
��1.G=N/ is acyclic and is thus a free resolution of Ker.C0.G=N/! Z). This

proves the result (see, e.g., [27, Theorem 2.1]).

A generically decorated representation � thus determines a .G;N /-cocycle rep-
resenting �. Let B

gen
� .G;N / be the subcomplex of B�.G;N / generated by generic

cocycles on a standard simplex.

COROLLARY 9.7
We have a canonical isomorphism

B
gen
� .G;N /D C

gen
� .G=N/˝ZŒG� Z; (9.8)

and the fundamental class of a decorated representation is represented as in (4.4).

Proof
The first statement follows from Proposition 9.6 and the second from Theorem 4.8.

9.2. Formulas for the long and short edges
We wish to prove that a generic .G;N /-cocycle is uniquely determined by the
Ptolemy coordinates.

Notation 9.8
Let k 2 ¹1; : : : ; n� 1º.
(i) For a1; : : : ; an 2 C�, let q.a1; : : : ; an/ be the counterdiagonal matrix whose

entries on the counterdiagonal (from lower left to upper right) are a1; : : : ; an.
(ii) For x 2C, let xk.x/ be the elementary matrix whose .k; kC 1/ entry is x.
(iii) For b1; : : : ; bk 2C, let �k.b1; : : : ; bk/D x1.b1/x2.b2/ � � �xk.bk/.

PROPOSITION 9.9
The long edges of a generic .G;N /-cocycle are determined by the Ptolemy coordi-
nates as follows:

qij D q.a1; : : : ; an/; ak D .�1/
k�1

c.n�k/eiCkej

c.n�kC1/eiC.k�1/ej
: (9.9)

Proof
Let .g0N; : : : ; gkN/ be a generic tuple, and let AD g�1i gj . Then qij D qA. Since

jAj¹n�jC1;:::;nº;¹1;j º D det
�
¹giºn�k; ¹gj ºk

�
D c.n�k/eiCkej ; (9.10)

the result follows from (9.2).
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The corresponding formula for the short edges requires considerably more work
and is given in Proposition 9.14 below.

LEMMA 9.10
Let A be generic, and let LD x�1A A. The entries Li;n�iC2 right below the counter-
diagonal are given by

Li;n�iC2 D .�1/
n�i
jAj
¹i;:::;nº;¹1;:::;n̂�iC1;n�iC2º

jAj¹iC1;:::;nº;¹1;:::;n�iº
: (9.11)

Proof
We proceed as in the proof of Proposition 9.4. Let x D x�1A . Since L is lower coun-
tertriangular, we must have

x¹iº;¹iC1;:::;nºA¹iC1;:::;nº;¹1;:::;n�iºCA¹iº;¹1;:::;n�iº D 0; (9.12)

and so, by Cramer’s rule,

xij D .�1/
iCj
jAj
¹i;:::;bj ;:::;nº;¹1;:::;n�iº

jAj¹iC1;:::;nº;¹1;:::;n�iº
for j > i: (9.13)

We thus have

jAj¹iC1;:::;nº;¹1;:::;n�iºLi;n�iC2 D Ai;n�iC2jAj¹iC1;:::;nº;¹1;:::;n�iº

C

nX
kDiCi

.�1/iCkjAj
¹j;:::;bk;:::;nº;¹1;:::;n�j ºAk;n�iC2

D

nX
kDj

.�1/iCkjAj
¹j;:::;bk;:::;nº;¹1;:::;n�iºAk;n�iC2

D .�1/n�i jAj
¹i;:::;nº;¹1;:::;n̂�iC1;:::;n�iC2º

;

which proves the result.

Definition 9.11
Let A;B 2GL.n;C/.
(i) A and B are related by a type 0 move if all but the last column of A and B are

equal.
(ii) A and B are related by a type 1 move if all but the second last column of A

and B are equal.
(iii) A and B are related by a type 2 move if, for some j < n � 1, B is obtained

from A by switching columns j and j C 1.
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PROPOSITION 9.12
LetA andB be generic, and letAi andBi denote the i th column ofA, respectivelyB .
(i) If A and B are related by a type 0 move, then xB D xA.
(ii) If A and B are related by a type 1 move, then xB D xAx1.x/, where

x D�
det.A1; : : : ;An�1;Bn�1/det.e1; e2;A1; : : : ;An�2/

det.e1;A1; : : : ;An�1/det.e1;A1; : : : ;An�2;Bn�1/
: (9.14)

(iii) If A and B are related by a type 2 move switching columns j and j C 1,
xB D xAxn�j .x/, where

x D�
det.e1; : : : ; en�j�1;A1; : : : ;AjC1/det.e1; : : : ; en�jC1;A1; : : : ;Aj�1/

det.e1; : : : ; en�j ;A1; : : : ;Aj /det.e1; : : : ; en�j ;A1; : : : ;Aj�1;Bj /
:

(9.15)

Proof
The first statement follows from the fact that xA is independent of the last column
of A. Suppose that A and B are related by a type 1 move. Using (9.3), one sees that
.xA/ij D .xB/ij except when i D 1 and j D 2. It thus follows that xB D xAx1.x/,
where x D .xB/12 � .xA/12. Letting C be the matrix obtained from A by replacing
the nth column by the .n� 1/th column of B , one has

jAj¹1;3;:::;nº;¹1;:::;n�1º D Adj.C /n;2; jBj¹1;3;:::;nº;¹1;:::;n�1º DAdj.C /n�1;2;

jAj¹2;:::;nº;¹1;:::;n�1º D Adj.C /n;1; jBj¹2;:::;nº;¹1;:::;n�1º DAdj.C /n�1;1;

and it follows from (9.3) that

x D .xB/12 � .xA/12 D
Adj.C /n�1;2
Adj.C /n�1;1

�
Adj.C /n;2
Adj.C /n;1

: (9.16)

We then have

xAdj.C /n;1Adj.C /n�1;1 D Adj.C /n�1;2Adj.C /n;1 �Adj.C /n�1;1Adj.C /n;2

D�
ˇ̌
Adj.C /

ˇ̌
¹n�1;nº;¹1;2º

D�det.C /jC j¹3;:::;nº;¹1;:::;n�2º

D�det.A1; : : : ;An�1;Bn�1/det.e1; e2;A1; : : : ;An�2/;

where the third equality follows from Jacobi’s identity (9.1). Since

Adj.C /n;1Adj.C /n�1;1 D det.e1;A1; : : : ;An�1/det.e1;A1; : : : ;An�2;Bn�1/;

this proves the second statement.
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Now suppose that A and B are related by a type 2 move. Let Ej;jC1 be the ele-
mentary matrix obtained from the identity matrix by switching the j th and .j C 1/th
columns. Then B D AEj;jC1. Since L D x�1A A is lower countertriangular,

xn�j .�
Ln�j;jC1
Ln�jC1;jC1

/LEj;jC1 must also be lower countertriangular. We thus have

xB D xAxn�j

�
�
Ln�j;jC1

Ln�jC1;jC1

��1
D xAxn�j

� Ln�j;jC1

Ln�jC1;jC1

�
: (9.17)

By (9.11) and (9.2), we have

Ln�jC1;jC1 D .�1/
j�1
jAj
¹n�jC1;:::;nº;¹1;:::;bj ;jC1º
jAj¹n�jC2;:::;nº;¹1;:::;j�1º

;

(9.18)
Ln�j;jC1 D .�1/

j jAj¹n�j;:::;nº;¹1;:::;jC1º

jAj¹n�jC1;:::;nº;¹1;:::;j º
:

Hence

Ln�j;jC1

Ln�jC1;jC1

D�
jAj¹n�j;:::;nº;¹1;:::;jC1ºjAj¹n�jC2;:::;nº;¹1;:::;j�1º

jAj¹n�jC1;:::;nº;¹1;:::;j ºjAj¹n�jC1;:::;nº;¹1;:::;bj ;jC1º
D�

det.e1; : : : ; en�j�1;A1; : : : ;AjC1/det.e1; : : : ; en�jC1;A1; : : : ;Aj�1/

det.e1; : : : ; en�j ;A1; : : : ;Aj /det.e1; : : : ; en�j ;A1; : : : ;Aj�1;Bj /
;

proving the third statement.

Note that any two matrices A;B 2GL.n;C/ are related by a sequence of moves
of type 1, 2, and 0 as follows:

A
1
�! ŒA1; : : : ;An�2;B1;An


2
�! ŒA1; : : : ;An�3;B1;An�2;An


2
�! � � �

2
�! ŒB1;A1; : : : ;An�2;An


1
�! ŒB1;A1; : : : ;An�3;B2;An


2
�! � � �

2
�! ŒB1;B2;A1; : : : ;An�3;An


1;2
��! � � �

1;2
��! ŒB1; : : : ;Bn�1;An


0
�!B: (9.19)

Consider the tilings of a face ijk, i < j < k, of �2n by diamonds shown in Fig-
ure 7. We refer to the diamonds as being of type i , j , and k, respectively.

Definition 9.13
The diamond coordinate dkr;s of a diamond .r; s/ of type k is the alternating product
of the Ptolemy coordinates assigned to its vertices (see Figure 7).
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Figure 7. Diamonds of type i , j , and k. The diamond coordinates are d ir;s D d
k
r;s D

�ab
cd

, and

d
j
r;s D

ab
cd

, where a, b, c, and d are Ptolemy coordinates.

PROPOSITION 9.14
The short edges ˛i

jk
, j < k, of a generic .G;N /-cocycle are determined by the

Ptolemy coordinates as follows (�� is defined in 9.8(iii)):

˛ijk D �n�1.d
i
1;1; : : : ; d

i
1;n�1/�n�2.d

i
2;1; : : : ; d

i
2;n�2/ � � ��1.d

i
n�1;1/; (9.20)

where the d i
j;k

’s are the type i diamond coordinates on the face ijk.

Proof
Let .g0N; : : : ; glN/ be a generic tuple, and let A D g�1i gj and B D g�1i gk . We
assume that i < j < k, the other cases being similar. Note that the Ptolemy coordi-
nates on the ijk face are given by
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Figure 8. Ptolemy assignments and the corresponding cocycle for nD 2 and nD 3.

ctieiCtj ekCtkek D det.e1; : : : ; eti ;A1; : : : ;Atj ;B1; : : : ;Btk /: (9.21)

Performing the sequence of moves in (9.19), the result follows from Proposition 9.12.

COROLLARY 9.15
A generic tuple is determined up to the diagonalG-action by its Ptolemy coordinates.

Example 9.16
Suppose that Ptolemy assignments on �2n, n 2 ¹2; 3º, are given as in Figure 8. Using
(9.9) and (9.20), we obtain that the corresponding .G;N /-cocycle is given by

q01 D q.a;�1=a/; q12 D q.b;�1=b/; q02 D q.c;�1=c/;
(9.22)

˛012 D x1

��b
ac

�
; ˛102 D x1

� c
ab

�
; ˛201 D x1

��a
cb

�
when nD 2, and

q01 D q.c;�a=c; 1=a/; q12 D q.b;�e=b; 1=e/; q02 D q.f;�g=f; 1=g/;

˛102 D x1

�fa
cd

�
x2

� d
ab

�
x1

�gb
de

�
; (9.23)

˛012 D x1

��bc
ad

�
x2

��d
cf

�
x1

��ef
dg

�
; ˛201 D x1

��cg
fd

�
x2

��d
ge

�
x1

��ae
db

�
when nD 3.

9.3. From Ptolemy assignments to decorations
Corollary 9.15 shows that there is at most one generic .G;N /-cocycle with a given
collection of Ptolemy coordinates. We now prove that, when k � 3, there is exactly
one.
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LEMMA 9.17
Let ai;j and bi;j be nonzero complex numbers. The equality

�n�1.a1;1; : : : ; a1;n�1/ � � ��1.an�1;1/

D �n�1.b1;1; : : : ; b1;n�1/ � � ��1.bn�1;1/ (9.24)

holds if and only if ai;j D bi;j for all i; j .

Proof
For any ci;j , the nth column of �n�1.c1;1; : : : ; c1;n�1/ � � ��1.cn�1;1/ is equal to the
nth column of �n�1.c1;1; : : : ; c1;n�1/, which equals

�n�1Y
iD1

c1;i ;

n�1Y
iD2

c1;i ; : : : ; c1;n�1

�
:

This proves that a1;j D b1;j for all j . The result now follows by induction.

PROPOSITION 9.18
For any assignment c W P�2n.Z/!C�, there is a unique Ptolemy assignment c 2 P tn2
whose Ptolemy coordinates are ct .

Proof
We prove that the Ptolemy coordinates c0t of .N;q01N;˛012q02N/ equal ct , where
q01, q02, and ˛012 are given in terms of the ct ’s by (9.9) and (9.20). First, note that
ct D c

0
t if either t1 or t2 is 0, that is, if t is on one of the edges of �2n containing the

0th vertex. Each of the other integral points t is the upper-right vertex of a unique
diamond .r; s/ of type 0. Let �k be the upper-right vertex of the kth diamond Dk in
the sequence

.1; n� 1/; .1; n� 2/; : : : ; .1; 1/; .2; n� 2/; : : : ; .2; 1/; : : : ; .n� 1; 1/: (9.25)

By Lemma 9.17, d00r;s D d
0
r;s for all diamonds .r; s/ of type 0. It thus follows that if

ct D c
0
t for all but one of the vertices of a diamond D, then ct D c0t for all vertices

of D. In particular, c0�1 D c�1 . Suppose by induction that c0�i D c�i for all i < k. Then
c0t D ct , for all vertices of Dk except �k . Hence, we also have c0�k D c�k , completing
the induction.

PROPOSITION 9.19
For any assignment c W P�3n.Z/! C� satisfying the Ptolemy relations, there is a
unique Ptolemy assignment c 2 P tn3 whose Ptolemy coordinates are ct .
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Proof
Let c0t be the Ptolemy coordinates of the tuple .N;q01N;˛012q02N;˛

0
13q03N/ defined

from the ct ’s by (9.9) and (9.20). We wish to prove that c0t D ct for all t . Note that if,
for some subsimplex�3.˛/, c0˛ij D c˛ij for all but one of the 6 ˛ij ’s, then c0˛ij D c˛ij
holds for all ˛ij . This is a direct consequence of the Ptolemy relations. By Proposi-
tion 9.18, c0t D ct , when either t2 or t3 is zero. Hence, for each ˛ D .a0; a1; a2; a3/
with a2 D a3 D 0, c0˛ij D c˛ij except possibly when .i; j / D .2; 3/. As explained
above, c0˛23 D c˛23 as well. Now suppose by induction that c0˛ij D c˛ij for all ˛ with
a2 C a3 < k. Then c0˛ij D c˛ij holds except possibly when .i; j / D .2; 3/. Again,
c0˛23 D c˛23 must also hold, completing the induction.

A .G;N /-cocycle on M obviously determines a decorated representation (up to
conjugation). The main results of this section can thus be summarized by the diagram
below:®

Points in Pn.K/
¯
 !

®
Generic .G;N /-cocycles on M

¯
 !

®
Generically decorated .G;N /-representations

¯
: (9.26)

Remark 9.20
We stress that the Ptolemy variety parameterizes decorated representations and not
decorated representations up to equivalence. In particular, the dimension of Pn.K/
depends on the triangulation and may be very large if K has many interior vertices.

9.4. Obstruction cocycles and the p SL.n;C/-Ptolemy varieties
Suppose that n is even. The projection G ! pG maps N isomorphically onto its
image (also denoted by N ), and by elementary obstruction theory (see, e.g., [23]), the
obstruction to lifting a .pG;N /-representation � to a .G;N /-representation is a class
in

H 2.M;@M IZ=2Z/DH 2.KIZ=2Z/: (9.27)

We can represent it by an explicit cocycle in Z2.KIZ=2Z/ as follows: Pick any
.p SL.n;C/;N /-cocycle N� onM representing � and a lift � of N� to a .G;N /-cochain.
Each 2-cell of K corresponds to a hexagonal 2-cell of M , and the 2-cocycle � 2
Z2.KIZ=2Z/ taking a 2-cell to the product of the � -labelings along the correspond-
ing hexagonal 2-cell of M represents the obstruction class.

PROPOSITION 9.21
Suppose that the interior of M is a 1-cusped hyperbolic 3-manifold with finite vol-
ume. The obstruction class in H 2.KIZ=2Z/ to lifting the geometric representation is
nontrivial.
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Proof
By a result of Calegari [4, Corollary 2.4], any lift of the geometric representation
takes a longitude to an element in SL.2;C/ with trace �2. This shows that no lift is
boundary-unipotent, and so the obstruction class must be nontrivial.

Proposition 9.4 also holds in p SL.n;C/, and we thus have a one-to-one cor-
respondence between generically decorated representations and .pG;N /-cocycles
on M .

Definition 9.22
Let � 2 Z2.KIZ=2Z/. A lifted .pG;N / cocycle on M with obstruction cocycle �
is a generic .G;N /-assignment on M lifting a .pG;N /-cocycle on M such that the
2-cocycle on K obtained by taking products along hexagonal faces of M equals � .

A 1-cochain � 2 C 1.KIZ=2Z/ acts on a lifted .pG;N /-cocycle � by multiplying
a long edge e by �.e/. Note that if � has obstruction cocycle � , then �� has obstruction
cocycle ı.�/� , where ı is the standard coboundary operator. Recall that there is a
one-to-one correspondence between generic .G;N /-cocycles on M and points in the
Ptolemy variety. We shall prove a similar result for pG.

We wish to define a coboundary action on pG-Ptolemy assignments (see Defini-
tion 5.11). Let c be a pG-Ptolemy assignment on �, and let �ij 2 C 1.�IZ=2Z/ be
the cochain taking the edge ij to �1 and all other edges to 1. Define

�ij c W P�
3
n.Z/!C�; .�ij c/t D .�1/

ti tj ct ; (9.28)

and extend in the natural way to define �c for a pG-Ptolemy assignment c on K
and � 2 C 1.KIZ=2Z/. A priori �c is only an assignment of complex numbers to the
integral points of the simplices of K . However, we have the following lemma.

LEMMA 9.23
If c is a pG-Ptolemy assignment on K with obstruction cocycle � , then �c is a pG-
Ptolemy assignment on K with obstruction cocycle ı.�/� .

