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1. Introduction

1.1. The conjecture. In this paper, we will mostly be concerned with proving
and explaining some of the motivation for the following conjecture, due to
Melvin and Morton [MM, Mo]:

Conjecture 1. Let js‘l(Z),/L(K ) € Q(q) be the “framing independent colored
Jones polynomial” of the knot K, i.e., the framing independent Reshetikhin—
Turaev invariant' [RT] of K colored by the (d = A+ 1)-dimensional represen-
tation of sl(2). Let f be a formal parameter, let g = €, and let [d] denote
the “quantum integer d”:

Gl — g 2 g—di2

[d] = q\2 — g2 T o2 _ o2

Then, expanding J/[d] in powers of d and h (this is possible by [MM]),

Jo 2(K)(e" 4
JAI(Z), ( )(e ) _ Z ajm(K)djhm ,
[d] J,m=0

we have:
(1) “Above diagonal” coefficients vanish: a;,(K) =0 if j > m.
(2) “On diagonal™ coefficients give the inverse of the Alexander—Conway
polynomial:
MM (K)(h) - A(K)(") =1, (1)

where A(q) is the Alexander—Conway polynomial (in its “Conway” normaliza-
tion, as in example 2.8) and MM is defined by

MMEYR) = 3 apm(K A"

m=0

Notice that the colored Jones polynomial of a knot can be read from the
Jones polynomials of cables of that knot (see, e.g. [MS]), and thus the above
conjecture implies that the Alexander polynomial can be computed from the
Jones polynomial and cabling operations.

Melvin and Morton arrived at (the rather unexpected) Conjecture 1 after
noticing it in some special cases, and by noticing that the two sides of (1)
seem to behave in the same way when acted on by the ‘Adams operations’ of
[B-N2]. In his visit to Cambridge in November 1993, we informed L. Rozansky
of the conjecture, and he was able [Rol] to find a non-rigorous path integral
“proof” of it, which easily leads to a generalization to other Lie algebras, as
shown in Sect. 5. At the end of this introduction we will briefly review the
main ideas of Rozansky’s work on the MMR conjecture.

Te., J is obtained from the framing-dependent J either by multiplication of ¢~C"ite where C
is the quadratic Casimir number of V), or by evaluating J on K with its zero framing. We take
the metric on s/(2) to be the trace in the 2-dimensional representation.
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1.2. Preliminaries. Before we can sketch our proof of the MMR conjecture,
let us recall some facts about Vassiliev invariants and chord diagrams, which
are the main tools used in the proof. We follow the notation of [B-N2]; see
also [Val, Va2, BL,Kol]. A Vassiliev invariant of type m is a knot invariant
which vanishes whenever it is evaluated on a knot with more than m double
points, where the definition of V' is extended to knots with double points via

/(X)) = v (X)-+(X)

The algebra ¥~ of all Vassiliev invariants (with values in some fixed ring)
is filtered, with the type m subspace %,  containing all type m Vassiliev
invariants. The associated graded space of ¥~ is isomorphic to the space ¥~
of all weight systems. A degree m weight system is a homogeneous linear
functional of degree m on the graded vector space .&/" of chord diagrams like
in Fig. 1 divided by the 47 and framing independence relations explained in
Figs. 2 and 3.

/" is graded by the number of chords in a chord diagram. It is a commu-
tative and co-commutative Hopf algebra with multiplication defined by juxta-
position, and with co-multiplication 4 defiend as the sum of all possible ways
of ‘splitting’ a diagram. The co-algebra structure of .o/" defines an algebra
structure on #". The Hopf algebra .« is defined in the same way as .«/", only
without imposing the framing independence relation.

There are natural maps W, : %,V — G, W = 9,4, where ¥, obj
denotes the degree m piece of a graded object obj. For a type m Vassiliev

(TR AN

Fig. 1. A chord diagram.

f\\—ﬁ\:m{\—ﬂg\:q—ﬂ

Fig.2. To get the 47 relations, add an arbitrary number of chords in arbitrary positions (only
avoiding the short intervals marked by a ‘no-entry’ sign ©) to all six diagrams in exactly
the same way.

K LA =0

Fig. 3. The framing independence relation: any diagram containing a chord whose endpoints
are not separated by the endpoints of other chords is equal to 0.
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invariant 7 it is natural to think of W, (V') as “the m’th derivative of V.
The maps W, are compatible with the products of the spaces involved. Similar
definitions can be made for framed knots, and the image of the corresponding
map W,, will be ¥,,.o7*.

1.3. Plan of the proof. 1t is well known [Gou, B-N1,B-N2,BL, Lin] that the
coefficients of both the Conway and the Jones polynomials are Vassiliev invari-
ants. Normally, Vassiliev invariants are not determined by their weight systems.
However, in Sect. 2 we explain (following Kassel [Kas] and Le and Murakami
[LM]) that when an invariant comes (in an appropriate sense) from a Lie al-
gebra, it is in fact determined by its weight system. As this is the case for
all the invariants appearing in Conjecture 1 (or rather, in the version of it that
we actually prove Theorem 1), it is enough to prove Conjecture 1 (that is,
Theorem 1) on the level of weight systems.

To do this, we analyze the weight systems of the Conway polynomial and
of the invariant MM. In Sect. 3 we analyze the weight system W of the
Conway polynomial. We find a simple characterization (Theorem 2) of it, and
then we use this characterization to show that Wo(D) is the determinant of the
intersection matrix IM(D) (Definition 3.4) of the chord diagram D. In Sect. 4
we go through a rather complicated analysis of the weight system of MM,
finding that it is given by the permanent of the intersection matrix. We then
conclude the proof of the conjecture by showing that, in the sense of weight
systems,

logdet IM + log perIM =0, (2)

and thus the two weight systems are inverses of each other. Equation (2) is
proven in the ends of Sects. 3 and 4, where the logarithm of the two weight
systems involved are given in terms of explicit formulas.

In Sect. 5 we use similar techniques to generalize Conjecture 1 to arbitrary
semi-simple Lie algebras. In Sect. 6.1 we discuss a curious relation between
immanants and the algebra generated by the coefficients of the Conway poly-
nomial, in Sect. 6.2 we sketch how the techniques of Sect. 4 can be used to
get a formula for the weight system of the colored Jones polynomial, and in
Sect. 6.3 we conjecture a generalization of Conjecture 1 beyond the realm of
Lie algebras.

As noted before, we actually prove a variation of Conjecture 1 in which
the normalizations are somewhat ‘better’ from the point of view of Sects. 2
and 5:

Theorem 1. Expanding J/d in powers of A =d — 1 and h,

Ja@.(K)(E") e
1(2) p — ‘Z>Objm(K))~]ﬁ , (3)
Jmz

we have:
(1) “Above diagonal” coefficients vanish: by,(K) =0 if j > m.
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(2) Up to a constant, “on diagonal” coefficients give the inverse of the
Alexander—Conway polynomial.

h
HIEYR) - Ly © gy ACKNE) =1, 4)

where JJ is defined by

JEYR) = 5 (KB

m=0

Claim 1.1. Conjecture 1 and Theorem 1 are equivalent.

Proof. Let b;, be the coefficients of the expansion of J/d in powers of d and
fi. It is clear that Theorem 1 restated with b](m replacing by, is equivalent to
the original Theorem 1. We have:

: - SOb AR
h edﬁ/2 — e—dﬁ/Z Z jm

The first factor in the right hand side of (5) is a power series in 7 alone in

which the coefficient of #° is 1, and thus it (or its inverse) cannot take below-

or on-diagonal terms to go above the diagonal, and it does not change the

coeflicients on the diagonal. The second factor lives entirely on the diagonal and

thus the first part of Conjecture 1 is equivalent to the first part of Theorem 1.
Restricted to the diagonal, (5) becomes

S ad" = =

J d J B e — =2 dh
[d] [d] d

S nd" " =y Ty X b "R

At d =1, we get
h

MM = o2 _ o—h/2

<A,
and it is clear that (1) and (4) are equivalent.

1.4. Rozansky’s work. Rozansky arrives at the MMR conjecture using the
path integral interpretation of the Jones polynomial given in Witten’s seminal
paper [Wi]. Needless to say, path integrals have not yet been mathematically
defined, but they can be used as a rich source of motivation. In our case they
do in fact lead to the correct conjecture, though our proof of the conjecture
is not a translation of the path integral argument to rigorous math, and we
don’t know how to translate the path integral argument into rigorous math.
For the convenience of the reader we outline Rozansky’s argument below. The
reader may find our account somewhat more readable than Rozansky’s [Rol],
as we have isolated the parts relevant to Conjecture 1 from his (much broader)
paper, and skipped some of the details. We heartily recommend consulting
with [Rol] (as well as [Ro2,Ro3]) for the missing details and for many other
related results.
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Let us recall Witten’s interpretation of the Jones polynomial. For a framed,
oriented knot K in S3, a choice ¥; of an irreducible SU(2) representation of
highest weight A and an integer k, Witten introduces the following definition:

Z(K, Vi3 k) = [ 24 SD0g . (4)
of

where the (ill defined) path integral is over the space .o/ of all SU(2) connec-
tions on the trivial SU(2) bundle over 3, CS : ./ — R/Z is the Chern—Simons

action
1

CS() = ¢,

Jtr(ANdA+3ANANA),
S3
and Ok y, : .o/ — R is the trace in the representation V; of the holonomy of
the connection 4 along the knot K.
Using non-rigorous quantum field theory reasoning, Witten computed

Z(K,V,;k) and found that

2 . T 2mi
Z(K, V3 k) = \/k+2 sin (k+2> Js12),v,(K) (CXP k—|-2) ,

where Jy2),v, is the framing dependent colored Jones polynomial.

Now take a rational number 0 < a < 1 (so that ka is a weight for many
large integers k). Following Rozansky [Rol], the path integral Z(K, Vi, k)
(for such k) can be split into an integral over connections on a tubular neigh-
borhood Tub(K) of the knot K and over connections on the complement
S3\Tub(K) with certain boundary conditions on the boundary 7% = d Tub(K),
followed by an integral over these boundary conditions. With the appropriate
boundary conditions of [EMSS], the integral over the connections on Tub(K)
can be restricted to an integral over flat connections, and on those it is propor-
tional to (I} — e*™*) independently of k, where I, is the holonomy along a
meridian of K in d Tub(K) and e*™ is considered in SU(2) in the usual way.
Therefore

ZKVisk)= [ 24D (6)
A[S3\Tub(K)]a

where the integral is over the connections on S*\Tub(K) with holonomy e
along any meridian of K. Here CS’ is a modified Chern—Simons action dictated
by the boundary conditions.

Rozansky now applies stationary phase approximation to calculate the large
k limit of Z(K, Vi4; k). The critical points of CS’ are the flat SU(2) connec-
tions on the knot complement with holonomy e>™ around a meridian. Modulo
gauge equivalence, the moduli space of such connections consists of only one
connection A4,, for sufficiently small values of a.

By the stationary phase approximation, the leading order term of the path
integral is proportional to

L (0(Ua)—h (4a

1 <4n2)2( (o)1 (40)) Vers(Aa) - o 2kCS"(4a)

V8r \ k
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where h/(4,) is the dimension of the j’th cohomology of S*\Tub(K) with
coefficients twisted by A,, and tzs(4,) is the SU(2) Ray-Singer torsion
of S*\Tub(K) twisted by A4,. Furthermore one can check that h'(4,) = 0,
h°(4,) =1, and CS’(4,) = 0. The Ray—Singer torsion splits into three factors,
one for each algebra component of SU(2). The torsion in the Cartan direction
is 1, and in the remaining two directions the torsions are equal, and each con-
tributes the square root of the U(1) C SU(2) torsion using the representation
of 7;(S*\Tub(K)) sending the meridian to ¢?™@ € U(1). Summarizing, we get

2 T 2mi 1 P 2mia
\/k n 5 sm(k +2>Jsl(2),Vka(K) (exp k —|—2)k:oo \/Zk ‘ERS(S \Tub(K),e ) .

Cheeger [Ch] and Miiller [Mii] proved that the Ray—Singer torsion is equal
to the Reidemeister torsion, which by Milnor [Mi] and Turaev [Tu] was shown
to be proportional to the inverse of the Alexander polynomial A(K) of K,
evaluated at e?™@. With the correct constant of proportionality (2 sinna) in
place and ignoring factors that converge to 1 as k — oo, we get

sin wa

T 2mi
g K — -
k 11(2), Vka( ) (exp k > k—o0 A(K)(eZma)

See [Rol, (2.8) and following paragraph] for an explanation why the J com-
puted here is ‘in zero framing’. Thus J =J and

. sinma
na b (K)2mi)"a’ k™" — o
ey O koo A(K)(e?)
This proves (on the level of rigor of path integrals) that by, = 0 if j —m > 0,
and, taking @ = /27 and disregarding all strictly positive powers of £, it also
proves Theorem 1 (on the same level of rigor).

2. A reduction to weight systems

Let us start with some generalities that (sometimes) allow us to deduce equality
of invariants from the equality of their weight systems. In this section, we
mostly interpret and adapt to our needs the deep results of Kassel [Kas] and
Le and Murakami [LM], who followed Kohno [Koh] and Drinfel’d [Drl1, Dr2].

2.1. Canonical Vassiliev invariants. A fundamental (and not too surprising)
result in the theory of Vassiliev invariants is that every degree m weight sys-
tem comes from a type m Vassiliev invariant, and that the resulting Vassiliev
invariant is well-defined up to Vassiliev invariants of lower types (see e.g.
[Kol] and [B-N2]); in other words, the sequence

0 — TV — TV — Gud™ — 0, (7)

is exact. The standard way of proving this fact is to construct a splitting
Vps: Gpd™ — F,0" for each m. These splittings can be assembled together
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in a unique way to form a wuniversal Vassiliev invariant Z with values in the
graded completion of .o/, satisfying

V(W) =WoZ (8)

for each degree m weight system W. In fact, usually Z is first constructed, and
only then the splittings V,, are defined from it via (8).

A-priori, there appears to be no knot theoretic reason to expect that there
would be a preferred choice for the splittings ¥,,, or, equivalently, for Z. How-
ever, rather surprisingly, it seems that such a preferred choice for Z does exist.
Indeed, for reasons discovered by Drinfel’d [Drl, Dr2] and elucidated further
by Kassel [Kas] and Le and Murakami [LM], many of the known construc-
tions [B-N3, Ca, Kas, Kol, LM] of a universal Vassiliev invariant give the same
(hard to compute but rather well behaved) answer.” Let us call this preferred
universal Vassiliev invariant ZX.

Definition 2.1. 4 Canonical type m Vassiliev invariant V' is a type m
Vassiliev invariant lying in the image of the splitting of (7) defined by ZX.
In a simpler language, let ZX be the projection of ZX into 4,,</". V is a
canonical type m Vassiliev invariant iff

V =Wu(V)oZX.

