
RANDOM WALKS AND THE COLORED JONES FUNCTION

STAVROS GAROUFALIDIS AND MARTIN LOEBL

Abstract. It can be conjectured that the colored Jones function of a knot can be computed in terms of
counting paths on the graph of a planar projection of a knot. On the combinatorial level, the colored Jones
function can be replaced by its weight system. We give two curious formulas for the weight system of a

colored Jones function: one in terms of the permanent of a matrix associated to a chord diagram, and
another in terms of counting paths of intersecting chords.

1. Introduction

1.1. History. The colored Jones function of a knot is a 2-parameter formal power series
∑∞

n,m=0 an,mhnλm

which determines (and is determined by) the Jones polynomial of a knot and its cables, [BG]. The support
of the colored Jones function lies in the triangle 0 ≤ m ≤ n.

About 10 years ago, Melvin-Morton and Rozansky independently conjectured a relation among the diag-
onal terms

∑
n an,n(hλ)n of the colored Jones function of a knot and its Alexander polynomial, [MM, Ro1,

Ro2]. D. Bar-Natan and the first author reduced the conjecture about knot invariants to a statement about
their combinatorial weight systems, and then proved it for all semisimple Lie algebras using combinatorial
methods, [BG].

Over the years, the MMR Conjecture has received attention by many researchers who gave alternative
proofs, [Ch, KSA, KM, Ro3, V].

The subdiagonal terms hk
∑

n an+k,n(hλ)n for a fixed k of the colored Jones function, are (after a suitable
parametrization) rational functions whose denominators are powers of the Alexander polynomial. This was
first shown by Rozansky in [Ro3], who further conjectured that a similar property should be hold for the full
Kontsevich integral of a knot. Rozansky’s conjecture was recently settled by the first author and Kricker
in [GK]. This opens the possibility of understanding each subdiagonal term of the colored Jones function
(or the full Kontsevich integral) in topological terms. That said, not much is known about the subdiagonal
terms of the colored Jones function. One can conjecture that each subdiagonal term is given in terms of
a certain counting of random walks on a planar projection of a knot, see also Lin and Wang, [LW]. On a
combinatorial level, the colored Jones function may be replaced by its weight system. In [BG] formulas for
the weight system WJ of the colored Jones function and of its leading order term WJJ were given in terms of
the intersection matrix of a chord diagram. In particular, WJJ equals to the permanent of the intersection
matrix of the chord diagram. In the last section of [BG] it was asked for a better understanding of the WJ

weight system, especially one that offers control over the subdiagonal terms in WJ .
The purpose of the paper is to give two curious combinatorial formulas for WJ in Theorems 1 and 2

that answer these questions, and support the conjecture that the colored Jones polynomial is a counting of
random walks.

1.2. Statement of the results. Consider the 0-framed colored Jones weight system

WJ : A → Q[λ]

where A is the vector space over Q spanned by chord diagrams on an oriented line, modulo the 4-term and
1-term relations, see [BG] and also below. We will normalize WJ to equal 1 on the chord diagram with no
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chords (in [BG] the value of the empty chord diagram was λ + 1 instead). With this normalization, it turns
out that for a chord diagram D, WJ (D) is a polynomial of λ of degree the number of chords of D. WJJ (D)
is defined to be the coefficient of λdeg in WJ .

Given a chord diagram D, its chords are ordered (from left to right) and we can consider its intersection
matrix IM(D) as in [BG, Definition 3.4] of size the number of chords of D defined by

IM(D)ij =

{
sign(i− j) if the chords i and j of D intersect
0 otherwise.

We will consider a blown-up variant IMJ of the intersection matrix, of size 3 times the number of chords of
D composed of blocks of 3 by 3 matrices as follows:

IMJ (D)ij =




Asign(i−j) if the distinct chords i and j of D intersect
A0 if i = j

Ac if chords i, j do not intersect and i is completely contained in j

0 otherwise,

where

A0 =


λ + 2 0 0

0 λ + 2 1
λ −λ− 2 1


 , A− =


 0 0 0
−1 −1 0
0 0 0


 , A+ =


1 1 0
0 0 0
0 0 0


 , Ac =


 1 1 0
−1 −1 0
0 0 0


 .

Example 1.1.

D = , IM(D) =




0 −1 −1 −1
1 0 0 −1
1 0 0 −1
1 1 1 0


 , IMJ(D) =




A0 A− A− A−
A+ A0 0 A−
A+ Ac A0 A−
A+ A+ A+ A0


 .

Theorem 1. We have
WJ = Per(IMJ )

where Per(A) denotes the permanent of a square matrix A.