Proof
It is enough to prove this for a simplex � and for �D �ij . Let c0 D �ij c. We assume
for simplicity that ij D 01; the other cases are proved similarly. For any ˛D .a0; a1;
a2; a3/ 2�

k
n�2.Z/, we then have

c0˛03c
0
˛12
C c0˛01c

0
˛23
� c0˛02c

0
˛13

D .�1/a0Ca1.c˛03c˛12 � c˛01c˛23 � c˛02c˛13/: (9.29)
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Let � D ı.�01/. Since ı.�01/2 D ı.�01/3 D�1 and ı.�01/0 D 1, (9.29) implies that

�2�3c
0
˛03
c0˛12 C �0�3c

0
˛03
c0˛01c

0
˛23
D c0˛02c

0
˛13
; (9.30)

as desired.

Definition 9.24
The diamond coordinates of a p SL.n;C/-Ptolemy assignment with obstruction cocy-
cle � are defined as in Definition 9.13, but multiplied by the sign (provided by � ) of
the face.

Note that, for � 2 C 1.KIZ=2=Z/, the diamond coordinates of c and �c are iden-
tical.

PROPOSITION 9.25
For any � 2 Z2.KIZ=2Z/, there is a one-to-one correspondence between
p SL.n;C/-Ptolemy assignments on K with obstruction cocycle � and lifted
.p SL.n;C/;N /-cocycles onM with obstruction cocycle � . The correspondence pre-
serves the coboundary actions.

Proof
It is enough to prove this for a simplex �. For a pG-Ptolemy assignment c on �
with obstruction cocycle � 2Z2.�IZ=2Z/, define a cochain � on � by the formulas
(9.9) and (9.20) using the � -modified diamond coordinates (Definition 9.24). Let � 2
C 1.�IZ=2Z/ be such that ı� D � , where ı is the standard coboundary map. By
Lemma 9.23, �c satisfies the SL.n;C/-Ptolemy relations (5.4) and hence corresponds
to an .SL.n;C/;N /-cocycle � 0. Since the diamond coordinates of c and �c are the
same, the short edges of � 0 agree with those of � and the long edges differ from those
of � by �. This proves that � is a lifted .pG;N /-cocycle with obstruction cocycle � .
The inductive arguments of Propositions 9.18 and 9.19 show that this is a one-to-one
correspondence. The fact that the actions by coboundaries correspond is immediate
from the construction.

COROLLARY 9.26
Let � 2 Z2.KIZ=2Z/. There is an algebraic variety P �n .K/ of generically deco-
rated boundary-unipotent representations � W �1.M/! p SL.n;C/ whose obstruc-
tion class to lifting to SL.n;C/ is represented by � . Up to canonical isomorphism,
the variety P �n .K/ depends only on the cohomology class of � .

Proof
This follows immediately from Proposition 9.25.
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Note that the canonical isomorphisms in Corollary 9.26 respect the extended
Bloch group element. This follows from the pG variant of Proposition 7.7. The ana-
logue of (9.26) is®

Points in P �n .K/
¯

 !
®
Lifted .pG;N /-cocycles on M with obstruction cocycle �

¯
kW1
�!�!

®
Generically decorated .pG;N /-representations with

obstruction cocycle �
¯
; (9.31)

where k is the number of lifts, that is, that k D jZ1.KIZ=2Z/j.

9.5. Proof of Theorems 1.3, 1.12, and 1.7
Let R W Pn.K/! RG;N .M/ be the composition of the map in (9.26) with the for-
getful map ignoring the decoration. The fact that � has image in bB.C/ follows from
Proposition 6.12, and commutativity of (1.11) follows from Remark 8.4. The fact that
R is surjective if K is sufficiently fine follows from Proposition 5.4. This concludes
the proof of Theorem 1.3. The first part of Theorem 1.12 is proved similarly, and the
last part follows from Theorem 11.7 below. The first statement of Theorem 1.7 fol-
lows from the definition of R. The second statement follows from the fact that if �
is boundary nondegenerate the only freedom in choosing a decoration is the diagonal
action. Finally, the third statement is proved in Corollary 7.9.

10. Examples
In the examples below, all computations of Ptolemy varieties are exact, whereas the
computations of complex volume are numerical with at least 50-digit precision.

Example 10.1 (The 52-knot complement)
Consider the 3-cycle K obtained from the simplices in Figure 9 by identifying the
faces via the unique simplicial attaching maps preserving the arrows. The space
obtained from K by removing the 0-cell is homeomorphic to the complement of the
52-knot, as can be verified by SnapPy [7].

Labeling the Ptolemy coordinates as in Figure 9, the Ptolemy variety for nD 3 is
given by the equations

a0x3C b0x1 D b0x2; a0y3C a0x0 D c0y2; a0x2C b0y2 D a0x1;

x2c0C b1x0 D x3a0; y2b0C a1x3 D y3b0; x1a0C b1y3 D x2c0;
(10.1)

x1c1C x3c0 D b1x0; x0b1C y3c0 D c1x3; y2a1C x2b0 D a1y3;

a1x0C x2c1 D x1a1; a1x3C y2c1 D x0b1; a1y3C x1b1 D y2c1



2148 GAROUFALIDIS, THURSTON, and ZICKERT

Figure 9. A 3-cycle structure on the 52 knot complement, and Ptolemy coordinates for nD 3.

together with an extra equation (involving an additional variable t )

a0a1b0b1c0c1x0x1x2x3y2y3t D 1; (10.2)

making sure that all Ptolemy coordinates are nonzero. By (5.7), a diagonal matrix
diag.x; y; z/ acts by multiplying a Ptolemy coordinate on an edge by x2y and a
Ptolemy coordinate on a face by x3. Since we are not interested in the particular
decoration, we may thus assume, for example, that a0 D y3 D 1. Using Magma [3],
one finds that the Ptolemy variety, after setting a0 D y3 D 1, has three 0-dimensional
components with 3, 4, and 6 points, respectively. One of these is given by

a0 D a1 D y3 D 1; x1 D�1; c0 D c1 D x
2
0 C 2x0C 1;

y2 D x
2
0 C 2D�x2; x3 D�x

2
0 � x0 � 1; (10.3)

x30 C x
2
0 C 2x0C 1D 0:

Thus, this component gives rise to three representations, one for each solution to
x30Cx

2
0C2x0C1D 0. Using the fact thatR.�.c//D i VolC.�/, the complex volumes

of these can be computed to be

0:0� 4:453818209 : : : i 2 C=4�2iZ;
(10.4)

˙11:31248835 : : :C 12:09651350 : : : i 2 C=4�2iZ
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corresponding to the values x0 D �0:5698 : : : and x0 D �0:2150 � 1:3071 : : : i ,
respectively.

In [27, Section 6], the complex volumes of the Galois conjugates of the geometric
representation are computed to be

0:0� 1:113454552 : : : i 2 C=�2iZ;
(10.5)

˙2:828122088 : : :C 3:024128376 : : : i 2 C=�2iZ:

Notice that (10.4) is (approximately) 4 times (10.5). It thus follows from Theorem 1.10
that the representations given by (10.3) are �3 composed with the geometric compo-
nent of PSL.2;C/-representations and that the factor of 4 is exact.

Another component is given by

a0 D a1 D y3 D 1; x1 D�1; b1 D�x0;

b0 D 1=4x
3
0 � 1=4x

2
0 C 3=4x0 � 1=2;

c0 D c1 D 1=4x
3
0 � 1=4x

2
0 � 1=4x0C 1=2; (10.6)

y2 D �x2 D 1=4x
3
0 C 3=4x

2
0 C 7=4x0C 3=2; x3 D�x

2
0 � x0 � 1;

x40 C x
3
0 C x

2
0 � 4x0 � 4D 0:

In this case, there are two distinct complex volumes given by

0:0C 2:631894506 : : : i D
4

15
�2i 2C=4�2iZ;

(10.7)
0:0C 10:527578027 : : : i D

16

15
�2i 2C=4�2iZ:

The third component has somewhat larger coefficients, but after introducing a
variable u with u6C 5u4C 8u2 � 2uC 1D 0, the defining equations simplify to

a0 D y3 D 1; a1 D 1=4u
5C 1=4u4C 5=4u3C 1=2u2C 2u� 3=4;

b0 D b1 D�1=4u
4 � 3=4u2 � 1=4u� 3=4;

c1 D�1=4u
5 � 3=4u3 � 1=4u2 � 3=4u;

c0 D 1=2u
5C 9=4u3C 1=4u2C 7=2u� 1=4;

y2 D�8=17u
5 � 1=34u4 � 79=34u3 � 3=17u2 � 105=34uC 26=17;

(10.8)
x3 D 1=17u

5 � 1=17u4C 6=17u3 � 6=17u2C 14=17u� 16=17;

x2 D 9=34u
5C 4=17u4C 37=34u3C 31=34u2C 75=34uC 13=17;

x1 D 8=17u
5C 1=34u4C 79=34u3C 3=17u2C 139=34u� 9=17;
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x0 D 15=34u
5C 1=17u4C 73=34u3C 29=34u2C 125=34u� 1=17;

u6C 5u4C 8u2 � 2uC 1D 0:

In this case, there are three distinct complex volumes:

0:0C 1:241598704 : : : i; ˙6:332666642 : : :C 1:024134714 : : : i: (10.9)

According to Conjecture 1.20, 6:33 : : :C 1:02 : : : i should (up to rational multiples of
�2i ) be an integral linear combination of complex volumes of hyperbolic manifolds.
Using, for example, Snap [17], one checks that the complex volume of the manifold
m034 is given by

3:166333321 : : :C 2:157001424 : : : i; (10.10)

and we have

6:332666642 : : :C1:024134714 : : : i D 2VolC.m034/�
1

3
�2i 2C=4�2iZ: (10.11)

Example 10.2 (The figure-eight knot complement)
Let K be the 3-cycle in Figure 10. Then M DM.K/ is the figure-eight knot comple-
ment, and H 2.KIZ=2Z/DH 2.M;@M IZ=2Z/D Z=2Z.

For the trivial obstruction class, the Ptolemy variety for nD 2 is given by

yxC y2 D x2; xy C x2 D y2; (10.12)

and is thus empty since x and y are nonzero. In fact, the only boundary-unipotent
representations in SL.2;C/ are reducible, so this is not surprising. The nontrivial
obstruction class can be represented by the cocycle indicated in Figure 10, and the
Ptolemy variety is given by

yx � y2 D x2; xy � x2 D y2: (10.13)

Figure 10. A 3-cycle structure on the figure-eight knot complement and Ptolemy coordinates for
nD 2. The signs indicate the nontrivial second Z=2Z cohomology class.
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As in Example 10.1, we may assume y D 1. Hence, the Ptolemy variety detects two
(complex conjugate) representations corresponding to the solutions to x2�xC1D 0.
The extended Bloch group elements are

�.�ex;�2ex /C .ex; 2ex / 2 bB.C/PSL; (10.14)

with complex volume

˙2:029883212 : : :C 0:0i: (10.15)

We thus recover the well-known complex volume of the figure-eight knot comple-
ment.

For nD 3, similar calculations as those in Example 10.1 show that the Ptolemy
variety detects three 0-dimensional components, but the only one with nonzero vol-
ume is the one induced by the geometric representation. For nD 4, lots of new com-
plex volumes emerge. For the trivial obstruction class, the nonzero complex volumes
are

˙7:327724753 : : :C 0:0i D 2VolC.5
2
1/C �

2i=4; (10.16)

where the manifold 521 is the Whitehead link complement. For the nontrivial obstruc-
tion class, the complex volumes are

˙20:29883212 : : :C 0:0i D 10VolC.41/ 2C=�
2iZ;

˙4:260549384 : : :˙ 0:136128165 : : : i;

˙3:230859569 : : :C 0:0i; (10.17)

˙8:355502146 : : :C 2:428571615 : : : i DVolC.�9
3
15/C 2�

2i=3;

˙3:276320849 : : :C 9:908433886 : : : i:

Remark 10.3
When nD 2, examples of Conjecture 1.20 are abundant. For example, for the 10155-
knot complement (10 simplices), the volumes of the representations detected by the
Ptolemy variety are (numerically)

Vol
�
m032.6; 1/

�
; 2Vol.41/;

(10.18)
3Vol.10155/� 4Vol.v3461/; Vol.10155/:

Remark 10.4
For the hyperbolic census manifolds, most of the components of the reduced Ptolemy
varieties tend to be 0-dimensional. By a result of Menal-Ferrer and Porti [18], the
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composition of the geometric representation with �n is isolated among boundary-
unipotent p SL.n;C/-representations. Higher-dimensional components also occur
(rarely for nD 2, but quite often for n > 2); but, as mentioned earlier, the complex
volume is constant on components.

Remark 10.5
If the face pairings do not respect the vertex orderings, then one can still define a
Ptolemy variety by introducing more signs. See [14] for details.

Remark 10.6
The fact that the reduced Ptolemy varieties Pn.K/red are given by setting some of the
variables (chosen appropriately) equal to 1 is proved in [15].

11. The irreducible representations of SL.2;C/
Let �n W SL.2;C/! SL.n;C/ denote the canonical irreducible representation. It is
induced by the Lie algebra homomorphism sl.2;C/! sl.n;C/ given by�

0 1

0 0

	
7! diagC.n� 1; : : : ; 1/;

�
0 0

1 0

	
7! diag�.1; : : : ; n� 1/; (11.1)

�
1 0

0 �1

	
7! diag.n� 1;n� 3; : : : ;�nC 1/;

where diagC.v/ and diag�.v/ denote matrices whose first upper (resp., lower) diago-
nal is v and all other entries are zero. One has

�n

��
0 �a�1

a 0

	�
D q

�
an�1;�an�3; : : : ; .�1/n�1a�.n�1/

�
; (11.2)

�n

��
1 x

0 1

	�
D �n�1.x; : : : ; x/�n�2.x; : : : ; x/ � � ��1.x/: (11.3)

PROPOSITION 11.1
Let c be a Ptolemy assignment on �32, and let � denote the corresponding cocycle.
The Ptolemy assignment corresponding to �n.�/ is given by

�n.c/ W P�
3
n.Z/!C�; t 7! �n.c/t D

Y
i<j

c
ti tj
ij : (11.4)
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Figure 11. �n acting on Ptolemy assignments.

Proof
Let ˛ D .a0; : : : ; a3/ 2 �3n�2.Z/. Letting k˛ D

Q
i<j c

aiaj
ij and l˛ D

Q
i<j c

aiCaj
ij ,

we have

�n.c/˛03�n.c/˛12 D k
2
˛l˛c03c12;

�n.c/˛01�n.c/˛23 D k
2
˛l˛c01c23; (11.5)

�n.c/˛02�n.c/˛13 D k
2
˛l˛c02c13:

Hence, the appropriate Ptolemy relations are satisfied. The long and short edges of
the cocycle corresponding to �n.c/ are given by (9.9) and (9.20), and we must prove
that these agree with those of �n.�/. For the long edges, this follows immediately
from (11.2). For the short edges, an easy computation shows that all the diamond
coordinates of a face are equal, and equal to the corresponding diamond coordinate
of c. For example, the type 1 diamond coordinate on face 3 whose left vertex is
t D .t0; t1; t2; 0/ is given by

�n.c/tC.0;�1;1;0/�n.c/tC.�1;1;0;0/

�n.c/t�n.c/tC.�1;0;1;0/

D
c
t0.t1�1/
01 c

t0.t2C1/
02 c

.t1�1/.t2C1/
12 c

.t0�1/.t1C1/
01 c

.t0�1/t2
02 c

.t1C1/t2
12

c
t0t1
01 c

t0t2
02 c

t1t2
12 c

.t0�1/t1
01 c

.t0�1/.t2C1/
02 c

t1.t2C1/
12

D
c02

c01c12
; (11.6)

which is a diamond coordinate for c. By (11.3), the short edges thus agree with those
of �n.�/, proving the result.
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COROLLARY 11.2
If a representation � W �1.M/! PSL.2;C/ is detected by P �2 .K/, then �2kC1 ı � is
detected by P2kC1.K/ and �2k ı � is detected by P �

2k
.K/.

THEOREM 11.3
Let � be a boundary-unipotent representation in SL.2;C/ or PSL.2;C/. The extended
Bloch group element of �n ı � is

�
nC1
3

�
times that of �. In fact, the shapes of all

subsimplices are equal.

Proof
By refining the triangulation if necessary, we may represent � by a Ptolemy assign-
ment c on K . Then � D �n.c/ is a Ptolemy assignment representing �n ı �, and the
extended Bloch group element of �n ı � is given by

�n.�/

�
D
X
i

	i
X

˛2�3
n�2

.Z/

.e�i˛03 Ce�i˛12 �e�i˛02 �e�i˛13 ;e�i˛01 Ce�i˛23 �e�i˛02 �e�i˛13/:
(11.7)

By Proposition 7.7, we may choose the logarithms independently as long as we use
the same logarithm for identified points. Defining e�it DPj<k tj tkec ijk , we see that

.e�i˛03 Ce�i˛12 �e�i˛02 �e�i˛13 ;e�i˛01 Ce�i˛23 �e�i˛02 �e�i˛13/
D .ec03Cec12 �ec02 �ec13;ec01Cec23 �ec02 �ec13/; (11.8)

which means that the flattenings assigned to each subsimplex of �in are equal. By
Lemma 5.6, j�3n�2.Z/j D

�
nC1
3

�
, and the result follows.

11.1. Essential edges

Definition 11.4
An edge of K is essential if the lifts to L have distinct end points.

Note that an edge may be essential even though it is homotopically trivial in K .
Let L.0/ denote the 0-skeleton of L.

LEMMA 11.5
Let � be a representation in SL.2;C/ or PSL.2;C/. A decoration of � determines a
�-equivariant map

D W L.0/! @H
3
DC[ ¹1º; ei 7! gi1: (11.9)
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Every such map comes from a decoration, and the decoration is generic if and only if
the vertices of each simplex of L map to distinct points in C[ ¹1º.

Proof
Equivariance of (11.9) follows from the definition of a decoration. A �-equivariant
mapD W L.0/!C[¹1º is uniquely determined by its image of liftseei 2L of the 0-
cells ei ofK . Picking gi such that gi1DD.eei /, we define a decoration by assigning
the coset giN toeei . The last statement follows from the fact that det.g1e1; g2e1/D 0
if and only if g11D g21.