Definition 2.2. Let i be a formal parameter. A Vassiliev power series is an
element
Ve (Fn?7)h™.
m=0

That is to say, it is a power series V = Vy+ Nh+... in which the coefficient
Vo of B is a Vassiliev invariant of type m. The weight system W(V) of V
will be the sum of the weight systems of the coefficients of V (which makes
sense in the graded completion W of W"):

Wy =3 Wo(V) € 7.

m=0

Definition 2.3. 4 Vassiliev power series V =Y V,,i" is called canonical if
each of its coefficients V,, is canonical. Equivalently, if B9 is the operator

that multiplies every degree m diagram by #" and Z;fdéfhdeg o ZX, then V is
canonical iff
V=W(UV)oZX.

Obviously, two canonical Vassiliev power series (or canonical Vassiliev
invariants) are equal iff their weight systems are equal. Sometimes, as is the
case in this paper, it is easier to verify equality of weight systems and then

2[B-N2, Pi2] differ only by a normalization, and the incomplete perturbative Chern—Simons con-
structions [AS1, AS2,B-N1,Ko2] are conjectured to also give the same answer.
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use it to deduce the equality of the corresponding canonical invariants rather
than proving the equality of the invariants directly.

2.2. Examples of canonical Vassiliev power series. In this section we will
establish, through a sequence of examples, that the invariants appearing in
Theorem 1 are canonical.

Example 2.4. The type 0 invariant 1, whose value on all knots (having no dou-
ble points) is 1, is both a canonical type 0 Vassiliev invariant and a canonical
Vassiliev power series. Its weight system ¢ is defined by

is the empty diagram) ,

—

«(D) — { 1 if deg? =0 (namely, if D =
0 otherwise .

Kassel [Kas, Theorem 8.3, Chapter XX] and Le and Murakami [LM, The-
orem 10], using the techniques of Kohno [Koh] and Drinfel’d [Drl, Dr2], have
shown that the Reshetikhin—Turaev [RT] invariant associated with a semi-
simple Lie algebra g and a representation /' (and a metric ¢ on g) is a canonical
Vassiliev power series when evaluated at ¢ = " and expanded in powers of
.3 (Both the framed version Jo,v and unframed version J o7 are canonical; for
the framed version, .o/ has to replace .&/” in the definitions of this section. For
the unframed version (at least when V' is irreducible), simply notice that it can
always be obtained from the framed version by multiplying the Lie algebra by
an Abelian Lie algebra). We will use this crucial result twice, in Example 2.5
and in Example 2.6.

Example 2.5. By [Kas, LM], the invariant jsz(z), ;, of Conjecture 1 is a canonical
Vassiliev power series, and hence the invariants 4;,, of Theorem 1 are canonical
of type m, and JJ is a canonical Vassiliev power series. The invariants a;, and
MM are not canonical as [d] depends on #.

Example 2.6. The HOMFLY polynomial, defined by the relations

eNﬁ/2H<X> ey </'\/'> = ("= ") H <‘> <’> ’

c
NH2 _ eNh/Z)
9

H (c-component unlink) = ( o2 _ o—h2

is a canonical Vassiliev power series, as it is the Reshetikhin—Turaev invariant
associated with the Lie algebra s/(N) in its defining representation.

Example 2.7. Divide the HOMFLY polynomial by N and take the limit N — 0.
The limit exists because the limit

eNh2 _ o=NB/2

li =
nglo N h

3Thus they gave an affirmative answer to problem 4.9 of [B-N2].
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exists. The result is a canonical Vassiliev power series C satisfying

(<)o) ()()

h .
> fe=1
C (c-component unlink) = { a2 etz €

0 otherwise .

©)

Recall that the Conway polynomial C [Co, Kau] (considered as a polynomial
in #i) is defined by the relations:

e (X) #c(X)-c(X)=100)-

. 1 ife=1
C (c-component unlink) = { e )
0 otherwise .
Comparing (9) and (10), we see that the Conway polynomial itself is not a
canonical Vassiliev power series, but its renormalized reparametrized version
B2 _

~ h h/2 —h/2
C(h):e e_h/ZC(e/ —e M2

is a canonical Vassiliev power series.

Example 2.8. The Alexander polynomial, defined by 4(z) = C(z'? — z71/?),
is not a canonical Vassiliev power series, but it becomes canonical when mul-
tiplied by eh/z_hefh , and evaluated at z = e" (as this product is C).

2.3. Products. The product (in the natural sense) of two Vassiliev power series
is a Vassiliev power series, and the weight system of such a product is the
product of the weight systems of the factors.

Proposition 2.9. The product of any two canonical Vassiliev power series is
a canonical Vassiliev power series.

Proof. 1t can be shown that the universal Vassiliev invariant ZX is ‘group-like’;
it satisfies AZK(K ) = ZK(K ) ® ZK(K ) for any knot K. This property is an
immediate consequence of the Kontsevich integral formula for ZX described in
[Kol, B-N2]*. Now, if ¥}, are canonical, then

(W 15) 0 Z)(K)
= (W(Vl)W(Vz))(Zg(K)) [B-N2, exercise 3.10]
= (W) @ W(H)AZE(K)) /" is a Hopf algebra

= (W(H) @ W(H)NZy(K) ® Zy(K))  ZX is group-like
= (W) 0 ZE)K )W (V3) 0 Zi)(K)
= M(K)A(K)

and thus V] - /5 is also canonical.

4A similar but different statement is [LM, Theorem 4].
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It follows from Examples 2.4,2.5, and 2.8 and from Proposition 2.9 that
both sides of equation (4) are canonical Vassiliev power series, and thus it is
enough to prove (4) (as well as the vanishing of &, for j > m) on the level
of weight systems. That is, we need to show that

Wy We=e, (11)

where 1, is the weight system of JJ, W, is the weight system of C (which
is equal to the weight system of C), and ¢ is as in Example 2.4.

3. The Conway polynomial

3.1. The Conway weight system. The defining relations (10) of C, become
the following relations on the level of W¢:

) o ‘ . oy )1 ife=0
We (ﬂ) =We (ﬂ) and  We (e cycles) = {() otherwise.

In other words, to compute W of a given chord diagram D, “thicken” all chords
in D into bands, and count the number of cycles in the resulting diagram; if
it is greater than 0, Wg(D) is 0, and otherwise it is 1. For example,

QdZEfQA — Q — 1 cycle — 0,
¢ TN, — TR, et

These two examples can be combined as in the following definition:

Definition 3.1. An (m;,my)-caravan or simply a caravan is the chord diagram
0™ X™ made of my single-hump-camels and m, double-hump-camels, as in
Fig. 4. It is a chord diagram of degree m = my + 2my.

Proposition 3.2.
1 lf my = 0

We(an(my, my)-caravan) = { i
0 otherwise.

3.2. The 2T relation. 1t is clear that W, is invariant under the “27” or “slide”
relations shown in Fig.5. Indeed, after thickening the chords / and r, it is clear

Fig.4. An (m;,m,)-caravan.
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27" W(ﬂem >=W<[ mu)
27" - u(ﬂrf\ >=W<... >

Fig.5. The 27 relations. In these figures, ellipsis denote possible other chords, while a ‘no-
entry’ sign (©) means that no chords can end in the corresponding interval. For definiteness,
we drew the ‘far’ end of the chord / left of the chord r, but it can be anywhere else in the
diagram.

Fig. 6. Deriving the relation 27’ by sliding / over r.

l

that it is possible to ‘slide’ / over r as in Fig. 6 without changing the topology
of the resulting diagram.

Let 9,2 be the set of all chord diagrams of degree m. The following
theorem® is a characterization of the Conway weight system:

Theorem 2. If a map W : 9,9 — Z satisfies the 2T relations and the
same ‘initial condition’ as in proposition 3.2, then it is the Conway weight
system We.

Proof. 1t is enough to show that modulo 27 relations, every chord diagram D
is equivalent to a caravan. If D has a pair of intersecting chords r; and 7,
thicken both of them and slide all other chords out and to the left as in Fig. 7.
The result is that a double-hump-camel (an X diagram) is factored out. Use
induction to simplify the rest. If D has no pairs of intersecting chords, than it
must have a ‘small’ chord r, a chord whose endpoints are not separated by the
endpoints of any other chords. Thicken r, and slide all other chords over it and
to the left. The result is that a single-hump-camel (a 0 diagram) is factored
out. Again, use induction to simplify the rest.

Fig.7. Factoring out a double-hump-camel. Slide all other chords out following the path
marked by a dotted line.

SP.M. Melvin commented that this is simply the classification theorem for surfaces presented as
‘a box with handles’.



On the Melvin—Morton—Rozansky conjecture 115

Exercise 3.3. Show that the space of maps W : 4,2 — Z satisfying the
2T relations is spanned by the coefficients of various powers of N in D —
Wyinvy i, (D), where Wiy, (D) is the weight assigned to D using the Lie
algebra g/(N) in its defining representation Vy as in Sect. 4.1 below. Show
that such a map that also satisfies the framing independence relations has to
be proportional to M.

3.3. The intersection graph and the intersection matrix. In this section, we
will use Theorem 2 to find a determinant formula for W .

Definition 3.4 (See also [CDL1,CDL2,CDL3]). Let D be a degree m chord
diagram. The labeled intersection graph LIG(D) of D will be the graph whose
vertices are the chords of D, numbered from 1 to m by the order in which they
appear along the ‘base line’ of D from left to right, and in which two vertices
are connected by an edge iff the corresponding two chords in D intersect. The
intersection matrix IM(D) of D is the anti-symmetric variant of the m X m
adjacency matrix of LIG(D) defined by

sign(i — /) if chords i and j of D intersect (where chords
IM(D);; = £ J of D are numbered from left to right),

0 otherwise.
Example 3.5.
s A 0 -1 -1 0
B U a1 00 -1
D—m, LIG(D) = Dz, M) =| | o o
0 1 1 0

Example 3.6. The labeled intersection graph of an (my,m;)-caravan is the dis-
connected union of m; single vertices and m, graphs like e—-e. Its intersection
matrix is block diagonal, with the blocks on the diagonal being m; copies of

the 1 x 1 zero matrix and m, copies of the matrix (‘1) Bl ).

Exercise 3.7. Show that if the labeled intersection graph of a chord diagram is
connected, then the diagram is determined by its intersection matrix. Deduce
that in general the intersection matrix determines the class of diagram modulo
4T relations.

Hint 3.8. Start from a connected labeled intersection graph of a chord dia-
gram, remove one vertex so that the resulting graph is still connected (this is
possible!), use induction, and show that there is a unique way to re-install the
missing chord.

In the light of the above exercise, it is not surprising that one can find
a formula for the weight system of the Conway polynomial in terms of the
intersection matrix, as found in the theorem below. A mild generalization of
this theorem is in Sect. 6.1. Even though the exercise suggests it should be
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possible, we have not been able to find nice formulae for other weight systems
(beyond those of Sect. 6.1) in terms of the intersection matrix.

Theorem 3. For any chord diagram D,
We(D) = det IM(D)

Proof. Let W : 9,2 — Z be defined by W(D) = detIM(D). By Theorem 2,
it is enough to prove that W satisfies the 27 relations and the initial conditions
of Proposition 3.2. The latter fact is trivial; simply compute the determinant of
the block diagonal matrix in Example 3.6. Let us now prove that W satisfies
the 27T relations. First, notice that /¥ is ‘independent of the basepoint of D’.
That is, if the diagram D, is obtained from the diagram D; by moving the
left-most vertex of D; to the right end,

D= /TN .. D= N\

1 J+1 J

then W (D;) = W(D,). Indeed, except for the labeling the intersection graphs of
D, and D, are the same, and so IM(D;,) is obtained from IM(D;) by reversing
all the signs in the first row of IM(D;), re-installing it as row number ;j for
some j, and then doing exactly the same to the first column of IM(D;). The
effect of the row operations is to multiply det IM(D;) by some sign, and then
the column operations multiply by the same sign once again. The end result is
that det IM(D;) = detIM(D,), as required.

By repeating the above process a few times, we may assume that the chord
[ in the 27" relation is chord number 1, and so we need to prove that W (D) =
W(D,) where Dj(D,) is the diagram obtained by ignoring /(/;) in the
figure

In this figure, it is clear that any other chord can intersect either none of
the chords /;,/; and r, or exactly two of them. Using this and some case-
checking, it is clear that IM(D;) is obtained from IM(D;) by adding its jth
rows to its first row, and then doing the same column operation. Therefore
detIM(D;) = detIM(D,), as required. The same argument also proves the
27" relation.

In the following two exercises, we outline two alternative proofs of
Theorem 3:

Exercise 3.9. (Melvin) Let F be the surface obtained by thickening a chord
diagram D (that is, thicken all chords and the base line), and let 0F be its
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boundary. We(D) = 1 if Hy(0F) = Z, and otherwise, W¢(D) = 0. Now con-
sider the following long exact sequence:

H(F) 25 H(F,0F) —%  Hy0F) -* HyF) = Z — 0

[ ()
HY(F)
We are interested in knowing when Hy(0F) = Z, which is when py is an
epimorphism, which is when y o py is an epimorphism. Show that in the
basis suggested by the chords of D, y o px is given by the matrix IM(D),
and use this to deduce Theorem 3. (We wish to thank C. Kassel for re-
minding us that the determinant of an anti-symmetric matrix is always non-
negative).

Exercise 3.10. Deduce theorem 3 from the fact (see e.g. [Kau, Chapter 7]) that
the Alexander polynomial of a knot K is given by det(z='0 —z0"), where 0 is
Seifert pairing matrix for some Seifert surface for K, and 67 is its transpose.

Hint 3.11. First, take the ‘pre-Seifert surface’ of a specific singular embedding

of a chord diagram as in:
/D enlarged
below

(78 7\ —

Then resolve all the double points to overcrossings and undercrossings, while
extending the ‘pre-Seifert surface’ to a Seifert surface as in:

It is now easy to compute the 2m x 2m Seifert pairing matrices of the resulting
surfaces in terms of the m x m intersection matrix of the original chord diagram
and the over/under choices at the double points.

3.4. The logarithm of the Conway weight system. Expanding detIM(D) as
a sum over permutations, we only need to consider those permutations of
chords(D) which map any chord to a different chord intersecting it. Such
permutations can be considered as ‘walks’ on LIG(D). Let us introduce the
relevant terminology:

Definition 3.12. 4 Hamilton cycle in LIG(D) is a directed cycle H of length
> 1 in LIG(D) containing no repeated vertices. For example, the graph in
example 3.5 has two Hamilton cycles of length 4, four of length 2, and none
of any other length. The descent d(H) of a Hamilton cycle H is the number
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of label-decreases along the cycle. For example, the cycle 1 — 2 — 45351
in Example 3.5 has descent 2, corresponding to the two stared label-decreases.
A cycle decompositions H = wH, is a cover of the vertex set of LIG(D) by
a collection of unordered disjoint Hamilton cycle, and the descent d(H) of H
is defined by d(H) =>_d(H,).