There is an alternative (and equivalent) formula of WJ in terms of counting cycles. In order to state
it, given a chord diagram D consider its labeled intersection graph LIG(D) as in [BG, Definition 3.4]. The
vertices of LIG(D) correspond to the chords of D (thus, are ordered) and the edges of LIG(D) correspond
to the intersection of the chords of D.

We will use a variation LID(D), the labeled intersection digraph of D defined as follows. Orient each edge
from the smaller vertex to the larger and add an oriented loop on each vertex. The oriented loops are leaving
the vertices. Next add directed edges (ij) for each pair of chords i, j such that i is completely contained in j.
In addition we color these new arcs red (and we draw them as −→r ) to distinguish them from the original
arcs.

Example 1.2. For the chord diagram D of Example 1.1, we have

LIG(D) =

1

3

2

4
, LID(D) = r .

A bit more generally, consider a digraph G = (V, A) (i.e., a directed graph) where V is the set of vertices
and A is the set of arcs. If e is an arc of A with initial vertex u and terminal vertex v then we write
e = (u, v). We assume that there is one loop at each vertex and a loop at a vertex is considered as an arc
leaving that vertex, and in addition some arcs which are not loops are red. We will consider the arcs with
variables associated with them: the variable of an arc e is denoted by xe. We will need the following notion
of acceptable object, given G:

Definition 1.3. A collection K of arcs together with a thickening of one end of each of the arcs of K is
called acceptable for G if the following properties are satisfied:
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• If (ij) is a red arc of G then both arcs (ij) and (ji) may appear in K, but they must always be
thickened at i. If (ij) is an uncolored arc of G then (ij) with any end thickened may appear in K, but
(ji) may not.

• Each vertex of V is incident with 0, 2 or 4 thickened arcs of K. If a loop belongs to K then we assume
it contributes 2 to the degree of the corresponding vertex. Moreover, a loop is always thickened at its
initial segment, i.e., in agreement with its orientation.

• Exactly half of the arcs incident with a vertex are thickened at the vertex.
• If there are two arcs thickened at a vetex, then one of them enters and the other one leaves.

We will study the following partition function

J(G) =
∑

K acceptable

2deg4(K)(λ + 2)|V |−deg4(K)xK(−1)a(K)

of a digraph G, where xK =
∏

e∈K xe, deg4(K) denotes the number of vertices of K incident with 4 arcs of
K and a(K) is the number of arcs of K with initial segment thickened, i.e., directed in agreement with the
thickening.

The motivation for J(G) comes from the case of the intersection digraph LID(D) of a chord diagram and
the following:

Theorem 2. For a chord diagram D, we have

WJ(D) = J(LID(D))|xe=1.

Corollary 1.4. After a change of variables d = λ + 2, let WJJ(n) denote the coefficient of ddeg−n in WJ .
Then,

WJJ(n)(D) = 2n
∑
K

(−1)a(K)

where the sum is over all acceptable K such that deg4(K) = n.

Corollary 1.5. [BG] We have:
WJJ = Per(IM).

How fast can one compute permanents?

Corollary 1.6. For general matrices of size n we need n! steps. However, a theorem of A. Galluccio [GL]
and the second author implies that WJ can be computed in 4g steps, where g is the genus of LIG(D), that is
the smallest genus of a surface that LIG(D) embeds.

1.3. Plan of the proof. In Section 2, we review the weight system of the colored Jones function, and
reduce Theorem 2 to a Theorem 3 concerning digraphs. Section 3, is devoted to the proof of Theorem 3
using a trip to combinatorics. In Section 4, we translate our results using the language of permanents, and
deduce Theorem 1. In the final Section 5 we prove the corollaries that follow Theorem 2.

1.4. Acknowledgement. The authors wish to thank the Georgia Institute of Technology which invited the
second author and provided the environment of this research, and D. Bar-Natan for providing independent
checks to the output of the program.
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2. A review of the WJ weight system

The goal of this section is to reduce Theorem 2 to Theorem 3 stated below; this will be achieved by a
careful examination of the WJ weight system. Recall from [BG, Section 4.2] that WJ can be computed as
follows:
Step 1. Color each chord of a chord diagram D by the following operator:

B̂(vk ⊗ vk′) = (k + 1)(λ− k′ + 1)vk+1 ⊗ vk′−1

+ (λ− k + 1)(k′ + 1)vk−1 ⊗ vk′+1

+ 1/2((λ− 2k)(λ− 2k′)− λ(λ + 2))vk ⊗ vk′

from [BG, p.121].
The key calculation is the following elementary rearrangement of B̂, easily checked:

Lemma 2.1.
B̂(vk ⊗ vk′ ) = ((λ + 2)I + B+ + B−)(vk ⊗ vk′)

where
B+ =

∑
ε=0,1

(−1)εB+
ε , B+

ε = −(1 + k)(λ + 1− k′)vk+ε ⊗ vk′−ε

B− =
∑

ε=0,1

(−1)εB−
ε , B−

ε = −(1 + k′)(λ + 1− k)vk−ε ⊗ vk′+ε.