In the following, we assume that the interior of M is a cusped hyperbolic 3-
manifold H3=� with finite volume.

PROPOSITION 11.6
If all edges of K are essential, then the geometric representation has a generic deco-
ration.

Proof
We identify �1.M/ with � � PSL.2;C/. Each cusp of M determines a �-orbit of
points in @H3, and these orbits are distinct (if two orbits intersected, then they would
be identical, and thus correspond to the same cusp). Each vertex of L corresponds to
either a cusp of M or an interior point of M . Accordingly, we have L.0/ D L.0/cusp [

L
.0/
int . The stabilizer of a point in L.0/cusp is a parabolic subgroup of PSL.2;C/ and thus

fixes a unique point in C[ ¹1º. We thus have an equivariant map D W L.0/cusp! C[

¹1º taking a vertex v to the fixed point in @H3 of Stab.v/� PSL.2;C/. Let e1 and e2
be points in L.0/cusp connected by an edge. Since all edges of K are essential, e1 ¤ e2.
Since the �-orbits of different cusps are distinct, it follows that D.e1/ ¤ D.e2/ if
e1 and e2 correspond to different cusps. If e1 and e2 correspond to the same cusp,
there exists an element in � taking e1 to e2. Since only peripheral elements (i.e., cusp
stabilizers) have fixed points in C[ ¹1º, it follows that D.e1/¤D.e2/. We extend
D to L.0/ by choosing any equivariant map L.0/int ! C [ ¹1º. Since such a map is
uniquely determined by finitely many values (which may be chosen freely), we can
pick the extension so that the vertices of each simplex map to distinct points. This
proves the result.

THEOREM 11.7
Suppose that all edges of K are essential. The representation �n ı �geo is detected by
Pn.K/ if n is odd and by P

�geo
n .K/ if n is even.
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Figure 12. Assigning cross-ratio parameters to the edges of �i . By definition, z0 D 1
1�z and

z00 D 1� 1
z .

Proof
By Proposition 11.6, P

�geo

2 .K/ detects �geo. The result now follows from Corol-
lary 11.2.

Remark 11.8
The census triangulations all have essential edges.

12. Gluing equations and Ptolemy assignments
In this section, we discuss the relation between Ptolemy assignments and solutions to
the gluing equations. The latter were invented by Thurston [26] to explicitly compute
the hyperbolic structure (and its deformations) of a triangulated hyperbolic manifold
and used effectively in [17], [21], and [7]. The gluing equations make sense for any
3-cycle. They are defined by assigning a cross-ratio zi 2Cn¹0; 1º to each simplex�i
ofK . Given these, we assign cross-ratio parameters to the edges of�i as in Figure 12.

There is a gluing equation for each edge E in K and each generator � of the
fundamental group of each boundary component of M . These are given byY

e 7!E

z.e/i .e/ D 1;
Y

� passes e

z.e/i .e/ D 1: (12.1)

Here z.e/ denotes the cross-ratio parameter assigned to e, and 	i .e/D 	i if e is an
edge of �i . It follows that the set of assignments �i 7! zi 2 Cn¹0; 1º satisfying the
gluing equations (12.1) is an algebraic set V.K/.

LEMMA 12.1
For every point ¹ziº 2 V.K/, there is a map D W L.0/!C[¹1º such that if e�i is a
lift of�i with vertices e1; : : : ; e3 inL, the cross-ratio of the ideal simplex with vertices
D.e1/; : : : ;D.e3/ is zi . It is unique up to multiplication by an element in PSL.2;C/.
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Moreover, there is a unique (up to conjugation) boundary-unipotent representation
�1.M/! PSL.2;C/ such that D is �-equivariant.

Proof
Pick a fundamental domain F for K in L. Pick a simplex � in F and define D by
mapping the first three vertices of � to 0, 1 and 1. The map D is now uniquely
determined by the cross-ratios. The fundamental group of M has a presentation with
a generator for each face pairing of F . The second statement thus follows from the
fact that PSL.2;C/ is 3-transitive. We leave the details to the reader.

Given a Ptolemy assignment on K , we assign the cross-ratio zi D
ci
03
ci
12

ci
02
ci
13

to �i .

Note that the Ptolemy relations imply that the cross-ratio parameters are given by

zi D
ci03c

i
12

ci02c
i
13

; z0i D
ci02c

i
13

ci01c
i
23

; z00i D�
ci01c

i
23

ci03c
i
12

: (12.2)

THEOREM 12.2
There is a surjective regular mapa

�2H2.KIZ=2Z/

P �2 .K/! V.K/; c 7!
°
zi D

ci03c
i
12

ci02c
i
13

±
: (12.3)

The fibers are disjoint copies of .C�/h, where h is the number of 0-cells of K .

Proof
By a simple cancellation argument (as in the proof of Zickert [27, Theorem 6.5]), the
gluing equations would be satisfied if the formula (12.2) for z00i did not have the minus
sign. The minus sign appears whenever the edge is 02 or 13. As explained in the proof
of Proposition 7.7, any curve passes these an even number of times. It thus follows that
the cross-ratios satisfy the gluing equations. Surjectivity follows from Lemma 11.5,
and the fact that fibers are .C�/h follows from the fact that g11D g21 if and only
if g1N D g2dN for a unique diagonal matrix d .

Remark 12.3
Gluing equation varieties for n > 2 are studied in [14].
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BLOCH GROUPS, ALGEBRAIC K-THEORY,
UNITS, AND NAHM’S CONJECTURE

FRANK CALEGARI, STAVROS GAROUFALIDIS, AND DON ZAGIER

Abstract. Given an element of the Bloch group of a number field F and a natural num-
ber n, we construct an explicit unit in the field Fn = F (e2πi/n), well-defined up to n-th
powers of nonzero elements of Fn. The construction uses the cyclic quantum dilogarithm,
and under the identification of the Bloch group of F with the K-group K3(F ) gives an
explicit formula for a certain abstract Chern class from K3(F ). The units we define are
conjectured to coincide with numbers appearing in the quantum modularity conjecture for
the Kashaev invariant of knots (which was the original motivation for our investigation),
and also appear in the radial asymptotics of Nahm sums near roots of unity. This latter
connection is used to prove one direction of Nahm’s conjecture relating the modularity of
certain q-hypergeometric series to the vanishing of the associated elements in the Bloch
group of Q.
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1. Introduction

The purpose of the paper is to associate to an element ξ of the Bloch group of a number
field F and a primitive nth root of unity ζ an explicit unit or near unit Rζ(ξ) in the field
Fn = F (ζ), well-defined up to n-th powers of nonzero elements of Fn. Our construction uses
the cyclic quantum dilogarithm and is shown to give an explicit formula for an abstract Chern
class map on K3(F ). The near unit is conjectured (and checked numerically in many cases)
to coincide with a specific number that appears in the Quantum Modularity Conjecture of
the Kashaev invariant of a knot. This was in fact the starting point of our investigation [13],
[39].

As a surprising consequence of our main theorem we were able to prove one direction of
Werner Nahm’s famous conjecture, namely that the modularity of certain q-hypergeometric
series (“Nahm sums”) implies the vanishing of certain explicit elements in the Bloch group
of Q. A precise statement will be given in Section 1.3 of this introduction.

1.1. Bloch groups and associated units. We first recall the definition of the classical
Bloch group, as introduced in [2]. Let Z(F ) denote the free abelian group on P1(F ) =
F ∪ {∞}, i.e. the group of formal finite combinations ξ =

∑
i ni[Xi] with ni ∈ Z and

Xi ∈ P1(F ).

Definition 1.1. The Bloch group of a field F is the quotient

B(F ) = A(F )/C(F ) , (1)

where A(F ) is the kernel of the map

d : Z(F ) −→
∧2F× , [X] 7→ (X) ∧ (1−X) (2)

(and [0], [1], [∞] 7→ 0) and C(F ) ⊆ A(F ) the group generated by the five-term relation

ξX,Y = [X] − [Y ] +

[
Y

X

]
−
[

1−X−1

1− Y −1

]
+

[
1−X
1− Y

]
(3)

with X and Y ranging over P1(F ) (but forbidding arguments 0
0

or ∞∞ on the right-hand side).

In this paper, we will study an invariant of the Bloch group whose values are units in
Fn modulo nth powers of units, where n is a natural number and Fn the field obtained by
adjoining to F a primitive n-th root of unity ζ = ζn. The extension Fn/F is Galois with
Galois group G = Gal(Fn/F ), and G admits a canonical map

χ : G −→ (Z/nZ)× (4)
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determined by σζ = ζχ(σ). The powers χj (j ∈ Z/nZ) of this character define eigenspaces(
F×n /F

×n
n

)χj
in the obvious way as the set of x ∈ F×n /F

×n
n such that σ(x) = xχ

j(σ) for

all σ ∈ G, and similarly for (O×n /O×nn )χ
j

or (O×S,n/O
×n
S,n)χ

j
, where On (resp. OS,n) is the ring

of integers (resp. S-integers) of Fn. Then our main result is the following theorem.

Theorem 1.2. Suppose that F does not contain any non-trivial nth root of unity. Then
there is a canonical map

Rζ : B(F )/nB(F ) −→
(
O×S,n/O

×n
S,n

)χ−1

⊂
(
F×n /F

×n
n

)χ−1

(5)

for some finite set S of primes depending only on F . If n is prime to a certain integer MF

depending on F , then the map Rζ is injective and its image is contained in
(
O×n /O×nn

)χ−1

,
and equal to this if n is prime.

Remark 1.3. Note that the field Fn and the character χ of (4) do not depend on the
primitive nth root of unity ζ. The map Rζ from B(F ) to F×n /F

×n
n does depend on ζ, but in

a very simple way, described by either of the formulas

σ
(
Rζ(ξ)

)
= Rσ(ζ)(ξ) (σ ∈ G), Rζ(ξ) = Rζk(ξ)

k (k ∈ (Z/nZ)×) , (6)

where the simultaneous validity of these two formulas explains why the image of each map Rζ

lies in the χ−1 eigenspace of F×n /F
×n
n .

Remark 1.4. The optimal definition of MF is somewhat complicated to state. However,
one may take it to be 6 ∆F |K2(OF )| .

The detailed construction of the map Rζ will be given in Section 2. A rough description
is as follows. Let ξ =

∑
ni[Xi] be an element of Z(F ) whose image in ∧2(F×/F×n) under

the map induced by d vanishes. We define an algebraic number Pζ(ξ) by the formula

Pζ(ξ) =
∏
i

Dζ(xi)
ni , (7)

where xi is some nth root of Xi and Dζ(x) is the cyclic quantum dilogarithm function

Dζ(x) =
n−1∏
k=1

(1 − ζkx)k . (8)

The number Pζ(ξ) belongs to the Kummer extension Hξ of F defined by adjoining all of the
xi to Fn and is well-defined modulo Hn

ξ . We show that for n prime to some MF it has the

form abn with b in H×ξ and a ∈ F×n (or even a ∈ O×n under a sufficiently strong coprimality
assumption about n). Then Rζ(ξ) is defined as the image of a modulo nth powers.

1.2. Algebraic K-groups and associated units. A second main theme of the paper
concerns the relation to the algebraic K-theory of fields. The group B(F ) was introduced
by Bloch as a concrete model for the abstract K-group K3(F ). It was proved by Suslin [31]
that, if F is a number field, then (up to 2-torsion) K3(F ) is an extension of B(F ) by the roots
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of unity in F , and in this case one also knows by results of Borel and Suslin-Merkurjev [30],
[21], [36] that K3(F ) has the structure

K3(F ) ∼= Zr2(F ) ⊕

{
Z/w2(F )Z if r1(F ) = 0,

Z/2w2(F )Z ⊕ (Z/2Z)r1(F )−1 if r1(F ) ≥ 1,
(9)

where (r1(F ), r2(F )) is the signature of F and w2(F ) is the integer

w2(F ) = 2
∏
p

pνp , νp := max
{
ν ∈ Z | ζpν + ζ−1

pν ∈ F
}
. (10)

For a detailed introduction to the the algebraic K-theory of number fields, see [36].
Theorem 1.2 is then a companion of the following result concerning K3(F ):

Theorem 1.5. Let F be a number field. Then there is a canonical map

cζ : K3(F )/nK3(F ) −→
(
O×S,n/O

×n
S,n

)χ−1

⊂
(
F×n /F

×n
n

)χ−1

(11)

defined using the theory of Chern classes for some finite set S of primes depending only
on F . If n is prime to a certain integer MF depending on F , then the map Rζ is injective

and its image is contained in
(
O×n /O×nn

)χ−1

, and equal to this if n is prime.

We note that the proof of Theorem 1.2 relies upon the precise computation of K3(F ) and
the properties of cζ given above. Finally, in view of the near isomorphism between B(F ) and
K3(F ), one might guess that the two maps Pζ and cζ are the same, at least up to a simple
scalar. This is the content of our next theorem.

Theorem 1.6. For n prime to MF , the map Rζ equals cγζ for some γ ∈ (Z/nZ)×.

The constant γ does not depend on the underlying field — both our construction and the
Chern class map are well behaved in finite extensions, so we can compare the maps over
any two fields with the maps in their compositum. We conjecture that the constant γ is,
up to sign, a small power of 2 that is independent of n. To justify our conjecture, and to
determine γ, it suffices to compute the image under both maps Rζ and cζ of some element
of K3(F )/nK3(F ) of exact order n. For each root of unity ζ of order n, there is a specific
element ηζ (eq. (23)) of the finite Bloch group B(Q(ζ + ζ−1)) that is of exact order n. Using
the relation of the map Rζ to the radial asymptotics of certain q-series called Nahm sums
discussed in Section 8, we will prove

Rζ(ηζ)
4 = ζ (12)

(Theorem 8.5). On the other hand, certain expected functorial properties of the map cζ ,
discussed in Section 5.3 indicate that up to sign and a small power of 2, we have:

cζ(ηζ)
?
= ζ , (13)

and in combination with (12) this justifies our conjecture concerning γ.
The above-mentioned relation between our mod n regulator map on Bloch groups and

the asyptotics of Nahm sums near roots of unity is also an ingredient of our proof of one
direction of Nahm’s conjecture (under some restrictions) relating the modularity of his sums
to torsion in the Bloch group. The argument, described in Section 8.3, uses the full strength
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of Theorem 1.2 and gives a nice demonstration of the usefulness, despite its somewhat
abstract statement, of that theorem.

Theorem 1.2 motivates a mod n (or étale) version of the Bloch group of a number field F ,
defined by

B(F ; Z/nZ) = A(F ; Z/nZ)/(nZ(F ) + C(F )) , (14)

where A(F ; Z/nZ) is the kernel of the map d : Z(F )→ ∧2(F×/F×n) induced by d. This is
studied in Section 6, where we establish the following relation to K2(F ).

Theorem 1.7. The étale Bloch group is related to the original Bloch group by an exact
sequence

0 −→ B(F )/nB(F ) −→ B(F ; Z/nZ) −→ K2(F )[n] −→ 0 , (15)

where K2(F )[n] is the n-torsion in the K-group K2(F ).

There is a corresponding exact sequence (equation (27)) with B(F )/nB(F ) replaced
by K3(F )/nK3(F ) and B(F ; Z/nZ) replaced by a Galois cohomology group.

A large part of the story that we have told here for the Bloch group B(F ) and the third K-
group K3(F ) can be generalized to higher Bloch groups Bm(F ) and K2m−1(F ) with m ≥ 2,
and here the étale version really comes into its own, because the higher Bloch groups as
originally introduced in [37] have several alternative definitions that are only conjecturally
isomorphic and are difficult or impossible to compute rigorously, whereas their étale versions
turn out to have a canonial definition and be amenable to rigorous computations. The study
of the higher cases has many proofs in common with the m = 2 case studied here, but there
are also many new aspects, and the discussion will therefore be given in a separate paper [3]
which is work in progress.

1.3. Nahm’s Conjecture. The near unit constructed in Section 1.1 also appears in con-
nection with the asymptotics near roots of unity of certain q-hypergeometric series called
Nahm sums. These series are defined by

fA,B,C(q) =
∑

m∈Zr≥0

q
1
2
mtAm+Bm+C

(q)m1 · · · (q)mr
,

where A ∈ Mr(Q) is a positive definite symmetric matrix, B an element of Qr, and C a
rational number. Based on ideas coming from characters of rational conformal field the-
ories, Nahm conjectured a relation between the modularity of the associated holomorphic

function f̃A,B,C(τ) = fA,B,C(e2πiτ ) in the complex upper half-plane and the vanishing of a
certain element or elements in the Bloch group of Q. (See [24], [38], and Section 8 for more
details.) This relation conjecturally goes in both directions, but with the implication from
the vanishing of the Bloch elements to the modularity of certain Nahm sums not yet having
a sufficiently precise formulation to be studied. The conjectural implication from modularity
to vanishing of Bloch elements, on the other hand, had a completely precise formulation, as
follows. Let A be as above and (X1, . . . , Xr) the unique solution in (0, 1)r of Nahm’s equation

1 − Xi =
r∏
j=1

X
aij
j (i = 1, . . . , r) .
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Then Nahm shows that the element ξA =
∑r

i=1[Xi] belongs to B(R ∩Q), and his assertion
is the following theorem, which we will prove as a consequence of the injectivity statement
in Theorem 1.2.

Theorem 1.8 (One direction of Nahm’s Conjecture). If the function f̃A,B,C(τ) is modular
for some A, B and C as above, then ξA vanishes in the Bloch group of Q.

We remark that the vanishing condition can be (and often is) stated by saying that ξA is
a torsion element in the Bloch group of the smallest real (but in general not totally real)
number field containing all the Xi, but when we take the image of this Bloch group in the
Bloch group of Q or C, then the torsion vanishes.

1.4. Plan of the paper. In Section 2 we recall the cyclic quantum dilogarithm and use
it, together with some basic facts about Kummer extensions, to define the map Rζ . The
fact that the map Rζ satisfies the 5-term relation follows from some state-sum identities of
Kashaev-Mangazeev-Stroganov [17], reviewed in Section 2.4. The remaining statements of
Theorem 1.2 are deduced from Theorems 1.5 and 1.6.