Expanding detIM(D), and taking account of signs, we find that

We(D)= > (=) (=", (12)
H=Uy,H,
where oy is the permutation of the vertices of LIG(D) underlying H. Notice
that if H contains a cycle of odd length, then (—1)Y) is odd under reversing
the orientation of that cycle, while (—1)°% does not change under that opera-
tion. Therefore, summation can be restricted to cycle decompositions containing
no odd cycles. For such cycle decompositions, (—1)% = (—1)!, where |H |
is the number of cycles in A, and thus

We(D)= Y (—=DHI(—1y/ (13)

H=JyHy

Recall (see. e.g. [B-N2]) that the algebra structure on weight systems is
defined by
(W - W) D)= > Wi(Dy) - Wa(D2). (14)
7D, U,
Using the power series expansion of the exponential function, we find that

(exp W)(D) = > 11w,

unordered splittings o
D=UDy

and if W depends on D only through LIG(D), we find
(exp W)(D) = > [TW(G,).

unordered splittings o
LIG D=WGy,

using the obvious definition for a splitting of a labeled graph.
Proposition 3.13.
(log We)(D) = =3 (=)™,
H
where the sum extends over all Hamilton cycles H covering all the vertices

of LIG(D) (i.e., all cycle decompositions into a single cycle).

Proof. Simply exponentiate both sides of this equation and use the discussion
in the preceeding paragraph to recover (13).

4. Understanding W),

The purpose of this section is to understand #;, the weight system underlying
the invariant JJ. The invariant JJ, as defined in the statement of Theorem 1,
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has to do with the Lie algebra s/(2). So let us start by recalling the relation
between Lie algebras and weight systems.

4.1. Lie algebras and weight systems. Let g be a Lie algebra over some ground
field F, let ¢+ be a metric (ad-invariant symmetric non-degenerate quadratic
form) on g, and let V' be a representation of g. Given this information,
one can construct a weight system [B-N1,B-N2]. Let us recall how this is
done. 4

Choose some basis {ga}g':mlg of g. Let () be the matrix corresponding to
the metric ¢ in the basis {g,}; that is, #b = #(g4,5). Let the matrix (¢*°) be
the inverse of the matrix (#,), and let B € (V*@V)Q(V*®@V) =End(V ®@ V)
be given by

dim g
B=%%¢&®%.

We will represent B symbolically by the diagram

s LN

N S (15)

With this notation for B, one can view a chord diagram of degree m as a recipe
for how to contract m copies of B and get a tensor 7 (D) € End V. This is
best explained by an example; see Fig. 8.

One can show (see [B-N1,B-N2]) that the resulting tensor 7 (D) is inde-
pendent of the choice of the basis of g (indeed, already B is independent of
that choice), is an intertwinner, and that the map D — tr .7 (D) satisfies the 4T
relation, and hence it descends to a map W,y : o/ — F (the metric ¢ is usually
suppressed from the notation). If V' is an irreducible representation and C is
its quadratic Casimir number (the ratio W ,(_o, )/W ,(—,)), one can define

Moy = Wooua) v »

where V = V' ® \/—C and v/—C denotes the 1-dimensional representation of the
1-dimensional Lie algebra u(1), in which the unit norm generator acts by
multiplication by /—C. Notice that the representations ¥ and V are in the same
vector space, and that Wg,V(D) can be computed using the same procedure as
in Fig. 8, only everywhere replacing B by B, where B=B—C - I.

m
1% Vv v |V v |V v

Fig.8. The construction of 7 (D). The B components are as in (15), and pairs of spaces
surrounded by a box should be contracted. The two un-boxed spaces are ¥* and ¥, and
thus the result is a tensor in ¥* @ V' = End V.
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Recall from Sect.2.2 that Jg y(q) is the (framing dependent) Reshetikhin—
Turaev knot invariant associated with the algebra g and the representation V'
(and the metric ¢), and that (when ¥ is irreducible) fg,V(q) = g~ Crwrithe, Jov(q)
is its framing independent version. Consider both invariants as Vassiliev power

series in the formal parameter % by substituting g = €”.

Proposition 4.1. The weight system (in the sense of Definition 2.2) of Jy v is
Wsv and (when V is irreducible) the weight system of Jq y is Wq y.

Proof. The framing dependent part is in [Pil]; it follows easily from the
relation R — (R*')™! = AB + o(h) satisfied by the quantum Yang—Baxter
matrix R. The framing independent part follows from the fact [B-N2, Exercise
6.33] that the weight system corresponding to a direct sum of Lie algebras (and
tensor products of representations) is the product of the weight systems of the
algebras (and representations) involved, and from a direct (and very simple)
analysis of the weight system of exp(—#AC - writhe) and of the weight system
W, 1),v—c (see [B-N2, Exercise 6.34]).

Let us now switch from general consideration to the particular case of
g=ysl(2) and V = V,.

4.2. Understanding B. In one of the standard models® of the representation V),
it is spanned by vectors vy, ..., 1;, satisfying

U = ()v — 2k)l)k .

yor = (k+ Dvgy, and xvp =(A—k+ Doy,

i=(o %) w= (0 o) maa=(V0) o

is the standard basis of s/(2). Using the standard scalar product on s/(2)
(M1, M) = tr(MM>)), we have ) (h,h) = (x,y) = (y,x) = 1, with all other
scalar products between /,x, and y vanishing.

Therefore,

where

B=y®x+x®@y+ h@h—-C- 1,

where C, the quadratic Casimir number of ¥}, is given by C = A(1+2)/2 (see
e.g. [Hu, Exercise 4 in Sect. 23]).

®Here and later in this paper, we follow the notation of [Hu] for Lie algebras and their
representations.
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By an explicit computation, we find that
B(uk @ vpr) = (k+ 1)(A— K + Dogys @ vpr—y
+(A—k+ 1)(k/ + Dok—1 @ vpr oy
+ 22 = 2k)( = 2k") = 20+ 2)) v ® vy (17)
= (B" +B™ +1)(vf ® vpr) + (terms of degree 0 in A1),  (18)

where
BT = (~1)B/; B (k @vp) = —(k 4+ Dvgye @ vy,
e=0,1
and
B~ = Y (-1)B;; B (s @)= —(k" + Dvj—; @ vpr 4, -
e=0,1

Proof of part 1 of Theorem 1. Recall that B = B(2) depends on .. We wish
to study this A dependence. The different B(1)’s lie in different spaces, but this
is not a serious problem: Let V., be the vector space spanned by infinitely
many basis vectors {v;}7°,, and extend B(J) for all A to be elements of
End (Voo @ Vao) using the explicit formula (17). For a chord diagram D,
T (D) € End (Vs ) can be constructed as before as in Fig. 8 (no infinite sums
occur!), and when restricted to V,, the new definition generalizes the old one.

Now that the different B(1)’s can be compared, equation (18) shows that
B(J) is at most linear in A and thus 7 (D) is at most of degree m in A, where
m = deg D. Taking the trace of an intertwinner (back again in ¥;!) multiplies
by A+ 1, the dimension of V,, and that factor is canceled by the denominator
in (3). Finally, by the general considerations of Sect. 2, the result on the level
of knot invariants follows from the level of weight systems.

4.3. Understanding Wjy. Clearly, in computing W,;(D) for some degree m
chord diagram D, it is enough to consider B™ + B~ + I, the coefficient of
/. in B. So let T(D) be the operator constructed as in Fig. 8, only with B*
+B~ +1 replacing B. As 7 (D) is an intertwinner, 7 (D) = Wj;(D)I. Similarly,
let 7/(D) be the same, only with B¥ + B~ replacing B, and let W};(D)I satisfy
T'(D) = Wj(D)I. 1t is easy to verify that W, = W}, - W), where the product
is taken using the coproduct on .o/ (the space spanned by chord diagrams),
and W, € .o/* satisfies Wi(D) = 1 for any chord diagram D.

Let D be a degree m chord diagram, and let (C, ), be the chords of D,
numbered from left to right as in definition 3.4. We are interested in computing
T(D)vkqy, or, almost equivalently, T'(D)uvy1), for some non-negative integer
k(1). Looking again at Fig. 8 and at (18), we see that T'(D)uvy) can be
computed as follows:

e Sum over the 4™ possible ways of marking the chords (C,)’, of D by
signs s(y) € {+,—} and numbers &(y) € {0, 1}, corresponding to the choice
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between {B],B{,B,,B; }. Take the term marked by (s,¢) with a sign
Hy(_l)sm’)_

e For each fixed choice of (s,¢), add a term determined as follows: Set
k = k(1). ‘Feed’ the marked diagram D'#) with the vector v on the left, and
push it right passing it through the vertices of D. Each vertex corresponds to
some simple operation, dictated by the marking on the chord C, connected
to it. The operation is to add or subtract &(y) to k, and to multiply by either
1 or —(k + 1), using the current value of £ for the multiplication. The end
result, as read at the right end of D), is proportional to the original vj();
our term is the corresponding constant of proportionality.

To make the above algorithm more precise and write the result in a closed
form, we need to make some definitions. First, number the vertices of D from
left to right, beginning with 1 and ending with 2m. Let zjr (;) be the number
of the left (right) end of the chord C,, and let the domain of C, be

_ .+ o— _ . .ot . —
domC, = (i, ,iy ]={ie N:i] <i<i/}.

Let k(i) be the value of k before passing the i’th vertex. It is easy to check
that
k@) =k + > s(ey) .

{y:iedom C;}

Our notation is summarized by the following example:
C, :s(1), (1) G, :s(2), ¢(2) C; :5(3), ¢(3)

o+
I

70 K2 K3y k@) %) i(6)

Using this notation, the algorithm becomes the following formula:

WDy = (1" ¥ IL =D+ k(@)
se{+—}" y=1
ec{0,1}m
Define the ‘difference’ operators d/0&(y) on polynomials P in the variables &(y),
y=1,...,m by
6P

— Plyrey — Plyono - 20
5(7) lsy=1 — Plez)=0 (20)

With this definition,

"o
W' D) = (—1)"
y(D) = (—1) SEE_},,,(}_[] 58(?))

« <ﬁ (1 N NS s(5)8(5)>)

=1 {5:1‘,‘f(~")€dom Cs}
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Notice that in the above formula we take the m’th partial difference (with
respect to &(1),..., &(m)) of a polynomial of degree at most m in these vari-
ables. By an easy to prove partial difference analog of Taylor’s theorem, the
result is the coefficient of ¢(1)---&(m) in

Iy ﬁ(1+k(1>+ 5 s(é)e(5>).

se{t—}m =1 {6:i3" edom C5}

As only one &) can be picked up from any factor in the product over
y = 1,...,m, this coeflicient is the (properly signed) number of choices of
an ¢(0) for each of these 7’s, or, in other words,

WD) = (1" X > 1 s(4()) -

SEEI" fAESu: vy il edom Gy} 7!

The condition in the summation over the permutation 4 can be made a little
stronger. Notice that if for a given y both i € dom Cy(;) and i, € dom Cy)
(that is, both ends of the chord C, are within the domain of the chord 4(y)),
then the terms with s(y) = (4) cancel the terms with s(y) = (—) in the above
sum, and thus summation can be restricted to the cases where this does not
happen. In these cases, for each A there is a unique choice for the s(y)’s for
which ¥y i;") € dom Cy(). Denote this choice by s(4,7) and get

WD) > IT (—s(4.9)).

{4€Sn:Vy C) intersects or equals Cy(,)} 7=1

Finally, if y = A(y), then necessarily s(y) = (4) and thus s(4,y) = (+).
This means that the possibility ‘C, equals Cy,)’ can be removed from the
above equation by multiplying it by W;. Thus,

m

Wiy (D) = > [1 (=s(4,7)).

{4€S8y:¥y C, intersects CA(},)} y=1

A moment’s reflection shows that this formula proves the following propo-
sition:
Proposition 4.2. Wj;(D) is the permanent per IM(D) of the intersection matrix
IM(D) of D. (Recall that the permanent of a matrix is defined as a sum over

permutations in exactly the same way as the determinant, only without the
signs).

4.4. The logarithm of the JJ weight system

Proposition 4.3.

(log Wy )(D) = ;(*1)[“’” )

where the sum extends over all cycle decompositions of LIG(D) into a single
cycle.
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Proof. Expand per IM(D) as a sum over permutations just as in (12), and get

WyD)= > (1.

H=UyHy
Now take the logarithm as in Proposition 3.13.

Comparing this with proposition 3.13, we find that log W¢ + log W; = 0,
proving equation (11) and concluding the proof of the Melvin—Morton—
Rozansky conjecture.

5. The MMR conjecture for general semi-simple Lie algebras

Let J = jg,V)(K ) € Q(g) be the framing-independent Reshetikhin—Turaev
invariant of the knot K for the semi-simple Lie algebra g and the irreducible
representation J; of g of highest weight 4. (The metric on g will be the Killing
form (-, -)). In this section we will prove an analog of Theorem 1 (and thus
of Conjecture 1) for J.

Choose a Cartan subalgebra [) of g, denote by @ the set of all roots of g in
b*, and by @* the set of all positive roots. Let (-, -) also denote the scalar
product on h* induced by the Killing form.

The following theorem is suggested by the same reasoning as in Sect. 1.4,
only replacing SU(2) by g. The main difference is that tzs(4,) splits into a
product of dim g Abelian torsions, rather than just 3. The torsions along the
Cartan directions are still 1, while those along the negative roots pair with those
along the positive roots to give a product of Alexander polynomials (appearing
under the alias C, discussed in Examples 2.7 and 2.8):

Theorem 4. (Proven in Sects.5.1-5.4). Regarding J(K)(")/dim V; as a power
series in i whose coefficients are polynomials in 1, we have:

(1) The coefficient J,, of k" is of degree at most m in 1.

(2) If JJy is the power series in h whose degree m coefficient is the
homogeneous degree m piece of J,, then

JI(K)R) - [] CK)(Aayh)=1. 21)
aedt
(Since on a simple Lie algebra every invariant scalar product is a multiple
of the Killing form and the left-hand-side of (21) is clearly multiplicative
under taking the direct sum of Lie algebras, it follows that (21) still holds
when (-, -) is replaced by an arbitrary invariant scalar product on g, in both
the C part of the equation and in the definition of J.)
As in Sect. 2, it is enough to prove Theorem 4 on the level of weight
systems. Furthermore, in the light of Theorem 1, in order to prove (21) it is
enough to prove that

Wie= 11 Wyo (do)*e, (22)

ac Pt

where (4,0)% is defined as in Definition 2.3.
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5.1. Lie-algebraic preliminaries. Let ¢ = b @ (D,col,) be the root space
decomposition of g. Recall (e.g. [Hu]) that [) is orthogonal to all the L,’s, that
L, is orthogonal to Ly unless a+f = 0 and that one can find x, € L,, y, € L_,,
for all o € @ so that

Setting 4, = [xy, V4], the triple {x,, v4, A} spans a subalgebra of g iso-

morphic to s/(2) via the map (x,, vy, 4y) — (x, y,h), where {x, y,h} are
as in (16). (23)
(X0 V) = 2/ {0, 00) . (24)
For any A € h* and « € @ C b*, one has A(h,) = 2(Z,a)/(2%,a).  (25)

An additional property worth recalling is
For any o, € @,[Ly,Lg] C Lyip . (26)

Choose a total ordering < of @ for which o, § < a+f§ for any o, f € O,
(For example, you can order the roots by the lengths of their projections on
some generic vector in the fundamental Weyl chamber). Let vy € ¥ be a high-
est weight vector; that is, a vector satisfying hvy = A(h)vy for all & € [) and
xy09 = 0 for all @ € @F. Let Z,®% = {3, ksl : Vo ky € Z} be the
semi-group of formal linear combinations of symbols &, one for each o € @F,
with non-negative integer coefficients. Define a map {-} : Z,®" — b*
by {d k,d} = > k,o. Order Z,®" lexicographically, that is, declare that
Do kaot < 3 kg iff for some kg < kj and k, = k; for all « < f. For any

keZ o, set
i
w={ 11 7, ). 27)
ac@pt Mo

where the k,’s are the coefficients of k& and the product is taken using a
decreasing order for the y,’s, so that, for example, if « > f§, then

k
k B
Yo Vg

) 28

Ok ky! keg! % (28)

The action of g on J; is given by the following

Lemma 5.1. With the notation as above we have that

ho = (A —{k})(h)vi (29)
Yalk = (ky + Deyg + - Y- ci(onk, j)v; (30)
JEL L bt
J>k+da
YoV = (hoyor—gs+ > clbokj+0(1), (31)
o, 01) JEL, ot
J>k—da

where ¢ does not depend on A, c; is linear in 1, and here and in the next
few paragraphs O(1) means terms independent of .
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The importance of the precise form of the ‘remainder terms’ in the above
lemma will be better understood after reading the proof of Lemma 5.2. We
therefore postpone the proof of Lemma 5.1 to Sect. 5.4.