This done, the coloring of chords of D may be viewed as a function ρ : chords(D) → {I, B+
0 , B+

1 , B−
0 , B−

1 }.
Step 2. The end-points of the n chords of D partition the base line into 2n+ 1 segments s0, ..., s2n listed

from left to right. We associate number m(si) with each of these segments as follows:
1. Let m(s0) = 0.
2. If i ≥ 0 and last point of si is left end-vertex of chord v then m(si+1) is computed from m(si) and ρ(v)

using 2.1:
• If ρ(v) ∈ {I, B+

0 , B−
0 } then m(si+1) = m(si),

• If ρ(v) = B+
1 then m(si+1) = m(si) + 1,

• If ρ(v) = B−
1 then m(si+1) = m(si)− 1.

3. If i ≥ 0 and last point of si is right end-vertex of chord v then m(si+1) is computed from m(si) and
ρ(v) using 2.1:
• If ρ(v) ∈ {I, B+

0 , B−
0 } then m(si+1) = m(si),

• If ρ(v) = B+
1 then m(si+1) = m(si)− 1,

• If ρ(v) = B−
1 then m(si+1) = m(si) + 1.

Step 3. We let
WJ (D) =

∑
ρ

∏
chords v

ωρ(v)

where ρ is a coloring of the chords of D and ωρ(v) is a specific weight that is computed using Lemma 2.1
again:
• ωρ(v) = λ + 2 if ρ(v) = I,
• ωρ(v) = −(−1)ε(1 + k)(λ + 1− k′) if ρ(v) = B+

ε ,
• ωρ(v) = −(−1)ε(1 + k′)(λ + 1− k) if ρ(v) = B−

ε ,
where k = m(sL(v)), k′ = m(sR(v)), sL(v) is the segment ending at the left end-point of v and sR(v) is the
segment ending at the right end-point of v.

The reader is urged to look at [BG, Chapter 4] for an explanation of the above algorithm in terms of the
representation theory of the sl2 Lie algebra.
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Example 2.2. For the following coloring of the chord diagram of Example 1.1

vk vk+1 vk+1 vk vk vk−1 vk vk vk

B+
1

I

B−
0

B−
1

we have (assuming m(s0) = k) that

ωρ(1) = (1 + k)(λ + 1− k), ωρ(2) = λ + 2

ωρ(3) = (1 + (k − 1))(λ + 1− (k + 1)), ωρ(4) = −(1 + k)(λ + 1− k).

Each coloring ρ of the chords is determined by a subset V ′ of chords such that ρ(v) = I for v /∈ V ′ and
by a coloring c where c(v) is an assignement of an element (εv, δv) ∈ {0, 1}× {+,−} for each v ∈ V ′. Hence
we can write

WJ (D) = J ′(LID(D))|xe=1

where

J ′(G) =
∑

V ′⊂V

(λ + 2)|V−V ′| ∑
c col of V ′

∏
v∈V ′

ω′c(v).

An important observation is that ω′c(v) can be computed in terms of the local structure of the labeled
intersection digraph LID(D). The next lemma describes this.

Lemma 2.3. Let LID(D) = (V, A). Then

ω′c(v) = −(−1)εv


1 +

∑
e∈A, v∈e

zv(e)




λ + 1−

∑
e∈A, v∈e

z̄v(e)




where zv, z̄v are defined as follows:

• If e uncolored then
• If c(v) = (+, ε) and e = (w, v) then zv(e) = δwεwxe,
• If c(v) = (+, ε) and e = (v, w) then z̄v(e) = δwεwxe,
• If c(v) = (−, ε) and e = (w, v) then z̄v(e) = δwεwxe,
• If c(v) = (−, ε) and e = (v, w) then zv(e) = δwεwxe,
• If e is red and e = (v, w) then zv(e) = z̄v(e) = δwεwxe,
• and zv(e) = z̄v(e) = 0 otherwise.

Proof. If c(v) = (+, ε) then c(v) corresponds to the operator B+
ε and hence ω′c(v)|xe=1 = −(−1)εv(1+k)(λ+

1− k′). A moment’s thought reveals that k = k1 − k2 + k3 − k4 and k′ = k′1 − k′2 + k3 − k4 where

k1 = |{e = (w, v) uncolored; c(w) = (+, 1)}|, k2 = |{e = (w, v) uncolored; c(w) = (−, 1)}|
k′1 = |{e = (v, w) uncolored; c(w) = (+, 1)}|, k′2 = |{e = (v, w) uncolored; c(w) = (−, 1)}|
k3 = |{e = (v, w) red; c(w) = (+, 1)}|, k4 = |{e = (v, w) red; c(w) = (−, 1)}|.

