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Abstract. We construct knot invariants from solutions to the Yang–Baxter equation as-
sociated to appropriately generalized left/right Yetter–Drinfel’d modules over a braided
Hopf algebra with an automorphism. When applied to Nichols algebras, our method repro-
duces known knot polynomials and naturally produces multivariable polynomial invariants
of knots. We discuss in detail Nichols algebras of rank 1 which recover the ADO and the col-
ored Jones polynomials of a knot and two sequences of examples of rank 2 Nichols algebras,
one of which starts with the product of two Alexander polynomials, and then conjecturally
the Harper polynomial. The second sequence starts with the Links–Gould invariant (conjec-
turally), and then with a new 2-variable knot polynomial that detects chirality and mutation,
and whose degree gives sharp bounds for the genus for a sample of 30 computed knots.
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1. Introduction

Jones’s discovery of his famous polynomial of knots had an enormous influence in knot
theory and connected the subject of low dimensional topology and hyperbolic geometry to
mathematical physics, giving rise to quantum topology [Jon87, Thu77, Wit89].

The Jones polynomial was originally defined by thinking of a knot as the closure of a
braid, and by taking the (suitably normalized) trace of representations of the braid groups
(with an arbitrary number of strands), which themselves were determined by a vector space
V and an automorphism R ∈ Aut(V ⊗ V ) that satisfies the Yang–Baxter equation

R1R2R1 = R2R1R2 ∈ End(V ⊗ V ⊗ V ) , (1)

where R1 = R⊗ I, R2 = I ⊗R.
It was soon realized that representations of simple Lie algebras and their deformations,

known as quantum groups, were a natural source of solutions to the Yang–Baxter equations.
This led to a plethora of polynomial invariants of knots; see for example Turaev [Tur88,
RT90].

Another source of polynomial invariants (one for every complex root of unity) came from
the work of Akutsu–Deguchi–Ohtsuki [ADO92]. It was conjectured by Habiro [Hab08,
Conj.7.4] and later shown by Willets in [Wil22] that the collection of the colored Jones
polynomials of a knot (colored by the irreducible representations of sl2) determines and is
determined by the collection of ADO invariants at roots of unity.

The definition of the above invariants requires an R-matrix together with a (ribbon)
enhancement of it which, roughly speaking, is an endomorphism of V required to define
the quantum trace, and hence the knot invariant. This comes from the Reshetikhin–Turaev
functor which forms the basis of knot/link invariants in arbitrary 3-manifolds [RT90].

An R-matrix alone is in principle sufficient to define knot invariants. This was clarified
by the second author by constructing invariants of knots from an R-matrix that satisfies
some non-degeneracy conditions, called rigidity in [Kas21]. Rigid R-matrices indeed allow
one to define state-sum invariants of planar projections of knots without any extra data. A
description of how these invariants are defined is given in Section 2 below.

One can construct rigidR-matrices from any Hopf algebra with invertible antipode through
Drinfel’d’s quantum double construction which can be put into pure algebraic setting of
multilinear algebra without finiteness assumptions of the Hopf algebra [Kas23].

In this paper, we propose a different approach of producing rigid R-matrices that does not
use the quantum double of a Hopf algebra. The construction of these R-matrices, and the
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corresponding knot invariants, is schematically summarized in the following steps:{
Braided

Hopf algebras
with autos

}
→

{
Braided

left/right YD modules
with automorphisms

}
→ {R-matrices} → {Knot invariants} (2)

The last arrow in (2) is the well-known Reshetikhin–Turaev functor reviewed in Section 2.
The first and the second arrows are discussed in Sections 3.1 and 3.2 below. These sections
are written in the maximum level of abstraction, using the language of category theory, for
potential future applications to braided categories not coming from vector spaces.

The knot invariants defined by the steps in (2) require as input a braided Hopf algebra
with automorphisms. A concrete source of braided Hopf algebras with a rich group of
automorphisms are the Nichols algebras discussed in detail in Section 5. Roughly speaking,
a Nichols algebra is the quotient of a naturally graded tensor algebra of a braided vector
space by a suitable grading preserving maximal Hopf ideal. Any choice of an automorphism
gives rise to appropriately generalized left and right Yetter–Drinfel’d module structures over
the Nichols algebra. It turns out that the latter admits a natural quotient space in the case
of the left generalized Yetter–Drinfel’d module and a natural submodule in the case of the
right generalized Yetter–Drinfel’d module. In a sense, the choice of the braided Hopf algebra
automorphism seems to correspond to a choice of a quantum double representation in the
traditional approach.

In Sections 6 and 7 we study these generalized Yetter–Drinfel’d modules of Nichols algebras
of diagonal type in the cases when the input braided vector space is of dimension one and
two, which gives rise respectively to one and two-variable polynomial invariants of knots.

We end this introduction with some further comments.
1. An important feature of our construction is a braided Hopf algebra with an automorphism.
The nontriviality of the automorphism is an essential part for constructing nontrivial knot
invariants. In a sense the group of automorphisms replaces the representation theory.
2. Our approach unifies previous constructions of knot invariants (notably the colored Jones
and the ADO polynomials, the Links-Gould and the Harper polynomials) coming from su-
per/quantum groups, but also leads to a systematic construction of multivariable polynomial
invariants of knots beyond the quantum groups.
3. A feature of the knot polynomials that we construct is that they depend on variables
coming both from the braiding and the automorphism of the braided Hopf algebra. It
is likely that some of our polynomial invariants of knots coincide with conjectured knot
invariants that are discussed in the physics literature; see for instance the work of Gukov et
al [GHN+21].
4. We expect that some of these invariants come from finite type invariants of knots [BN95],
though we have not investigated this at the moment.
5. We expect that our polynomial invariants give lower bounds for the Seifert genus of a knot
(as is known for the classical Alexander polynomial, but also in some other cases already,
see [NvdV, KT]).
6. Regarding q-holonomic aspects, we expect our invariants to satisfy the analogous q-
holonomic properties (that is, linear q-difference equations), as those that come from quan-
tum groups (such as the colored Jones polynomials associated to a simple Lie algebra and
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parametrized by weights of irreducible representations [GL05]) or those defined at roots of
unity (such as the ADO invariant [BDGG]).
7. Finally, regarding asymptotic aspects, we expect that our invariants satisfy versions of
the Volume Conjecture, analogous to those of the colored Jones polynomials [Kas97, MM01]
and the ADO invariants [Mur08].

2. From R-matrices to knot invariants

In this section we briefly describe the Reshetikhin–Turaev functor which allows to con-
struct knot invariants from R-matrices. These invariants are defined by state-sums [RT90],
using a variation of the construction from the second author’s paper [Kas21]. There are three
ingredients involved in this construction, namely suitable knot diagrams, rigid R-matrices,
and the corresponding state-sums.

2.1. Knot diagrams and rigid R-matrices. We use a diagrammatic notation which is
very important for the construction of knot invariants and has a long and successful history
in knot theory [RT90, Tur94]. Basically, knots are represented by generic planar projections
composed of local pieces which correspond to structural morphisms of a braided vector space,
while the compatibility conditions ensure invariance under changes of planar projections. The
notation leads naturally to the concept of a braided monoidal category, not necessarily in an
abelian category, that vastly generalizes the notion of a braided vector space [TV17].

Following [Kas21], we now explain concretely the knot diagrams used. An (oriented) long
knot diagram K is an oriented knot diagram in R2 with two open ends called “in” and “out”:

K = K

out

in

Examples : K = , K = .

A long knot diagram can be closed to a planar projection of a knot: K 7→ K .

The vertical direction plays a preferred role for long knot diagrams.
The normalization K̇ of K is the diagram obtained from K by the replacements of local

extrema oriented from left to right

7→ and 7→ (3)

at all posible locations of K. We say that K is normal if K = K̇.
The building blocks of normal diagrams are given by four types of segments

, , , (4)

and eight types of crossings (four positive and four negative ones)

, , , , , , , . (5)

We next define R-matrices and their rigid version. An R-matrix over a vector space V is
an automorphism r ∈ Aut(V ⊗V ) of V ⊗V that satisfies the quantum Yang–Baxter relation

r1r2r1 = r2r1r2, r1 := r ⊗ idV , r2 := idV ⊗r . (6)
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Let V ∗ denote the dual vector space and ⟨·, ·⟩ : V ∗ ⊗ V → F denote the natural evaluation
map. Assume that V is a finite-dimensional, and fix a basis B of V and the corresponding
dual basis {b∗}b∈B of V ∗.

Given f ∈ End(V ⊗ V ), we define its partial transpose f̃ : V ∗ ⊗ V → V ⊗ V ∗ by

f̃(a∗ ⊗ b) =
∑
c,d∈B

⟨a∗ ⊗ c∗, f(b⊗ d)⟩c⊗ d∗, f 7→ f̃ = f . (7)

We call an R-matrix r rigid if r̃±1 are invertible.