5.2. Understanding B. As in Sect. 4, the key to understanding Wjq is to first
understand B € End(V,l ® Ia), where V, = 1} @ v/—C and v/—C denotes the
1-dimensional representation of the 1-dimensional Lie algebra u(1), in which
the unit norm generator acts by multiplication by v/—C, and C is the quadratic
Casimir number of V.
Let {h;}/_, be the arbitrary (-, - )-orthonormal basis of I). Using (24), we
find that
(o, 0r) r
2 (xoc®ya+yoc®xa)+zhi®hi_c - 1.

i=1

b= ¥
aePt

Since the quadratic Casimir number C of the representation V; is (4 + 2p, 1),
where p = 1/2%° _,+ o is half the sum of the positive roots [Hu, Exercise 4
in Sect. 23], we also have that

4
(Zhi@)hi_c) Uk & Uyr

i=
=((A—{kHA—{ENN O h@h)—C)yy @vr by Lemma 5.1
=((A—={khLA—={k'}) — (LA +2p))op @ vpr by Pythagoras’ Theorem
=—(A2p+{k} + {k'}) v @ op + O(1)

== > (L)1 +ky + ky)op @ vpr + O(1) expanding p, {k},{k'} .

aEPT

Using the above formula and Lemma 5.1 we get that

B= 3 (Lo)(By +B, +1)+ Bres + O(1) (32)

aedt

where
B (i @ vp) = —(ky + 1) (= 1)’ Vktog ® O/ g
e=0,1

By (e @vp) = —(ky+1) 30 (1) 0k—ez @ Upr43

e=0,1
!
Beest(tr @vp) = >, cs(AhK,j,j v @uv,
Jj' €L ot
JHi > ki

and where c3 (which is a simple combination of c; ;) is linear in A.
Since B is at most linear in A we conclude the first part of Theorem 4 as
in Sect. 4.2.

5.3. Understanding Wj; .. Reading Sect. 4.3 once again and looking at Fig. 8,
we see that W), ,(D) is a certain summation over all the possible ways of
labeling the chords of D by I, B),B;, or Bies.

oo



On the Melvin—Morton—Rozansky conjecture 127

Lemma 5.2. In the summation making Wy 4(D), terms containing a chord
labeled by Byt can be ignored.

Proof. This statement is best proven by an example. Let k(i) be the value of
k before passing the i’s vertex of D, as in (19) (but notice that now k(i) is in
7, @7 rather than in Z,). Similarly, let £(7) be the value of k after passing
the sixth vertex (assuming, for the sake for this example, that D is the diagram
in (19)). As 7 (D) is an intertwinner, it has to be a multiple of the identity
and thus £(7) = k(1). On the other hand, by (32) (and remembering that in as
much as Wy, is concerned, we need not care about the O(1) term), we find
that

k(1) +k(3) = k(2) + k(4),

k(2) + k(5) = k(3) + k(6) ,

k(4) 4+ k(6) = k(5)+ k(7).
Adding these inequalities, we get k(1) = k(7), and this inequality becomes
strict if any of the previous ones is strict. As we know that k(1) = k(7) cannot
be strict, we learn that none of the previous ones is, and thus we can ignore
Brest (as it would correspond to a strict inequality).

Therefore, in computing W, 4(D), it is enough to consider

S (Ja)Bf +B, +1). (33)

aEPT

Nicely enough, the different summands in (33) are ‘decoupled’. For each o, B
cares only about the o components of the k(i)’s, and changes only these com-
ponents. This amounts to saying that W}, , is the product of the weight systems
corresponding to the different summands. Comparing the definition of B with
the definition of B in Sect. 4, we find that we’ve proven (22) and hence
we’ve proven Theorem 4.

5.4. Proof of Lemma 5.1. (29) is just the well known statement that the

Vy’s act as ‘lowering operators’. To prove (30), let us compute y“H/f( y;ﬁ Jkg!)
(using the same convention as in (28) for the ordering of products). To bring
this expression to the form of (27), we need to commute y, to its place, next
to the term y*/k,!. This done, the result is

o+1

Ky k

Ya Vo

.. | o
% KD 4

explaining the first term in (30). However, en route to its place, we needed to
commute ), with various yg’s for which § > «. By (26) and the choice of
the order <, such commutators are proportional to y,’s with even bigger y’s,
explaining the remainder term in (30). To be fair, the resulting y,’s also need
to be taken to their respective places, at the cost of some more commutators
proportional to even bigger ys’s, but that doesn’t disturb (30). A complete
argument can be given using the PBW theorem for the subalgebra of g gener-
ated by {yp: f > o}, but we don’t feel this is necessary.



128 D. Bar-Natan, S. Garoufalidis

The proof of (31) is a little harder, but goes along similar lines. Consider

an expression like xxl_[ﬁ( yzﬂ /kg!). Commuting x,, all the way to the right, we
get a product that kills the highest weight vector vy. Along the way, we pick
up three kinds of commutators:

(1) First, we pick some [x,, yg]’s, with f > a. By (26), if f > o, [x,, 4]
is proportional to some y,, resulting in terms which are products of y’s, and
thus they fall into the third summand of (31), O(1).

(2) We then pick the term containing [x,, y**], which, using (23), gives

yk’* 1 [k yk"
B X il ky—i B
g kgl k! (,._1 Yo Mot ) kg!

p<a

By (29), applied to vy this is A(hy)vp_z + O(1), and by (25), this is

<a’2a> (Aoyue—z + O(1) ,
explaining the first term in (31).

(3) Finally, we get terms containing [x,, yg]’s, with f < a. By (26), if
B <o, [xy, yp] is proportional to some x, with y < a. Such x, are pushed to the
right recursively using the same procedure we’ve used so far, at the cost of
(at most) terms independent of A and terms linear in A, as in case (2) above,
but with v;_; (or v,_; for even smaller ¢) replacing vx_g. Such terms fall into
the middle term of (31).

6. Odds and ends

6.1. Immanants and the Conway polynomial. Theorem 3 and Proposition 4.2
show (in particular) that both the map D +— det IM(D) and the map D —
per IM(D) are weight systems. It is tempting to look for common general-
izations of these two weight systems. In this section, which may be of some
independent interest, we sketch just such a generalization. The basic idea is
that just where the character of the alternating representation of the symmet-
ric group S,, is used in the definition of det and the character of the trivial
representation is used in the definition of per, one can put the character of an
arbitrary representation of S,:

Definition 6.1. Let [o] denote the conjugacy class of permutation ¢. Let ZS,,
be the free Z-module generated by the conjugacy classes of S,,. Let ZS, be
the graded Z-module whose degree m piece is ZS,,. The natural embedding 1 :
Sy X Sy — Sp4n makes ZS, an algebra by setting [o][t] = [1(0, 7)]. Identifying
ZSy with its dual by declaring each individual conjugacy class [¢] to be of
unit norm, the product on ZX, becomes a co-product on ZS} = ZS,.

Exercise 6.2. Verify that with the above product and co-product ZS, becomes
a graded commutative and co-commutative Hopf algebra, and that the primitive
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elements of ZS, are exactly the classes of cyclic permutations (and thus ZS,
has exactly one generator in each degree).

Definition 6.3. (Compare with [Lit]) Let M be an m x m matrix. The universal
immanant imm M of M is defined by

m
immM = Y [o]]] Misi € ZSn .
0ESH i=1

(Exactly the same as the definition of det M, only with [¢] replacing (—1)%).

Composing the universal immanant with characters of arbitrary representa-
tions of S, one gets specific complex valued “immanants”. Taking the repre-
sentation to be the alternating representations, one gets det M. Taking it to be
the trivial representation, one gets per M. Much is known about many other
immanants; see e.g. [GJ, Stl, St2].

In our context, we will be interested in the universal immanant of the
intersection matrix of a chord diagram. By abuse of notation, we will write
imm D for imm IM(D).

Theorem 5. (1) The map imm: {chord diagrams} — ZS, descends to a well
defined map imm: of" — ZS,.
(2) The thus defined imm: .o/ — ZS, is a morphism of Hopf algebras.
(3) The image of adjoint map imm* : ZS¥ = ZS* — /™ = W is the
subalgebra of W~ generated by the weight systems of the coefficients of the
Conway polynomial.

Proof. (sketch) Let L, be the degree of m piece of log W¢, and let C,, € S,
be a cyclic permuation. Re-interpreted in our new language, Proposition 3.13
is simply the statement imm*[C,] = —L, and equation (14) becomes the
multiplicativity of imm*. It follows that the image of imm* is equal to the
subalgebra of the algebra of functionals on chord diagrams generated by the
Ly’s. As L, is known to be a weight system and the product of two weight
systems is again a weight system, it follows that the image of imm* is in %~
and thus imm descends to .o/”. Finally notice that the algebra generated by the
L,’s is equal to the algebra generated by the weight systems of the coefficients
of the Conway polynomial.

It is easy to check (or deduce from Theorem 5) the imm*[o] = 0 if ¢ has
a cycle of an odd length. By evaluating imm*[¢] on chord diagrams whose
intersection graph is a union of polygons of an even number of sides, one
can see that imm* restricted to permutations with no cycles or odd length is
injective.
Exercise 6.4. Check that if IM(D) is replaced by IM(D)+ Al for any non-zero
constant A and .o/” and # are replaced by .o/ and o/* in the statement of

theorem 5, the theorem remains valid, with the unique element of %).o/*
adjoined to the generators of the image of imm*.



130 D. Bar-Natan, S. Garoufalidis

6.2. A curious formula for the weight system of the colored Jones polyno-
mial. (A sketch). The key to the understanding of ), in Sect. 4.3 was to
rewrite (17) in a nicer form, equation (18). There is an even nicer form,
however, that also includes the terms independent of A: (suppressing ‘®’
symbols)

B(vgvp) = i((k + 1) (U100 1 — OkOpr)

part 1

— (k/ + 1) X (vpvpr — vklvk/+1)+vkvk/>

part 2

/
+ (k= k") (U1 0p 1 — Ok—1087 1) F0k100 1 + Vk— 10474

part 3

/
— kk (V10— — 20308 + l)k_1vk/+1) .

part 4

Following roughly the same steps as in Sect. 4.3, parts 1 and 2 of the above
equation become ‘derivatives’ like in (20). Part 3 also becomes a derivative,
but with an additional factor of 2 as in it ‘“4k = 2°. Part 4 becomes a ‘sec-
ond derivative’, and all other parts remain ‘Oth order’. These ‘differentiations’
mean that we want to look at the coefficients of certain monomials in the
¢’s of Sect. 4.3, and when all the dust settles we remain with the following
(completely self-contained) formula:

Theorem 6. Let D be a chord diagram of degree m, and let 1? and dom C,
be as in Sect. 4.3. Let &(y) be commuting indeterminates, and let

k@)= > en).

{yp:i€dom Cy}

Then W;(D) (the weight of D in the weight system of the framing-independent
Reshetikhin—Turaev invariant of sl(2) in the (A+ 1)st dimensional representa-
tion) is the term independent of all the ¢(y)’s in

m k(it) — k(i;) kGG
2 A+2 ! / -2 7 T
( +1)yl;[l <( * )<1+ &(y) ) &(y)? )

Exercise 6.5. Deduce the equality Wj,;(D) = per IM(D) from the above
theorem.

Arguing similarly but starting from the ‘framed’ B = x® y+ yQx+h®h/2,
one finds that the weight of D in the weight system of the framing-dependent
Reshetikhin—Turaev invariant of s/(2) in the (A+1)st dimensional representation
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is the term independent of all the &(y)’s in

l Ao k(i) = k(i) k(i k(i)
A ) / 7 _ ) l )
2+ 1)?.1;[1 ((Hz) (1 +,+ ) ) 2 o) )

Remark 6.6. Experimentally (on a computer) we found that the above formulas
appear to be (by far) the best method for computing the corresponding weight
systems. But, in some sense, we do not understand them very well:

(1) Our only proof that the above formulas satisfy the 47 relation is by
tracing them back to s/(2). It would be interesting to find a direct proof.

(2) We do not know how to generalize these formulas to other Lie algebras.

(3) We do not know how to view these formulas in the context of
Rozansky’s work. More specifically, it should be possible to push exer-
cise 6.5 a little further and get formulas for the ‘sub-diagonal’ invariants
Sy = Zpbm_p ™ (for small n), and it should be possible to expand (6)
in powers of 1/k using Feynman diagrams. The 1/k" term in (6) should equal
JJ,. In this paper we dealt with the case n = 0 but we don’t know how to
deal with higher values of n.

6.3. A further generalization. If, as conjectured in [B-N2], all weight systems
come from Lie algebras, then there should be a way of stating and proving
Theorem 4 without any reference to Lie algebras. We do not have a pre-
cise analog of the statement; without a Lie algebra, it is not clear what 1 is
and in which space it should be. However, on the level of group representa-
tions, Y"V, = V,;+ (representations of a smaller highest weight), and thus the
Adams operations /", which have a generalization to arbitrary weight systems
[B-N2], can play a role similar to ‘scaling A’. We thus arrive at the following
conjecture’:

Conjecture 2. Let W be an arbitrary weight system, let n be an integer, and
let W" = lﬂ;*\W be the deframed version (as in [B-N2, Exercise 3.16]) of
W o ", where Y" is the nth Adams operation on chord diagrams. Then

(1) For any fixed chord diagram D of degree m, W"(D) is a polynomial
in n of degree at most m.

(2) Let W™™(D) be the degree m piece of W"(D). Then the weight system
W™ is in the algebra generated by the coefficients of the Conway polynomial.