The reasoning is analogous for c(v) = (−, ε).

Thus, Theorem 2 follows from the following

Theorem 3. For all digraphs G with one loop at each vertex, we have

J ′(G) = J(G).
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3. Understanding the state sums J(G) and J ′(G)

In this section we prove Theorem 3, via a trip to combinatorics with curious cancellations caused by
applications of the binomial theorem.

Let us begin by rewriting J ′(G). Let εV ′ =
∑

v∈V ′ εv. Then,

J ′(G) =
∑

V ′⊂V

(−1)|V
′|(λ + 2)|V−V ′|

∑
c col of V ′

(−1)εV ′
∑

V1⊂V ′, V2⊂V ′
(−1)|V2|(λ + 1)|V

′−V2|
∏

v∈V1

(∑
v∈e

zv(e)

) ∏
v∈V2

(∑
v∈e

z̄v(e)

)

where V1 and V2 are possibly overlapping subsets of V .
Note that ∏

v∈V1

(∑
v∈e

zv(e)

)
=
∑

f

∏
v∈V1

zv(e(f, v))

where f : V1 → A maps v to the arc denoted by e(f, v) such that v ∈ e(f, v) and moreover if e(f, v) red then
e = (v, .), i.e. e starts in v. In other words, f associates with each vertex v of V1 an arc incident with it.
Similarly, we can rewrite

∏
v∈V2

(∑
v∈e z̄v(e)

)
. Hence,

J ′(G) =
∑

V ′⊂V,V1⊂V ′,V2⊂V ′
(−1)|V

′|(λ + 2)|V−V ′|(λ + 1)|V
′−V2|(−1)|V2|

∑
f :V1→A,g:V2→A

∑
c col of V ′

(−1)εV ′
∏

v∈V1

(zv(e(f, v)))
∏

v∈V2

(z̄v(e(g, v))) .

Let us rewrite the formula more: we fix W1 = V1 ∩ V2, W2 = V1 ∪ V2 and we let h to be disjoint union of f
and g.

Remark 3.1. What exactly is h? Answer: h is a function that assigns to each vertex of V ′ zero, one or two
arcs incident with it (if the arc is red then it must start in that vertex). Hence |h(v)| ≤ 2 for all v ∈ V ′ and
if e ∈ h(v) then v ∈ e. Here we slowly move towards the formalism of acceptable objects. If e ∈ h(v) then
thicken the end of e containing v. Hence h becomes a system of thickened arcs of G so that there are at
most two arcs in the system that are thickened at each vertex of V ′, and red arcs are thickened always at
the start.

If we have such an h, then W1 = {v : |h(v)| = 2} and W2 = {v : |h(v)| ≥ 1}. Hence, h determines the sets
W1 and W2. Fix an h as above, consider its corresponding sets W1, W2, and let h(W2) denote the system of
thickened arcs determined by h. We have

J ′(G) =
∑

V ′⊂V

(−1)|V
′|(λ + 2)|V−V ′|∑

h

A(V ′, h)

where

A(V ′, h) =
∑

c col of V ′

∑
V ′
2⊂W2−W1

∑
g:W1∪V ′

2→h(W2):g(v)∈h(v)

B

and

B = (−1)εV ′ (−1)|V
′
2∪W1|(λ + 1)|V

′−(W1∪V ′
2 )| ∏

v∈W1∪V ′
2

z̄v(e(g, v))
∏

v∈W1∪V ′
1

zv(e(f, v))

where V ′
1 = W2 − (W1 ∪ V ′

2) and f : W1 ∪ V ′
1 → h(W2) is such that the disjoint union of f and g is h.

The next two lemmas restrict the possible configurations of h that contribute non-zero A(V ′, h).

Lemma 3.2. Let v ∈ W2. If the only arcs of h(W2) incident with v are the arcs of h(v), then A(V ′, h) = 0.

Proof.
v ∈ W1v ∈ W2 −W1
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Fix V ′
2 , g and c(V ′ − {v}). If B 6= 0, then the color δv ∈ {−, +} of v may be determined by g and the

orientation of the arcs of h(v). However, there is still the choice εv = 0 or 1. This influences only (−1)εV ′ ,
hence the lemma follows.

Lemma 3.3. Let v ∈ W1. If both arcs of h(v) are uncolored and oriented in the same way w.r.t. v then
A(V ′, h) = 0. If there are exactly three arcs of h(W2) incident with v then A(V ′, h) = 0.