2.2. State-sum invariants of knots. We now have all the ingredients to define the state-
sum invariants of normal knot diagrams. Fix a rigid R-matrix r over a finite dimensional
vector space V , equipped with a basis B. For a normal long knot diagram K, let EK and
CK denote its sets of edges and crossings, respectively.
A state s of K is a map s : EK → B that assigns an element of B to each edge of K. The

weight ws(K) of the state s of K is the product of local weights

ws(K) =
∏
c∈CK

ws(c) , (8)

where the local weights are defined by

a b

c d

,
c a

d b

,
d c

b a
ws7−→ ⟨c∗ ⊗ d∗, r(a⊗ b)⟩,

b d

a c
ws7−→

〈
a⊗ c∗, (r̃−1)−1(b⊗ d∗)

〉
(9)

for positive crossings and likewise for negative crossings

a b

c d

,
c a

d b

,
d c

b a
ws7−→ ⟨c∗ ⊗ d∗, r−1(a⊗ b)⟩,

b d

a c
ws7−→

〈
a⊗ c∗, (r̃)−1(b⊗ d∗)

〉
. (10)

These arrangements of theR-matrices at the crossings are the same as in [Kas21, Eqns.(16)-
(19)].

The main theorem of this construction is the topological invariance of the state-sum;
see [Res89, RT90, Tur94] and in the form stated below, [Kas21, Thm.1].

Theorem 2.1. Let a normal long knot diagram K have an equal number of negative and
positive crossings. Then, the linear map

Jr(K) : V → V, Jr(K)a =
∑

s∈BEK , sin=a

ws(K)sout (11)

is independent of the basis of V and it is thus an End(V )-valued invariant of oriented knots.

When the vector space V is equipped with a basis B (as in all of our examples below),
then the oriented knot invariant above is a matrix-valued invariant.

Note that this construction can be extended to the context of arbitrary monoidal categories
with duality.
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The above invariant should not be confused with the universal invariants of knots taking
values in quotients of completed Hopf algebras that come from quantum groups, considered
by Lawrence [Law90], Ohtsuki [Oht93] and Habiro [Hab08].

3. From braided Hopf algebras with automorphisms to R-matrices

3.1. From Hopf f-objects to left/right Yetter–Drinfel’d f-objects. In this section
we discuss the left arrow of (2). We deliberately phrase our results in the language of
braided monoidal (not-necessarily abelian) categories to allow versatility of future appli-
cations. A detailed discussion of the concepts of a monoidal category, braided monoidal
category, rigid monoidal category, category of functors, algebra and coalgebra objects in
monoidal categories, modules over algebra objects and comodules over coalgebra objects
and their morphisms can be found in the book by Turaev–Virelizier [TV17, Sec.1.6].

All monoidal categories that we consider are assumed to be strict. In writing compositions
of morphisms g : X → Y and f : Y → Z in a category, we will suppress the composition
symbol, so that we write fg instead of f ◦g. Moreover, in the case of monoidal categories, we
assume the preference of the composition over the monoidal product, so that, for example,
fg ⊗ h will mean (fg)⊗ h.

When a functor F : D → C is considered as an object of the functorial category CD, it will
be called functorial object or just f-object for brevity.
Let C be a braided monoidal category. Denote by CZ the braided monoidal category of

functors F : Z→ C where the additive group of integers Z is viewed as a category with one
object ∗ whose automorphism group is Z. We denote by τ : ⊗ → ⊗op the braiding of CZ
which assigns to any pair of f-objects F and G a functorial morphism τF,G : F ⊗G→ G⊗F
that at the unique object ∗ of Z evaluates to the morphism of C

(τC)F (∗),G(∗) : F (∗)⊗G(∗)→ G(∗)⊗ F (∗)

where τC is the braiding in C.

Remark 3.1. Given the fact that the group Z is freely generated by one element 1, an
object G of the functor category CZ is uniquely determined by the pair (A, ϕ) where A is
the object of C obtained as the image by G of the unique object ∗ of Z, and ϕ : A → A
is the automorphism of A obtained as the image by G of the generating element 1 of Z.
With this interpretation, a morphism from (A, ϕ) to (B,ψ) is a morphism f : A → B in C
such that ψf = fϕ. The monoidal product of two pairs (A, ϕ)⊗ (B,ψ) is given by the pair
(A⊗B, ϕ⊗ ψ).

Definition 3.2. A Hopf f-object is an f-object H : Z→ C together with functorial morphisms
(natural transformations)

∇ : H ⊗H → H, η : I→ H, ∆: H → H ⊗H, ϵ : H → I, S : H → H (12)

such that (H,∇, η) is an algebra f-object, (H,∆, ϵ) is a coalgebra f-object and

(∇⊗∇)(idH ⊗τH,H ⊗ idH)(∆⊗∆) = ∆∇, (13)

∇(S ⊗ idH)∆ = ηϵ = ∇(idH ⊗S)∆. (14)
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We will always assume that S is an invertible (functorial) morphism. As in the theory of
Hopf algebras, the functorial morphisms ∇, η, ∆, ϵ and S are respectively called product,
unit, coproduct, counit and antipode.

Definition 3.3. Let H : Z→ C be a Hopf f-object. A left Yetter–Drinfel’d f-object over H is
a triple (Y, λL, δL) where Y : Z→ C is an f-object of CZ, and λL : H⊗Y → Y , δL : Y → H⊗Y
are morphisms of CZ such that (Y, λL) is a leftH-module f-object, (Y, δL) is a leftH-comodule
f-object, and

(∇⊗ idY )(idH ⊗τY,H)(δLλL ⊗ ϕH)(idH ⊗τH,Y )(∆⊗ idY )

= (∇⊗ λL)(idH ⊗τH,H ⊗ idY )(∆⊗ δL)
(15)

where ϕH : H → H is the functorial isomorphism that at the unique object ∗ of Z evaluates
as

(ϕH)∗ = H(1) : H(∗)→ H(∗).

Taking into account the self-dual nature of Hopf objects, it is useful to have the dual
version of Definition 3.3 which reads as follows.

Definition 3.4. A right Yetter–Drinfel’d f-object over a Hopf f-object H : Z→ C is a triple
(Y, λR, δR) where Y : Z→ C is an f-object of CZ, and λR : Y ⊗H → Y , δR : Y → Y ⊗H are
functorial morphisms of CZ such that (Y, λR) is a right H-module f-object, (Y, δR) is a right
H-comodule f-object, and

(idY ⊗∇)(τH,Y ⊗ idH)(ϕH ⊗ δRλR)(τY,H ⊗ idH)(idY ⊗∆)

= (λR ⊗∇)(idY ⊗τH,H ⊗ idH)(δR ⊗∆) .
(16)

We will return and give further clarifications to these definitions later in Subsection 4.2
after introducing the graphical notation of string diagrams.

For a Hopf f-object H : Z → C, we denote by ∆(2) and ∇(2) the twice iterated coproduct
and product, respectively, defined by

∇(2) : H ⊗H ⊗H → H, ∇(2) = ∇(∇⊗ idH)

∆(2) : H → H ⊗H ⊗H, ∆(2) = (∆⊗ idH)∆ .
(17)

The following theorem provides constructions of left/right Yetter–Drinfel’d f-objects over
a Hopf f-object H : Z→ C.

Theorem 3.5. For any Hopf f-object H : Z→ C,
(a) the triple (H,∇, δL) is a left Yetter–Drinfel’d f-object over H, where

δL := (∇⊗ idH)(idH ⊗τH,H)(idH⊗H ⊗SϕH)∆
(2); (18)

(b) the triple (H, λR,∆) is a right Yetter–Drinfel’d f-object over H, where

λR := ∇(2)(SϕH ⊗ idH⊗H)(τH,H ⊗ idH)(idH ⊗∆) . (19)
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3.2. From left/right Yetter–Drinfel’d f-objects to R-matrices. The next theorem
constructs R-matrices from left/right Yetter–Drinfel’d f-objects corresponding to the second
arrow in (2).

Theorem 3.6. Let H : Z→ C be a Hopf f-object and (Y, λ, δ) be a left, respectively a right,
Yetter–Drinfel’d f-object over H. Then

ρL = (λ⊗ idY )(idH ⊗τY,Y )(δ ⊗ ϕY ), (20)

respectively

ρR = (ϕY ⊗ λ)(τY,Y ⊗ idH)(idY ⊗δ), (21)

is an R-matrix, that is a solution of the following braid group type Yang–Baxter relation in
the automorphism group Aut(Y ⊗ Y ⊗ Y ):

(ρ⊗ idY )(idY ⊗ρ)(ρ⊗ idY ) = (idY ⊗ρ)(ρ⊗ idY )(idY ⊗ρ). (22)

Moreover, this R-matrix is rigid if the f-object Y is rigid.

The proof of these theorems is given in the next section, using a diagrammatic calculus.
A corollary of Theorem (3.6) gives an invariant of knots.

Theorem 3.7. Fix a rigid left or a right Yetter–Drinfel’d f-object Y over a Hopf f-object H
with corresponding R-matrix ρ. Then, there exists a knot invariant

{Knots in S3} → End(Y ), K 7→ Jρ(K) . (23)

4. Proofs

4.1. Diagrammatics of braided Hopf algebras with automorphisms. The Hopf f-
objects introduced in Section 3 are categorical versions of pairs (H,ϕ) where H is a braided
Hopf algebra and ϕ is an automorphism of H. At around the same time of the Reshetikhin–
Turaev construction of knot invariants via diagrammatics, there was a parallel intense ac-
tivity in the theory of Hopf algebras motivated in part by the theory of quantum groups
developed by Drinfel’d [Dri87] and Jimbo [Jim86]. There is a string diagrammatic calculus
designed to prove tensor identities in Hopf algebras that avoids using explicit coordinate
formulas for the tensors involved.