A similar statement should hold on the level of knot invariants, using the
‘0-framing’ of a knot for the Adams operations.
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1 Introduction

1.1 Zeilberger meets Jones

The colored Jones function of a framed knot K in 3-space
Jc: N— Z[gt/4

is a sequence of Laurent polynomials that essentially measures the Jones poly-
nomial of a knot and its cables. This is a powerful but not well understood
invariant of knots. As an example, the colored Jones function of the 0—framed
right-hand trefoil is given by

_n/2 n—1
o q1/2 /2 —kn -n 1-n k—n
J;c(n)—l_iq_lzq L—g™(1—g"")...(L=g"™).
k=0

Here Jx(n) denotes the Jones polynomial of the O0—framed knot X colored
by the n—dimensional irreducible representation of sly, and normalized by

Funinot(n) = (¢/% = =7/2) ) (g!/2 — g7112).

Only a handful of knots have such a simple formula. However, as we shall see
all knots have a multisum formula. Another way to look at the colored Jones
function of the trefoil is via the following 3—term recursion formula:

qn—l%_q4—4n__q—n 1-2n 4—4n 3—2n

—4q q —4q
Jen—1+ L _—T
q1/2(qn—4,__q2—n) q2—n/__qn—1

with initial conditions: Ji(0) =0, Jk(1)=1.

Jic(n) = Ji(n —2)

In this paper we prove that the colored Jones function of any knot satisfies a
linear recursion relation, similar to the above one. For a few knots this was
obtained by Gelca and his colleagues [I3, [[4]. (In [I3] a more complicated
5—term recursion formula for the trefoil was established).

Discrete functions that satisfy a nontrivial difference recursion relation are
known by another name: they are g—holonomic.

Holonomic functions were introduced by IN Bernstein [2, B] and M Saito. The
latter coined the term holonomic, that is a function which is entirely determined
by the law of its differential equation, together with finitely many initial condi-
tions. Bernstein used holonomic functions to prove a conjecture of Gelfand on
the analytic continuation of operators. Holonomicity and the related notion of
D—modules are a tool in studying linear differential equations from the point

Geometry € Topology, Volume 9 (2005)
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of view of algebra (differential Galois theory), algebraic geometry, and cate-
gory theory. For an excellent introduction on holonomic functions and their
properties, see [5] and [7].

Our approach to the colored Jones function owes greatly to Zeilberger’s work.
Zeilberger noticed that the abstract notion of holonomicity can be applied to
verify, in a systematic and computerized way, combinatorial identities among
special functions, [35] and also [33], 2§].

A starting point for Zeilberger, the so-called operator approach, is to replace
functions by the recursion relations that they satisfy. This idea leads in a
natural way to noncommutative algebras of operators that act on a function,
together with left ideals of annihilating operators.

To explain this idea concretely, consider the operators F and ) which act on
a discrete function (that is, a function of a discrete variable n) f: N — Z[g¥]
by:

(@f)(n) =q¢"f(n) (Ef)(n) = f(n+1).
It is easy to see that £Q = qQF, and that F, () generate a noncommutative g—

Weyl algebra generated by noncommutative polynomials in £ and (), modulo
the relation EQ = qQFE:

A=Z[¢)Q, E)/(EQ = qQE)

Given a discrete function f as above, consider the recursion ideal Ty = {P €
A|Pf =0}. It is easy to see that it is a left ideal of the g—Weyl algebra. We
say that f is g—holonomic iff Z; # 0.

In this paper we prove that:
Theorem 1 The colored Jones function of every knot is ¢—holonomic.
Theorem [0 and its companion Theorem B are effective, as their proof reveals.

Theorem 2

(a) The E—-order of the colored Jones function of a knot is bounded above by
an exponential function in the number of crossings.

(b) For every knot KC there exist a natural number n(K), such that n(K) initial
values of the colored Jones function determine the colored Jones function of K.
In other words, the colored Jones function is determined by a finite list. n(K)
is bounded above by an exponential function in the number of crossings.

Geometry € Topology, Volume 9 (2005)
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Computer calculations are given in Section Bl In relation to (b) above, notice
that the g—Weyl algebra is noetherian; thus every left ideal is finitely generated.
The theorem states more, namely that the we can compute (via elimination) a
basis for the recursion ideal of the colored Jones function of a knot.

Let us end the introduction with some remarks.

Remark 1.1 The colored Jones function can be defined for every simple Lie
algebra g. Our proof of Theorem [ generalizes and proves that the g—colored
Jones function of a knot is g—holonomic (except for Gs), see Theorem [ below.

Remark 1.2 The colored Jones function can be defined for colored links in
3-space. Our proof of Theorem [0l proves that the colored Jones function of a
link is g—holonomic in all variables, see Section Bl

Remark 1.3 It is well known that computing J(n) for any fixed n > 1 is a
# P—complete problem. Theorem [ claims that this sequence of #P—complete
problems is no worse than any of its terms.

Remark 1.4 The proof of Theorem [ indicates that many statistical me-
chanics models, with complicated partition functions that depend on several
variables, are holonomic, provided that their local weights are holonomic. This
observation may be of interest to statistical mechanics.

1.2 Synonymous notions to holonomicity

We have chosen to phrase the results of our paper mostly using the high-school
language of linear recursion relations. We could have used synonymous terms
such as linear g—difference equations, or g—holonomic functions, or D—modules,
or maximally overdetermined systems of linear PDEs which is more common in
the area of algebraic analysis, see for example [24]. The geometric notion of D—
modules gives rise to geometric invariants of knots, such as the characteristic
variety introduced by the first author in [I1]. The characteristic variety is
determined by the colored Jones function of a knot and is conjectured to be
isomorphic to the sl (C)—character variety of a knot, viewed from the boundary
torus. This, so-called AJ Conjecture, formulated by the first author is known
to hold for all torus knots (due to Hikami, [T9]), and infinitely many 2-bridge
knots (due to the second-author, [21]).

Thus, there is nontrivial geometry encoded in the linear recursion relations of
the colored Jones function of a knot.

Geometry € Topology, Volume 9 (2005)
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1.3 Plan of the proof

In Section B we discuss in detail the notion of a g—holonomic function. We give
examples of g—holonomic functions (our building blocks), together with rules
that create g—holonomic functions from known ones.

In Section Bl we discuss the colored Jones function of a link in 3—space, using
state sums associated to a planar projection of the link. The colored Jones
function is built out of local building blocks (namely, R-matrices) associated
to the crossings, which are assembled together in a way dictated by the planar
projection. The main observation is that the R—matrix is g—holonomic in all
variables, and that the assembly preserves g—holonomicity. Theorem [ follows.
As a bonus, we present the colored Jones function as a multisum of a g—proper
hypergeometric function.

In Section Bl we show that the cyclotomic function of a knot (a reparametriza-
tion of the colored Jones function, introduced by Habiro, with good integrality
properties) is g—holonomic, too. We achieve this by studying explicitly a change
of basis for representations of sls.

In Section Bl we give a theoretical review about complexity and computability of
recursion relations of g—holonomic functions, following Zeilberger. These ideas
solve the problem of finding recursion relations of g—holonomic functions which
are given by multisums of ¢ proper hypergeometric functions. It is a fortunate
coincidence (?) that the colored Jones function can be presented by such a
multisum, thus we can compute its recursion relations. Theorem [ follows.

Section [l is a computer implementation of the previous section, where we use
Mathematica packages developed by A Riese.

In Section [ we discuss the g—colored Jones function of a knot, associated to a
simple Lie algebra g. Our goal is to prove that the g—colored Jones function is
g—holonomic in all variables (see Theorem ). In analogy with the g = sly case,
we need to show that the local building block, the R—matrix, is g—holonomic in
all variables. This is a trip to the world of quantum groups, which takes up the
rest of the section, and ends with an appendix which computes (by brute-force)
structure constants of quantized enveloping Lie algebras in the rank 2 case.
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2 g—holonomic and ¢—hypergeometric functions

Theorem [ follows from the fact that the colored Jones function can be built
from elementary blocks that are g—holonomic, and the operations that patch
the blocks together to give the colored Jones function preserve g—holonomicity.

IN Bernstein defined the notion of holonomic functions f: R" — C, [2, B].
For an excellent and complete account, see Bjork [4]. Zeilberger’s brilliant idea
was to link the abstract notion of holonomicity to the concrete problem of algo-
rithmically proving combinatorial identities among hypergeometric functions,
see [30] B3] and also [28]. This opened an entirely new view on combinatorial
identities.

Sabbah extended Bernstein’s approach to holonomic functions and defined the
notion of a g—holonomic function, see [31] and also [6].

2.1 ¢—holonomicity in many variables

We briefly review here the definition of ¢g—holonomicity. First of all, we need an
r—dimensional version of the ¢g—Weyl algebra. Consider the operators E; and
Qj for 1 <4,j <r which act on discrete functions f: N — Z[¢*] by:

(Qif)(n1,...,ny) = ¢ f(ny,...,n.)
(Eif)(n1,....,n,) = f(ny,....ni—1,m; + 1,041, ...,np).
It is easy to see that the following relations hold:
QiQ; = Q;Q; E;E; = E;E;
QiE; = E;Q;fori # j  EiQ; = qQiE;
We define the g—Weyl algebra A, to be a noncommutative algebra with pre-

sentation
A :Z[qi1]<Q17"'7QT7E17"'7E7“>
' (Relg) .

(Rely)
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Given a discrete function f with domain N” or Z" and target space a Z[g*']-
module, one can define the left ideal Z; in A, by

If = {P S AT|Pf = 0}.

If we want to determine a function f by a finite list of initial conditions, it does
not suffice to ensure that f satisfies one nontrivial recursion relation if r > 2.
The key notion that we need instead is g—holonomicity.

Intuitively, a discrete function f: N — Z[g¥] is ¢-holonomic if it satisfies
a maximally overdetermined system of linear difference equations with polyno-
mial coefficients. The exact definition of holonomicity is through homological
dimension, as follows.

Suppose M = A, /I, where I is a left A,—module. Let F,, be the sub-space of
A, spanned by polynomials in Q;, E; of total degree < m. Then the module
A, /I can be approximated by the sequence F,,/(F,, NI),m = 1,2,.... It
turns out that, for m >> 1, the dimension (over the fractional field Q(gq)) of
F,./(F,N1I) is a polynomial in m whose degree d(M) is called the homological
dimension of M.

Bernstein’s famous inequality (proved by Sabbah in the g—case, [BI]) states
that d(M) > r,if M # 0 and M has no monomial torsions, ie, any non-trivial
element of M cannot be annihilated by a monomial in @Q;, F;. Note that the
left A,-module My := A, - f = A, /Ty does not have monomial torsion.

Definition 2.1 We say that a discrete function f is g—holonomic if d(My) < r.

Note that if d(My) < r, then by Bernstein’s inequality, either My = 0 or
d(My) = r. The former can happen only if f = 0.

Although we will not use in this paper, let us point out an alternative cohomo-
logical definition of dimension for a finitely generated A, module M. Let us
define '

¢(M) :=min{j € N | Ext’, (M, A,) # 0}.
Then the homological dimension d(M) := 2r — ¢(M) equals to the dimension
d(M) defined above.

Closely related to A, is the g—torus algebra 7, with presentation
ZlgP QT ..., QF  EEY . EFY
(Rely) ’
Elements of 7, acts on the set of functions with domain Z", but not on the set

of functions with domain N”. Note that 7, is simple, but A, is not. If I is a
left ideal of 7, then the dimension of 7,/I is equal to that of A,/(I N A,).

1, =
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2.2 Assembling g—holonomic functions

Despite the unwelcoming definition of g—holonomic functions, in this paper we
will use not the definition itself, but rather the closure properties of the set of
g—holonomic functions under some natural operations.

Fact O

e Sums and products of g—holonomic functions are g—holonomic.

e Specializations and extensions of g—holonomic functions are g—holonomic.

In other words, if f(n1,...,nm,) is ¢—holonomic, the so are the functions
g(n27 s >nm) ::f(avn% s >nm)
and h(ni, ...,y Nmy1) :==F(n1, ..., N).

e Diagonals of g—holonomic functions are g—holonomic. In other words, if

f(nq,...,ny) is g-holonomic, then so is the function
g(ng,....,ny) = f(ng,no,n3, ..., ny).
e Linear substitution. If f(nq,...,n,,) is g-holonomic, then so is the func-
tion, g(n},...,n,,), where each n} is a linear function of n;.
e Multisums of g—holonomic functions are g—holonomic. In other words, if
f(ny,...,ny,) is g-holonomic, the so are the functions g and h, defined
by

b
g(a7b7n27"'7nm) = Z f(nl,TIQ,...,nm)

ni=a

h(a,ng,...,ny) = Z f(ni,n2,...,np)

ni=a

(assuming that the latter sum is finite for each a).

For a user-friendly explanation of these facts and for many examples, see [35], B3]
and [25].

2.3 Examples of ¢—holonomic functions
Here are a few examples of g—holonomic functions. In fact, we will encounter

only sums, products, extensions, specializations, diagonals, and multisums of
these functions. In what follows we usually extend the ground ring Z[g*!] to
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the fractional field Q(ql/D), where D is a positive integer. We also use v to

denote a root of ¢, v? = q.

For n,k € Z, let

{n}:=0v" -0, [n] == %, [n]! = 21;[1[2]7 {n}l:= 21;[1{2}

i} = M {n—i+1}, ifk>0
"o if k<0

k 0 ifk<0

The first four functions are g—holonomic in n, and the last two, as well as the
delta function ¢, ;, are g—holonomic in both n and k.

2.4 g¢—hypergeometric functions

Definition 2.2 A discrete function f: Z" — Q(q) is ¢—hypergeometric iff
Elf/f € Q((anlv"'van) for all 7 = 1,...,7".

In that case, we know generators for the annihilation ideal of f. Namely, let
Eif/f = (Ri/Si)|Q;=q~ for R;,S; € Zlq,Q1,...,Qy]. Then, the annihilation
ideal of f is generated by S;F; — R;.

All the functions in the previous subsections are g—hypergeometric.

Unfortunately, ¢g—hypergeometric functions are not always g—holonomic. For
example, (n,k) — 1/[n? + k?]! is ¢-hypergeometric but not g-holonomic.
However, g—proper-hypergeometric functions are g—holonomic. The latter were
defined by Wilf-Zeilberger as follows, [33, Sec.3.1]:

Definition 2.3 A proper q—hypergeometric discrete function is one of the form

F(n,k) _ Hs(As; q)tlsn+bs~k+cs qA(n,k)gk (1)
Ht(Bt; @ uyntvi ktwe
where Ag, By € K= Q(q), as,u; are integers, by, ky are vectors of r integers,
A(n, k) is a quadratic form, ¢, ws are variables and ¢ is an r vector of elements
in K. Here, as usual

n—1

(A;q)n = [J (1 — Ad).

1=0
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3 The colored Jones function for sl

3.1 Proof of Theorem [ for links

We will formulate and prove an analog of Theorem [ (see Theorem Bl below)
for colored links. Our proof will use a state-sum definition of the colored Jones
function, coming from a representation of the quantum group Uy(slz), as was
discovered by Reshetikhin and Turaev in |29, 32].