Proof.
a

v

Since v ∈ W1 we have |h(v)| = 2. For the first part, if both arcs of h(v) are uncolored and oriented in the
same way, then there is no way to choose color δv ∈ {−, +} so that B 6= 0. For the second part, if there are
exactly three arcs of h(W2) incident with v then there is exactly one arc, say a, which is incident with v and
belongs to h(W2)−h(v). Fix V ′

2 and consider pairs g1, g2 of functions g which differ only on v. If B 6= 0 and
at least one of the arcs of h(v) is uncolored, then the color δv ∈ {−, +} of v is determined by the orientation
of the arcs of h(v) and the choice between g1 and g2. This color is opposite for g1 and g2, and so the edge a
is counted with different signs for g1 and g2 while all the rest remains the same, hence the total contribution
is 0. If both arcs of h(v) are red then both colors δv ∈ {−, +} of v are possible for B 6= 0 and both g1 and
g2. Hence again the edge a contributes twice +1 and twice −1 and the total contribution is 0.

Note that the second property of the above lemma assures that the system h(W2) of thickened uncolored
edges is a set for each h which contributes a non-zero term to J ′(G).

Corollary 3.4. (a) If e ∈ h(W2), then both vertices of e belong to W2.
(b) Each vertex of W2 has degree (i.e., valency) 2 or 4 in h(W2) and if N(v) is the set of edges of h(W2)
incident with v then |N(v)| = 2|h(v)|. In other words, the allowed configurations are

Proof. It follows from Lemmas 3.2 and 3.3 that |N(v)| ≥ 2|h(v)| at each vertex v. On the other hand, each
edge of h(W2) has one thick end and one thin end, and so there cannot be more thin ends than thick ends.
Hence |N(v)| = 2|h(v)| and the corollary follows.

Corollary 3.5. If W2 6= V ′, then A(V ′, h) = 0.

Proof. We write

A(V ′, h) =
∑

c col of V ′−W2

(−1)εV ′−W2 (rest)

where the ’rest’ is not influenced by the colorings in V ′ −W2. Hence,

A(V ′, h) = (rest)
∑

C⊂V ′−W2

(−1)|C|2|V
′−W2|

which vanishes unless V ′ = W2.

Summarizing, a function h such that A(V ′, h) 6= 0 determines a collection of thickened arcs that is almost
an acceptable object:

• each vertex has degree 2 or 4 in V ′ and 0 in V − V ′,
• exactly half of the arcs incident with a vertex are thickened at that vertex,
• if there are two uncolored arcs thickened at a vertex then they have opposite orientation with respect

to the vertex,
• the red arcs are always thickened at the start.
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Let us call such object good on V ′. Note also that for each coloring of a good object on V ′ which contributes
non-zero to B we must have εv = 1 for each v ∈ V ′ and hence (−1)εV ′ = (−1)|V

′|. Collecting our efforts so
far, we have

J ′(G) =
∑

V ′⊂V

(λ + 2)|V−V ′| ∑
K good on V ′

A′(V ′, K)(1)

where
A′(V ′, K) =

∑
V ′
2⊂V ′−W1

(λ + 1)|V
′−(W1∪V ′

2)|C(V ′
2 , V ′, K),

W1 is the set of vertices of V ′ of degree 4 in K and

C(V ′
2 , V ′, K) =

∑
g′:W1→K

(−1)|W1|(−1)|V
′
2 |
∑

c col

∏
v∈W1∪V ′

2

z̄v(e(g, v))
∏

v∈V ′−V ′
2

zv(e(f, v)),

and g′, g, f have the following properties:
• if p ∈ {g′, g, f} then p(v) is an arc of K incident with v and thickened at v,
• g : W1 ∪ V ′

2 → K is unique such function extending g′,
• f : V ′ − V ′

2 → K is unique such function with f ∪ g = K.

Lemma 3.6. C(X, V ′, K) = C(Y, V ′, K) for arbitrary X, Y subsets of V ′ −W1.

Proof. Exactly half of the edges of K incident with each vertex are thickened at that vertex and hence K
may be regarded as a union of cycles Z1, . . . , Zm such that each Zi has the form

and such that each vertex of K lies in at most two of the cycles Zi. In other words, we may think that K is
pictured schematically as follows

(where for simplicity, we have drawn the cycles Zi as circles). As we observed above,

C(X, V ′, K) =
∑

g′:W1→K

(−1)|W1|(−1)|X|
∑

c col

∏
v∈W1∪X

z̄v(e(g, v))
∏

v∈V ′−X

zv(e(f, v))

It suffices to show the following
Claim.