This string diagrammatic calculus extends to the case of braided Hopf algebras, introduced
by Majid around 1990 [Maj94, Maj95], and used extensively by many authors including
Radford, Kuperberg and Kauffman [Rad12, Kup91, KR95]. A survey of the various directions
of braided Hopf algebras around 2000 is given by Takeuchi in [Tak00].

The string diagrammatics of the generators and relations of a Hopf algebra are given
in [Maj95]. For a recent treatement, see [Kas23], namely, Eqns. (1.81)-(1.85) for the gen-
erators, Eqns. (1.86)-(1.91) for the relations and Eqns. (1.68)-(1.73) for the diagrammatic
notation. For the convenience of the reader, we recall below the definitions of these mor-
phisms, relations, and the string diagrammatic notation.
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Let C be a category. To any morphism f : X → Y in C, we associate a graphical picture

f =: f

X

Y

. (24)

If f : X → Y and g : Y → Z are two composable morphisms, then their composition is
described by the vertical concatenation of graphs

g ◦ f = g ◦ f

Z

X

=

g

Z

f

X

Y (25)

In particular, for the identity morphism idX it is natural to use just a line

idX = idX

X

X

=

X

X

. (26)

The string diagrams are especially useful in the case when C is a strict monoidal cat-
egory, because the tensor (monoidal) product can be drawn by the horizontal juxtapo-
sition. Namely, for two morphisms f : X → Y and g : U → V , their tensor product
f ⊗ g : X ⊗ U → Y ⊗ V is drawn as follows:

f ⊗ g = f ⊗ g

Y ⊗ V

X ⊗ U

= f ⊗ g

VY

UX

= g

V

U

f

Y

X

. (27)

For example, the graphical equalities

g

V

U

f

Y

X

=
g

V

U

f

Y

X

=
g

V

U

f

Y

X

(28)

correspond to the well known relations in the tensor calculus

f ⊗ g = (f ⊗ idV )(idX ⊗g) = (idY ⊗g)(f ⊗ idU). (29)

By taking into account the distinguished role of the identity object I, it is natural to
associate to it the empty graph.
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Let C be a symmetric monoidal category with tensor product ⊗, the opposite tensor
product ⊗op, unit object I and symmetry σ : ⊗ → ⊗op. Recall that a Hopf object in C is an
object H endowed with five structural morphisms

∇ : H ⊗H → H, η : I → H, ∆: H → H ⊗H, ϵ : H → I, S : H → H (30)

called, respectively, product, unit, coproduct, counit and antipode, that satisfy the following
relations or axioms

associativity : ∇(∇⊗ idH) = ∇(idH ⊗∇) (31a)

coassociativity : (∆⊗ idH)∆ = (idH ⊗∆)∆ (31b)

unitality : ∇(η ⊗ idH) = idH = ∇(idH ⊗η) (31c)

counitality : (ϵ⊗ idH)∆ = idH = (idH ⊗ϵ)∆ (31d)

invertibility : ∇(idH ⊗S)∆ = ηϵ = ∇(S ⊗ idH)∆ (31e)

compatibility : (∇⊗∇)(idH ⊗σH,H ⊗ idH)(∆⊗∆) = ∆∇. (31f)

Let us introduce the following graphical notation for the structural maps of H (all lines
correspond to the object H)

∇ = ∇ = (product), ∆ = ∆ = (coproduct), (32)

η = η = (unit), ϵ = ϵ = (counit), (33)

S = S = (antipode). (34)

We complete this with the graphical notation for the symmetry

σH,H = σH,H = . (35)

The relations or axioms of a Hopf object take the following graphical form:

= (associativity), = = (unitality), (36)

= (coassociativity), = = (counitality), (37)

= = (invertibility), (38)

= (compatibility). (39)

Our first refinement is the notion of a braided Hopf algebra in a braided monoidal category.
It generalizes the notion of a Hopf object (defined in the context of a symmetric monoidal
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category) by replacing the symmetry σH,H in the compatibility axiom (31f), (39) by the
braiding τ = τH,H : H ⊗H → H ⊗H that satisfies the Yang–Baxter equation

(τ ⊗ idH)(idH ⊗τ)(τ ⊗ idH) = (idH ⊗τ)(τ ⊗ idH)(idH ⊗τ). (40)

In other words, a braided Hopf object (in a braided monoidal category) is defined by the
same set of structural maps (30) that satisfy relations (31a)–(31e), while in the compatibility
relation (31f), (39) the symmetry σ is replaced by the braiding τ

compatibility : (∇⊗∇)(idH ⊗τH,H ⊗ idH)(∆⊗∆) = ∆∇. (41)

One can show that in any braided Hopf algebra, the antipode satisfies the relations

S∇ = ∇τH,H(S ⊗ S), ∆S = (S ⊗ S)τH,H∆ (42)

which can be proven, for example, following the same line of reasoning as in Section 1.9
of [Kas23].

In the diagrammatic language, we denote the braiding morphism by

τH,H = (43)

so that the compatibility relation (41) takes the graphical form (cf. (39))

= (44)

and relations (42) become

= , = . (45)

The second refinement that we need is the notion of a Hopf f-object or Hopf f-algebra
which corresponds to a pair (H,ϕ) composed of a braided Hopf algebra H and a braided
Hopf algebra automorphism ϕ : H → H. In addition to the axioms of a braided Hopf
algebra for H, the pair (H,ϕ) satisfies the extra compatibility conditions between ϕ and all
the structural morphisms of H:

∇(ϕ⊗ ϕ) = ϕ∇, (ϕ⊗ ϕ)∆ = ∆ϕ, (46)

Sϕ = ϕS, ϕη = η, ϵϕ = ϵ. (47)

In the diagrammatic notation, we denote the automorphism ϕ by

ϕ = (48)
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so that the additional compatibility relations (46) and (47) take the form

= , = , (49)

= , = , = . (50)

4.2. Diagrammatics of Yetter-Drinfel’d f-objects. In this section we recall the def-
initions for Yetter–Drinfel’d f-objects over Hopf f-objects and provide the diagrammatic
notation for them.

The original Yetter–Drinfel’d modules were defined by Yetter [Yet90] and they are es-
sentially modules over Drinfel’d’s quantum double of a Hopf algebra (hence the name of
Drinfel’d). In the early literature, they were also called crossed modules; see eg. [Rad12,
p. 385]. A detailed definition of these modules, their properties in the setting of braided
Hopf algebras is given by Takeuchi [Tak00].

A left Yetter-Drinfel’d f-object over a Hopf f-object H is a triple (Y, λL, δL) where λL : H⊗
Y → Y and δL : Y → H ⊗ Y satisfy the left module and left comodule equations

left action : λL(idH ⊗λL) = λL(∇⊗ idY ) (51a)

left action of unit : λL(η ⊗ idY ) = idY (51b)

left coaction : (idH ⊗δL)δL = (∆⊗ idY )δL (51c)

left coaction of counit : (ϵ⊗ idY )δ = idY (51d)

In the diagrammatic setting, we will color the left f-objects by the blue color and the right
f-objects by the red color. Using this coloring scheme, the morphisms λL and δL of the left
Yetter-Drinfel’d f-objects are drawn graphically as

λL = , δL = , (52)

so that we obtain the graphical form of Equations (51a)–(51b)

= , = , (53)

of Equations (51c)–(51d)

= , = (54)
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and the compatibility relation (15)

= . (55)

Likewise, a right Yetter-Drinfel’d f-object over a Hopf f-object H is a triple (Y, λR, δR) where
λR : Y ⊗H → Y and δR : Y → Y ⊗H satisfy the right module and right comodule equations

right coaction : (δR ⊗ idH)δR = (idY ⊗∆)δR (56a)

right coaction of counit : (idY ⊗ϵ)δR = idY (56b)

right action : λR(λR ⊗ idH) = λR(idY ⊗∆) (56c)

right action of unit : λR(idY ⊗η) = idY (56d)

The corresponding maps λR and δR of the right Yetter-Drinfel’d f-objects are denoted by

λR = , δR = , (57)

so that we have graphical form of Equations (56a) and (56b)

= , = , (58)

Equations (56c) and (56d)

= , = , (59)

and the compatibility relation (16)

= . (60)

Note that the diagrammatic form of morphisms and relations for right Yetter-Drinfel’d f-
objects are obtained from those of the left Yetter-Drinfel’d f-objects after rotating the dia-
gram by 180 degrees and replacing the blue color by the red color.
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4.3. Proof of Theorem 3.5. In this section we prove Theorem 3.5 using the diagrammatic
language that we have already described. Before doing so, we need the following diagram-
matic notation for the double-iterated coproduct (17)

∆(2) = = = . (61)

We will use similar multivalent vertices for higher-iterated coproducts and products.
Using the following graphical representation of the left coaction (18)

δL = = , (62)

we can prove the left coaction property

= (63)

as follows:

= = = = = = . (64)

Similarly, we can prove the compatibility property (15), see (55) for its graphical form, which
in this case takes the form

= . (65)
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Indeed, with a bit longer graphical calculation, we have

= = = = =

= = = = = . (66)

This completes the proof of part (a) of Theorem 3.5. The proof of part (b) is analogous,
and is omitted. □

4.4. Proof of Theorem 3.6. In this section we show that the R-matrix (20) satisfies the
Yang–Baxter equation (22), and omit the analogous proofs that the R-matrix (21) also
satisfies the Yang–Baxter equation.