Suppose L is a framed, oriented link of p components. Then the colored Jones
function Jy: NP — Z[gT1/4] = Z[v*'/?] can be defined using the representa-
tions of braid groups coming from the quantum group Uy(sl).

Theorem 3 The colored Jones function Jy, is g—holonomic.

Proof We will present the definition of J7, in the form most suitable for us.
Let V(n) be the n-dimensional vector space over the field Q(v'/?) with basis
{eo,€1,...,en—1}, with V(0) the zero vector space.

Fix a positive integer m. A linear operator
A:V(in) @ @V(ng) = V(n) e -@Vn,)
can be described by the collection

Ayt € Q).

a1,..-,Gm
where
Z bi,..b
A(eal ®--® eam) = Aa117...’a”;1 ebl Q& ejm'
b1<nf,....bm<ni,
) . . bi,eb
We will call (ay,...,am,b1,...,bn) the coordinates of the matrix entry Agqy ar

of A, with respect to the given basis.

The building block of our construction is a pair of functions fi: Z° — Z[vil/ 2,
given by

f+(n17 na;a, b7 k)

= (—1)Fy~ (m—1-20)(n2=1-20) £h(k-1)/2 [ b*}; b ] {n1—1+k—aly,

f=(n1,n2;a,b, k)

— ((m1—1-2a—2k)(na—1—2b+2k)+k(k—1))/2 [ a ‘]: k ]{nz 14k —bl
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The reader should not focus on the actual, cumbersome formulas. The main
point is that:

Fact 1

e f. and f_ are g—proper hypergeometric and thus g—holonomic in all
variables.

For each pair (n1,n2) € N? we define two operators
B+(n1,n2),8_(n1,n2): V(nl) ® V(ng) — V(ng) ® V(ny)
by

(5+(n17n2))2’$ = fr(ni,n2;a,b,c —b)de—p o—ds
(B_(n1,m2))5% == fa(n1,ng;a,b,b—¢) et amu,

where 6, , is Kronecker’s delta function. Although the coordinates (a,b,c,d)
of the entry Bi(nl,ng))g% of the operators Bi(ni,n2) are defined for 0 <
a,b<nqp and 0 < ¢,d < ng, the above formula makes sense for all non-negative

integers a, b, ¢, d. This will be important for us. The following lemma is obvious.

Lemma 3.1 The discrete functions Bi(nl,ng)Z’Z are q—holonomic with re-
spect to the variables (ny,n2,a,b,c,d).

If we identify V' (n) with the simple n—dimensional U, (slz)-module, with e;,i =
0,...,n — 1 being the standard basis, then Bi(ni,n3),B_(n1,ny) are respec-
tively the braiding operator and its inverse acting on V(n1) ® V(ng). This fact
follows from the formula of the R—matrix, say, in [I7, Chapter 3]. In particular,
B_(n1,n2) is the inverse of B (n1,ny). If one allows a, b, ¢, d in By (nq, ng)Z”Z to

run the set N, then By (nq, ng)% define the braid action on the Verma module
corresponding to V(n1),V(n2).

Let B;, be the braid group on m strands, with standard generators o1, ..., oyp—1:

we ]2 1C] 4]

i+1
For each braid 8 € B,, and (ni,...,n,) € N™, we will define an operator

T(B) = 7(B) (N1, - 1),
T(B): V(n) @ @ V() — Vingay) ® - @ V(ngg,),
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where 3 is the permutation of {1,...,m} corresponding to #. The operator
7(F) is uniquely determined by the following properties: For an elementary
braid o;, we have:

7(07") = 1A @B (ni, nigpr ) id®

In addition, if 8 = #/8”, then 7(8) := 7(8)7(3"). It is well-known that 7(3)
is well-defined.

From Fact 0 and Lemma Bl it follows that
Lemma 3.2 For any braid § € B,,, the discrete function 7(3)(ny,...,m),
considered as a function with variables nq,...,n,, and all the coordinates of
the matrix entry, is q—holonomic.
Let K be the linear endomorphism of V(ni) ® --- ® V(n,,) defined by

Kley @+ ®e,) =T rimm=2iims=2in=me, o ... 2e; .

The inverse operator K ! is well-defined.

Corollary 3.3 For any braid 8 € B,,, the discrete function
7i(ﬁ) = T(ﬁ)(nh s anm) X K_l

is g—holonomic in nq,...,n., all all of the coordinates of the matrix entry.

In general, the trace of 7(f3) is called the quantum trace of 7(3). Although the
target space and source space maybe different, let us define the quantum trace

of 7(8)(n1,...,nm)) by
trg(B)(n1,. o) = > Y F(B) (1, man el

1<i<m 0<a; <n;
It follows from Fact O that try(5)(ni,...,nmy) is ¢-holonomic in ni,...,Ny,.
Restricting this function on the diagonal defined by n; = ng;,i =1,...,m, we

get a new function Jg of p variables, where p is the number of cycles of the
permutation J3.

Suppose a framed link L can be obtained by closing the braid . Then the
colored Jones polynomial Jy, is exactly Jg. Hence Theorem [0 follows. O

Remark 3.4 In general, Ji(n) contains the fractional power ¢/*. If K has
framing 0, then Jx:(n) := Jic(n)/[n] € Z[gF']. See E).
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Remark 3.5 There is a variant of the colored Jones function Jy: of a colored
link L’ where one of the components is broken. If 3 is a braid as above, let us
define the broken quantum trace trlﬁ by

(B) (1, mm) = Y Y FB) s ) 0 =0-
2<i<m 0<a;<n;

Restricting this function on the diagonal defined by n; = ng,t=1,...,m, we
get a new function Jg of p variables, where p is the number of cycles of the
permutation 3.

If L' denotes the broken link which is the closure of all but the first strand of
3, then the colored Jones function Jr, of L' satisfies Jp, = Ja .

If L denotes the closure of the broken link L', then we have:
J L= J L X [)\]

where A is the color of the broken component of L'.

3.2 A multisum formula for the colored Jones function of a
knot

In this section we will give explicit multisum formulas for the slo—colored Jones
function of a knot. The calculation here is computerized in Section [Bl

Consider a word w = o3 ... 0;° of length m written in the standard generators
01,...,05—1 of the braid group B,, with m strands, where ¢; = +1 for all 7.

w gives rise to a braid 8 € B,,, and we assume that the closure of § is a knot
K. Let K' denote long knot which is the closure of all but the first strand of 3.

A coloring of K' is a tuple k = (kq,...,k.) of angle variables placed at the
crossings of K'.

Lemma 3.6 There is a unique way to extend a coloring k of K’ to a coloring
of the crossings and part-arcs of K' such that

e around each crossing the following consistency relations are satisfied:

b+J<\ a-k b-k /a(+k
S

e The color of the lower-left incoming part-arc is Q.
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Moreover, the labels of the part-arcs are linear forms on k.

Proof Start walking along the long knot starting at the incoming part-arc.
At the first crossing, whether over or under, the label of the outgoing part-arc
is determined by the label of the ending part-arc and the angle variable of the
crossing. Thus, we know the label of the outgoing part-arc of the first crossing.
Keep going. Since K’ is topologically an interval, the result follows. O

For an example, see Figure [l

Figure 1: A word w, the corresponding braid 3, its long closure K’, and a coloring of
IC/

Fix a coloring of K’ determined by a vector k. Let b;(k) for i = 1,...,m
denote the labels of the top part-arcs of 3. Let z;(k) and y;(k) denote the
labeling of the left and right incoming part-arcs at the ith crossing of K’ for
j=1,...,c. According to Lemma B8, b;(k),z;(k) and y;(k) are linear forms
on k.

It is easy to see that

tr;(ﬁ) = Z Fy(n, k)

k>0

where

m (&
Fw(nv k) = H U%_bi(k) H fsgn(ei) (’I’L, n; $j(k)7 Yj (k))
=2 j=1
is a g—proper hypergeometric function. Remark then implies that

Proposition 3.7 The colored Jones function of a long knot K' is a multisum
of a gq—proper hypergeometric function:

Jior(n) = Fy(n,k).

k>0
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Remark 3.8 If a long knot K’ is presented by a planar projection D with ¢
crossings (which is not necessarily the closure of a braid), then similar to the
above there is a g—proper hypergeometric function Fp(n,k) of ¢+ 1 variables
such that Jx/(n) = >y~ Fp(n, k). Of course, Fp depends on the planar
projection. Occasionally, some of the summation variables can be ignored.
This is the case for the right hand-trefoil (where the multisum reduces to a
single sum) and the figure eight (where it reduces to a double sum).

D Bar-Natan has kindly provided us with a computerized version of Proposition

B2 .

4 The cyclotomic function of a knot is g—holonomic

Habiro [T5] proved that the colored Jones polynomial (of sly) can be rearranged
in the following convenient form, known as the cyclotomic expansion of the
colored Jones polynomial: For every O—framed knot X, there exists a function

Cx: Zso — Z[g™"]

such that Ji(n) = Z Ck(k)S(n, k),
k=1

[T (o =)
v—uv1 ’

Note that S(n, k) does not depend on the knot K. Note that J is determined

from C' and vice-versa by an upper diagonal matrix, thus C' takes values in

Q(g). The difficult part of Habiro’s result is Cx takes values in Z[¢*]. The

integrality of the cyclotomic function is a crucial ingredient in the study of

integrality properties of 3—manifold invariants, [T5].

where S(n k) :={n+k—1}ap_1/(v—v"") =

Theorem 4 The cyclotomic function Cx: N — Z[qT] of every knot K is
q—holonomic.

Proof Habiro showed that Cx(n) is the quantum invariant of the knot IC with
color ' '
1 (V(2) v~ o1%)

1 L H
P"(n) := 20— 1lan )
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where V(n) is the unique n—dimensional simple sly—module, and (retaining
Habiro’s notation with a shift n — n — 1) P”(n) is considered as an element
of the ring of sly-modules over Q(v).

Using induction one can easily prove that
P'(n) = R(n,k)V(k),
k=1

where R(k,n) is given by

. e n—k& 2n
Bn k) = (=1) {2n—1}![2n][n_k}

We learned this formula from Habiro [I5] and Masbaum [25]. Since

C(n) =Y R(n, k)J(k)
k

and R(n, k) is g—proper hypergeometric and thus g—holonomic in both variables
n and k, it follows that Cx is g—holonomic. O

5 Complexity

In this section we show that Theorem [0 is effective. In other words, we give a
priori bounds and computations that appear in Theorem 21

5.1 Finding a recursion relation for multisums

Our starting point are multisums of g—proper hypergeometric functions. Recall
the definition of a g—proper hypergeometric function F'(n,k) from Section
24 and let G denote

G(n):=>_ F(n,k)

k>0
throughout this section.

With the notation of Equation (), WilfZeilberger show that:

Theorem 5 ([33] Sec.5.2])
(a) F(n,k) satisfies a k—free recurrence relation of order at most

(4STB?*)"

r!

J* =
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where B = max,{|bs|, |[v¢l, |as|, |u|} + max,, , |a,,| where a,, are the coeffi-
cients of the quadratic form A.

(b) Moreover, G(n) satisfies an inhomogeneous recursion relation of order at
most J*.

Let us briefly comment on the proof of this theorem. A certificate is an operator
of the form

P(E7Q) +Z(EZ - 1)RZ(E7E17 7ET’7Q7Q17"' 7Q7”)
i=1

that annihilates F'(n,k), where P and R; are operators with P a polynomial
in F,Q, with P # 0. Here F is the shift operator on n, E; (for i =1,...,r)
are shift operators in k;, and @ is the multiplication operator by ¢* and Q; (for
i=1,...,r) are the multiplication operator by ¢, where k = (k1,...,k,).

The important thing is that P(E, Q) is an operator that does not depend on
the summation variables k. A certificate implies that for all (n,k) we have:

P(E,QF(n,k) + > (Gi(n, k1, ... kv, ki + Lkigr,. .. k) —
=1

Gi(nvklv . ‘)ki—lyki,ki+1,. .. akr)) = 0,

where G;(n,k) = R;F(n,k). Summing over k > 0, it follows that G(n) satisfies
an inhomogeneous recursion relation PG = error(n). Here error(n) is a sum of
multisums of g—proper hypergeometric functions of one variables less. Iterating
the process, we finally arrive at a homogeneous recursion relation for G.

How can one find a certificate given F'(n,k)? Suppose that F' satisfies a k—free
recursion relation AF =0, where A = A(E,Q, E1, ..., E,) is an operator that
does not depend on the @Q;. Then, evaluating A at 1 = ... E,. = 1, we obtain
that

A=AE,Q,L,....1)+ > (B - )Ri(E,Q.E,..., E,)
i=1

is a certificate.
How can we find a k-free recursion relation for F'? Let us write
A=Y QP
(i,9)€S

where S is a finite set, j = (j1,...,4,), B = E{l...Eﬂ", and 0, ;(Q) are
polynomial functions in @) with coefficients in Q(g); see [30]. The condition
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AF = 0 is equivalent to the equation (AF)/F = 0. Since F is g—proper
hypergeometric, the latter equation is the vanishing of a rational function in
Q1,...,Q,. By cleaning out denominators, this is equivalent to a system of
linear equations (namely, the coefficients of monomials in @; are zero), with
unknowns the polynomial functions o; j. For a careful discussion, see [30]. As
long as there are more unknowns than equations, the system is guaranteed to
have a solution. [33] estimate the number of equations and unknowns in terms
of F(n,k), and prove Theorem

Wilf-Zeilberger programmed the above proof, see [28]. As time passes the
algorithms get faster and more refined. For the state-of-the-art algorithms and
implementations, see [26, 27] and [30], which we will use below.

Alternative algorithms of noncommutative elimination, using noncommutative
Grébner basis, have been developed by Chyzak and Salvy, [§]. In order for have
Grobner basis, one needs to use the following localization of the ¢—Weyl algebra

Q(q,Ql, v ,Qr)<E1, e ,Er>
(Rely) '

B, =

and Grébner basis [8].

In case r = 1, By is a principal ideal domain [0, Chapter 2, Exercise 4.5]. In that
case one can associate an operator in By (unique up to units) that generates
that annihilating ideal of G(n). For a conjectural relation between this operator
for the slp—colored Jones function of a knot and hyperbolic geometry, see [IT].

Let us point out however that none of the above algorithms can find generators
for the annihilating ideal of the multisum G(n). In fact, it is an open problem
how to find generators for the annihilating ideal of G(n) in terms of generators
for the annihilating ideal of F(n,k), in theory or in practice. We thank M
Kashiwara for pointing this out to us.

5.2 Upper bounds for initial conditions

In another direction, one may ask the following question: if a g—holonomic
function satisfies a nontrivial recursion relation, it follows that it is uniquely
determined by a finite number of initial conditions. How many? This was
answered by Yen, [34]. If G is a discrete function which satisfies a recursion
relation of order J*, consider its principal symbol (g, @), that is the coefficient
of the leading E—term. The principal symbol lies in the commutative ring
Z[qT,Q*] of Laurrent polynomials in two variables ¢ and Q. For every n,
consider the Laurrent polynomial o(q,q¢") € Z[¢T]. If o(q,q") # 0 for all n,
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then G is determined by J* many initial values. Since o(q, Q) # 0, it follows
that o(q,q™) # 0 for large enough n. In fact, in [34, Prop.3.1] Yen proves that
o(q,q") # 0 if n > deg,(0), then o(q,q") # 0, where the degree of a Laurrent
polynomial in ¢ is the difference between the largest and smallest exponent.
Thus, G is determined by J** := J* + deg, (o) initial conditions.