C(X, V ′, K) =
∑
K′

(−1)a(K′)xK

where K ′ is any collection of thickened arcs obtained from K by changing orientation of some (possibly
none) red arcs of K so that K ′ is an acceptable object (i.e. if two arcs are thickened at a vertex then they
are oppositely oriented w.r.t. that vertex), and a(K ′) is the number of arcs of K ′ directed in agreement with
the thickening.
Proof of the Claim. We can write

C(X, V ′, K) =
∑

g′:W1→K

D

and
D = (−1)|W1|(−1)|X|

∑
c col

∏
v∈W1∪X

z̄v(e(g, v))
∏

v∈V ′−X

zv(e(f, v)).

First we observe that the Claim is true when K has a vertex of degree 2 where the thickened edge is red.
Indeed, in this case both sides of the formula in the Claim equal 0. Hence let K donot have such a vertex.



RANDOM WALKS AND THE COLORED JONES FUNCTION 9

Let S be the set of vertices of K where two red arcs are thickened. Observe that exactly 2|S| colorings c
contribute a non-zero term to D: we observed before that necessarily ε(v) = 1 for each v ∈ V ′. Moreover,
each color δ(v) contributing non-zero to D is uniquely determined for each v where at least one uncolored
arc is thickened: explicitly, let v be a vertex of Zi and let e be the unique arc of Zi thickened at v, and let e
be uncolored. Then δ(v) depends on the orientation of e and whether e belongs to g or not. Hence there is
at most one coloring δ(v) which contributes a non-zero term to D. Also observe that the unique ’non-zero
coloring’ of these vertices of each Zi compose well together: this follows from the fact that if v is a vertex
of degree 4 in K then exactly 2 arcs are thickened at v, and if both are uncolored then they have different
orientation with respect to v and one belongs to g and the other belongs to f . Finally observe that for vertex
v where two red arcs are thickened, any δ(v) contributes a non-zero.

Next we will observe that the contribution of each of these 2|S| colorings to D is the same and equals
(−1)a(K′)xK where K ′ is any collection of thickened arcs obtained from K by changing orientation of some
(possibly none) red arcs of K so that K ′ is an acceptable object (i.e., if two arcs are thickened at a vertex
then they are opositely oriented with respect to that vertex). This proves the Claim since the number of
objects K ′ equals 2|S|. Hence it remains to confirm the contribution of each of the allowed colorings to D.

First observe that it is true when X = ∅. Next, let us put a vertex v of Zi −W1 into X and let e be the
arc of Zi thickened at v. Then e is uncolored by our assumption and we need to change δ(v) in order to
have a nonzero contribution, hence the product of signs along Zi changes but (−1)|X| also changes and so
the final total sign is the same.

We let

C(V ′, K) =
∑

g′:W1→K

∑
K′

(−1)a(K′)xK

= 2deg4(K)
∑
K′

(−1)a(K′)xK .

Equation (1) together with Lemma 3.6 implies that

J ′(G) =
∑

V ′⊂V

(λ + 2)|V−V ′| ∑
K good on V ′

C(V ′, K)
∑

A⊂V ′−W1

(λ + 1)|A|

=
∑

V ′⊂V

(λ + 2)|V−V ′| ∑
K good on V ′

C(V ′, K)(λ + 2)|V
′−W1|

=
∑

K good on V ′
(λ + 2)|V−W1|C(V ′, K)

=
∑

K acceptable

(λ + 2)|V |−deg4(K)2deg4(K)(−1)a(K)xK

= J(G)

which concludes the proof of Theorem 3.

4. Converting to Permanents

The goal of this section is to convert the state sum J(D) into a permanent, in the following way:

Theorem 4.

J(LID(D))|xe=1 = Per(IMJ(D))

Note that Theorem 1 follows from Theorems 2 and 4.
We will achieve the conversion of J(LID(D)) in a permanent by a local modification (we can say, a blow-

up) of each of the vertices of the original digraph LID(D). It turns out that the modification triples each of
the vertices of G. Why triple? Because in a sense J(LID(D)) has to do with the sl2-Lie algebra. Thus, we
are back to Lie algebras, this time through a common blow-up trick of combinatorics.
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Proof (of Theorem 4). We have that

J(LID(D))|xe=1 =
∑

K acceptable

(λ + 2)|V |−deg4(K)2deg4(K)(−1)a(K),

where a(K) equals the number of arcs of K thickened in agreement with their orientation. A single loop of
K is always leaving its vertex, and it is directed in agreement with its thickening. Hence each single loop
contributes ’(-1)’ to a(K). Let us now get rid of these single loops: an acceptable object without single loops
will be called connected and a connected object where each vertex of V has degree at least 2 will be super.
We have

J(LID(D))|xe=1 =
∑

K acceptable

(λ + 2)|V |−deg4(K)2deg4(K)(−1)a(K)

=
∑

K connected

(λ + 2)|V |−deg4(K)2deg4(K)(−1)a(K)
∑

U⊂V−K

(−1)|U|

=
∑

K super

(λ + 2)|V |−deg4(K)2deg4(K)(−1)a(K).