To begin with, the diagrammatic notation for the R-matrices ρL and ρR is given as follows

ρL = , ρR = . (67)
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The proof of Theorem 3.6 is now given as follows:

= ⇔ = ⇔ =

⇔ = ⇐ = ⇐ = (68)

where the last equality is the compatibility Equation (55). This completes the proof of
Theorem 3.5 for left Yetter–Drinfel’d f-objects. The proof of the right Yetter–Drinfel’d f-
objects is obtained by rotating the above diagrams by 180 degrees, followed by replacing the
blue color by the red color. □

5. Braided tensor algebras and Nichols algebras

5.1. Braided tensor algebras. In this section we specialize the abstract language of Hopf
f-objects and the Yetter–Drinfel’d f-objects to the context of a braided category C which, as
a monoidal category, is a subcategory of the category VectF of vector spaces over a field F
with the monoidal structure given by the tensor product ⊗F. The objects of C will be called
braided vector spaces. In this case, a Hopf f-object and a Yetter–Drinfel’d f-object will be
respectively called a Hopf f-algebra and Yetter–Drinfel’d f-module.

Recall that it follows from the definition that a Hopf f-algebra is a pair (H,ϕ) of a braided
Hopf algebra and an automorphism ϕ of it. There is an elementary universal construction
of such pairs (H,ϕ) that we now discuss.

Fix a braided vector space V of finite dimension n. Then, the tensor algebra T (V ) has a
unique structure of a braided Hopf algebra determined by declaring all elements of V to be
primitive. We define the rank of T (V ) to be the dimension of V , and call the braided Hopf
algebra T (V ) to be of diagonal type if the braiding on V is diagonal with respect a basis B
of V .

In this case, T (V ) is Zn
≥0-graded and admits a rich Abelian group of braided Hopf algebra

automorphisms. Namely, any map t : B → F ̸=0 corresponds to a braided Hopf algebra
automorphism ϕt of T (V ) uniquely determined by

ϕtb = tbb, ∀b ∈ B, (69)

where we denote by tb the image t(b). We call such automorphisms scaling automorphisms.
Summarizing, a finite dimensional vector space V with a diagonal braiding with respect

to a basis B of V , together with a map t : B → F ̸=0 determines a pair (T (V ), ϕt) of a
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braided Hopf algebra and an automorphism of it. Using Theorems 3.5–3.6, we obtain multi-
parameter infinite-dimensional R-matrices over the vector space T (V ). Our interest is to
find rigid R-matrices which correspond to finite-dimensional Yetter–Drinfel’d f-modules. We
discuss this next.

5.2. Nichols algebras. It turns out that the braided tensor algebras T (V ) defined above
have a canonical quotient called Nichols algebra which is a braided Hopf algebra. It can be
finite or infinite dimensional.

Recall that a Nichols algebra over a braided vector space V is the quotient braided Hopf
algebraB(V ) = T (V )/J of the tensor algebra T (V ) over the maximal (braided) Hopf algebra
ideal J intersecting trivially the part F ⊕ V ⊂ T (V ). In the case when the braiding is of
diagonal type, the scaling automorphism ϕt of T (V ) decends to an automorphism of the
braided Hopf algebra B(V ) = T (V )/J leading thereby to a Hopf f-algebra which we will call
Nichols f-algebra. Thus, finite dimensional Nichols f-algebras can be used as an input to the
construction of multiparameter knot invariants in (2).

Examples of finite dimensional Nichols algebras are the nilpotent Borel parts of Lustig’s
small quantum groups. A detailed description of finite dimensional Nichols algebras can be
found for example in [AS00, AS02, And14]. Like quantum groups, Nichols algebras have
PBW bases [Kha99] and the ones with diagonal braiding have been classified by Hecken-
berger [Hec06, Hec09] building on the work of Kharchenko [Kha99] and Andruskiewitsch–
Schneider [AS00]. The list of diagonal Nichols algebras of rank (that is, dimension of V ) at
most 3 is given in Tables 1 and 2 of [Hec06], and from this, it follows that the majority of
finite rank Nichols algebras do not come from quantum groups. A presentation of Nichols
algebras of diagonal type in terms of generators and relations is given by Angiono [Ang15].

5.3. Sub/quotient Yetter–Drinfel’d f-modules of Nichols f-algebras. If a Nichols
algebra is infinite dimensional, we cannot immediately proceed to the construction of knot
invariants.

It turns out that a Nichols f-algebra B(V ), as a left/right Yetter–Drinfel’d f-module over
itself, has a canonical quotient LB(V ) and a canonical subspace B(V )R which are left and
right Yetter–Drinfel’d f-modules overB(V ) respectively. The construction of these f-modules
is as follows:

LB(V ) = B(V )/B(V )WδL , WδL = {x ∈ B(V ) \ F | δLx = 1⊗ x} (70)

where elements of WδL are nothing else but the coinvariant elements in degree ≥ 1 with
respect to the left coaction δL, see [Rad12, Def. 8.2.1]; and

B(V )R = UλR
(71)

where UλR
⊂ B(V ) is the smallest subspace of B(V ) that satisfies

∆WλR
⊂ UλR

⊗B(V ), WλR
= {x ∈ B(V ) | λR(x⊗ y) = xϵy, for all y ∈ B(V )} (72)

where elements of WλR
are nothing else but invariant elements with respect to the right

action λR, see [Rad12, Def. 11.2.3]. Note that, by taking into account the fact that ϵy = 0
for all y ∈ V , the invariance condition takes the form λR(x⊗ y) = 0 for all y ∈ V .
If any one of the B(V ) f-modules LB(V ) or B(V )R is finite dimensional, then, by Theo-

rem 3.6, it can be used in (2) for construction of polynomial knot invariants.
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In the next sections we illustate the quotients and the subspaces of a braided tensor algebra
T (V ) when the dimension of V is 1 or 2.

6. The rank 1 tensor algebra

6.1. Definition. In this section we compute from first principles the R-matrices of The-
orem 3.5 for the rank 1 tensor algebra, with no reference to Lie theory. As we will find
out, the corresponding knot invariants are none other than the colored Jones and the ADO
polynomials.

The rank 1 tensor algebra T (F) is identified with the polynomial algebra F[x] in one
indeterminate. It is an infinite dimensional F-vector space with basis B = {xk | k ∈ Z≥0}.
The Hopf algebra structure and the braided structure of T (F) are determined by

∆x = x⊗ 1 + 1⊗ x, τ(x⊗ x) = q x⊗ x . (73)

The above equations, together with the axioms of a braided Hopf algebra, and the choice of
the basis, uniquely determine the braided Hopf algebra structure. The formulas involve the
q-Pochhammer symbol (x; q)n and the q-binomial coefficients

[
k
m

]
q
defined by

(x; q)n :=
n−1∏
i=0

(1− xqi),
[
k

m

]
q

:=
(q; q)k

(q; q)k−m(q; q)m
. (74)

Explicitly, we have the following.

Lemma 6.1. The coproduct, the antipode and the scaling automorphism ϕt of T (F) are
given by

∆xk =
k∑

m=0

[
k

m

]
q

xk−m ⊗ xm (75)

Sxk = (−1)kqk(k−1)/2xk (76)

ϕtx
k = tkxk (77)

respectively.

Proof. The primitivity of x implies that

∆x = x1 + x2, x1 := x⊗ 1, x2 := 1⊗ x, (78)

and the braiding implies that

x2x1 = qx1x2 . (79)

This, combined with the q-binomial formula, gives

∆xk = (x1 + x2)
k =

k∑
m=0

[
k

m

]
q

xk−m
1 xm2 =

k∑
m=0

[
k

m

]
q

xk−m ⊗ xm . (80)
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This proves (75). To prove (76), apply (42) for xk ∈ T (F), use η ϵ xk = δk,0 and compute

∇(idH ⊗S)∆xk = ∇(idH ⊗S)
( k∑

m=0

[
k

m

]
q

xk−m ⊗ xm
)

= ∇
( k∑

m=0

[
k

m

]
q

xk−m ⊗ Sxm
)
=

k∑
m=0

[
k

m

]
q

xk−mSxm .