In Section 3 we recall the basic properties of Chern classes and use them to define the
map cζ and prove Theorem 1.5. Its proof follows from Lemmas 3.1 and 3.5.

The comparison of the maps cζ and Rζ is done via reduction to the case of finite fields.
This reduction is discussed in Section 4, and the proof of Theorem 1.6 is given in Section 5.

In Section 6, we discuss the connection of our map Rζ with Tate’s results on K2(OF ).
The units produced by our map Rζ have also appeared in two related contexts, namely in

the Quantum Modularity Conjecture concerning the asymptotics of the Kashaev invariant at
roots of unity, and in the asymptotics of Nahm sums at roots of unity. In Section 7, we give
examples of the units produced by our map Rζ and compare them with those that appear
in the Quantum Modularity Conjecture. In Section 8, we state the connection of our map
Rζ with the radial asymptotics of Nahm sums at roots of unity and give two applications: a
proof equation (12) (as a consequence of a special modular Nahm sum, the Andrews-Gordon
identity), and a proof of Theorem 1.8.

Remark. During the writing of this paper, we learned that Gangl and Kontsevich in
unpublished work also proposed the map Pζ as an explicit realization of the Chern class
map. Although they did not check in general that the image of Pζ could be lifted to a

suitable element Rζ ∈ (F×n /F
×n
n )χ

−1
, they did propose an alternate proof of the 5-term

identity using cyclic algebras. Goncharov also informs us that he was aware many years ago
that the function Pζ should be an explicit realization of the Chern class map.

2. The maps Pζ and Rζ

Let n be a positive integer, and let F be a field of characteristic prime to n. Let Fn = F (ζn),
and let ζ = ζn ∈ Fn denote a primitive nth root of unity, which we usually consider as fixed
and omit from the notations. For convenience, we will always assume that n prime to 6.

2.1. The map Pζ. Let µ = 〈ζ〉 denote the GF -module of nth roots of unity. Recall that
Fn = F (ζ). The universal Kummer extension is by definition the extension H/Fn obtained
by adjoining nth roots of every element in F . Let Φ = Gal(H/Fn). We have [20, Chpt.VI]:
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Lemma 2.1. The extension H/F is Galois. There is a natural isomorphism

φ : F×/F×n ' Hom(Φ, µ) ' H1(Φ, µ)

given by X 7→ (σ ∈ Φ 7→ σx/x), where x ∈ H× is any element that satisfies xn = X.

Consider the function

Pζ(X) := Dζ(x) ∈ H×/H×n (X ∈ F× r {0, 1}, xn = X) , (16)

where Dζ(x) is the cyclic quantum dilogarithm defined in (8). (We previously defined Pζ(X),
in equation (8) of the induction, as an element of H×, but only its image modulo nth powers
was ever used, and it is more canonical to define it in the manner above.)

Lemma 2.2. The function Pζ : F× → H×/H×n has the following properties.
(a) Pζ(X) is independent of the choice of nth root x of X.
(b) Pζ(1) = 1, and more generally Pζ(X)Pζ(1/X) = 1 for any X ∈ F×n .
(c) Pζ(X) ∈ H×/H×n is invariant under the action of Φ = Gal(H/Fn).

(d) σ(Pζ(X)) = Pζ(X)χ
−1(σ) for all σ ∈ G.

Proof. First note that, because Pζ(X) is defined only up to nth powers, we can replace the
definition (16) by

Pζ(X) =
∏

k mod n

(1 − ζkx)k mod H×
n

(xn = X), (17)

where we can now even include the k = 0 term that was omitted in (8). Part (a) then follows
from the calculation∏

k mod n(1− ζkx)k∏
k mod n(1− ζk+1x)k

=
∏

k mod n

(1− ζkx) = 1−X ∈ F× ⊂ H×
n
.

Similarly, replacing k by −k in the definition of Pζ(1/X), gives

Pz(X)Pz(1/X) =
∏

k mod n

(1− ζkx)k(1− ζ−kx−1)−k =
∏

k mod n

(−ζkx)k = 1 ∈ H×/H×n ,

proving the second statement of (b), and the first statement follows because an element killed
by both 2 and the odd number n in any group must be trivial. (It can also be proved more
explicitly by evaluating Dn(1)n itself for (n, 6) = 1 as the (−1)n(n−1)/2nn, which is an nth
power because (−1)(n−1)/2n is a square in Q(ζn).) For part (c), we note that the effect of an
element σ ∈ Φ on Dζ(x) is to replace x by ζ ix for some i, so the result follows from part (a).
For part (d), we first observe that the statement makes sense because Φ = Gal(H/Fn) is
a normal subgroup of Gal(H/F ) and hence acts trivially on Pζ(X) ∈ H×/H×n by virtue
of (c), so that the quotient G = Gal(Fn/F ) acts on Pζ(X). For the proof, we choose a lift
of σ ∈ G to Gal(H/F ) that fixes x. Then

σPζ(X) =
∏
k

(
1− σ(ζ)kx

)k
=
∏
k

(
1− ζkχ(σ)x

)k
=
∏
k

(
1− ζkx

)kχ(σ)−1

= Pζ(X)χ(σ)−1

,

where all products are over k (mod n) and all calculations are modulo H×n. �
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Remark 2.3. When n is not prime to 6, then we could also make the calculations above

work after replacing the right-hand side of (16) by Pζ(X) =
Dζ(x)

Dζ(1)
. (When (n, 6) = 1 this is

not necessary since an elementary calculation shows that then Dζ(1) ∈ Q(ζ)n.)

We extend the map Pζ to the free abelian group Z(F ) = Z[P1(F )] by linearity as in (7),
with Pζ(0) = Pz(1) = Pζ(∞) = 0.

2.2. The map Rζ. The next proposition associates an element Rζ(ξ) ∈ (F×n /F
×n
n )χ

−1
to

every element of B(F )/nB(F ) as long as (n,wF ) = 1. Recall the group A(F ; Z/nZ) from
subsection 1.1.

Proposition 2.4. (a) For ξ ∈ A(F ; Z/nZ), the image of Pζ(ξ)
wF lifts to F×n /F

×n
n .

(b) The image of Pζ(ξ)
wF admits a unique lift to F×n /F

×n
n on which G acts by χ−1. If n is

prime to wF , then Pζ(ξ) itself admits a unique lift Rζ(ξ) ∈ (F×n /F
×n
n )χ

−1
.

Proof. For part (a), by Hilbert 90 and inflation-restriction, there is a commutative diagram:

H1(Φ, µ) - H1(Fn, µ) - H1(H,µ)Φ δ
- H2(Φ, µ)

F×n /F
×n
n

wwwwwwwww
-
(
H×/H×n

)Φ

wwwwwwwww
That is, there is an obstruction to descending from (H×/H×n)

Φ
to F×n /F

×n
n which lands

in H2(Φ, µ).
We now claim that there is a commutative diagram as follows:

Z(F )
Pζ - (H×/H×n)Φ

∧2(F×/F×n)

d

?
⊂
∪

- H2(Φ, µ) ,

δ

?

where the left vertical map is the one defined in (2) and the bottom horizontal map is the
map induced by the cup product from the isomorphism F×/F×n → H1(Φ, µ) of Lemma 2.1.
Note that the cup product is more naturally a map

∧2H1(Φ, µ) → H2(Φ, µ⊗2), but can be
interpreted as in the theorem by using the trivialization µ ' Z/nZ ' µ⊗2 defined by the
choice of the root of unity ζ.

We now show that the above diagram commutes. By linearity, it suffices to prove this for
elements ξ of the form [X]. Write X = xn and 1−X = yn. For Z ∈ F×/F×n and zn = Z,
let (following Lemma 2.1),

σ(z) = ζφ(z,σ)z.

By definition, we have Pζ([X]) = Dζ(x) modulo nth powers. The obstruction to lifting D(x)
amounts to finding an element u ∈ H× such that Dζ(x)/un ∈ F×n . Such a u would necessarily
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satisfy (σu
u

)n
=
σDζ(x)

Dζ(x)
=

Dζ(ζ
φ(x,σ)x)

Dζ(x)
=

( φ(x,σ)−1∏
k=0

1− ζkx
y

)n
.

The expression inside the nth power is determined exactly modulo 〈ζ〉. Hence we may define
a cocycle

h = hX : Φ → H×/µ , h(σ) :=

φ(x,σ)−1∏
k=0

1− ζkx
y

.

This gives an element of H1(Φ, H×/µ), which by consideration of the exact sequence

H1(Φ, H×) −→ H1(Φ, H×/〈ζ〉) −→ H2(Φ, µ)

maps to H2(Φ, µ). This is actually an injection, because the first term vanishes by Hilbert 90.
This is the image of δ; explicitly, the class δ(h) ∈ H2(Φ, µ) is given by

δ(h)(σ, τ) =
h(στ)

h(σ)σh(τ)

=
1

h(σ)σh(τ)

φ(x,σ)+φ(x,τ)−1∏
k=0

1− ζkx
y

=
1

h(σ)σh(τ)

φ(x,σ)−1∏
k=0

1− ζkx
y

φ(x,τ)−1∏
k=0

1− ζkζφ(x,σ)x

y

=
1

h(σ)σh(τ)

φ(x,σ)−1∏
k=0

1− ζkx
y

φ(x,τ)−1∏
k=0

1− ζkζφ(x,σ)x

ζφ(y,σ)y
· ζφ(y,σ)

= ζφ(x,τ)φ(y,σ)

On the other hand, the class in H1(Φ, µ) associated to X = xn is the map τ 7→ ζφ(x,τ), and
the class associated to 1−X = yn is the map σ 7→ ζφ(y,σ), and the exterior product of these
two classes in H2(Φ, ζ) is precisely δ(h). The fact that the cup product gives an injection
is an easy fact about the cohomology of abelian groups of exponent n. This concludes the
proof of part (a).

For part (b), suppose that ξ ∈ A(F ; Z/nZ). By the argument above, there certainly
exists an element in F×n /F

×n
n which maps to Pζ(ξ). Let M denote the image of F×n /F

×n
n in

(H×/H×n)Φ, and let S = F×/F×n. We have a short exact sequence as follows:

0 −→ S −→ F×n /F
×n
n −→M −→ 0.

Taking χ−1-invariants is the same as tensoring with Z/nZ(1) and taking invariants. Hence
there is an exact sequence(

F×n /F
×n
n

)χ−1

−→Mχ−1 −→ H1(G,S(1)).

In particular, the obstruction to lifting to a χ−1-invariant element lies in H1(G,S(1)), and
it suffices to prove that this group is annihilated by wF . By construction, the module S
is trivial as a G-module, and hence the action of G on S(1) is via the character χ. Sah’s
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Lemma ([19, Lem.8.8.1]) implies that the self-map of H1(G,S(1)) induced by g − 1 for any
g ∈ Z(G) = G is the zero map. On the other hand, since χ : G→ (Z/nZ)× is the cyclotomic
character, the greatest common divisor of χ(g)− 1 for g ∈ G is wFZ/nZ. In particular, the
group is annihilated by wF . The result follows. �

Remark 2.5. Suppose (wF , n) = 1, and let P ∈ H× be a representative of Pζ(ξ) ∈ H×/H×n.
Then the construction of the element Rζ(ξ) whose existence is asserted by Proposition 2.4
reduces to the problem of finding S ∈ H× such that

(a) P/Sn ∈ F×n , and
(b) the image of P/Sn in F×n /F

×n
n lies in the χ−1-eigenspace,

since then Rζ(ξ) = P/Sn ∈ (F×n /F
×n
n )χ

−1
. In practice, S will be constructed via a Hilbert 90

argument as an additive Galois average, and the difficulty is ensuring that S 6= 0. See
Section 8, where this is done for a particular P constructed as a radial limit of a Nahm sum.

2.3. Reduction to the case of prime powers. In this section, we discuss the compati-
bility of the map Rζ with the prime factorization of n. This will be important in Section 5,
where we consider the relation of our map and the Chern class in K-theory.

Lemma 2.6. Let (n,wF ) = 1 and ζ = ζn as usual. Then the following compatibilities hold:

(1) If (n, k) = 1, then Rζk(X) = Rζ(X)k
−1

.
(2) Let n = qr, and let ζr = ζqn. Then the image of Rζn modulo rth powers is equal to

the image of Rζr(X) under the map(
F×r /F

×r
r

)χ−1

→
(
F×n /F

×r
n

)χ−1

induced by the inclusion.

Proof. The first statement reflects the fact that gRζ = Rg(ζ) for g ∈ G = Gal(Fn/F ). For
the second claim, we calculate

Pζn(X) =
∏

k mod n

(
1− ζknx

)k
=

∏
i mod q
j mod r

(
1− ζri+jn x

)ri+j
≡

∏
i mod q
j mod r

(
1− ζ iqζjnx

)j
=

∏
j mod r

(
1− ζjrxq

)j
= Pζr(X) ,

where the congruence is modulo rth powers. �

Next, we discuss a reduction of the map Pζn to the case that n is a prime power.

Lemma 2.7. Let n = ab with (a, b) = 1 and ζ a primitive nth root of unity. If X ∈
A(F ; Z/nZ), let un = Rζ(X), ua = Rζb(X) and ub = Rζa(X). Then un determines and is
uniquely determined by ua and ub.

Proof. Part (2) of Lemma 2.6 shows that the image of un in F×n /F
×a
n is the image of ua

under the natural map

F×a /F
×a
a → F×n /F

×a
n .
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Equivalently, ua determines un up to an ath power, and similarly ub determines un up to
a bth power. This is enough to determine un completely since a and b are coprime. The
converse is already shown. �

Remark 2.8. Both lemmas hold also for (n,wF ) > 1 if we replace Rζ by RwF
ζ .

2.4. The 5-term relation. In this section, we use a result of Kashaev, Mangazeev and
Stroganov to show that the map Rζ satisfies the 5-term relation, and consequently descends
to a map of the group B(F ; Z/nZ).

Theorem 2.9. Let F be a field and Fn = F (ζ), where ζ is a root of unity of order n prime
to wF and to the characteristic prime of F . Then the map Rζ vanishes on the subgroup
C(F ) ⊂ A(F ; Z/nZ) ⊂ Z(F ) generated by the 5-term relation, and therefore induces a map

B(F ) −→ B(F )/nB(F ) −→ B(F ; Z/nZ)
Rζ−→
(
F×n /F

×n
n

)χ−1

.

Proof. Denote by H the universal Kummer extension as before. Then it suffices to show
that the appropriate product of the functions Dζ is a perfect nth power in H.

Let X, Y, Z ∈ F× be related by Z = (1 − X)/(1 − Y ), and choose nth roots x, y, z of
X, Y, Z. Using the standard notation (x; q)k = (1−x)(1−qx) · · · (1−qk−1x) (q-Pochhammer
symbol) and following the notation of [17] (except that they use w(x|k) for (xζ; ζ)−1

k ), we set

f(x, y | z) =
n−1∑
k=0

(ζy; ζ)k
(ζx; ζ)k

=
∑

k mod n

(ζy; ζ)k
(ζx; ζ)k

zk ∈ H,

where the second equality follows from the relation between x, y, and z. By equation (C.7)
of [17], we have

(ζy)n(1−n)/2 f(x, y | z)n =
Dζ(1)Dζ(yζ/x)Dζ(x/yz)

Dζ(1/x)Dζ(yζ)Dζ(ζ/z)
.

Considering this modulo nth powers, and using Lemma 2.1, we find

1 = Pζ(X)Pζ(Y )−1 Pζ(Y/X)Pζ(Y Z/X)−1 Pζ(Z) .

This is precisely the 5-term relation for the map Pζ , and from the uniqueness clause in
Proposition 2.4 implies the same 5-term relation for the map Rζ . �

2.5. An eigenspace computation. As in Section 1.1, we write G = Gal(Fn/F ), identified
with a subgroup of (Z/nZ)× via the map χ of Equation (4). Since F×n /F

×n
n is an n-torsion

G-module, the χ−1 eigenspace makes sense and is given by(
F×n /F

×n
n

)χ−1

= {x ∈ F×n /F×nn |σx = xχ(σ−1) , for allσ ∈ G} ,

where xχ(σ−1) is computed using any lift of χ(σ−1) ∈ (Z/nZ)× to Z.
In characteristic zero, one can also consider the the action of G on M ⊗Z R, where R is a

Z[G] module that contains the eigenvalues of σ ∈ G. For example, one can take M = O×n
and R = C. If n = p is prime, then one can take R = Zp, which contains the (p − 1)th

roots of unity. In particular, if n = p, then one can define (M ⊗Z Zp)
χ−1

, which will have
the property that

(M ⊗Z Zp)
χ−1

⊗ Z/pZ = (M/pM)χ
−1

.
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Proposition 2.10. (a) Suppose that F is disjoint from Q(ζn). Then there exists an isomor-
phism of G-modules (

O×n ⊗C
)χ−1

= Cr2(F ) . (18)

(b) If, furthermore, n = p is prime, so that χ : G→ (Z/pZ)× admits a natural Teichmüller
lift to Z×p , then

rankZp

(
O×n ⊗ Zp

)χ−1

= r2(F ) .

If in addition χ and χ−1 are distinct characters of G, then(
O×p /O×pp

)χ−1

= (Z/pZ)r2(F ) .

Proof. Part (b) follows easily from part (a) and the above discussion, together with the fact
that if χ 6= χ−1 then the torsion in the unit group (which just comprises roots of unity) is
in the χ-eigenspace and not the χ−1-eigenspace.

For (a), let F̃ be the Galois closure of F over Q and let Γ = Gal(F̃ /Q). By assumption,

with F̃n = F̃ (ζn), we have Gal(F̃n/Q) = Γ×G = Γ× (Z/nZ)×. From the proof of Dirichlet’s

unit theorem, the unit group of F̃n, tensored with C, decomposes equivariantly as⊕
W

W dim(W |c=1) ,

where W runs over all the non-trivial irreducible representations of Γ × G and c ∈ Γ is
any complex conjugation, which we may take to be (c,−1) ∈ G × (Z/nZ)× for a complex
conjugation c ∈ Γ. The irreducible representations of W are of the form U⊗V for irreducible
representations U of Γ and V of G = (Z/nZ)×. Note that

dim(U ⊗ V |(c,−1) = 1) = dim(U |c = 1) dim(V |c = 1) + dim(U |c = −1) dim(V |c = −1) .