Yen further gives upper bounds for deg, (o) in terms of the g-hypergeometric
summand, see [34, Thm.2.9] for single sums. An extension of Yen’s work to
multisums, gives a priori upper bounds J** in terms of the ¢g—hypergeometric
summand. These exponential bounds are of theoretical interest only, and in
practice much smaller bounds are found by computer.

5.3 Proof of Theorem

Theorem Bl follows from Proposition B together with the discussion of Sections

BTl and B2 m]

Our luck with the colored Jones function is that we can identify it with a
multisum of a g—proper hypergeometric function. Are we really lucky, or is
there some deeper explanation? We believe that there is a underlying geomet-
ric reason for coincidence, which in a sense explains the underlying geometry
of topological quantum field theory. We will postpone to a later publication
applications of this principle to Hyperbolic Geometry; [I1].

6 In computer talk

In this section we will show that Proposition B can be implemented by com-
puter.

For every knot, one can write down a multisum formula for the colored Jones
function, where the summand is g—hypergeometric. Occasionally, this multisum
formula can be written as a single sum. There are various programs that can
compute the recursion relations and their orders for multisums. In maple, one
may use qEKHAD developed by Zeilberger [28]. In Mathematica, one may use
the qZeil.m and gMultiSum.m packages of RISC developed by Paule and Riese
[26, 27, 130].
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6.1 Recursion relations for the cyclotomic function of twist
knots

The twist knots Kp for integer p are shown in Figure Pl Their planar projec-
tions have 2|p| + 2 crossings, 2|p| of which come from the full twists, and 2
come from the negative clasp.

p

full twists
P

Figure 2: The twist knot K,,, for integers p. For p = —1, it is the Figure 8, for p =0
it is the unknot, for p = 1 it is the left trefoil and for p = 2 it is the Stevedore’s ribbon
knot.

Masbaum, [25], following Habiro and Le gives the following formula for the
cyclotomic function of a twist knot. Let ¢(p,-) denote the cyclotomic function
of the twist knot Kp. Rearranging a bit Masbaum’s formula [25, Eqn.(35)], we
obtain that:

C(p, n) — (_1)n+1qn(n+3)/2
1 qu(k+1)p+k(k—1)/2 q2k+1 _1 (¢ Dn 9
,;)( : ( )(q; Dnrk+1(6 Ok @)

The above sum has compact support for each n. Now, in computer talk, we
have:

Mathematica 4.2 for Sun Solaris

Copyright 1988-2000 Wolfram Research, Inc.
-- Motif graphics initialized --
In[1]:=<< qZeil.m

q-Zeilberger Package by Axel Riese -- (ORISC Linz -- V 2.35 (04/29/03)

For p = —1 (which corresponds to the Figure 8 knot) the program gives:

In[2]:= qZeillq~(n(n + 3)/2) (-1)"(n + k + 1) q~(-k(k + 1))(q"(2k + 1)
- Dafaclq, q, nl/(qfaclq, q, n + k + 1] gfaclg, g9, n - k])
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q~(k(x - 1)/2), {k, 0, Infinity}, n, 1]
Out[2]= SUM[n] == SUM[-1 + n]

which means that ¢(—1,n) = ¢(—1,n — 1) in accordance to the discussion after
[25, Thm.5.1] which states ¢(—1,n) =1 for all n.

For p =1 (which corresponds to the left hand trefoil) the program gives:

In[3]:= qZeillq~(n(n + 3)/2) (-1)"(m + k + 1) q"(k(k + 1)) (q"(2k + 1)
- Dafaclq, q, nl/(qfaclq, q, n + k + 1] gfaclg, g9, n - k])
q~(k(x - 1)/2), {k, 0, Infinity}, n, 1]

1 +n
Out [3]= SUM[n] == -(q SUM[-1 + n])

which means that c(1,n) = —¢""'c¢(1,n — 1) in accordance to the discussion
after [25, Thm.5.1] which states ¢(1,n) = (—=1)"¢*"+3)/2 for all n.

Similarly, for p = 2 (which corresponds to Stevedore’s ribbon knot) the program
gives:

In[4] := qZeillq (n(n + 3)/2) (-1)"(n + k + 1) q~(2k(k + 1)) (q~(2k + 1)
- 1)qgfaclq, q, nl/(qfaclq, q, n + k + 1] gfaclq, g, n - k])
q"(k(k - 1)/2), {k, 0, Infinity}, n, 1]

Out[4] := No solution: Increase order by 1

which proves that ¢(2,n) satisfies no first order recursion relation. It does
satisfy a second order recursion relation, as we find by:

In[5]:= qZeillq (n(n + 3)/2) (-1)"(n + k + 1) q~(2k(k + 1)) (q~(2k + 1)
- 1) gfaclq, q, nl/(gqfaclq, q, n + k + 1] gfaclq, q, n - k])
q~(k(k - 1)/2), {k, 0, Infinity}, n, 2]
2+2n -1 +n
Out [4]= SUM[n] == -(q (1 -9 ) SUM[-2 + n]) -

1 +n n 2 n
> q (1+q-q +q ) SUM[-1 + n]

Thus, the program computes not only a recursion relation, but also the order
of a minimal one. Experimentally, it follows that ¢(p,n) satisfies a recursion
relation of order [p|, for all p. Perhaps one can guess the form of a minimal
order recursion relation for all twist knots.

Actually, more is true. Namely, the formula for c¢(p,n) shows that it is a ¢g—
holonomic function in both variables (p,n). Thus, we are guaranteed to find
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recursion relations with respect to n and with respect to p. Usually, recursion
relations with respect to p for fixed n are called skein theory for the nth colored
Jones function, because the knot is changing, and the color is fixed.

Thus, g—holonomicity implies skein relations (with respect to the number of
twists) for the nth colored Jones polynomial of twist knots, for every fixed n.

For computations of recursion relations of the cyclotomic function of twist knots,
we refer the reader to [12].

6.2 Recursion relations for the colored Jones function of the
figure 8 knot

The Mathematica package qMultiSum.m can compute recursion relations for
g—multisums. Using this, we can compute equally easily the recursion relation
for the colored Jones function. Due to the length of the output, we illustrate
this by computing the recursion relation for the colored Jones function of the
Figure 8 knot. Recall from Equation () for p = —1 and from the fact that
¢(—1,n) =1 that the colored Jones function of the figure 8 knot is given by:

Trn(m) =™ (@ 5 el Qe (3)

k=0

In computer talk,

In[6]:= qZeillq~(n k) qfac[q~(-n-1),q9"(-1),k] gfaclq~(-n+1),q,k],
{k,0,Infinity},n,2]

-1 -n n 2 n
q (@+q) (c.q+q )
OQut[6]= SUM[n] == —-—————————————————— -
n
-1 +q
-2 +n -1+2n
(1-gq ) (1 -¢q ) SUM[-2 + n]
> +
n -3+ 2n
(1-q9) @-gq )
-2 -2n -1 +n 2 -1 +n
> (q 1-g¢q ) (1 +gq )
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4 4 n 3 +n 1+2n 3+2n 1+3n
> (q +4q -q -q -q -q ) SUM[-1 + nl)/

n -3+ 2n
> (1-g9g) -9 ))

This is a second order inhomogeneous recursion relation for the colored Jones
function. A third order homogeneous relation may be obtained by:

In[7] := MakeHomRec[%, SUM[n]]

2 +n 3 n
q (-q + q ) SUM[-3 + n]
out(7)]= -———-"--"-"-""—"———————— -
2 n 5 2n
(g +q) (-q +q )
-2 - n 2 n 8 4 n 6 +n 7 +n 3+2n
> (q (@ -q9) (@ +q =-2gq +q -q +
4 + 2 n 5+ 2n 1+3n 2+ 3n
> q -q +q -2gq ) SUM[-2 + nl) /
n 5 2 n
> (Q+q) (@ -qg )+
-1 -n n 4 4 n 2 +n 3 +n 1+2n
> (q (. +q) (@ +q +gq -2q -q +
2+ 2n 3+2n 1+3n 2+ 3n
> q -q -2q +q ) SUM[-1 + n]) /
1+n n
2 n 2n q (-1 + q ) SUM[n]
> ((q +q) ((q+q )) + === == 0
n 2 n

(@+q) (@-q )

Of course, we can clear denominators and write the above recursion relation
using the ¢—Weyl algebra A. Let us end with a matching the theoretical bound
for the recursion relation from Section Bl with the computer calculated bound
from this section. Using Theorem Bl it follows that the summand satisfies a
recursion relation of order J* = 12412 = 2. This implies that the colored Jones
function of the Figure 8 knot satisfies an inhomogeneous relation of degree 2 as
was found above. The program also confirms that the colored Jones function
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of the Figure 8 knot does not satisfy an inhomogeneous relation of order less
than 2.

7 The colored Jones function for a simple Lie algebra

Fix a simple complex Lie algebra g of rank £. For every knot I and every
finite-dimensional g—module V', called the color of the knot, one can define
the quantum invariant Jic(V) € ZgF/*P], where D is the determinant of the
Cartan matrix of g. Simple g—modules are parametrized by the set of dominant
weights, which can be identified, after we choose fixed fundamental weights, with
N¢. Hence Ji can be considered as a function J: N¢ — Z[¢*/2P].

Theorem 6 For every simple Lie algebra other than Gy, and a set of fixed
fundamental weights, the colored Jones function Ji: N¢ — Z[qil/2D] is q—
holonomic.

Hence the colored Jones function will satisfy some recursion relations, which,
together with values at a finitely many initial colors, totally determine the
colored Jones function Ji.

Remark 7.1 The reason we exclude the GG Lie algebra is technical. Namely,
at present we cannot prove that the structure constants of the multiplication of
the quantized enveloping algebra of G5 with respect to a standard PBW basis,
are g—holonomic; see Remark We believe however, that the theorem also
holds for Gs.

The proof occupies the rest of this section. We will define Jx using representa-
tion of the braid groups coming from the R—matrix acting on Verma modules
(instead of finite-dimensional modules). We then show that the R—matrix is
g—holonomic. The theorem follows from that fact that products and traces of
g—holonomic matrices are g—holonomic.

7.1 Preliminaries

Fix a Cartan subalgebra b of g and a basis {a,...,ap} of simple roots for
the dual space h*. Let by be the R-vector space spanned by a1,...,ay. The
root lattice Y is the Z-lattice generated by {aq,...,ap}. Let X be the weight
lattice that is spanned by the fundamental weights Aq,..., ;. Normalize the
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invariant scalar product (-,-) on by so that (o, ) = 2 for every short root a.
Let D be the determinant of the Cartan matrix, then (x,y) € %Z for z,y € X.

Let s;,i=1,...,¢, be the reflection along the wall ozil. The Weyl group W is
generated by s;,i = 1...,¢, with the braid relations together with s? = 1. A
word w = S;, ... S;, is reduced if w, considered as an element of W, can not be
expressed by a shorter word. In this case the length [(w) of the element w € W
is r. The longest element wy in W has length ¢ = (dim(g) — ¢)/2, the number
of positive roots of g.

7.1.1 The quantum group U

The quantum group U = U,(g) associated to g is a Hopf algebra defined over
Q(v), where v is the usual quantum parameter (see [I7, 22]). Here our v is
the same as v of Lusztig [22] and is equal to ¢ of Jantzen [I7], while our ¢ is
v?. The standard generators of U are Eq, F,, K, for a € {a1,...,a,}. For a
full set of relations, as well as a good introduction to quantum groups, see [I7].
Note that all the K,’s commute with each other.

For an element v € Y, v = kjag + -+ + kpay, let K = Kfl} . Kfl}

There is a Y —grading on U defined by |E,| = «, |F,| = —«, and |Ky| = 0. If
x is homogeneous, then
K.z = v(a’m)xKﬁ,.

Let U™ be the subalgebra of U generated by the E,, U~ by the F,, and U°
by the K,. It is known that the map

U - oUout — U
(33‘, 1'/, 33'//) — ZEZE/ZE//

is an isomorphism of wvector spaces.

7.1.2 Verma modules and finite dimensional modules

Let A € X be a weight. The Verma module M(\) is a U—module with under-
lying vector space U~ and with the action of U that is uniquely determined by
the following condition. Here 7 is the unit of the algebra U™ :

Ey-n = 0 for all «

Ky,-n = v®Vy for all «

F,-x = Fux forall o€ {aq,...,ap},xelU™
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If (Ma;) <0 for all ¢ =1,...,¢ then M()) is irreducible. On the other hand
if (Ma;) >0 for all i =1,....,¢ (ie, X is dominant), then M(\) has a unique
proper maximal submodule, and the quotient L(\) of M(A) by the proper
maximal submodule is a finite dimensional module (of type 1, see [I7]). Every
finite dimensional module of type 1 of U is a direct sum of several L(\).

7.1.3 Quantum braid group action

For each fundamental root « € {a1,...,ap} there is an algebra automorphism
To: U — U, as described in [T, Chapter 8]. These automorphisms satisfy the
following relations, known as the braid relations, or Coxeter moves.

If (o, ) =0, then T, T3 = T57T,.

If (o, 8) = —1, then T, 13T, =TT, T3.

If (a,8) = —2, then ToTsToTs = TsTaT5Th.

If (o, B) = —3, then ToTyTaTTo Ty = TsTaTTo T T,

Note that the Weyl group is generated by s, with exactly the above relations,
replacing T, by s, and the extra relations s2 = 1.

Suppose w = s;, ...s;, is a reduced word, one can define
Ty = iy o T, -

Then T, is well-defined: If w,w’ are two reduced words of the same element
in W, then T,, = T,,. This follows from the fact that any two reduced presen-
tations of an element of W are related by a sequence of Coxeter moves.

7.1.4 Ordering of the roots

Suppose w = S;,S;, ..., is a reduced word representing the longest element
wo of the Weyl group. For r between 1 and t let

V(W) 1= 84, 8iy « -+ Sip_, ().

Then the set {v;,i = 1,...,t} is exactly the set of positive roots. We totally
order the set of positive roots by v; < 79 < --- < 7. This order depends on
the reduced word w, and has the following convexity property: If 5i,0s are
two positive roots such that 81 + (32 is also a root, then (1 + B2 is between (3;
and (. In particular, the first and the last, y; and 4, are always fundamental
roots. Conversely, any convex total ordering of the set of positive roots comes
from a reduced word representing the longest element of W.
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7.1.5 PBW basis for Y, ", and U

Suppose w = s;, ...S;, is a reduced word representing the longest element of
W. Let us define

er(w) = To, Ty, - To, | (Ea, ),
folw) = Toy Tap, . -Tay  (Fa,)-
Then |e;| = v, = —|fr|. (We drop w if there is no confusion.)
If ~, is one of the fundamental roots, v, = o € {aq,...,a}, then e, (w) = E,,

fr(w) = F, (and do not depend on w).