This is a linear system of equations that uniquely determines Sxk by induction on k. Since

k∑
m=0

[
k

m

]
q

(−1)mqm(m−1)/2 = δk,0 (81)

Equation (76) follows. Finally (77) is clear since ϕt is an automorphism and ϕtx = tx. □

6.2. The left and right Yetter–Drinfel’d f-modules. In this section we compute the
R-matrices of Theorem 3.6 explicitly. We first compute the doubly iterated coproduct (17),
the coaction (18) and the R-matrix (20). The formulas involve the q-multinomial coefficients
defined by [

k

m, n

]
q

:=
(q; q)k

(q; q)k−m−n(q; q)m(q; q)n
. (82)

Lemma 6.2. The doubly iterated coproduct ∆(2), the left coaction δL and the R-matrix (20)
Lρ are given by

∆(2)xk =
k∑

m=0

k−m∑
n=0

[
k

m, n

]
q

xk−m−n ⊗ xm ⊗ xn (83)

δLx
k =

k∑
m=0

[
k

m

]
q

(tqm; q)k−mx
k−m ⊗ xm (84)

ρL(x
k ⊗ xl) =

k∑
m=0

[
k

m

]
q

(tqk−m; q)m(tq
k−m)lxl+m ⊗ xk−m . (85)

Proof. We compute

∆(2)xk =
k∑

m=0

[
k

m

]
q

xk−m ⊗∆xm =
k∑

m=0

[
k

m

]
q

xk−m ⊗
m∑

n=0

[
m

n

]
q

xm−n ⊗ xn

=
∑

0≤n≤m≤k

[
k

m

]
q

[
m

n

]
q

xk−m ⊗ xm−n ⊗ xn

=
k∑

n=0

k−n∑
m=0

[
k

m+ n

]
q

[
m+ n

n

]
q

xk−m−n ⊗ xm ⊗ xn

=
k∑

n=0

k−n∑
m=0

[
k

m, n

]
q

xk−m−n ⊗ xm ⊗ xn =
k∑

m=0

k−m∑
n=0

[
k

m, n

]
q

xk−m−n ⊗ xm ⊗ xn

(86)
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and, using Equations (77) and (76),

δLx
k =

k∑
m=0

k−m∑
n=0

[
k

m, n

]
q

(∇⊗ idH)(idH ⊗τ)(xk−m−n ⊗ xm ⊗ Sϕt x
n)

=
k∑

m=0

k−m∑
n=0

qmn

[
k

m, n

]
q

(∇⊗ idH)(x
k−m−n ⊗ Sϕtx

n ⊗ xm)

=
k∑

m=0

k−m∑
n=0

qmn

[
k

m, n

]
q

xk−m−nSϕtx
n ⊗ xm

=
k∑

m=0

k−m∑
n=0

qmn(−t)nqn(n−1)/2

[
k

m, n

]
q

xk−m ⊗ xm

=
k∑

m=0

[
k

m

]
q

k−m∑
n=0

[
k −m
n

]
q

(−tqm)nqn(n−1)/2xk−m ⊗ xm

=
k∑

m=0

[
k

m

]
q

(tqm; q)k−mx
k−m ⊗ xm

(87)

where the last equality follows from the q-binomial theorem. Thus, the R-matrix (20) for
Y = H is given by

ρL(x
k ⊗ xl) = (∇⊗ idH)(idH ⊗τH,H)(δL ⊗ ϕH)(x

k ⊗ xl)

=
k∑

m=0

[
k

m

]
q

(tqm; q)k−mt
l(∇⊗ idH)(idH ⊗τH,H)(x

k−m ⊗ xm ⊗ xl)

=
k∑

m=0

[
k

m

]
q

(tqm; q)k−m(tq
m)lxk+l−m ⊗ xm

=
k∑

m=0

[
k

m

]
q

(tqk−m; q)m(tq
k−m)lxl+m ⊗ xk−m .

(88)

□

We next compute the doubly iterated product (17), the right action (19) and the R-
matrix (21).

Lemma 6.3. The doubly iterated product ∇(2), the right action λR and the R-matrix (21)
are given by

∇(2)(xk ⊗ xl ⊗ xm) = xk+l+m (89)

λR(x
k ⊗ xl) = (tqk; q)lx

k+l (90)

ρR(x
k ⊗ xl) =

l∑
m=0

[
l

m

]
q

(tqk)l−m(tqk; q)mx
l−m ⊗ xk+m . (91)
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Proof. Equation (89) is clear. To calculate the right action λR(x
k ⊗ xl), we start with the

case l = 1:

λR(x
k ⊗ x) = ∇(2)(Sϕt ⊗ idH⊗H)(τ ⊗ idG)(x

k ⊗ x⊗ 1 + xk ⊗ 1⊗ x)
= ∇(2)(Sϕt ⊗ idH⊗H)(q

kx⊗ xk ⊗ 1 + 1⊗ xk ⊗ x)
= ∇(2)(−tqkx⊗ xk ⊗ 1 + 1⊗ xk ⊗ x) = −tqkxk+1 + xk+1

= (1− tqk)xk+1 .

(92)

Now, we have

λR(x
k ⊗ xl) = λR(λR(x

k ⊗ x)⊗ xl−1) = (1− tqk)λR(xk+1 ⊗ xl−1)

= (1− tqk)(1− tqk+1)λR(x
k+2 ⊗ xl−2) = · · · = (tqk; q)lλR(x

k+l ⊗ xl−l)

= (tqk; q)lx
k+l .

(93)

Thus, the R-matrix (21) for Y = H is given by

ρR(x
k ⊗ xl) =

l∑
m=0

[
l

m

]
q

(ϕH ⊗ λR)(τH,H ⊗ idH)(x
k ⊗ xm ⊗ xl−m)

=
l∑

m=0

[
l

m

]
q

qkmtm(tqk; q)l−mx
m ⊗ xk+l−m

=
l∑

m=0

[
l

m

]
q

(tqk)l−m(tqk; q)mx
l−m ⊗ xk+m .

(94)

□

The R-matrices (85) and (91) depend on two variables t and q, and using the basis B =
{xk | k ∈ Z≥0}, their entries are in Z[t±1, q±1] and satisfy the Yang–Baxter equation on an
infinite dimensional space T (F).

However, to define knot invariants as state-sums, we need to have rigid R-matrices over
finite dimensional vector spaces. In the remaining subsections we give several solutions to
this problem and identify the corresponding knot invariants.

6.3. q a root of unity: the ADO polynomials. The Nichols f-algebra B(F) is finite-
dimensional if q = ω is a root of unity of order ord(ω) = N > 1 (for N = 1, see Remark
6.4 below). In this case, it follows that

[
N
k

]
ω
= 0 for 0 < k < N and Equation (75) implies

that xN is primitive and thus generates a Hopf ideal of F[x] with finite-dimensional Nichols
algebra F[x]/(xN).
In this case, the left R-matrix (85) coincides with the R-matrix of Akutsu–Deguchi–

Ohtsuki [ADO92] and the knot invariant of Theorem 3.7 is the ADO polynomial times the
identity matrix.

Remark 6.4. When N = 1, the Nichols algebra B(F) = F[x] is infinite dimensional. In this
exceptional case, and we will replace it with the 1-dimensional algebra obtained by imposing
the relation x = 0 in the list of finite dimensional Nichols algebras, despite the fact that
x ∈ V .
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6.4. q generic: colored Jones polynomials. When q is not a root of unity, the Nichols
f-algebra B(F) = F[x] is infinite-dimensional. However, it turns out that one can extract
finite dimensional left or right Yetter–Drinfel’d f-modules if

t = q1−n, n ∈ Z>0 . (95)

Indeed, under this assumption for the scaling automorphism, Equation (84), implies that
xn is a coinvariant element, δLx

n = 1 ⊗ xn. This gives a quotient left Yetter–Drinfel’d f-
module F[x]/(xn) of dimension n. The corresponding R-matrix is the one of the n-colored
Jones polynomial.

Moreover, under the same assumption (95), Equation (92) implies that xn−1 is an invariant
element, whose coproduct generates the n-dimensional space with basis xk, 0 ≤ k ≤ n−1, and
this gives an n-dimensional right Yetter–Drinfel’d f-submodule of F[x]. The corresponding
knot invariant is the identity matrix times the n-th colored Jones polynomial.

Summarising, in the rank 1 case, the corresponding matrix-valued knot invariants are the
identity times the ADO and the colored Jones polynomials.

7. A rank 2 tensor algebra

In this section we discuss the case of Nichols f-algebras of rank 2 of diagonal type. In order
to keep the construction as simple as possible, we consider the Nichols algebra B(V, c) asso-
ciated with two-dimensional vector space V with basis B = {x1, x2} and diagonal braiding

τ(xi ⊗ xj) = qijxj ⊗ xi, c =

(
−1 q12
q21 −1

)
. (96)

Denote by Hc the corresponding Nichols algebra. In Heckenberger’s list [Hec08, Table 1]
the isomorphism type of Hc is determined by the parameter q := q12q21 of the generalized
Dynkin diagram (see also [Hec07, Defn. 3.1]).

For generic values of q, Hc, is an infinite-dimensional quotient of the free noncommutative
algebra in x1 and x2 by the 2-sided ideal generated by x21, x

2
2, and a basis of Hc is given by

alternating words in letters x1 and x2.

7.1. q a root of unity: two-variable knot polynomials over cyclotomic fields. When
q = ω is a root of unity of order N ≥ 1, we have (x2x1)

N + (−q21x1x2)N = 0 ∈ Hc, and the
Nichols algebra Hc is 4N -dimensional with a basis given by all alternating words in x1 and
x2 of length ≤ 2N , excluding (x2x1)

N . Hc is a Nichols f-algebra with scaling automorphism
defined by ϕtxi = tixi for i = 1, 2 where t1 and t2 are two independent invertible elements.
To emphasize the dependence of this f-algebra on the braiding c and the automorphism ϕt,
we will denote it by Hc,t. Theorem 3.6 constructs a left R-matrix Rc,t on Hc,t with entries
in Z[t1, t2, q

±1
12 , q

±1
21 ] (keeping in mind that q12q21 = ω) which is invertible with determinant

(t1t2)
N2

for all of its rotated versions.
Using this R-matrix together with Theorem 3.7 we arrive at the following knot invariants.