We will use a variation TID(D)), the thickened intersection digraph of D defined as follows. Double each
of the arcs of LID(D) and:

1. if the arc is uncolored then thicken such pair at opposite ends,
2. if the arc is red then thicken each arc of the pair at the start, and then change the orientation of one

of them,
3. thicken each loop at its initial segment, i.e., in agreement with its orientation.

In pictures, the thickening of LID is the substitution

r

Now we can write

J(LID(D))|xe=1 =
∑

K super subobject of TID(D)

(λ + 2)|V |−deg4(K)2deg4(K)(−1)a(K).

Let us describe now how a thickened digraph D(IMJ) may be constructed from TID(D). The construction
easily follows from the definition of matrix IMJ : it consists in replacing each vertex of TID(D) by a ’gadget’
on three vertices, as follows:

v
1

v
3

v
2

λ+2−λ

−1

−1

−(λ+2) −(λ+2)

The construction goes as follows:
1. For each vertex v of TID(D) introduce three vertices v1, v2, v3 for D(IMJ).
2. Define the thickened arcs and their weights among each triple v1, v2, v3 as follows:

• add loop li at each vi and let w(l1) = w(l2) = −(λ + 2) and w(l3) = −1,
• add arc (v3, v1) thickened at v3 with weight −λ,
• add arc (v3, v2) thickened at v3 with weight λ + 2,
• add arc (v2, v3) thickened at v2 with weight −1.

3. For each thickened arc (u, w) of TID(D) do the following:
• If (u, w) is thickened at u then add (u2, w1), (u2, w2) thickened at u2 with weights equal to 1,
• If (u, w) is thickened at w then add (u1, w1), (u2, w1) thickened at w1 with weights equal to 1.
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It follows directly from the definition of the permanent that

Per(IMJ) =
∑
L∈L

(−1)a(L)wL,

where L is the set of all acceptable subobjects of D(IMJ ) where each degree equals 2.
We need to show that∑

L with each degree 2
acceptable subobject ofD(IMJ )

(−1)a(L)wL =
∑

K super subobject of TID(D)

(λ + 2)|V |−deg4(K)2deg4(K)(−1)a(K).

We will prove it by constructing a partition of acceptable subobjects of D(IMJ) where each vertex has degree
2, and associating each partition class which contributes non-zero to Per(D(IMJ)) with uniquelly determined
super subobject of TID(D).

Let L be an acceptable subobject of D(IMJ ) where each vertex has degree 2. Denote by OL the set of
all thickened arcs of type (uiwj), u 6= w, and let IL = L − OL. Note that if we forget the lower indices at
vertices, OL naturally corresponds to a set OK of thickened arcs of TID(D). Note that no arc in OK is a
loop and a(OL) = a(OK). It remains to be seen what to do with the thickened arcs of IL. We may consider
each triple of vertices v1, v2, v3 separately. Let ILv denote the set of thickened arcs of L among v1, v2, v3.
We distinguish four cases.

• ILv consists of all three loops or the loop at v1 and the arcs (v2, v3), (v3, v2). Let C0 be the class of all
L which in at least one triple v1, v2, v3 behave in this way. Note that the total contribution of C0 to
Per(D(IMJ)) is 0, and so we may assume that this case never happens (it corresponds to single loop
at v in TID(D) which is not allowed for supersubobjects).

• ILv consists of loop at v1 or loop at v2 (but not both), and loop at v3. Then let IKv = ∅. Hence v
will have degree 2 in K and contribute (λ+ 2) to J(LID(D)), which exactly equals to the contribution
of ILv to Per(D(IMJ )).

• ILv consists of {(v2, v3), (v3, v2)} or {(v3, v1), (v2, v3)}. Then v has degree 2 in OK and the edge of
OK incident and thickened at v is entering v. In this case let IKv consist of the loop at v. Note that
the total contribution of ILv to Per(D(IMJ)) is −(λ + 2) + λ = −2 and 2(−1) is also the contribution
of IKv to J(LID(D)).

• ILv = ∅. Then v has degree 4 in OK and we let IKv = ∅. In this case each vi, i = 1, 2 is incident
with one arc of L not thickened at vi. Let L′ be obtained from L by exchanging the incidence of
non-thickened arcs between v1 and v2. The total contribution of ILv and IL′v to Per(D(IMJ )) is 2
and 2 is also the contribution of IKv to J(LID(D)).

It is easy to check that we indeed partitioned the set of all acceptable subobjects of D(IMJ ) where each vertex
has degree 2 and that we exhausted all super subobjects of TID(D). This finishes the proof of Theorem 4.