If we take the χ−1-eigenspace under the action of the second factor, the only representation
V of G which occurs is χ−1, on which −1 acts by −1, and hence we are left with(

O×eFn ⊗C
)χ−1

=
⊕
V

V dim(V |c=−1) ,

where the sum runs over all representations V of Γ. In particular, there is an isomorphism
in the Grothendieck group of G-modules[ (

O×eFn ⊗C
)χ−1 ]

+
[
O×eF ⊗C

]
+
[
C
]

=
[
C[G]

]
.

Now take the ∆ = Gal(F̃ /F ) = Gal(F̃n/Fn)-invariant part and take dimensions, we obtain
the equality

dimC

((
O×Fn ⊗C

)χ−1
)

+ (r1 + r2 − 1) + 1 = r1 + 2r2 ,

where (r1, r2) is the signature of F . The result follows. �

3. Chern Classes for algebraic K-theory

In this section, we will define the Chern class map (11).
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3.1. Definitions. In the following discussion, it will be important to carefully distinguish
canonical isomorphisms from mere isomorphisms. To this end, let ' denote an isomorphism
and = a canonical isomorphism. Let F be a number field, and let O := OF denote the ring
of integers of F . The Tate twist Zp(m) is the free Zp module on which the Galois group GF

acts via the mth power χm of the cyclotomic character. For all m ≥ 1, there exists a Chern
class map:

c : K2m−1(F )→ H1(F,Zp(m)) .

These Chern class maps arise as the boundary map of a spectral sequence, specifically,
the Atiyah–Hirzebruch spectral sequence for étale K-theory. These maps were originally
constructed by Soulé [28], Section II. We may compose this map with reduction mod pi to
obtain a map:

c : K2m−1(F )→ H1(F,Z/piZ(m)).

By the Chinese remainder theorem, we may also piece these maps together to obtain a map:

c : K2m−1(F )→ H1(F,Z/nZ(m))

for any integer n. Let ζ be a primitive nth root of unity, Fn = F (ζ) and write G for the
(possibly trivial) Galois group Gal(Fn/F ). Let µ denote the module of n roots of unity.
There is a canonical injection

χ : G→ Aut(µn) = (Z/nZ)× .

By inflation–restriction, there is a canonical map:

H1(F,Z/nZ(m))→ H1(Fn,Z/nZ(m))G = H1(Fn,Z/nZ(1))χ
1−m

. (19)

For i ≥ 1, there is an invariant wi(F ) ∈ N that we will need. It is defined in terms of Galois
cohomology by

wi(F ) =
∏
p

∣∣H0(F,Qp/Zp(m))
∣∣ ,

Note that w1(F ) is equal to wF , the number of roots of unity in F , and w2(F ) agrees
with (10). We also define

w̃F =
∏
p

∣∣H0(F̃ (ζp + ζ−1
p ),Qp/Zp(1))

∣∣ . (20)

where F̃ is the Galois closure of F over Q. Thus w̃F is divisible only by the finitely many

primes p such ζp belongs to F̃ (ζp + ζ−1
p ). If p|w̃F and p > 2, then p necessarily ramifies in F .

Note that w̃F is always divisible by wF .

Lemma 3.1. The map (19) is injective for integers n prime to wi(F ).

Proof. The kernel of this map is H1(Fn/F,Z/nZ(m)). Assume that this is non-zero. By
Sah’s lemma, this group is annihilated by χi(g)− 1 for any g ∈ G. Equivalently, the kernel
has order divisible by p|n if and only if the elements ai−1 are divisible by p for all (a, p) = 1.
Yet this is equivalent to saying that H0(F,Z/pZ(m)) ⊂ H0(F,Qp/Zp(m)) is non-zero, and
hence p|wi(F ). �
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There is an isomorphism Z/nZ(1) = µ coming from the choice of a given nth root of
unity ζ. By Hilbert 90, for a number field L, there is a canonical isomorphism H1(L, µ) =
L×/L×n, and hence c and ζ give rise to a map:

cζ : K2m−1(F )→
(
F×n /F

×n
n

)χ1−i
. (21)

3.2. The relation between étale cohomology and Galois cohomology. There are
isomorphisms that can be found in Sections 5.2 and 5.4 of [36]

K2m−1(F )⊗ Zp ' K2m−1(OF [1/p]) ' K2m−1(OF )⊗ Zp

for m > 1. These isomorphisms are also reflected in the following isomorphism between étale
cohomology groups and Galois cohomology groups:

H1
ét(OF [1/p],Zp(m)) ' H1(F,Zp(m))

for i ≥ 2. In particular, we may also view the Chern class maps considered above as
morphisms

c : K2m−1(F )⊗ Zp ' K2m−1(OF )⊗ Zp → H1
ét(OF [1/p],Zp(m)).

Theorem 3.2. For p > 2, there is an isomorphism

c : K3(F )⊗ Zp ' K2m−1(OF )⊗ Zp → H1(OF [1/p],Zp(2)).

The rank of K3(F ) is r2.

Sketch. This follows from the Quillen–Lichtenbaum conjecture, as proven by Voevodsky and
Rost (see [36], [35]). In this case, it can also be deduced from the description of torsion
in K3(F ) by Merkur’ev and Suslin [21] (described in terms of w2(F ) above) combined with
Borel’s theorem for the rank (see also Theorem 6.5 of [32]), and the result of Soulé that the
Chern class map is surjective. �

Lemma 3.3. Suppose that p - w2(F ). Then the map

cζ : K3(F )→ K3(F )/nK3(F )→
(
F×n /F

×n
n

)χ−1

(22)

is injective.

Proof. By the Chinese Remainder Theorem, it suffices to consider the case n = pm. In light
of Theorem 3.2, it suffices to show that the map

H1(F,Zp(2))/n→ H1(F,Z/nZ(2))→ F×n /F
×n
n

is injective. The kernel of the first map is H0(F,Zp(2))/n = 0. The kernel of the second
map is, via inflation–restriction, the group H1(Gal(Fn/F ), H0(F,Z/nZ(2))). This group is
certainly zero unless

H0(F,Z/nZ(2)) ⊂ H0(F,Qp/Zp(2))

is non-zero, or in other words, unless p divides w2(F ). �
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3.3. Upgrading from F×n to OFn [1/S]×. The following is a consequence of the finite gen-
eration of K3(F ):

Lemma 3.4. For any field F , there exists a finite set S of primes which avoids any given
finite set of primes not dividing n such that the image of cζ on K3(F )/nK3(F ) may be
realized by an element of O×F (ζ)[1/S].

Proof. Note that without the requirement that S avoids any given finite set of primes not
dividing n, the result is a trivial consequence of the fact that K3(F ) is finitely generated. The
construction of c as a map to units in F×n proceeded via Hilbert 90. In light of Theorem 3.2
above, it suffices to do the same with H1(Fn, µ) replaced by H1

ét(OFn [1/S], µ) for some set S
containing p|n. However, in this case, the class group intervenes, as there is an exact sequence
([22], p.125):

OFn [1/S]×/OFn [1/S]×n → H1
ét(OFn [1/S], µ)→ Pic(OFn [1/S])[n]

where M [n] denotes the n-torsion of M and Pic is the Picard group, which may be identified
with the class group of OFn [1/S]. On the other hand, it is well known that one can represent
generators in the class group by a set of primes avoiding any given finite set of primes,
and hence for a set S including primes for each generator of the class group, the last term
vanishes. �

3.4. Upgrading from S-units to units. We give the following slight improvement on
Lemma 3.4.

Lemma 3.5. Suppose that any prime divisor p of n is odd and divides neither the discrimi-
nant of F nor the order of K2(OF ). Then the image of cζ on K3(F )/nK3(F ) may be realized
by an element of O×n .

Proof. By Lemma 2.7, it suffices to consider the case when n = n is a power of p. Let ζ = ζn.
The fact that p is prime to the discriminant of F implies that F (ζ)/F is totally ramified
at p. The image of cζ factors through H1

ét(O[1/p],Z/nZ(2)), and, via inflation–restriction,
through H1

ét(OF (ζ)[1/p],Z/nZ(1)). The Kummer sequence for étale cohomology gives a short
exact sequence:

OF (ζ)[1/p]
×/OF (ζ)[1/p]

×n → H1
ét(OF (ζ)[1/p],Z/n(1))→ Pic(OF (ζ)[1/p])[n] .

The image of cζ lands in the χ−1-invariant part of the second group. The χ−1-invariant

part Mχ−1
of a G-module M is non-zero if and only if the largest χ−1-invariant quotient Mχ−1

is non-zero. However, by results of Keune [18], there is an injection

(Pic(OF (ζ)[1/p])/pm)χ−1 → K2(OF )/pm .

In particular, the pushforward of the image of cζ to the Picard group is trivial when-
ever K2(OF )⊗Zp is trivial. Since we are assuming that p does not divide the order of K2(OF ),
we deduce that the image of cζ is realized by p-units. We now upgrade this to actual units.
There is an exact sequence:

(OF (ζ))
×/(OF (ζ))

×n → (OF (ζ)[1/p])
×/(OF (ζ)[1/p])

×n →
⊕
v|p

Z/nZ ,
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where the last map is the valuation map. Since p is totally ramified in F (ζ)/F , the action
of G on the final term is trivial. By assumption, the quotient Gal(F (ζp)/F ) is non-trivial,
and hence the χ−1-invariants of the final term are zero. Hence, after taking χ−1-invariants,
we see that the image of cζ comes from a unit. �

3.5. Proof of Theorem 1.5. We have all the ingredients to give a proof of Theorem 1.5.
Fix a natural number n and a primitive nth root of unity ζ. Consider the Chern class map

cζ : K3(F )/nK3(F )→
(
F×n /F

×n
n

)χ−1

.

from (22). When n is coprime to w2(F ), the above map is injective by Lemma 3.3. When
n is coprime to the discriminant ∆F of F and the order of K2(OF ), Lemma 3.5 implies the
above map factors through a map

cζ : K3(F )/nK3(F )→
(
O×n /O×nn

)χ−1

,

where On is the ring of integers of Fn. When n is square-free and coprime to w2(F ), then (9)
and Proposition 2.10 imply that both sides of the above equation are abelian groups isomor-
phic to (Z/nZ)r2(F ). It follows that when n is square-free and coprime to w2(F ) ∆F |K2(OF )|,
then the above map is an injection of finite abelian groups of the same order, and hence an
isomorphism. This concludes the proof of Theorem 1.5. �

4. Reduction to finite fields

As we will see in Section 5, the comparison of the maps cζ and Rζ and the proof of
Theorem 1.6 require a reduction of both maps to the case of finite fields. In this section,
we review the local Chern classes and the Bloch groups of finite fields, and introduce local
(finite field) versions of the maps cζ and Rζ . We will be considering the case that n is a
prime power pm, and will denote by ζ a primitive nth root of unity.

4.1. Local Chern class maps. Let q be a prime of norm q ≡ −1 mod n in OF . The residue
field of OF at q is Fq, and the residue field of OF (ζ) at a prime Q above q is Fq2 = Fq(ζ).
Following Lemma 3.4, suppose that S does not contain any primes dividing q.

Lemma 4.1. There exists a commutative diagram of Chern class maps as follows:

K3(F )/nK3(F )
cζ- (O[1/S]×F (ζ)/O[1/S]×nF (ζ))

χ−1

K3(Fq)/nK3(Fq)
?

===========
cζ,q

F×q2/F
×n
q2 .

?

Proof. By the Chinese Reminder Theorem, we may reduce to the case when n = pm. There
is an isomorphism K3(F )⊗Zp ' K3(OF )⊗Zp (see Theorem 3.2). Let OF,q be the completion
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of OF at q. We have a more general diagram as follows:

K3(OF )/nK3(OF )
cζ- H1

ét(OF [1/p],Z/nZ(2)) - (O[1/S]×F (ζ)/O[1/S]×nF (ζ))
χ−1

K3(OF,q; Zp)/nK3(OF,q; Zp)
?

====
cζ,q

H1
ur(OF,q,Z/nZ(2))

?

============ F×q2/F
×n
q2

?

K3(Fq)/nK3(Fq)

wwwwwwwww
==========

cζ,q
H1(Fq,Z/nZ(2))

wwwwwwwww
============= F×q2/F

×n
q2 .

wwwwwwwww
The image of H1

ét(OF [1/p]) in the cohomology of OF,q for q prime to p lands in the sub-
group H1

ur of unramified classes. This subgroup is precisely the image of H1(O/q,Z/nZ(2))
under inflation. The maps on the right hand side of the diagram are just what one gets
when unwinding the application of Hilbert’s Theorem 90. The identification of the two
lower horizontal lines is a reflection of Gabber rigidity, which implies that K3(OF,q; Zp) '
K3(Fq)⊗ Zp. �

Proposition 4.2. Let F̃ denote the Galois closure of F , and suppose that ζ /∈ F̃ (ζ + ζ−1).
(Equivalently, suppose that n is prime to w̃F of equation 20.)
(a) There is a map:

K3(F )/nK3(F )

⊕
cζ,q-

⊕
F×q2/F

×n
q2

where the sum ranges over all primes q of prime norm q ≡ −1 mod n which split completely
in F , or alternatively runs over all but finitely many primes q ≡ −1 mod n which split
completely in F .
(b) The image of this map is isomorphic to the image of the global map cζ , which is injective
if (n,w2(F )) = 1.
(c) For ξ ∈ K3(F ), the set

{q ⊂ OF [1/S] | cζ,q(ξ) = 0}
(for any finite S) determines the image of ξ up to a scalar.

Proof. It suffices to consider the case when n = pm. Let ξ ∈ K3(F ), and let the class
of cζ(ξ) be represented by an S-unit ε. Because of the Galois action, this gives rise via
Kummer theory to a Z/nZ-extension H of F (ζ+ζ−1), and such that the reduction mod q of ε
determines the element Frobq ∈ Gal(H/F (ζ+ζ−1)). (Explicitly, we have H(ζ) = F (ζ, ε1/n).)
Hence our assumptions imply that any prime q which splits completely in F (ζ+ ζ−1) (which

forces q ≡ ±1 mod n) and is additionally congruent to −1 mod p must split in H. Let H̃

denote the Galois closure of H over Q, and F̃ the Galois closure of F over Q. Note that the

Galois closure of F (ζ + ζ−1) is F̃ (ζ + ζ−1). A prime q splits completely in H if and only if it

splits completely in H̃, and splits completely in F (ζ + ζ−1) if and only if it splits completely
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in F̃ (ζ + ζ−1). We have a diagram of fields as follows:

H̃ H̃(ζ)

F̃ (ζ + ζ−1) F̃ (ζ)

By assumption, we have ζ /∈ F̃ (ζ + ζ−1). Since H/F (ζ + ζ−1) is cyclic of degree n, it follows

that Gal(H̃/F̃ (ζ + ζ−1)) is an abelian p-group. On the other hand, Gal(F̃ (ζ)/F̃ (ζ + ζ−1)) =

Z/2Z. so Gal(H̃(ζ)/F̃ (ζ + ζ−1)) is the direct sum of Z/2Z with a p-group, Let σ ∈
Gal(H̃(ζ)/F̃ (ζ + ζ−1)) ⊂ Gal(H̃/Q) denote an element of order 2p. By the Cebotarev den-

sity theorem, there exist infinitely many primes q ∈ Q with Frobenius element in Gal(H̃/Q)

corresponding to σ. By construction, the prime q splits completely in F̃ (ζ + ζ−1) because

the corresponding Frobenius element is trivial in Gal(F̃ (ζ + ζ−1)/Q). On the other hand,

since σ has order divisible by 2 and by p, it is non-trivial in both Gal(F̃ (ζ)/F̃ (ζ + ζ−1)) =

Gal(Q(ζ)/Q(ζ + ζ−1)) and Gal(H̃/F̃ (ζ + ζ−1)). The first condition implies that q ≡
−1 mod n, and the second condition implies that q does not split completely in H, a
contradiction. The injectivity (under the stated hypothesis) follows from Lemma 3.1. �

Remark 4.3. The condition that ζ /∈ F̃ (ζ+ζ−1) is automatic if p is unramified in F , because

then the ramification degree of Q(ζ) is p− 1 whereas the ramification degree of F̃ (ζ + ζ−1)

is (p− 1)/2 for p odd. If ζ ∈ F̃ (ζ + ζ−1), then there are no primes q which split completely

in F and have norm −1 mod n. In particular, when ζ ∈ F̃ (ζ+ ζ−1), we have B(Fq)⊗Fp = 0
for every prime q which splits completely in F .

4.2. The Bloch group of Fq. In order to make our maps explicit, we must relate the Chern
class map to the Bloch group. Let p > 2 and q > 2 be odd primes such that q ≡ −1 mod n,
where n = pm. For a finite field Fq, the group F×q is cyclic, so

∧2 F×q is a 2-torsion group.
Hence the Bloch group B(Fq) coincides with the pre-Bloch group after tensoring with Fp,
where the pre-Bloch group is defined as the quotient of the free abelian group on Fq r {0, 1}
by the 5-term relation. By [16], the Bloch group B(Fq) is a cyclic group of order q + 1 up
to 2-torsion. Moreover, following [16], one may relate B(Fq) to the cohomology of SL2(Fq)
in degree three, as we now discuss.

There is an isomorphism

H3(SL2(Fq),Z)⊗ Z/nZ ' Z/nZ.

Let us describe this isomorphism more carefully. By a computation of Quillen, we know that
H3(SL2(Fq),Z) is cyclic of order q2 − 1. It follows that the p-part of this group comes from
the p-Sylow subgroup. If one chooses an isomorphism

Fq2 ' (Fq)
2

of abelian groups, one gets a well defined map:

F×q2 = C = AutFq(Fq2)→ GL2(Fq)
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which is well defined up to conjugation. There is, correspondingly, a map C1 → SL2(Fq),
where

C1 = Ker
(
N : F×q2 → F×q

)
.