Definition 7.1. For a root of unity ω, we have the knot invariant

K 7→ JRc,t(K) ∈ End(Hc,t) (97)
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and denote by Λω,K(t1, t2) ∈ Z[ω, t±1
1 , t±1

2 ] the (1, 1)-entry of JRc,t(K) with respect to the
above basis of Hc,t.

A priori, the knot invariant depends on the Nichols f-algebra Hc,t, and hence on q12, q21,
t1 and t2. However, the polynomial invariant depends only on t1, t2 and on the product
ω = q = q12q21. This follows from the fact that the isomorphism class of the Nichols algebra
depends on q alone (see [Hec07, Defn. 3.1]). What’s more, the invariant Λω satisfies the
symmetry

Λω,K(t1, t2) = Λω,K(t2, t1) . (98)

This follows from the existence of a unique isomorphism

σ : Hc,t → Hc,t, c = ct, (t1, t2) = (t2, t1) (99)

that satisfies σ(x1) = x2 and σ(x2) = x1, and consequently, the Rc,t-matrix satisfies
(σ ⊗ σ)Rc,t(σ

−1 ⊗ σ−1) = Rc,t.

Conjecture 7.2. For every knot K, we have

JRc,t(K) = Λω,K(t1, t2) idHc,t . (100)

Remark 7.3. The above knot invariant Λω was defined using the left R-matrix of the Nichols
f-algebra. Of course, we could consider the invariant from the right R-matrix, but the two
appear to be equal.

7.2. The cases q = ±1. The first invariant from the above definition occurs when ω = 1,
thus N = 1, where the corresponding Nichols f-algebra Hc,t is 4-dimensional. Its left and
right R-matrices are easy to analyze, and the corresponding knot invariant satisfies

Λ1,K(t1, t2) = ∆K(t1)∆K(t2) (101)

where ∆K(t) ∈ Z[t±1] is the canonically normalized Alexander polynomial.
The next invariant occurs when ω = −1, thus N = 2 and the Nichols algebra is 8-

dimensional. We now discuss the properties of this invariant.
To begin with, the Nichols f-algebra Hc,t is 8-dimensional and isomorphic to the nilpotent

Borel subalgebra of the small quantum group uq(sl3) with q =
√
−1. A basis for Hc,t is

{1, x1, x2, x1x2, x2x1, x1x2x1, x2x1x2, x1x2x1x2}

and the corresponding 64 × 64 left R-matrix Rc,t has entries in Z[t1, t2, q
±1
21 ] and can be

computed explicitly. It is a sparse matrix with only 157 out of 4096 entries (about 3.8%)
nonzero. Due to its size, we do not present these entries here, but give a sample value

R(x1x2x1x2 ⊗ x2x1) = s2t2 x2x1 ⊗ x1x2x1x2 − q−1
21 s

2t(1 + t)x1x2x1 ⊗ x2x1x2
+ q221(−1 + s)st2 x2x1x2 ⊗ x1x2x1 + q−1

21 (−1 + s)st x1x2x1x2 ⊗ x2x1 ,
(102)

where for simplicity we abbreviate t1 and t2 by s and t. The determinant of this R-matrix
and all of its rotated versions is (st)64.

For all knots for which we computed the invariant, we confirmed that Conjecture 7.2 holds,
and the Laurent polynomial Λ−1,K(s

2, t2) coincides with Harper’s polynomial ∆sl3(s, t) [Har].
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• Symmetry. In addition to the symmetry (98) for Λω, it turns out that the polynomial
Λ−1,K(t, s) is invariant under the involutions

(s, t) 7→ (t, s), (s, t) 7→ (s,−1/(st)), (s, t) 7→ (1/s, 1/t) (103)

which generate a group G of order 12. The existence of these additional symmetries follow
from the identification of the Nichols algebra with the Borel part of the small quantum
group, whose Weyl group is the symmetric group of order 3, and together with σ, generates
the group G of order 12. The invariant polynomial ring can be identified with

Z[t±1
1 , t±1

2 ]G = Z[u, v], (104)

where

u = ⟨s⟩+ ⟨t⟩ − ⟨st⟩ − 2, v = ⟨s2t⟩+ ⟨st2⟩ − ⟨s/t⟩ − 2, ⟨x⟩ = x+ x−1 . (105)

Thus, we can write the polynomial Λ−1,K in the form

Λ−1,K(s, t) = Λ̃K(u, v), Λ̃K(u, v) ∈ Z[u, v] . (106)

• Chirality and mutation. Experimentally, it appears that the polynomial Λ−1,K does
not distinguish a knot from its mirror image. Regarding mutation, it distinguishes the pair
(11n34, 11n42) of mutant knots but not the pair (11n73, 11n74) of mutant knots.
• Specialization. Experimentally, it appears that the specialization u = 0 reproduces the
Alexander–Conway polynomial ∇K(z)

Λ̃−1,K(0, z
2) = ∇K(z). (107)

• Comparison with other knot polynomials. Regarding the independence of Λ−1 from
other knot polynomials, we have the following observations.

(a) The knots 74 and 92 (where K is the mirror image of K) have equal Knot Floer
Homology (a well-known fact; see Manolescu [Man16]) and confirmed by SnapPy,
thus have Seifert genus 1 and none is fibered [CDGW]. On the other hand, the two
knots have different Λ−1-polynomials; see Table 1.

(b) The colored Jones and the ADO polynomials do not distinguish mutant pairs of knots,
since the corresponding tensor product of representations is multiplicity-free. This
fact was pointed out to us by J. Murakami and T. Ohtsuki. On the other hand, the
Λ−1-polynomial sometimes detects mutation, and sometimes does not. In particular,
it distinguishes the mutant pair of knots 11n42 (Kinoshita–Terasaka knot) and 11n34
(Conway knot) — the fact that was pointed out by Harper in [Har] for his polynomial
∆sl3(s, t). On the other hand, it does not distinguish the mutant pair of knots 11n74
(a fibered, Seifert genus 2 knot) and 11n73 (a non-fibered, Seifert genus 3 knot).

(c) The knots 88 and 10129 have isomorphic Khovanov homology [BN02], yet different
Λ−1-polynomials.

• Values. Table 1 gives the result of computer calculation for all knots of up to 6 crossings,
and few higher crossing knots that appear in the above discussion.
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K Λ̃K(u, v)

31 1 + 4u+ u2 + v
41 1− 6u+ u2 − v
51 1 + 12u+ 19u2 + 8u3 + u4 + (3 + 7u+ 3u2)v + v2

52 1 + 10u+ 6u2 + 2v
61 1− 10u+ 6u2 − 2v
62 1− 8u− 15u2 + 2u3 + u4 + (−1− 9u+ u2)v − v2
63 1 + 2u+ 15u2 + 6u3 + u4 + (1 + 9u+ u2)v + v2

71
1 + 24u+ 86u2 + 104u3 + 53u4 + 12u5 + u6

+(6 + 35u+ 60u2 + 33u3 + 5u4)v + (5 + 10u+ 6u2)v2 + v3

74 (1 + 2u)(1 + 18u) + 4v
88 1 + 10u+ 36u2 + 28u3 + 6u4 + 2(1 + 9u+ 3u2)v + 2v2

817
1− 14u− 23u2 − 38u3 + 10u4 + 8u5 + u6

+(−1− 17u− 44u2 + 5u3 + 2u4)v + (−2− 13u+ u2)v2 − v3
92 1 + 20u+ 24u2 + 4v

102

1− 150u2 − 380u3 − 279u4 − 44u5 + 25u6 + 10u7 + u8

+(2− 55u− 260u2 − 274u3 − 58u4 + 19u5 + 5u6)v
+(−5− 62u− 91u2 − 24u3 + 5u4)v2 + (−5− 15u− 2u2)v3 − v4

10129 1 + 10u+ 32u2 + 36u3 + 6u4 + 2(1 + 8u+ 2u2)v + 2v2

11n34 1 + 12u+ 8u2 + 60u3 + 48u4 + 8u5 + 2u(1 + 2u)(−1 + 6u)v + 2u2v2

11n42 1 + 12u+ 8u2 − 12u3 − 2uv
11n73

1+20u+10u2+4u3+u4+2(1+4u+u2)v+v2
11n74

Table 1. The polynomial Λ̃K(u, v) for some knots K.

7.3. q generic: two-variable polynomials. In this section we classify all finite-dimensional
right Yetter–Drinfel’d f-modules by classifying all invariant vectors. Recall that for generic
q, the Nichols f-algebra Hc,t has a basis that consists of all alternating words in the letters
x1 and x2, where x

2
1 = x22 = 0. Thus, every basis element is one of the following forms

(x1x2)
a, (x2x1)

b, x2(x1x2)
c, x1(x2x1)

d (108)

with a, b, c, d ∈ Z≥0. Moreover, Hc,t is Z2
≥0-graded, and thus also Z≥0-graded where the

Z≥0-degree is the sum of the components of the Z2
≥0-degree.