5. Proof of the corollaries

Corollary 1.4 is immediate. For Corollary 1.5, observe that WJJ = WJJ(0) is given by Corollary 1.4 for
n = 0. We claim that this formula equals to Per(IM). This may be observed as follows: assume i < j.
Associate IM(D)ij with the arc (i, j) of LID(D) thickened at i and IM(D)ji with arc (i, j) thickened at j.
This associates, with each term of the expansion of Per(IM), an acceptable object of uncolored arcs only, with
each degree equal to 2 and no loops. Denote the set of such acceptable objects by K1. It is straightforward
to check that

Per(IM) =
∑

K∈K1

(−1)a(K).

On the other hand, WJJ(0) =
∑

K∈K2
(−1)a(K), where K2 is the set of all acceptable objects where each

degree is 0 or 2 (loops are allowed and they contribute 2 to the degree). First observe that the contribution
of the acceptable objects of K2 that contain a red arc cancels out since we can change the orientation of a
red arc in such an object, and get again an object of K2, with oposite contribution. Hence assume K2 has
no objects with red arcs. If K ∈ K2 then let L(K) denote the acceptable subobject of K obtained from
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K by deleting all loops. If L = L(K) let V (L) denote the set of vertices of L of non-zero degree and let
E(L) = {K ∈ K2; L(K) = L}. By the binomial theorem,∑

K∈E(L)

(−1)a(K) = (−1)a(L)
∑

W⊂(V−V (L))

(−1)|W | = 0

whenever V (L) 6= V . This proves the corollary.

6. Numerical examples

6.1. Running the program. The formula of Theorem 1 for the weight system of the colored Jones function
is easy to program, as is demonstrated by the source code given in the next section. To run the program,
first start Mathematica [Wo] and load the JonesPermanent package of the next section (available from our
web-site, too):
Mathematica 4.1 for Linux

Copyright 1988-2000 Wolfram Research, Inc.

-- Motif graphics initialized --

In[1]:=<< JonesPermanent.m

For the chord diagram CDP[5,7,6,8,1,3,2,4] of Example 1.1, WJ is given by

In[2]:=formula[CDP[5,7,6,8,1,3,2,4]]

Out[2]:=4 x^4 + 16 x^3 -4 x^2 -40 x

where λ = x, and the notation CDP[a_1,...,a_{2n}] for a permutation σ = (a1, . . . , a2n) of (1, . . . , 2n)
of order two means the chord diagram of the 2-cycles of σ.

6.2. The source code.

CD2CDP[cd_CD] :=

Module[{m = Length[cd]/2, i, beg, end},

beg = Table[Position[cd, i], {i, 1, m}]; end = Reverse /@ beg;

Apply[CDP, Range[2*m] /. Thread[Flatten[beg] -> Flatten[end]]]]

An:={{0,0,0},{-1,-1,0},{0,0,0}}; Ap:={{1,1,0},{0,0,0},{0,0,0}};

Ar:={{1,1,0},{-1,-1,0},{0,0,0}}; Az:={{x+2,0,0},{0,x+2,1},{x,-x-2,1}}

TheSymbol[a_,b_]:=

Module[{a1,a2,b1,b2}, (* a,b are chords *)

a1=a[[1]]; a2=a[[2]]; b1=b[[1]]; b2=b[[2]];

If[a==b, Zero,

If[a1 < b1 < a2 < b2, Minus,

If[b1 < a1 < b2 < a2, Plus,

If[b1 < a1 < a2 < b2, Red, Nought]]]]]

rule[a_,b_,P_] :=

Module[{a1,a2,b1,b2,ena,duo}, (* a,b are numbers *)

a1=Ceiling[a/3]; a2=If[a==3*Floor[a/3], 3, a-3*Floor[a/3]];

b1=Ceiling[b/3]; b2=If[b==3*Floor[b/3], 3, b-3*Floor[b/3]];

ena=P[[a1]]; duo=P[[b1]];

If[TheSymbol[ena,duo]===Zero, Az[[a2,b2]],

If[TheSymbol[ena,duo]===Minus, An[[a2,b2]],

If[TheSymbol[ena,duo]===Plus, Ap[[a2,b2]],

If[TheSymbol[ena,duo]===Red, Ar[[a2,b2]], 0]]]]]

Permanent[m_List] := With[{v = Array[x, Length[m]]},

Coefficient[Times @@ (m.v), Times @@ v] ]

formula[cdp_CDP] :=

Module[{m, chords, k, kp, km, e, g, i, n2, j1, j2},

m = Length[cdp]/2; chords =
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Apply[CL, Union[Sort /@ Transpose[{Range[2*m], Apply[List, cdp]}]]];

Expand[Permanent[Table[rule[j1,j2,chords],{j1,3*m},{j2,3*m}]]]]
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