We refer to both C and C1 as the non-split Cartan subgroup. By Quillen’s computation, we
deduce that there is a canonical map:

C1 = H3(C1,Z)→ H3(SL2(Fq),Z)

which is an isomorphism after tensoring with Z/nZ. There is a canonical isomorphism
C1[n] = µ, where µ denotes the nth roots of unity. Hence to give an element of order p
in H3(SL2(Fq),Z) up to conjugation is equivalent to giving a primitive nth root of unity
ζ ∈ C1 ⊂ C = F×q2 . From [16], there is a canonical map:

H3(SL2(Fq),Z)→ B(Fq) ,

at least away from 2-power torsion, which is an isomorphism after tensoring with Z/nZ.
Given a root of unity ζ, let t denote the corresponding element of SL2(Fq). The corresponding
element of B(Fq), up to six-torsion, is given (see [16], p.36) by:

n−1∑
k=1

[
t(∞)− tk+1(∞)

t(∞)− tk+2(∞)

]
.

This construction yields the same element for ζ and ζ−1. We may represent t by its conjugacy
class in GL2(Fq), which has determinant one and trace ζ + ζ−1 ∈ Fq. The choice of ζ up to
(multiplicative) sign is given by this trace. Note that the congruence condition on q ensures
that the Chebyshev polynomial with roots ζ + ζ−1 has distinct roots which split completely
over Fq. Explicitly, we may choose

t =

(
0 1
−1 ζ + ζ−1

)
= A

(
ζ−1 0
0 ζ

)
A−1, A =

(
ζ ζ−1

1 1

)
.

Let Fk be the Chebyshev polynomials, so Fk(2 cosφ) =
sin kφ

sinφ
. Then

tk(∞) =
Fk−1(ζ + ζ−1)

Fk(ζ + ζ−1)
,

and an elementary computation then shows that the corresponding element in B(Fq) ⊗ Zp

is given by

n−1∑
k=1

[
1− 1

Fk(ζ + ζ−1)2

]
∼

n−1∑
k=1

[(
ζk − ζ−k

ζ − ζ−1

)2
]
,

where ∼ denotes equality in B(Fq)⊗Zp, since [x] = [1− 1/x] up to 3-torsion. (When p = 3,
one may verify directly that the latter term is also a 3-torsion element.)
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4.3. The local Chern class map cζ. In this section, q will denote a prime with q ≡
−1 mod pm which splits completely in F . Let q be a prime above q. There is a natural
map B(F )→ B(OF/q) = B(Fq). The elements [0], [1], and [∞] are trivial elements of B(F )
and B(Fq); the reduction map then sends [x] to [x] under the natural reduction map P1(F )→
P1(Fq).

Lemma 4.4. Let p > 2. There is a commutative diagram as follows:

B(F )/nB(F ) -
⊕

B(Fq)⊗ Z/nZ

K3(F )/nK3(F )

wwwwwwwww
-
⊕

K3(Fq)⊗ Z/nZ

'

======

⊕
cζ,q ⊕

F×q2/F
×n
q2 ,

where the product runs over all primes q of norm q ≡ −1 mod n which split completely in F ,
or alternatively all but finitely many such primes.

Proof. The isomorphism of the left vertical map is a theorem of Suslin [31], and the isomor-
phism of the right vertical map follows from [16]. The fact that the diagram commutes is a
consequence of the fact that both constructions are compatible (and can be seen in group
cohomology). �

Recall that an element x of an abelian groupG is p-saturated if x 6∈ [p]G, where [p] : G→ G
is the multiplication by p map.

Corollary 4.5. There is an algorithm to prove that a set of generators of B(F ) is p-saturated
for p > 2.

Proof. Computing B(Fq) is clearly algorithmically possible. Moreover, we can a priori com-
pute B(F ) ⊗ Zp as an abstract Zp-module. Hence it suffices to find sufficiently many
distinct primes q such that the image of a given set of generators has the same order
as B(F )/nB(F ). �

In light of the commutative diagram of Lemma 4.4, we also use cζ to denote the Chern
class map on B(F )/nB(F ).

4.4. The local Rζ map. Suppose that q ≡ −1 mod p. It follows that the field Fq does not
contain ζp, and so Proposition 2.4 applies to give maps Pζ and Rζ which are well defined
over this field. In particular, since (p, q − 1) = 1, all elements of Fq are p-th powers, and
hence the Kummer extension H is given by H = Fn and Rζ and Pζ coincide.

5. Comparison between the maps cζ and Rζ

The main goal of this section, carried out in the first subsection, is to prove Theorem 1.6.
The main result here is Theorem 5.2, which says that that our mod n local regulator map Rζ,q

gives an isomorphism from B(Fq)⊗ Z/nZ to F×q2 ⊗ Z/nZ for any prime power n and prime

q ≡ −1 (mod n). This implies in particular the existence of a curious “mod-p-q dilogarithm
map” from Fq to Z/nZ, and in Section 5.2, we digress briefly to give an explicit formula
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for this map. In the final subsection, we describe the expected properties of the Chern class
map that would imply the conjectural equality (13) and hence, in conjunction with (12), the
evaluation γ = 2 of the comparison constant γ occurring in Theorem 1.6.

5.1. Proof of Theorem 1.6. Throughout this section, we set n = pm, and let ζ denotes a
primitive nth root of unity. For a prime q ≡ −1 mod n that splits completely in F , and for
a corresponding prime q above q, let Rζ,q denote the map B(OF/q) = B(Fq)→ F×q2/F

×n
q2 .

We have two maps we wish to compare. One of them is

cζ : B(F )/nB(F ) →
(
F×n /F

×n
n

)χ−1

.

Because B(F ) is a finitely generated abelian group, we may represent the generators of the
image by S-units for some fixed S (at this point possibly depending on n) and consider the
map

cζ : B(F )/nB(F )→ (OF (ζ)[1/S]×/OF (ζ)[1/S]×n)χ
−1

↪→
⊕

F×q2/F
×n
q2 '

⊕
B(Fq),

where the final sum is over all but finitely may primes q of norm q ≡ −1 mod n which split
completely in F . We have the diagram

B(F )/nB(F )
Rζ- (OF (ζ)[1/S]×/OF (ζ)[1/S]×n)χ

−1

⊕
B(Fq)⊗ Z/nZ

?
Rζ,q -

⊕
F×q2/F

×n
q2 .

?

We have already shown, by Cebotarev (Proposition 4.2(b)), that cζ(ξ) for ξ ∈ K3(F ) is
determined up to scalar by the set of primes for which cζ,q(ξ) = 0. Hence the result is a formal
consequence of knowing that the maps Rζ,q are isomorphisms for all q of norm q ≡ −1 mod n.
This is exactly Theorem 5.2 below. �

By (9), the p-torsion subgroup of K3(Q(ζ + ζ−1)) is isomorphic to Z/nZ. On the other
hand, since Q(ζ + ζ−1) is totally real, we have an isomorphism:

K3(Q(ζ + ζ−1))⊗ Zp ' Z/nZ.

Lemma 5.1. Let p > 2 and n = pm. Suppose that q ≡ −1 mod n and q 6≡ −1 mod pn.
The prime q splits completely in Q(ζ + ζ−1). Let Fq denote the residue field at one of the
primes above q. Then the map

K3(Q(ζ + ζ−1))⊗ Zp → B(Fq)⊗ Zp

is an isomorphism.

Proof. A generator of B(Q(ζ + ζ−1))[n] ' K3(Q(ζ + ζ−1)) ⊗ Zp is given explicitly by the
element

ηζ :=
n−1∑
`=1

[(ζ` − ζ−`
ζ − ζ−1

)2
]

(23)
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This follows from Theorem 1.3 of [40]. On the other hand, the reduction modulo any prime
above q generates the latter group, as follows from the discussion in Section 4.2. �

We now prove Theorem 5.2 as mentioned above:

Theorem 5.2. Let n be a prime power and q ≡ −1 mod n. Then the map

Rζ,q : B(Fq)⊗ Z/nZ→ F×q2 ⊗ Z/nZ

is an isomorphism, where ζ is an nth root of unity.

Proof. Note that B(Fq) is cyclic of order q+1 up to 2-torsion, and F×q2 is cyclic of order q2−1.

In particular, for odd primes p with q ≡ −1 mod p, the groups B(Fq)⊗Zp and F×q2 ⊗Zp are

isomorphic to each other and to Zp/(q + 1)Zp. We begin with the following:

Lemma 5.3. Rζ(ηζ) = ζγ ∈ (Q(ζ)×/Q(ζ)×n)χ
−1

for some γ ∈ Zp.

Proof. Write ζn = ζ and let ζ ′ be an n2th root of unity. Consider the image of Rζ′(ηζ′).
Because ηζ is divisible by n in B(Q(ζ ′)+), the image is a nth power. Hence, by the compat-
ibility of the maps R for varying n (Lemma 2.6 (2)), it follows that Rζ(ηζ) lies in the kernel
of the map (

Q(ζ)×/Q(ζ)×n
)χ−1

→
(
Q(ζ ′)×/Q(ζ ′)×n

)χ−1

.

But this kernel consists precisely of nth roots of unity. �

Let ηζ,q ∈ B(Fq) denote the reduction of ηζ in B(Fq). By Lemma 5.1, the image also
generates B(Fq) ⊗ Z/nZ. Since all primes q ≡ −1 mod n split completely in Q(ζ)+, if
γ 6≡ 0 mod p, the result above follows by specialization. We proceed by contradiction and
assume that γ ≡ 0 mod p, which means that the image of the map Pζ,q is divisible by p for
all q of norm q satisfying q ≡ −1 mod n. In particular, to prove the result, it suffices to find
a single such q for which Rζ,q is an isomorphism.

Choose a completely split prime r in Q(ζ). Assume that

ζ ≡ a−1 mod r, ζ 6≡ a−1 mod r2

for some integer a 6= 1. The splitting assumption means that an a satisfying the first
condition exists, replacing a−1 by (a+N(r))−1 if necessary implies the second, because

1

a
− 1

a+N(r)
=

N(r)

a(a+N(r))
6≡ 1 mod r2 .

Let

τ =
n−1∏
k=0

(1− ζka)k ∈ Q(ζ)× .

Lemma 5.4. τ · ζ i is not a perfect pth power for any i.

Proof. The assumption on r implies that all the pth roots of unity are distinct modulo r, and
hence the only factor of τ divisible by r is (1− aζ), which has valuation one. �
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The element τ gives rise, via Kummer theory, to a Z/nZ-extension F/Q(ζ)+. By the
Lemma above, it is non-trivial. Let q ≡ −1 mod n be prime. Then, for a prime q above q,
the element Frobq ∈ Gal(F/Q(ζ)+) fails to generate Z/nZ if and only if τ is a perfect pth
power modulo q. This is equivalent to saying that Frobq generates Gal(F/Q(ζ)+) if and only
if

Rζ,q([a
n]) = Pζ,q([a

n]) =
n−1∏
k=0

(1− aζk)k ∈ F×q2 ⊗ Z/nZ

is a generator. Hence it suffices to find a single q ≡ −1 mod n and q 6≡ −1 mod np with
the desired Frobenius. Such a q exists by Cebotarev density unless 〈τ〉 = 〈ζ〉 mod Q(ζ)×p.
However, this cannot happen by Lemma 5.4. �

Proof of Theorem 1.2. Assume that n is prime to w2(F ). It follows that the Chern class
map gives an injection

K3(F )/nK3(F )→ OFn [1/S]×/OFn [1/S]×n

for some finite set of primes S. If, in addition, we assume that p does not divide w̃F , then
we deduce from Proposition 4.2 that this map can be extended to an injection into the
group

⊕
qB(Fq)/nB(Fq). By Theorem 1.5, this agrees with the map Rζ defined on B(F ),

which is thus injective. If one additionally assumes that n is prime to |∆F ||K2(OF )|, then
by Lemma 3.4 one may additionally assume that the image is precisely the χ−1-invariants
of O×Fn/O

×n
Fn

. �

5.2. Digression: the mod-p-q dilogarithm. Let q be prime, and q+ 1 ≡ 0 mod n with n
a power of p as before. Fix an nth root of unity ζ in Fq2 . Then there is a trivialization
logζ : F×q2 ⊗ Z/nZ ' Z/nZ sending ζ to 1. The isomorphism B(Fq) ⊗ Zp ' Z/nZ of
Theorem 5.2 now gives a curious function, the p-q dilogarithm, which is a function

L : Fq → F×q2 ⊗ Z/nZ
logζ→ Z/nZ

satisfying the 5-term relation. What is perhaps surprising is that the quantum logarithm
suffices to give an explicit formula, as follows.

Proposition 5.5. The function L is given by the formula

L(a) =
∑
bn=a

logζ(b) logζ(1− b) (a ∈ F×q ),

where the sum is over the nth roots b of a in F×q2 .

Proof. Since F×q has order prime to n, the element a has a unique nth power c ∈ F×q .

Then (17) can be rewritten as L(a) =
∑

k mod n k logζ(1 − ζkc). (Note that Rζ = Pζ for

finite fields.) The elements b = ζkc are the nth roots of a in F×q2 , and logζ(b) = k because

c has order prime to n and thus logζ(c) = 0. �
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5.3. The Chern class map on n-torsion in Q(ζ)+. (The following section contains a
speculative digression and is not used elsewhere in the paper.) We have proved that the
maps cζ and Rζ agree up to an invertible element of Z×p . To determine the value of this
ratio, whose conjectural value is 2, we need to compute the images of specific elements
of the Bloch group. More specifically, as explained in the introduction, we need the two
statements (12) and (13). The first of these will be proved below (Theorem 8.5). Here we
want to show that the second is not pure fancy. We shall give a heuristic justification of
why the image of the Chern class map on ηζ should be ζ — at least up to a sign and a
small power of 2 in the exponent. We hope that the arguments of this section could, with
care, be made into a precise argument. However, since the main conjecture of this section
is somewhat orthogonal to the main purpose of this paper, and correctly proving everything
would (at the very least) involve establishing that several diagrams relating the cohomology
of SL2 and PSL2 and GL2 and PGL2 commute up to precise signs and factors of 2. Thus we
content ourselves with a sketch, and enter the happy land where all diagrams commute.

The first subtle point is that the relation between K3(F ) and B(F ) as established by
Suslin is not an isomorphism. There is always an issue with 2-torsion coming from the image
of Milnor K3. However, even for primes p away from 2, there is an exact sequence of Suslin
([31], Theorem 5.2; here F is a number field so certainly infinite):

0→ Tor1(µF , µF )⊗ Z[1/2]→ K3(F )⊗ Z[1/2]→ B(F )⊗ Z[1/2]→ 0,

and hence when p|wF = |µF |, the comparison map is not an isomorphism. (This is one
of the headaches which implicitly us to assume that ζ /∈ F when computing the Chern
class map on B(F ).) This issue arises in the following way. Over the field Q(ζ), the
Bott element provides a direct relationship between K1(F,Z/nZ) and K3(Z,Z/nZ). This
suggests we should push forward ηζ to Q(ζ) and compute the Chern class there. However,
since in B(Q(ζ)), the class ηζ may (and indeed does) become trivial, we instead consider ηζ
as an element of K3(Q(ζ)), and then compute the Chern class map directly in K-theory.

By Theorem 4.10 of Dupont–Sah [7], the diagonal map

x→
(
x 0
0 x−1

)
induces an injection

µC ' H3(µC,Z)→ H3(SL2(C),Z)

whose image is precisely the torsion subgroup. (We shall be more precise about this first
isomorphism below.) Let n be odd, and let ζ be a primitive nth root of unity, let E = Q(ζ),
and let E+ = Q(ζ)+. If µE is the group of nth roots of unity, the map µE → SL2(E) is
conjugate to a map

µE → SL2(E+)

as follows; send ζ to

t = A

(
ζ−1 0
0 ζ

)
A−1, where A =

(
ζ ζ−1

1 1

)
.
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The cohomology of µE with coefficients in Z/nZ is (non-canonically) isomorphic to Z/nZ in
all degrees. More precisely, there is a canonical isomorphism

H1(µE,Z) = H1(µE,Z/nZ) = µE ,

we have H2(µE,Z) = 0, and thus via the Bockstein map H2(µE,Z/nZ) = H1(µE,Z)[n] = µE.
A choice of ζ leads to a choice of element β ∈ H2(µE,Z/nZ) = µE, and hence to an
isomorphism

µE = H1(µE,Z/nZ)
∗β−→ H3(µE,Z/nZ) = H3(µE,Z)

where the isomorphism is given by the Pontryagin product of µE with β ∈ H2(µE,Z/nZ).
These choices induce a map

µE → H3(µE,Z)→ H3(SL2(E+),Z)→ K3(E+)→ B(E+)

which sends ζ to ηζ . That the image of ζ is ηζ follows (for example) by §8.1 of [40]). Implicit
in this statement also is that the Pontryagin product of 1 ∈ Z/nZ = H1(Z/nZ,Z/nZ)
with 1 ∈ H2(Z/nZ,Z/nZ) is exactly the class constructed in Proposition 3.25 of Parry
and Sah [27]. (The maps above are only properly defined modulo 2-torsion, since µ has odd
order this issue can safely be ignored). Denote by ηE+ the corresponding element in K3(E+).
The Chern class maps are compatible with base change, so to compute c(ηE+) it suffices to
compute c(ηE) where ηE ∈ K3(E) is the image of ηE+ under the map K3(E+) → K3(E).
The Chern class map on K1(E) = E× canonically sends ζ ∈ E× to ζ; we would like to
directly connect the Chern class map on K1 with the one on K3 using the Bott element. The
Bott element β ∈ K2(E; Z/nZ) is defined as follows. There is an isomorphism:

µE = ker
(
E×

n−→ E×
)

= π2(E×; Z/nZ) .

The element β is defined as the image of ζ under the composition

π2(BGL1(E); Z/nZ)→ π2(BGL(E); Z/nZ)→ π2(BGL(E)+; Z/nZ) = K2(E; Z/pZ) .

The Bott element induces an isomorphism:

β : K1(E; Z/nZ)→ K3(E; Z/nZ) .

Hence there is, given our choice of ζ ∈ E, a canonically defined map:

K3(E) E×/E×n

K3(E; Z/nZ)
?

c ζ

-

K1(E,Z/nZ)

β−1

wwwwwwwww
c
- E×/E×n

wwwwwwwwwwwwwwwwwwwwwww
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Here cζ is the composition of the Chern class map to H1(E,Z/nZ(2)) which can be identified
with E×/E×n after a choice of ζ ∈ E. Note that the definition of β also requires a similar
choice. Thus it makes sense to make the following:

Assumption 5.6. The diagram above commutes.