It follows from (108) that the degree 2n−1 part of Hc,t is the direct sum of two bi-degrees
(n, n − 1) and (n − 1, n), each of them being one-dimensional. This implies that there are
no invariant vectors of degree 2n− 1. Indeed, the only vector of bi-degree (n− 1, n) is

x := (x2x1)
n−1x2 = x2(x1x2)

n−1

which is λR-annihilated by x2 but not by x1:

λR(x⊗ x1) = (x2x1)
n + (−q21)nt1(x1x2)n (109)

which never vanishes since the vectors (x2x1)
n and (x1x2)

n are linearly independent.
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Thus, invariant vectors can only be of even degree 2n coming from bi-degree (n, n). The
corresponding subspace is two-dimensional with the basis vectors (x1x2)

n and (x2x1)
n. Tak-

ing a vector of the form

vn,α = (x1x2)
n + α(x2x1)

n, α ∈ F, (110)

we calculate the λR-action on it of the generating elements:

λR(vn,α⊗x1) = (1−αt1(−q21)n)(x1x2)nx1, λR(vn,α⊗x2) = (α−t2(−q12)n)(x2x1)nx2. (111)
Thus, vn,α is an invariant vector if

α = t2(−q12)n (112)

and
t1t2q

n = 1 (113)

where q = q12q21.

Proposition 7.4. Assume that q is not a root of unity, and the parameters (q, t1, t2) sat-
isfy (113) for some n ≥ 1, and (1− t1)(1− t2) ̸= 0. Then, the right Yetter–Drinfel’d f-module
Yn generated by the element vn,α defined in (110) with α given by (112) is 4n-dimensional
and it is the linear span of the vector vn,α and all vectors of degree less or equal to 2n− 1.

Proof. The coproduct of vn,α always contains the term 1⊗vn,α so that 1 ∈ Yn. The λR-action
of the generating elements on 1 gives

λR(1⊗ xi) = (1− ti)xi, i = 1, 2 . (114)

By the assumption on t1 and t2, we conclude that vectors x1 and x2 are both in Yn. Assume
by induction that both vectors of odd degree 2k − 1 are contained in Yn where 1 ≤ k < n.
Then, the λR-action on them of the generating elements produces two vectors in degree 2k

λR((x1x2)
k−1x1 ⊗ x2) = (x1x2)

k + t2(−q12)k(x2x1)k (115)

and
λR((x2x1)

k−1x2 ⊗ x1) = (x2x1)
k + t1(−q21)k(x1x2)k (116)

which are linearly independent if t1t2q
k ̸= 1. Thus, the λR-action of the generating elements

on all vectors of degree 2k produces all vectors of degree 2k+1. We conclude that all vectors
of degree ≤ 2n − 1 are in Yn. Now, equations (115) and (116) at k = n imply that both
vectors are proportional to vn,α. □

We can parametrize the variables (t1, t2, q) that satisfy t1t2q
n = 1 by t1 = 1/(qn/2t) and

t2 = t/qn/2. Theorem 3.6 defines an R-matrix Tn on the right Yetter–Drinfel’d f-module Yn,
and combined with Theorem 3.7 we arrive at the following knot invariants.

Definition 7.5. For every integer n ≥ 1 we have the knot invariant

K 7→ JTn(K) ∈ End(Yn) (117)

and denote by Vn,K(t, q) ∈ Z[q±1/2, t±1] the (1, 1)-entry of JTn(K).

Conjecture 7.6. For every knot K, we have

JTn(K) = Vn,K(t, q) idYn . (118)
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Note that the symmetry σ from (99) corresponds under the above parametrizations to the
symmetry t↔ t−1, and as a result, we have

Vn,K(t, q) = Vn,K(t
−1, q) . (119)

7.4. A rank-2 analogue of the Jones polynomial. In this section we discuss the knot
invariants coming from the 4 and 8-dimensional DY-modules Y1 and Y2.
Calculations for n = 1 indicate that Conjecture 7.6 holds true and that V1,K(t, q) coincides

with the Links–Gould two-variable knot polynomial coming from the quantum superalgebra
Uq(gl(2|1)) [LG92].

When n = 2, the knot polynomial V2,K(t, q) ∈ Z[q±1, t±1] is in a sense a rank 2 analogue
of the Jones polynomial. We discuss the properties of this invariant now.
• Symmetry. The symmetry (119) implies that V2 can be written in the form

V2,K(t, q) = Ṽ2,K(u, q) ∈ Z[q±1, u], u = t+ t−1 − q − q−1 . (120)

• Chirality and mutation. The 2-variable polynomial invariant V2 detects chirality, for
instance, it distinguishes the left handed and right handed trefoils. Indeed, V2,32(t, q) =
V32(t, q

−1) (a property that conjecturally holds for all knots) and

Ṽ2,31(u, q) = 1 + (q + 2q3 − q4 + q5 − q6)u+ (q2 + q4 − q5)u2 . (121)

The V2-polynomial distinguishes the Conway-KT pair (11n34, 11n42) of mutant knots, as
well as the mutant pair (11n73, 11n74) where the t-degree is (12, 8) in both cases.
• Specialization. Experimentally, it appears that for all knots we have

Ṽ2,K(0, q) = 1 (equivalently, V2,K(q, q) = 1).

Ṽ2,K(z
2, 1) = ∇K(z)

2 (equivalently, V2,K(t, 1) = ∆K(t)
2) where∇K(z) is the Alexander–

Conway polynomial.

• Relation with the genus of a knot. Experimentally, for all the knots in Table 1, as
well as for a few 12 and 13 crossing knots, and for the 3-strand pretzel knots, we have:

degt V2,K = 4g(K) (122)

where the Seifert genus g(K) is the smallest genus of a spanning surface of a knot. Here, by
t-degree of a Laurent polynomial of t we mean the difference between the highest and the
lowest power of t. Following the ideas in the works [NvdV, KT], we expect that 4g(K) is
an upper bound for the degrees in (122). Further computations are needed to see to which
extent the equality holds.
• Comparison with other knot polynomials. Regarding the independence of V2 from
other knot polynomials, since it detects mutation, it is not determined neither by the colored
Jones polynomials, nor by the sequence of the ADO polynomials. Moreover,

The knots 74 and 92 have equal Knot Floer Homology but different V2-polynomials.
The knots 88 and 10129 have isomorphic Khovanov homology, yet different V2-polynomial.

• Values. The explicit values of the V2 polynomials (even in the shorter form Ṽ2) are
considerably more complicated than those of Table 1, but we have computed them for all
the knots that appear in Table 1 and for several knots with 12 and 13 crossings. To give an
idea of the complexity involved, for the knots with at most 5 crossings we have:
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Ṽ2,31
=1 + (q + 2q3 − q4 + q5 − q6)u+ (q2 + q4 − q5)u2,

Ṽ2,41 =1 + (−q−3 + q−2 − 2q−1 + 2− 2q + q2 − q3)u+ (q−2 − q−1 + 1− q + q2)u2,

Ṽ2,51
=1 + (2q + 3q3 − q4 + 3q5 − q6 + 2q7 − q8 + q9 − 2q10 + q11 − q12)u

+ (4q2 + 7q4 − 3q5 + 10q6 − 6q7 + 6q8 − 7q9 + 3q10 − 3q11)u2

+ (3q3 + 6q5 − 3q6 + 6q7 − 6q8 + 3q9 − 3q10)u3 + (q4 + q6 − q7 + q8 − q9)u4,

Ṽ2,52
=1 + (q + 3q3 − q4 + 3q5 − 2q6 + 2q7 − 2q8 + q9 − q10)u+ (3q2 − 2q3 + 6q4 − 3q5 + 3q6 − 3q7 + q8 − q9)u2 .

For the knots that appear in the comparison section, we have

Ṽ2,74
=1 + (q + 3q3 + 4q5 − q6 + 5q7 − 3q8 + 4q9 − 4q10 + 2q11 − 3q12 + q13 − q14)u

+ (9q2 − 12q3 + 22q4 − 12q5 + 26q6 − 17q7 + 15q8 − 14q9 + 5q10 − 6q11 + q12 − q13)u2,

Ṽ2,92 =1 + (q + 3q3 + 4q5 − q6 + 3q7 − 2q8 + 2q9 − 2q10 + 2q11 − 2q12 + 2q13 − 2q14 + 2q15 − 2q16 + q17 − q18)u

+ (7q2 − 2q3 + 12q4 − 6q5 + 10q6 − 7q7 + 9q8 − 7q9 + 7q10 − 7q11 + 5q12 − 5q13 + 3q14 − 3q15 + q16 − q17)u2

and

Ṽ2,88 =1 + (−q−6 + q−5 + 2q−3 − q−2 + 2q−1 − 2 + q + q3 + q4 + q7 − 2q8 + 2q9 − q10)u

+ (−q−5 + q−4 − q−3 + 3q−2 − 4q−1 + 7− 4q + 12q2 − 10q3 + 11q4 − 9q5 + 7q6 − 5q7 + 2q8 − q9)u2

+ (−3q−4 + 5q−3 − 10q−2 + 18q−1 − 17 + 25q − 19q2 + 19q3 − 14q4 + 9q5 − 6q6 + 2q7 − q8)u3