For t > 7 >i>1 let U™ [j,i] be the vector space spanned by ffjf;zﬁil N S

for all nj,nj_1,...,n; € N and let UT[i,j] the vector space spanned by
e?ie?ﬁl...e?j, for all nj,n;_q,...,n; € N. It is known that U~ = U™ [t,1]

and Ut =UT[1,1].

For n = (n1,...,n;) € N', j = (j1,...5¢) € Z' and m = (mq,...,m;) € N let
us define f*, KJ and e™ by

f2(w) == ., K =Kja, .. K

Then as vector spaces over Q(v)U~, UT and U have Poincare-Birkhoff- Witt
(in short, PBW) basis

{ff"neN},  {e®|meN},  {f"Ke™|nmeN, jecz

o e(w) =€t ... et

respectively, associated with the reduced word w.

In order to simplify notation, we define S := Nt x Z¢ x N, and z, := f" Kie™.
Thus,
{zy,|0 € S} (4)

is a PBW basis of & with respect to the reduced word w.

7.1.6 A commutation rule

For x,y € U homogeneous let us define
Note that, in general, [y, z], is not proportional to [z, y],.

An important property of the PBW basis is the following commutation rule, see
8. If < < j then [f;, f;]q belongs to U™ [j — 1,4+ 1] (whichis 0if j =i+ 1).
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It follows that U~ [j,1] is an algebra. This allows us to sort algorithmically non-
commutative monomials in the variables f;. Also two consecutive variables
always g—commute: [f;, fiy1]q = 0.

Similarly, if ¢ < j then [e;, e;]; belongs to UT[i+1, j—1] (whichis 0 if j = i+1).
It follows that U*[i, 4] is an algebra, and two consecutive variables always q—
commute, [e;,€i4+1]q = 0.

7.2 g—holonomicity of quantum groups

Suppose A: U — U is a linear operator. Using the PBW basis of U (see
Equation (#)), we can present A by a matrix:

Awo) =Y AT 20,

with A7 € Q(v). We call (o,0") the coordinates of the matrix entry AZ .
Definition 7.2 We say that A is g—holonomic if the matrix entry Agl, con-
sidered as a function of (o,0") is g-holonomic with respect to all the variables.

A priori this definition depends on the reduced word w. But we will soon see
that if A is g—holonomic in one PBW basis, then it is so in any other PBW
basis.

7.2.1 g—holonomicity of transition matrix

Suppose z,(w’) is another PBW basis associate to another reduced word w’
representing the longest element of W. Then we have the transition matrix MJ '
between the two bases, with entries in Q(v). The next proposition checks that
the entries of the transition matrix are g—holonomic, by a standard reduction
to the rank 2 case.

Proposition 7.3 Except for the case of Gy, the matrix entry Mg/ is q—
holonomic with respect to all its coordinates.

Proof Since any two reduced presentations of an element of W are related
by a sequence of Coxeter moves, it is enough to consider the case of a single
Coxeter move. Since each Coxeter move involves only two fundamental roots
and all Ty, ’s are algebra isomorphisms, it is enough to considered the case of
rank 2 Lie algebras. For all rank 2 Lie algebras (except G2) we present the
proof in Appendix. O
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7.2.2 Structure constants

Recall the PBW basis {z, |o € S} of the algebra ¢//. The multiplication in U
is determined by the structure constants ¢(o,0’,0”) € Q(v) defined by:

/ "
Loyl = E clo,0',0")xon.

O—//

We will show the following;:

Theorem 7 The structure constant c¢(o,o’,0") is g—holonomic with respect
to all its variables.

Proof will be given in subsection [LZ40l

7.2.3 Actions on Verma modules are g—holonomic

Each Verma module M () is naturally isomorphic to U™, as a vector space,
via the map w — u -7n. Using this isomorphism we identify a PBW basis of U~
with a basis of M (), also called a PBW basis. If u € U, then the action of u
on M()) in a PBW basis can be written by a matrix u2 with entries in Q(v).

We call (n,n’) € N x N’ the coordinates of the matrix entry.

Proposition 7.4 For every r with 1 < r < t, the entries of the matrices
eff , ff are g—holonomic with respect to k, A, and the coordinates of the entry.

This Proposition follows immediately from Theorem [ and Fact 0.

7.3 Quantum knot invariants
7.3.1 The quasi- R—matrix

Fix a reduced word w representing the longest element of W. For each r,1 <

r<t,let
O, = ch ff ® eﬁv
keN
Vm — 'U_l k
where o (_1)]61);7]6(/6—1)/2 ( r "Yr- )
[k]'Yr"
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Here v, = /2 and

The main thing to observe is that ¢ is g—holonomic with respect to k. Note
that although ©, is an infinite sum, for every weight A € X, the action of O,
on M(X\) ® M(X) is well-defined. This is because the action of e, is locally
nilpotent, ie, for every x € M(\), there is k such that ef -2 = 0.
The quasi- R—matrix is:

O = ®t®t—1 e @1.
We will consider © as an operator from M(\) @ M(\) to itself. There is a
natural basis for M(\) ® M(A) coming from the PBW basis of M(\).

Proposition 7.5 The matrix of © acting on M(\) in a PBW basis is q—
holonomic with respect to all the coordinates of the entry and X.

Proof It’s enough to prove the statement for each ©,. The result for O,
follows from the fact that the actions of €, f¥ on M()), as well as ¢, are
g—holonomic in k£ and so are all the coordinates of the matrix entries, by Propo-
sition [l . O

7.3.2 The R—matrix and the braiding

As usual, let us define the weight on M (\) by declaring the weight of F, -1 to
be A — > n;v;, where n = (nq,...,ny). The space M()\) is the direct sum of
its weight subspaces.

Let D: M(\) @ M(X) — M(X\) @ M(X) be the linear operator defined by
D(x@y)=v Tz gy,

Clearly D is g—holonomic; it’s called the diagonal part of the R—matrix, which
is R:=06D.

The braiding is B := Ro, where o(x®y) = y®x. Combining the above results,
we get the following:

Theorem 8 The entry of the matrix of the braiding acting on M()\) is q—
holonomic with respect to all the coordinates and A.

Remark 7.6 Technically, in order to define the diagonal part D, one needs to
extend the ground ring to include a D-th root of v, since (A, u), with A\, u € X,
is in general not an integer, but belonging to %Z.
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7.3.3 g—holonomicity of quantum invariants of knots

First let us recall the definition of quantum knot invariant.

Using the braiding B: M(A) — M () one can define a representation of the
braid group 7: B, — (M()\))®™ by putting

7(0y) = id¥ @B id®m—i-t,

Let p denote the half-sum of positive roots. For an element x € U/ and an
U—module V, the quantum trace is defined as

trg(z, V) == tr(xK_g,, V).

Suppose a framed knot X is obtained by closing a braid g € B,,. We would
say that the colored Jones polynomial is the quantum trace of 7(3). However,
since M () is infinite-dimensional, the trace may not make sense. Instead, we
will use a trick of breaking the knot. Let K' denote the long knot which is the
closure of all but the first strand of (.

Recall that 7(3) acts on (M (X))®™. Let
T(B)(\mirmm ¢ ZlyE /D)

be the entries of the matrix 7(/5)(\). We will take partial trace by first putting
n; = nj = 0 and then take the sum over all no = n),...,n,, = n},. The
following lemma shows that the sum is actually finite.

Lemma 7.7 Suppose n; = 0. There are only a finite number of collections of
(ng,ns,...,n,,) € N=! such that

7(8) (M)

is not zero.

Proof Let M’()\) be the maximal proper U-submodule of M(A). Then
L(\) = M(\)/M'()) is a finite dimensional vector space. In particular it has
only a finite number of non-trivial weights. Hence, all except for a finite number
of fy,n € N', are in M'()).

We present the coefficients B4 () graphically as in Figure B

Note that if (Bi)nins~ is not equal to 0, then fy,, can be obtained from fy,
by action of an element in U/, and similarly, f,, can be obtained from fy,, by
action of an element in ¢/. Thus if we move upwards along a string of the braid,
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n, n; n, np

Figure 3: (By)®umm2 and (B_)m,me

ni,nz ni,nz

the basis element at the top can always be obtained from the one at the bottom
by an action of U.

Because the closure of ( is a knot, by moving around the braid one can get any
point from any particular point. Because the basis element fj is not in M’()),
we conclude that if

7(B) (M1
is not 0, with n; = 0, then all the basis vectors fy,, ..., f,,, are not in M'()\),
and there are only a finite number of such collections. m]

R ecall that 2p is the sum of all positive roots. Let us define
T (N) = Yo (Ko m(B)A)abmm.
ng,...nm €Nt ny;=0,

From g-holonomicity of 7(3)()) it follows that Jx/(\) is ¢g—holonomic. Jis(A)
is a long knot invariant, and is related to the colored Jones polynomial Jx of
the knot IC by

Jr(A) = Jir(A) x dimg (L (X)),

where L(\) is the finite-dimensional simple &/ —module of highest weight A, and
dimg(L(A)) is its quantum dimension, and is given by the formula

>\+p706) — 'U_()‘J’_pva)

o
dim, (V) = []

a0 ’U(pva) —_ ’U_(p7a)

Since dimg(L(A)) is g-holonomic in A, we see that Jx(A) is g—holonomic. This
completes the proof of Theorem B m]

Remark 7.8 The invariant Jir of long knots is sometime more convenient.
For example, Jic(\) might contain fractional power of ¢, but (if K has framing
0,) Jxr(A) is always in Z[g*!], see [20]. Also the function Jxs can be extended
to the whole weight lattice.
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7.4 Proof of Theorem [T

7.4.1 r, is g—holonomic

We will need the linear maps 74,75 : UT — UE, as defined in [I7, Chapter 6].
Their restriction to U~ is umquely Characterlzed by the properties:

ra(zy) = ra(@)y + 0@ D aray)  riey) = eriy) +o @ @)y (5)
and for any two fundamental roots «, 3, (see [Il, Eqn.(6.15.4)]) and

1 — 2

() = () = oy B F (©
where vy 1= v(®®/2; see [I7, Eqn.(8.26.2)].
Lemma 7.9 For a fixed o € {a,...,ap}, the matrix entries of the operators

(ra)k, (rl)k : U~ — U~ are g—holonomic with respect to k and the coordinates
of the matrix entry. Similarly, (ro)*, (r))*: UT — UT are q—holonomic.

Proof We give a proof for r%: U4~ — U~. The other case is similar.

There is a reduced word w’ = s;, ...s;, representing the longest element wy
of W such that «;, = a. Then w = s;,...s;,55 is another reduced word
representing wg, where @ := —wp(«).

For the PBW basis of U~ associated with w it’s known that v = a, and thus
ft = F,. According to [, 8.26.5], for every x in the algebra U~ [t — 1, 1], one
has

ro(x) = 0.

Using Equations (H) and (@) and induction, one can easily show that for every
xeU [t—1,1],

2nt 21+2

(Ta Hl tnt k x,

=1

This formula, applied to = = f;"';" ... f{'*, proves the statement. O

7.4.2 U,(sly) is g—holonomic

Lemma 7.10 Theorem [@ holds true for g = sl,.
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Proof The PBW basis for U is F*K/E™, with m,n € N and j € Z. First of
all we know that

o
EVFr =Y [ :”’ } [ 7; } Erib(Ko; 2i —n —m, i) BT
i=0 Va Vo

7 a—j+1 1 —a+j—1
Kovg 77— K
where b(Ky;a,i) = H e - 2
e} Vo — Vg
Here for any root <y, one defines v, = v/2 and [ T } is the usual

Vo
quantum binomial coefficient calculated with v replaced by v, .

Hence

o
(FmEFEM)(F™KY E™) =Y FM T a(m, ko, m! K nl i) BT
=0
where

a(m, k,n,m', k', n i)

_ U2k(i—m')+2k’(i—n)|: n :| |: m
1 1

/

] [i)1b(K; 2 —n —m! i) KFHF

The value of the function a is in Z[v*!][K*!]. Consider the coefficient of K"
in a; one gets a function of m,n, k,m’, n’, k', i,r with values in Z[v*'] which is
clearly g—holonomic with respect to all variables. The lemma follows. O

7.4.3 EF FF. U — U are g—holonomic in k

Proposition 7.11 For a fixed fundamental root o € {aq,...,az}, the opera-
tors Ef;,F(f: U — U of left multiplication are g—holonomic with respect to k
and all the coordinates of the matrix entry. Similarly, the right multiplication
by E§,F£ are q—holonomic with respect to k and all the coordinates of the
matrix entry.

Proof (a) Left multiplication by F* and right multiplication by E~.

Choose w as in the proof of Lemma Then f; = F, and ¢, = E,, and
an element of the PBW basis has the form f/"xKgye;™. It’s clear that left
multiplication by F, and right multiplication by F, are g—holonomic.

(b) Left multiplication by EF.

Geometry € Topology, Volume 9 (2005)



The colored Jones function is q—holonomic 1287

Choose a reduced word w = s;, ... s;, representing the longest element wy that
begins with a: «;, = a. We have the corresponding PBW basis f;,e;,i =
1,...,t with f; = F, and e; = E,. Thus a typical element of the PBW basis
has the form

eF KBy, (7)

where x = fi" ... f3%,y = e5? ... e/". By [I7, 8.26.6], since x € U™ [t,2], one
has r/ () = 0. Using formula [I7, 6.17.1], one can easily prove by induction
that
Tk K . i
(Eo)fa = ka[ . ] 0 (ro) (x)EL .
e ; 7 - (Ua_val)z (e «

Using this formula one can move the E, past x in the expression (), (there
appear 1, and K, ), then one moves E, past F, using the sl case. The last
step is moving past Kj is easy, since

EoK5=v"CYEK,E,.

Using Lemmas and [0, we see that each “moving step” is g—holonomic.
Hence we get the result for the left multiplication by EF.

(c) Right multiplication by FF.

The proof is similar. We use the same basis () as in the case b). For y, by
Lemma 8.26 of [I7], one has r,(y) = 0. Hence using induction based on the
formula (6.17.2) of [I7] one can show that

00 Uz’(n—i) n ' ' '
yFlh =% —— [ . ] FI KN (rh) (y).
a ; ('Ua 1 Ua)z 1 o e} « a
Using this formula, and the results for 7/, (Lemma [[J) and sly (Lemma [ZIT0)
we can move F, to the right. O

7.4.4 T, is g—holonomic

Proposition 7.12 For a fixed fundamental root o € {aq,...,c4}, the braid
operator T,,: U — U and its inverse T, ! are g—holonomic.
Proof By Proposition we can use any PBW basis.

Choose a reduced word w' = s;, ...s;, representing the longest element wy
that begins with a: «;, = . Then w = s;, ... s;,55 is another reduced word
representing wg, where @ is the dual of a: @ = —wp(«).
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We use f, to denote f,.(w), and f; to denote f,.(w'). The relation between the
two PBW basis of w and w is as follows: For 1 <r <t —1,
To(fr) = f;+1a To