We believe that it should be possible to prove this assumption, at least up to a choice of
sign and a power of 2.

Using Assumption 5.6, we would like to show that cζ(ηE) = ζ, and hence that cζ(ηE+) and
thus cζ(ηζ) are also both equal to ζ. This will follow if, under the Bott element, the class ηE
corresponds to ζ ∈ K1(E; Z/nZ). To prove this, one roughly has to show that the following
square commutes:

µE = H1(µE,Z/nZ)
∗β
- H3(µE,Z/nZ)

E×/E×n = K1(E,Z/nZ)
? β

- K3(E; Z/nZ).
?

The top line comes from the Pontryagin product structure of H1(µE,Z/nZ) = µE with

H2(µE,Z/nZ) = ker(µE
[n]−→ µE) ,

and the bottom line comes from Pontryagin product with the Bott element β coming via the
Bockstein map from

ker(E×
[n]−→ E×) .

We conveniently denote both maps by essentially the same letter in order to be more sugges-
tive. One caveat is that the maps from E× → GL2(E) and µE → SL2(E) considered above

differ slightly in that x is sent to

(
x 0
0 1

)
and

(
x 0
0 x−1

)
respectively; since n is odd such

maps can be compared by comparing the cohomologies of GL, PGL, SL, and PSL respec-
tively; it is quite possible that such comparisons might require that the maps above include
a factor of 2 or −1 at some point.

The above discussion above makes the conjectured equation (13) plausible.

6. The connecting homomorphism to K-theory

In this section, we give a proof of Theorem 1.7. Assume that F is a field of characteristic
prime to p which does not contain a pth root of unity. Recall that Z(F ) is the free abelian
group on F r {0, 1} and C(F ) the subgroup generated by the 5-term relation.

Definition 6.1. Let A(F ; Z/nZ) be the kernel of the map

d : Z(F ) −→
∧2F× ⊗ Z/nZ , [X] 7→ X ∧ (1−X) .

The étale Bloch group B(F ; Z/nZ) is the quotient

B(F ; Z/nZ) = A(F ; Z/nZ)/(nZ(F ) + C(F )) .

It is annihilated by n.
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There is a tautological exact sequence

0→ B(F )→ Z(F )/C(F )→
∧2F× → K2(F )→ 0 .

For appropriately defined R, we may break this into the two short exact sequences as follows:

0 - A(F ) - Z(F ) - R - 0,

0 - B(F )

??
- Z(F )/C(F )

??
- R

wwwwwwwwww
- 0,

0→ R→
∧2F× → K2(F )→ 0. (24)

Similarly, for some Q, we have corresponding short exact sequences:

0 - A(F ) - A(F ; Z/nZ) - Q - 0,

0 - A(F )/(nZ(F ) + C(F ))

??
- A(F ; Z/nZ)/(nZ(F ) + C(F ))

??
- Q/nR

??
- 0

0 - B(F )/nB(F )

wwwwwwwww
- B(F ; Z/nZ)

wwwwwwwww
- Q/nR

wwwwwwwww
- 0,

We have inclusions Q ⊆ R and nR ⊆ Q ⊆ n
∧2F×. From now on, we make the assumption

that the number field F does not contain a pth root of unity for any p dividing n. This
implies from the previous inclusions that Q and R are all p-torsion free for p|n. Tensor the
exact sequence (24) with Z/nZ. The group Tor1(Z/nZ,∧2F×) vanishes by our assumption.
Hence we have an exact sequence:

0→ K2(F )[n]→ R/nR→
∧2F× ⊗ Z/nZ→ K2(F )/nK2(F )→ 0. (25)

Recall that R is the image of Z(F ) in
∧2F× and Q is the image of A(F ; Z/nZ), which is

precisely the kernel of the map from R to
∧2F× ⊗ Z/nZ. It follows that the image of Q

in R/nR is the kernel of the map from R/nR to
∧2F× ⊗ Z/nZ. From the short exact

sequence (25), this may be identified with K2(F )[n]. Since the image of Q in R/nR is
precisely Q/nR, however, this shows that Q/nR ' K2(F ), we obtain the exact sequence:

0 −→ B(F )/nB(F ) −→ B(F ; Z/nZ) −→ K2(F )[n] −→ 0 ,

completing the proof of Theorem 1.7.
The previous result was a diagram chase. The map δ : B(F ; Z/nZ) → K2(F ) can be

given explicitly as follows: Lift [x] ∈ B(F ; Z/nZ) to an element x of A(F ; Z/nZ)/C(F ),
which is unique up to an element of nZ(F ). The image of x in

∧2F× ⊗ Z/nZ is zero by
definition. Hence, because

∧2F× is p-torsion free for p|n, there exists an element y ∈
∧2F×

such that the image of z in
∧2F× is ny, and now y is unique up to an element in the image
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of C(F ). Yet the projection z of y ∈
∧2F× to K2(F ) sends this ambiguity C(F ) to zero,

and so δ([x]) := z ∈ K2(F ) is well defined.

If we assume that n is not divisible by any prime p which divides w2(F ), we have con-
structed a map

Rζ : B(F ; Z/nZ)→ (F×n /F
×n
n )χ

−1 ' H1(F,Z/nZ(2)) . (26)

Taking n = pm for various m, and using the fact that B(F ) is finitely generated and
so proj limB(F )/pmB(F ) = B(F )⊗ Zp, we obtain a commutative diagram as follows:

0 - B(F )/pmB(F ) - B(F ; Z/nZ) - K2(F )[n] - 0

0 - H1(F,Zp(2))/pm
?

- H1(F,Z/nZ(2))
?

- H2(F,Zp(2))[n]
?

- 0,

(27)

The first vertical map is an isomorphism by Theorem 3.2, and the last vertical map is also
an isomorphism by a theorem of Tate [32]. It follows that the map Rζ in equation 26 is an
isomorphism for n prime to w2(F ). This gives a link between our explicit construction of
Chern class maps for K3(F ) and the explicit construction of K2(F ) in Galois cohomology
by Tate [32].

We end this section with a remark on circular units. Let F = Q(ζD). Associated to
a primitive Dth root of unity ζD, Beilinson (see §9 of [15]) constructed special generating
elements of K3(F ), which correspond, on the Bloch group side, to the classes D [ζD] ∈ B(F ).
Soulé [29] proved that the images of these classes under the Chern class map consist exactly
of the circular units. On the other hand, for p not dividing D, we see that the images
of D[ζD] under the maps Rζ are unit multiples of the elements

pm−1∏
k=0

(1− ζk ζD)k ;

these are exactly the compatible sequences of circular units which yield a finite index
subgroup of H1(F,Zp(2)) — the index being directly related to K2(OF ) via the Quillen–
Lichtenbaum conjectures.

7. Relation to quantum knot theory

As was mentioned in the introduction, the initial motivation for expecting a map as
in (5) was the Quantum Modularity Conjecture, which concerns the asymptotics of a twisted
version of the Kashaev invariant of a knot at roots of unity and a subtle transformation
property (verified numerically for many knots and proved in the case of the figure 8 knot) of
certain associated formal power series under the group SL(2,Z). In this section, we give a
summary of this conjecture (a much more detailed discussion is given in [13]) and compare
the near units appearing there with the ones studied in this paper.

Let K be a hyperbolic knot, i.e., an embedded circle in S3 for which the 3-manifold
MK = S3 r K has a hyperbolic structure. This structure is then unique and gives several
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invariants: the volume V(K) ∈ R>0 and Chern-Simons-invariant CS(K) ∈ R/4π2Z of the 3-
manifold MK , the trace field FK = Q

[
{tr(γ)}γ∈Γ

]
where MK = H3/Γ with Γ ⊂ SL(2,C) (the

finitely generated group Γ is only unique up to conjugacy, but the set of traces of its elements
is well-defined), and a fundamental class ξK in the Bloch group B(FK), defined as the class of∑

[zj] in B(FK), where t∆j = MK is any ideal triangulation of MK and zj the cross-ratio of
the four vertices of ∆j. We also have two quantum invariants, the (normalized) colored Jones
polynomial JKN (q) ∈ Z[q, q−1] and the Kashaev invariant 〈K〉N ∈ Q, which are computable
expressions defined for any N ∈ N whose precise definitions, not needed here, we omit.
The Volume Conjecture, due to Kashaev, says that the limit of 1

N
log |〈K〉N | as N →∞

equals 1
2π

V(K), the Complexified Volume Conjecture is the more precise statement

〈K〉N = ev(K)N+o(N) asN →∞, where v(K) = 1
2π

(V(K)−iCS(K)) (this makes sense because
v(K) is well-defined modulo 2πi), and the yet stronger Arithmeticity Conjecture, stated
in [6] and [9], says that there is a full asymptotic expansion

〈K〉N ∼ µ8δ(K)−1/2N3/2 ev(K)N
(

1 + κ1(K)
2πi

N
+ κ2(K)

(2πi

N

)2

+ · · ·
)

(28)

as N → ∞, where δ(K) is a non-zero number related to the Ray-Singer torsion of K and
where δ(K) and κj(K) (j ≥ 1) belongs to the trace field FK . An example, one of the few that
are known rigorously (some other cases have now been proved by Ohtsuki et al; see [26]), is
the expansion

〈41〉N ∼
N3/2

4
√

3
ev(41)N

(
1 +

11π

36
√

3N
+

697π2

7776N2
+

724351π3

4199040
√

3N3
+ · · ·

)
for the knot K = 41 (figure 8), for which FK = Q(

√
−3).

Equation (28) is already a strong refinement of the Volume Conjecture. An even stronger
is the Modularity Conjecture given in [39] and discussed further in [8] and [13]. The
starting point is the famous theorem of H. Murakami and J. Murakami [23] saying that the
Kashaev invariant 〈K〉N , originally defined by Kashaev as a certain state sum, coincides
with the value of the colored Jones polynomial JKN (q) at q = ζN = e2πi/N . We define a
function JK : Q → Q by setting JK(x) = JKN (e2πix) for any N ∈ N with Nx ∈ Z. This is
independent of the choice of N since the values of the colored Jones polynomial JKN (q) at
an nth root of unity q is periodic in N of period n. From the Murakami-Murakami theorem
and since the function JK is Galois-invariant by its very definition, we have

JK
( a
N

)
= σa

(
〈K〉N

)
for any a ∈ (Z/NZ)×,

where σa is the automorphism of Q(ζN) sending ζN to ζaN , so the function JK can be thought
of as a Galois-twisted version of the Kashaev invariant. The Modularity Conjecture describes
its asymptotic behavior of JK(x) as the argument x ∈ Q approaches any fixed rational
number α, not just 0. Specifically, it asserts that there exist formal power series ΦK

α (h) ∈
Q[[h]] (α ∈ Q, periodic in α with period 1), such that for any

(
a b
c d

)
∈ SL(2,Z), we have

JK
∗
(aX + b

cX + d

)
∼ (cX + d)3/2 JK

∗
(X) ev(K)(X+d/c) ΦK

a/c

( 2πi

cX + d

)
(29)
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to all orders in 1/X as X → ∞ in Q with bounded denominator. Here, K∗ is the mir-
ror of K. If we take

(
a b
c d

)
=
(

0 −1
1 0

)
and X = N → ∞, then (29) reduces to 〈K〉N =

JK(1/N) = JK
∗
(−1/N) ∼ N3/2ev(K)NΦK

0

(
2πi
N

)
, so (29) is a generalization of (28) with

ΦK
0 (h) = µ8 δ(K)−1/2 (1 + κ1(K)h+ · · · ).
The Quantum Modularity Conjecture, as already mentioned, was first given in [39], with

detailed numerical evidence for the case of the figure 8 knot, and is further discussed in [8] and
then in much more detail in [13], where this case is proved completely and numerical examples
for several more knots are given. It is perhaps worth mentioning that regarding numerical
evidence, one cannot use the standard SnapPy or Mathematica programs to compute the
colored Jones polynomial (hence the Kashaev invariant) of a knot, since these work for
small values of N (say, N ∼ 20). Instead, we used a finite recursion for the colored Jones
polynomial, whose existence was proven in [9], and concretely computed in several examples
summarized in [8] and [13]. We could then compute the Kashaev invariant numerically to
high precision up to N of the order of 5000, which with suitable numerical extrapolation
techniques made it possible to compute and recognize several terms of the series ΦK

a/c(h)
with high confidence.

But already in the constant term of the series ΦK
a/c(h), mysterious roots of algebraic units

appear and those led to the main theorems of this paper. For instance, for the 41 knot, when
a is an integer prime to 5, we have

Φ41

a/5(h) = 3
1
4

(
ε(a)
) 1

10

((
2−ε(a)

1 +ε
(a)
2 +2ε

(a)
3

)
+

2678− 943ε
(a)
1 + 1831ε

(a)
2 + 2990ε

(a)
3

233252
√
−3

h+ · · ·
)
,

where ε(a) = ε
(a)
2 /(ε

(a)
1 )3ε

(a)
3 and ε

(a)
k = 2 cos 2π(6a−5)k

15
. (See [39], p. 670 except that the formula

is given there in terms of log Φ, which makes its coefficients much more complicated.) The

number ε
(a)
k is an algebraic unit in F5 = Q(ζ15), and it is the appearance of the 10th root of

ε(a) that was the origin of the present investigation. In fact, although the unit ε(a) is not a
square in the field Q(ζ15)+ which it generates, its negative is a square in the larger field F5 :√
−ε(a) = 2i sin 2π(6a−5)

15
ε

(a)
2 /ε

(a)
1 .

More generally, when we do numerical calculations for arbitrary knots K, we find:

• the power series ΦK
α (h) (α ∈ Q) belongs to Q[[h]] and has a factorization of the form

ΦK
α (h) = Cα(K)φKα (h) (30)

with Cα(K) ∈ Q and φKα (h) ∈ Fc[[h]], where the number field F is independent of α
(and is in fact is conjecturally the trace field FK of K) and Fc = F (ζc);
• the constant Cα(K) factors as

Cα(K) = µ8c(K)δ(K)−1/2 εα(K)1/c

where µ8c is a 8c root of unity and εα(K) is a unit of Fc;
• the units εα(K) for different rational numbers α and β = kα with the same denom-

inator (assumed prime to some fixed integer depending on K) are related by both
εβ(K) = σk(εα(K)) and εβ(K)k = εα(K) (the latter equality holding modulo cth
powers), where σk ∈ Gal(Fc/F ) is the map sending ζα to ζβ. Compare this double
Galois invariance with (6).
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Notice that the factorization (30) is not canonical, since we can change both the con-
stant Cα and the power series by a unit of Fc and its inverse, so that the formula involves a
slight abuse of notation. Notice also that v depends only on the element of the Bloch group
associated to the knot [25, 14] and so does εα, but not Φα. Specifically, as seen in [13], sister
(or partner) knots do not have the same power series, but do (experimentally) have the same
unit. It is this observation that led us to search for the map (5).

8. Nahm’s conjecture and the asymptotics of Nahm sums at roots of unity

In the previous section, we saw that the near units constructed in this paper from elements
of the Bloch group appear naturally (although in general only conjecturally) in connection
with the asymptotic properties of the Kashaev invariant of knots and its Galois twists. A
second place where these units appear is in the radial asymptotics of so-called Nahm sums,
as was shown in [11] and is quoted (in a simplified form) in Theorem 8.1 below. In this
section, we explain this and give two applications, the proof of Theorem 8.5 and the proof of
one direction of Nahm’s conjecture relating the modularity of Nahm sums to the vanishing
of certain elements in Bloch groups.

Nahm sums are special q-hypergeometric series whose summand involves a quadratic form,
a linear form and a constant. They were introduced by Nahm [24] in connection with charac-
ters of rational conformal field theories, and led to his above-mentioned conjecture concerning
their modularity. They have also appeared recently in quantum topology in relation to the
stabilization of the coefficients of the colored Jones polynomial (see Garoufalidis-Le [10]),
and they are building blocks of the 3D-index of an ideally triangulated manifold due to
Dimofte-Gaiotto-Gukov [5, 4]. Further connections between quantum topological invari-
ants and Nahm sums are given in [12], where one sees once again the appearance of the
units Rζ(ξ)

1/n.
In the first subsection of this section, we review Nahm sums and the Nahm conjecture and

state Theorem 8.1 relating the asymptotics of Nahm sums at roots of unity to the near units
of Theorem 1.2. This is then applied in §8.2 to a particular Nahm sum (namely, the famous
Andrews-Gordon generalization of the Rogers-Ramanujan identities) to prove equation (12)
of the introduction (Theorem 8.5). In the final subsection, we use Theorem 8.1 together
with Theorem 1.2 to give a proof of one direction of Nahm’s conjecture.

8.1. Nahm’s conjecture and Nahm sums. Nahm’s conjecture gives a very surprising
connection between modularity and algebraic K-theory. More precisely, it predicts that the
modularity of certain q-hypergeometric series (“Nahm sums”) is controlled by the vanishing
of certain associated elements in the Bloch group B(Q) = K3(Q).