+ (−3q−3 + 5q−2 − 7q−1 + 13− 10q + 12q2 − 9q3 + 7q4 − 5q5 + 2q6 − q7)u4,

Ṽ2,10129 =1 + (−q−10 + q−9 − q−8 + q−7 + 2q−4 + q−1 − 2 + 3q − 2q2 + 3q3 − 2q4 + q5)u

+ (q−9 − 3q−8 + q−7 + q−6 − 4q−5 + 8q−4 − 9q−3 + 11q−2 − 8q−1 + 11− 5q + 6q2 − 3q3 + 3q4 − 3q5 + 2q6 − q7)u2

+ (2q−8 − 4q−7 + 2q−6 − 10q−4 + 20q−3 − 30q−2 + 42q−1 − 38 + 40q − 26q2 + 18q3 − 10q4 + 4q5 − 2q6)u3

+ (−3q−5 + 5q−4 − 8q−3 + 12q−2 − 12q−1 + 16− 10q + 8q2 − 5q3 + 2q4 − q5)u4 ,

as well as

Ṽ2,11n34 =1 + (−q−10 + 2q−9 − 2q−7 + 4q−5 − 2q−4 − 4q−3 + 6q−2 − 2q−1 − 4 + 6q − 6q2 + 6q3 − 7q4 + 8q5 − 3q6 − 4q7

+ 5q8 − q9 − 2q10 + 2q12 − q13)u+ (−2q−7 + 5q−6 − 5q−5 + 4q−4 − 5q−3 + 11q−2 − 13q−1 + 9− 4q + 2q2 − q3

− 2q4 + 5q5 − 7q6 + 2q7 + 2q8 − q9 − 2q10 + 4q11 − 2q12)u2 + (2q−8 − 5q−7 + 3q−6 + 4q−5 − 15q−4 + 26q−3

− 33q−2 + 41q−1 − 48 + 53q − 53q2 + 49q3 − 44q4 + 36q5 − 27q6 + 13q7 − 5q9 + 5q10 − 2q11)u3 + (3q−7 − 9q−6

+ 12q−5 − 9q−4 − 4q−3 + 23q−2 − 44q−1 + 69− 85q + 85q2 − 69q3 + 44q4 − 23q5 + 4q6 + 9q7 − 12q8 + 9q9

− 3q10)u4 + (3q−6 − 9q−5 + 12q−4 − 11q−3 + 17q−1 − 28 + 38q − 38q2 + 28q3 − 17q4 + 11q6 − 12q7 + 9q8 − 3q9)u5

+ (q−5 − 3q−4 + 3q−3 − 1q−2 − 2q−1 + 5− 5q + 5q2 − 5q3 + 2q4 + q5 − 3q6 + 3q7 − q8)u6,

Ṽ2,11n42 =1 + (q−10 + 2q−9 − 2q−7 + 4q−5 − 2q−4 − 4q−3 + 6q−2 − 2q−1 − 4 + 6q − 6q2 + 6q3 − 7q4 + 8q5 − 3q6 − 4q7 + 5q8

− q9 − 2q10 + 2q12 − q13)u+ (−2q−7 + 4q−6 − q−5 − 2q−4 + 8q−2 − 15q−1 + 17− 13q + 11q2 − 9q3 + 8q5 − 12q6

+ 8q7 − 2q8 − 2q10 + 4q11 − 2q12)u2 + (q−8 − 2q−7 + q−6 − q−5 + 2q−4 − 4q−3 + 7q−2 − 8q−1 + 10− 10q + 10q2

− 9q3 + 5q4 − 4q5 + 3q6 − 4q7 + 5q8 − 3q9 + 2q10 − q11)u3 + (q−5 − 3q−4 + 3q−3 − q−2 − q−1 + 3− 4q + 4q2

− 3q3 + q4 + q5 − 3q6 + 3q7 − q8)u4 ,
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and finally the values for the pair (K11n73, K11n74) which are not distinguished by the
polynomial Λ−1 of Section 7.1

Ṽ2,11n73 =1 + (−q−13 + 2q−12 − 2q−10 + q−9 + 2q−8 − 4q−7 + 4q−5 − 5q−4 + 6q−3 − 6q−2 + 8q−1 − 6 + 3q + 3q2 − 2q3 − q4

+ 4q5 − 2q6 + q9 − q10)u+ (−3q−12 + 7q−11 − 5q−10 + 2q−9 + q−8 − 2q−7 − 2q−6 + 2q−5 − 4q−4 + 5q−3 − 5q−2

+ 5q−1 + 2− 5q + 13q2 − 8q3 + 6q4 − 4q5 + 4q6 − 3q7 + q8 − q9)u2 + (−5q−11 + 14q−10 − 18q−9 + 22q−8 − 21q−7

+ 14q−6 − 12q−5 + 6q−4 − 8q−2 + 14q−1 − 15 + 22q − 18q2 + 20q3 − 14q4 + 6q5 − 2q6 − 2q7 + q8)u3 + (−6q−10

+ 18q−9 − 26q−8 + 36q−7 − 38q−6 + 26q−5 − 15q−4 − 10q−3 + 32q−2 − 40q−1 + 46− 33q + 20q2 − 9q3 − 2q4 + 5q5

− 6q6 + 3q7)u4 + (−4q−9 + 12q−8 − 16q−7 + 20q−6 − 17q−5 + 2q−4 + 6q−3 − 17q−2 + 26q−1 − 20 + 16q − 6q2

− 5q3 + 6q4 − 6q5 + 3q6)u5 + (−q−8 + 3q−7 − 3q−6 + 2q−5 − q−4 − 2q−3 + 3q−2 − 3q−1 + 4− 2q + q3 − 2q4 + q5)u6,

Ṽ2,11n74 =1 + (−q−13 + 2q−12 − 2q−10 + q−9 + 2q−8 − 4q−7 + 4q−5 − 5q−4 + 6q−3 − 6q−2 + 8q−1 − 6 + 3q + 3q2 − 2q3 − q4

+ 4q5 − 2q6 + q9 − q10)u+ (−2q−12 + 4q−11 − 2q−10 + q−8 + 4q−7 − 10q−6 + 8q−5 − 10q−4 + 5q−3 + q−2 − q−1

+ 10− 11q + 13q2 − 6q3 + 3q4 − q5 + 3q6 − 3q7 + q8 − q9)u2 + (−q−11 + 2q−10 − 2q−9 + 2q−8 + 2q−7 − 4q−6

+ 4q−5 − 7q−4 + q−3 + 6− q + 4q2 − q4 + q5 − 2q6)u3 + (q−6 − 2q−5 + 2q−4 − 3q−3 + 2q−2 − q−1 + 2 + q − q2

+ q3 − q4)u4 .

8. Summary of rank 1 and rank 2 polynomials

Here, we summarise the polynomial invariants that we have considered in the form of
two tables, one at roots of unity and another at generic values of q. Within each table,
the underlying R-matrix is a linear automorphism of V ⊗ V for a finite dimensional vector
space V given by a Nichols algebra when q is a root of unity and by a Yetter–Drinfel’d
f-module when q is generic. We denote the normalized Alexander polynomial by ∆(t), the
ADO polynomial at a root of unity ω by ADOω(t), and the n-colored Jones polynomial (with
n = 2 equal to the Jones polynomial) by Jn(q). All these polynomials are normalized to take
the value 1 at the unknot.

rank 1 rank 2

dim(V ) N 4N
Invariant ADOω(t) Λω(t1, t2)

ω = 1 1 Λ1
?
= ∆(t1)∆(t2)

ω = −1 ∆(t) Λ−1
?
= Harper polynomial

Table 2. Knot polynomials at primitive N -th roots of unity ω.

rank 1 rank 2

dim(V ) n 4n
Invariant Jn(q) Vn(t, q)

n = 1 1 V1
?
= Links–Gould polynomial

n = 2 J(q) V2(t, q)

Table 3. Knot polynomials at generic values of q.
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The invariants at roots of unity should be dual to those at generic values of q in the sense
of equivalences

{ADOω(t) | ω is a root of unity} ←→ {Jn(q) | n ≥ 1}, (123a)

{Λω(t1, t2) | ω is a root of unity} ←→ {Vn(t, q) | n ≥ 1}. (123b)

Mathematically, the meaning of these equivalences is that for each knot, the set of its poly-
nomial invariants on the left determines the set of its invariants on the right and vice-versa.
The equivalence (123a) is known, and it follows from Habiro’s expansion of the colored Jones
polynomial [Hab08, Wil22]. Explicitly, the left hand side determines the right hand side of
the above equivalences by

ADOω(ω
1−n) = Jn(ω), (124a)

Λω(tω
−n/2, t−1ω−n/2) = Vn(t, ω) (124b)

valid for all positive integers n > 0 and all complex roots of unity ω. A proof of these
equalities will be given in a subsequent publication. Equation (124a) (with our normalization
of the ADO and colored Jones polynomials) appears in Murakami–Nagatomo [MN08].

As a sanity check, Equation (124b) for ω = −1 is a consistency relation with the values
of the Λ−1 polynomials given in Table 1 with the polynomials V2 given in this section.

Finally, we mention that the interpretation of (123a) and (123b) in mathematical physics
is a kind of duality or correspondence arising in supersymmetric quantum field theories; see
for example [GHN+21].
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