The definition of Nahm sums and the question of determining when they are modular
were motivated by the famous Rogers-Ramanujan identities, which say that

G(q) :=
∞∑
n=0

qn
2

(q)n
=

∏
n>0

(n
5

)=1

1

1− qn
, H(q) :=

∞∑
n=0

qn
2+n

(q)n
=

∏
n>0

(n
5

)=−1

1

1− qn
,

where (q)n = (1− q) · · · (1− qn) is the q-Pochhammer symbol or quantum n-factorial. These
identities imply via the Jacobi triple product formula that the two functions q−1/60G(q) and
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q11/60H(q) are quotients of unary theta-series by the Dedekind eta-function and hence are
modular functions. (Here and from now on we will allow ourselves the abuse of terminology

of saying that a function f(q) is modular if the function f̃(τ) = f(e2πiτ ) is invariant under
the action of some subgroup of finite index of SL(2,Z).) To see how general this phenomenon
might be, Nahm [24] considered the three-parameter family

fA,B,C(q) =
∑
m≥0

q
A
2
m2+Bm+C

(q)m
(A ∈ Q>0, B, C ∈ Q) (31)

These are formal power series with integer coefficients in some rational power of q, and
are analytic in the unit disk |q| < 1, but they are very seldom modular: apart from the
two Rogers-Ramanujan cases (A,B,C) = (2, 0,− 1

60
) or (2, 1, 11

60
), only five further cases

(1, 0,− 1
48

), (1,±1
2
, 1

24
), (1

2
, 0,− 1

40
) and (1

2
, 1

2
, 1

40
) were known for which fA,B,C is modular, and

it was later proved ([33], [38]) that these are in fact the only ones. Since this list of seven
examples is not very enlightening, Nahm introduced also a higher-order version

fA,B,C(q) =
∑

m∈Zr≥0

q
1
2
mtAm+Bm+C

(q)m1 · · · (q)mr
, (32)

where A = (aij) is a symmetric positive definite r × r matrix with rational entries, B ∈ Qr

a column vector, and C ∈ Q a scalar, and asked for which triples (A,B,C) the function

f̃A,B,C(τ) = fA,B,C(e2πiτ ) is modular. His conjecture gives a partial answer to this question.
To formulate this conjecture, Nahm made two preliminary observations.

(i) Let X = (X1, . . . , Xr) ∈ Cr be a solution of Nahm’s equations

1 − Xi =
r∏
j=1

X
aij
j (1 ≤ j ≤ r) (33)

(or symbolically 1−X = XA), and let F be the field they generate over Q, which will typically
be a number field since (33) is a system of r equations in r unknowns and generically defines
a 0-dimensional variety. Then the element [X] = [X1]+ · · · [Xr] of Z[F ] belongs to the kernel
of the map (2), because

d
(
[X]
)

=
∑
i

(Xi) ∧ (1−Xi) =
∑
i, j

aij (Xi) ∧ (Xj) = 0

by virtue of the symmetry of A. (This calculation makes sense as it stands if A has integer
entries; if the entries are only rational, we have to tensor everything with Q.) Therefore [X]
determines an element of the Bloch group B(F )⊗Q and it makes sense to ask whether this
element vanishes. This is equivalent to the vanishing of the numbers D(σX) =

∑
D(σXi)

for all embeddings σ : F ↪→ C, where D(x) is the Bloch-Wigner dilogarithm function, and
this condition can be either tested numerically to any precision or else verified rigorously by
writing a multiple of [X] as a linear combination of 5-term relations.

(ii) The first remark applies to any symmetric matrix A. If A is positive definite, then
there is a distinguished solution of the Nahm equations, namely the unique solution XA =
(XA

1 , . . . , X
A
r ) with 0 < XA

i < 1 for all i. We denote by ξA the corresponding element [XA]
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of the Bloch group. Then since XA is real, we obtain a further characteristic property when
this element is torsion, namely that the real number L(ξA) =

∑
L(Xi), where L(x) is the

Rogers dilogarithm function as defined below, is a rational multiple of π2. But it can be
shown fairly easily that fA,B,C(e−h) has an asymptotic expansion as eL(ξA)/h+O(1) as h→ 0+

for any B and C (in fact, a full asymptotic expansion of the form eL(ξA)/h+c0+c1h+··· is given
in [38]). Since a modular function must have an expansion ec/h+O(1) with c ∈ Qπ2, this
already gives a strong indication of a relation between the modularity of Nahm sums and
the vanishing (up to torsion) of the associated elements of Bloch groups.

Based on these observations, one can consider the following three properties of a matrix
A as above:

(a) The class [X] ∈ B(C) vanishes for all solutions X of the Nahm equations (33).

(b) The special class ξA ∈ B(C) associated to the solution XA of (33) vanishes.

(c) The function fA,B,C(q) is modular for some B ∈ Qr and C ∈ Q.

Trivially (a)⇒ (b). Nahm’s conjecture (see [24] and [38]) says that (a)⇒ (c) and (c)⇒ (b).
(The possible stronger hypothesis that (b) alone might already imply (c) was eliminated
in [38] using the 2 × 2 matrix A = ( 8 5

5 4 ), and the other possible stronger assertion that
(c) might require (a) was shown to be false by Vlasenko and Zwegers [34] with the coun-

terexample A = ( 3/2 1/2
1/2 3/2 ).) This conjecture had a dual motivation: on the one hand, the

above-mentioned fact that both (b) and (c) force the rationality of L(ξA)/π2, which is most
unlikely to happen “at random,” and on the other hand, a large number of supporting ex-
amples coming from the characters of rational conformal field theories, which are always
modular functions and where the condition in the Bloch group can also be verified in many
cases. Here we are concerned with an extension of the first of these two aspects, namely the
asymptotics of the Nahm sum fA,B,C(q) as q tends radially to any root of unity, not just
to 1.

In order to state the asymptotic formula, we need to define the Rogers dilogarithm. In our
normalization (which is π2/6 minus the standard one as given, for instance, in [38], §II.1A),
this is the function defined on R r {0, 1} by

L(x) =


π2

6
− Li2(x) − 1

2
log(x) log(1− x) if 0 < x < 1,

−L(1/x) if x > 1,
π2

6
− L(1− x) if x < 0

(here Li2(x) =
∑∞

n=1
xn

n2 is the standard dilogarithm) and extended by continuuity to a

function P1(R) → R/π
2

2
Z by sending the three points 0, 1 and ∞ to π2

6
, 0, and −π2

6
. Its

linear extension to Z(R) vanishes on the group C(R) as defined at the beginning of §1.1.
(We comment here that there are several definitions of the Bloch group in the literature, all
the same up to 6-torsion, and that the specific choice made in Definition 1.1, which forces
3[0] = 0, [X]+[1/X] = 0 and [X]+[1−X] = [0] for any field F and any element X of P1(F ),
was chosen precisely so that L is well-defined on B(R) and takes values in the full circle

group R/π
2

2
Z rather than just its quotient R/π

2

6
Z.)

Specifically, let A, B and C be as above let X = XA be the distinguished solution of (33)
as in (ii) and F the corresponding number field, and for each integer n choose a primitive
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nth root of unity ζ, set Fn = F (ζ) and denote by H = Hn the Kummer extension of Fn
obtained by adjoining the positive nth roots xi of the Xi. We are interested in the asymptotic
expansion of fA,B,C(ζe−h/n) as h → 0+. Strictly speaking, this only makes sense if A has
integral coefficients, B is congruent to 1

2
diag(A) modulo Zr, and C ∈ Z, since otherwise

the quadratic function q
1
2
nAnt+nB+C occurring in the definition of fA,B,C is not uniquely

defined. We get around this by picking a representation of ζ as e(a/n) for some a ∈ Z and

interpreting fA,B,C(ζe−h/n) as f̃A,B,C
(
a+i~
n

)
, where ~ = h

2π
. The full asymptotic expansion

of fA,B,C(ζe−h/n) as h → 0+ was calculated in [12] using the Euler-Maclaurin formula,
generalizing an earlier result in [38] for the case n = 1. We do not give the complete
formula here, but only the simplified form as needed for the applications we will give. In the
statement of the theorem we have abbreviated by ∆X the diagonal matrix whose diagonal
is a vector X.

Theorem 8.1. [12] Let (A,B,C) be as above. Then for every positive integer n (coprime to
a finite set of primes that depend on A and B) and for every primitive nth root of unity ζ,
we have

fA,B,C
(
ζ e−h/n

)
= µω eL(ξA)/nh

(
Φζ(h) + O(hK)

)
(34)

for all K > 0 as h → 0+, where ω2 ∈ F×, µ24n = 1 and Φζ(h) = ΦA,B,C,ζ(h) is an explicit
power series satisfying the two properties Φζ(h)n ∈ Fn[[h]] and Pζ(ξA)1/n Φζ(h) ∈ Hn[[h]].
Moreover, if Φζ(0)n 6= 0, then its image in F×n /F

×n
n belongs to the χ−1 eigenspace.

Remark 8.2. If n is prime to 6, then we can choose µ to be a 24th root of unity, since the
nth roots of unity are contained in Fn and can be absorbed into the power series Φ.

Corollary 8.3. If Φζ(0) 6= 0, then the product of the power series Φζ(h) with ε1/n for any
unit ε representing Rζ(ξA) belongs to Fn[[h]] .

Proof. Let ε ∈ F×n denote a representative of Rζ(ξA). On the one hand, Theorem 8.1 and
Remark 2.5 imply that Φζ(0)ε1/n ∈ F×n . On the other hand, Theorem 8.1 and our assumption
implies that (Φζ(h)/Φζ(0))n ∈ Fn[[h]]. Since Φζ(h)/Φζ(0) is a power series with constant
term 1, it follows that Φζ(h)/Φζ(0) ∈ Fn[[h]]. Combining both conclusions, it follows that
ε1/nΦζ(h) ∈ Fn[[h]]. �

Remark 8.4. In the theorem, we do not assert that the power series Φ cannot vanish
identically (which is why we wrote an equality sign and Φ(h) + O(hK) in (34) rather than
writing an asymptotic equality sign and putting simply Φ(h) on the right), and indeed this
often happens, for instance, when fA,B,C is modular and we are expanding at a cusp not
equivalent to 0. Of course, the corollary is vacuous if Φ vanishes.

8.2. Application to the calculation of Rζ(ηζ). In this subsection, we apply Theorem 8.1
and its corollary to a specific Nahm sum to prove equation (12) in the introduction.

Theorem 8.5. Let n be positive and prime to 6 and ηζ be the n-torsion element in B(Q(ζ)+)
defined by (23), where ζ is a primitive nth root of unity. Then Rζ(ηζ)

4 = ζ .

Proof. Set An =
(
2 min(i, j)

)
1≤i,j≤r, where r = n−3

2
, and let fn be the Nahm sum fAn,0,0

of order r. By a famous identity of Andrews and Gordon [1], which reduces to the first
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Ramanujan-Rogers identity when n = 5, we have the product expansion

fn(q) =
∏
k>0

2k 6≡0,±1 ( mod n)

1

1− qk
. (35)

and this is modular up to a power of q for the same reason as for G(q) = f5(q) (quotient
of a theta series by the Dedekind eta-function). This modularity allows us to compute its
asymptotics as q → ζn, and by comparing the result with the general asymptotics of Nahm
sums as given in 8.1, we will obtain the desired evaluation of ηn. We now give details.

It is easy to check that all solutions X of the Nahm equation 1−X = XAn have the form

X = (X1, . . . , Xr), Xk =
(1− ζ2k)(1− ζ2k+4)

(1− ζ2k+2)2

with ζ a primitive n root of unity, and hence form a single Galois orbit. The distinguished

solution XAn ∈ (0, 1)r corresponds to ζ = e(1/n) = ζn. From 1 − Xk = ( ζ−ζ−1

ζk+1−ζ−k−1 )2 and

the functional equation L(1−X) = π2

6
− L(X) we find

L(XAn) =
1

2

∑
0<`<n

(
π2

6
− L

(
sin2(π/n)

sin2(`π/n)

))
=

(n− 3)π2

6n
,

the final equality being a well-known identity for the Rogers dilogarithm of which a proof
can be found at the end of [38], §II.2C. Denote the right-hand side of this by −4π2Cn and

set f̃n(τ) = qCnfn(q). Using the Jacobi theta function and Jacobi triple product formula

θ(τ, z) =
∑

n∈Z + 1/2

(−1)[n] qn
2/2 yn = q1/8 y1/2

∞∏
n=1

(
1− qn

)(
1− qny

)(
1− qn−1y−1

)
(where =(τ) > 0, z ∈ C, q = e(τ), and y = e(z)), together with the Dedekind eta-function
η(τ) = q1/24

∏
n>0(1− qn), we can rewrite (35) as

fn(τ) = −q(r+1)2/2n θ(nτ, (r + 1)τ)

η(τ)
,

which in conjunction with the standard transformation properties of θ and η implies that
fn(τ) is a modular function (with multiplier system) on the congruence subgroup Γ0(n) of
SL(2,Z). We need only the special case τ 7→ τ

nτ+1
, where the transformation law is given by

fn

( τ

nτ + 1

)
= e

(n− 3

24

)
fn(τ) , (36)

whose proof we sketch for completeness. The well-known modular transformation properties
of θ and η under the generators T =

(
1 1
0 1 ) and S =

(
0 −1
1 0 ) of SL(2,Z) are given by

θ(τ + 1, z) = e(1/8) θ(τ, z) , θ(−1/τ, z/τ) =
√
τ/i e(z2/2τ) θ(τ, z)

η(τ + 1) = e(1/24) η(τ) , η(−1/τ) =
√
τ/i η(τ) .
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Hence, using
T∼ and

S∼ to denote an equality up to an elementary factor (the product of
a power of τ with the exponential of a linear combination of 1, τ and z2/τ) that can be
deduced from the T - or S-transformation behavior of the function in question, we have

θ
( nτ

nτ + 1
,
(r + 1)τ

nτ + 1

)
T∼ θ

( −1

nτ + 1
,
(r + 1)τ

nτ + 1

)
S∼ θ (nτ + 1, (r + 1)τ)

T∼ θ (nτ, (r + 1)τ) ,

η
( τ

nτ + 1

)
S∼ η

(
−n− 1

τ

)
T∼ η

(
−1

τ

)
S∼ η(τ) .

Inserting all omitted factors and dividing the first equations by the second, we obtain (36).
Now applying (36) to τ = 1+i~

n
, with ~ = h

2π
, where h positive and small, we find

fAn,0,Cn
(
ζne
−h/n) = fn

(1 + i~
n

)
= e

(n− 3

24

)
fn

(−1 + i/~
n

)
= e

( n
24
− 1

8
+

1

24n
− 1

8n2

)
eL(XAn )/nh

(
1 + O

(
e−4π2/nh

))
. (37)

Taking the 8n-th power of this and combining with Theorem 8.1 and its Corollary 8.3, we
find that Rζ(ξAn)8 = e(1/n) ∈ (F×n /F

×n
n )χ

−1
. On the other hand, using the same identity

1 − Xk = ( ζ−ζ−1

ζk+1−ζ−k−1 )2 as before, we find that the Bloch element ξAn associated to the

distinguished real solutions XAn of the Nahm equation is equal to twice the Bloch element
ηζ defined in (23). This completes the proof of Theorem 8.5. �

8.3. Application to Nahm’s conjecture. In this final subsection, we give an application
of the asymptotic Theorem 8.1 and Theorem 1.2 to proving one direction of Nahm’s con-
jecture about the modularity of Nahm sums. The notations and assumptions are as before,
but for convenience we repeat them here.

Let A ∈Mr(Q) be a positive definite symmetric matrix, B ∈ Qr, and C ∈ Q. We denote
XA = (X1, . . . , Xr) denote the unique solution in (0, 1)r to the Nahm equation, by F = FA
the real number field generated by the Xi and by ξA =

∑
i[Xi] ∈ B(FA) the corresponding

element of the Bloch group. Finally, when we say that FA,B,C is modular, we mean that

the function f̃(τ) = fA,B,C(e(τ)) is invariant with respect to a subgroup of finite index of
SL(2,Z).

Theorem 8.6. If fA,B,C(τ) is a modular function, then ξA ∈ B(FA) is a torsion element.

Proof. On p. 56 of [38] it is shown that any Nahm sum has an expansion near q = 1 of the
form

fA,B,C(e−ε) = eL(ξA)/ε
(
K + O(ε)) (ε→ 0), (38)

where K (given explicitly in eq. (29) of [38]) is a non-zero algebraic number some power of
which belongs to F = FA and where the error term O(ε) can be replaced by O(e−c/ε) with
some c > 0 if fA,B,C is assumed to be modular ([38], eq. (28)). Notice that in this case the

number λ = L(ξA)/4π2 must be rational, since the modularity of f̃(τ) = fA,B,C(e(τ)) implies

that the function f̃(−1/τ) is invariant under some power of
(

1 1
0 1

)
.
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Now assume that f̃ is modular with respect to a finite index subgroup Γ of SL(2,Z). Then
for h→ 0+, ~ = h

2π
, and any γ =

(
a b
c d

)
∈ Γ, taking ε = dh

1−ic~ , we find

fA,B,C(e−ε) = f̃
( iε

2π

)
= f̃

(aiε/2π + b

ciε/2π + d

)
= f̃

(b+ i~
d

)
= fA,B,C(ζe−h/d),

where ζ = e(b/d), and now comparing the asymptotic formulas (38) and (34) (with n = d),
we find

µ eL(ξA)/hd Φ(h) = eL(ξA)/dh
(
Ke(λc/d) + O(h)

)
or Φζ(0) = µ−1Ke(λc/d), with λ ∈ Q as above. This implies in particular that Φζ(0) 6= 0,
and now, using that some bounded power of both µ and K belong to Fn, we deduce that
Φ(0)r belongs to Fn for some fixed integer r > 0 independent of n = d. We can also assume
that d is prime to M for any fixed integer M , since by intersecting Γ with the full congruence
subgroup Γ(M), we may assume that Γ is contained in Γ(M). This shows that there are
infinitely many integers n and primitive nth roots of unity ζ for which Φζ(0)r in Theorem 8.1
is a non-zero element of Fn. Now Corollary 8.3 implies that the rth power of Rζ(ξA) has
trivial image in F×n /F

×n
n for infinitely many n, and in view of the injectivity statement in

Theorem 1.2 this proves that ξA is a torsion element in the finitely generated group B(F ). �

Remark 8.7. The proof of the theorem would have been marginally shorter if we had as-
sumed that fA,B,C was a modular function on a congruence subgroup, rather than just a
subgroup of finite index of SL(2,Z). We did not make this assumption since it was not
needed, but should mention that fA,B,C , if modular at all, is expected automatically to be
modular for a congruence subgroup, because it has a Fourier expansion with integral coeffi-
cients in some rational power of q and a standard conjecture says that the Fourier expansion
of a modular function on a non-congruence subgroup of SL(2,Z) always has unbounded
denominators.

Remark 8.8. Conversely, we could have stated Theorem 8.6 in an apparently more general
form by writing “modular form” instead of “modular function.” We did not do this since it
is easy to see that if a Nahm sum is modular at all, it is actually a modular function, because
if it were a modular form of non-zero rational weight k, there would be an extra factor h−k

in the right-hand side of (38).
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