
THE JONES SLOPES OF A KNOT

STAVROS GAROUFALIDIS

Abstract. The paper introduces the Slope Conjecture which relates the degree of the Jones polynomial of
a knot and its parallels with the slopes of incompressible surfaces in the knot complement. More precisely,
we introduce two knot invariants, the Jones slopes (a finite set of rational numbers) and the Jones period
(a natural number) of a knot in 3-space. We formulate a number of conjectures for these invariants and
verify them by explicit computations for the class of alternating knots, the knots with at most 9 crossings,
the torus knots and the (−2, 3, n) pretzel knots.
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1. Introduction

1.1. The degree of the Jones polynomial and incompressible surfaces. The paper introduces an
explicit conjecture relating the degree of the Jones polynomial of a knot (and its parallels) with slopes
of incompressible surfaces in the knot complement. We give an elementary proof of our conjecture for
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alternating knots and torus knots, and check it with explicit computations for non-alternating knots with 8
and 9 crossings, and for the (−2, 3, p) pretzel knots.

One side of our conjecture involves the growth rate of the degree δK(n) (with respect to q) of the colored
Jones function JK,n(q) ∈ Z[q±1] of a knot. The other side involves the finite set bsK of slopes of incom-
pressible, ∂-incompressible orientable surfaces in the complement of K, where the slopes are normalized so
that the longitude has slope 0 and the meridian has slope ∞; [Ha]. To formulate our conjecture, we need a
definition. Recall that x ∈ R is a cluster point of a sequence (xn) of real numbers if for every ǫ > 0 there are
infinitely many indices n ∈ N such that |x−xn| < ǫ. Let {xn}

′ denote the set of cluster points of a sequence
(xn).

Definition 1.1. (a) For a knot K, define the Jones slopes jsK by:

(1) jsK = {
2

n2
deg(JK,n(q)) |n ∈ N}′

(b) Let bsK denote the set of boundary slopes of incompressible surfaces of K.

A priori, the structure and the cardinality of the set jsK is not obvious. On the other hand, it is known
that bsK is a finite subset of Q ∪ {∞}; see [Ha]. Normal surfaces are of special interest because of their
relation with exceptional Dehn surgery, and the SL(2, C) character variety and hyperbolic geometry, see for
example [Bu, CGLS, CCGLS, KR, LTi, Mv].

Conjecture 1.2. (The Slope Conjecture) For every knot we have

(2) 2jsK ⊂ bsK .

Before we proceed further, and to get a better intuition about this conjecture, let us give three illustrative
examples.

Example 1.3. For the alternating knot 817 we have:

δ(n) = 2n2 + 2n

δ∗(n) = −2n2 − 2n

where δK(n) and δ∗K(n) are the maximum and the the minimum degree of JK,n(q) with respect to q. On
the other hand, according to [Cu], the Newton polygon (based on the geometric component of the character
variety) has 44 sides and its slopes (excluding multiplicities) are

{−14,−8,−6,−4,−2, 0, 2, 4, 6, 8, 14,∞}.

The reader may observe that δ(n) and δ∗(n) are quadratic polynomials in n and four times the leading terms
of δ(n) and δ∗(n) are boundary slopes (namely 8 and −8), and moreover they agree with 2c+ and −2c−

where c± is the number of positive/negative crossings of 817. In addition, as Y. Kabaya observed (see [Ka]),
817 has slopes ±14 outside the interval [−2c−, 2c+] = [−8, 8].

Example 1.4. For the non-alternating pretzel knot (−2, 3, 7) we have:

δ(n) =

[

37

8
n2 +

17

2
n

]

=
37

8
n2 +

17

2
n + ǫ(n),

δ∗(n) = 5n

where ǫ(n) is a periodic sequence of period 4 given by 0, 1/8, 1/2, 1/8 if n ≡ 0, 1, 2, 3 mod 4 respectively.
(−2, 3, 7) is a Montesinos knot and its boundary slopes are given by

{0, 16, 37/2, 20}

(see [HO] and [Du] and compare also with [Ma]). In this case, δ(n) is no longer a quadratic polynomial of n.
Instead δ(n) is a quadratic quasi-polynomial with fixed leading term 37/8. Moreover, four times this leading
term is a slope of the knot. This number was the motivating example that eventually lead to the results of
this paper. Likewise, four times the n2-coefficient of δ∗(n) is 0, which is also a boundary slope of this knot.
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Example 1.5. The pretzel knots (2, 3, 5, 5) and (2, 5, 3, 5) are mutant, alternating and Montesinos. Since
they are mutant, their colored Jones functions (thus their Jones slopes) agree; see [Kf]. Since they are
alternating, their common Jones slopes are js = c+ = 15 and js∗ = −c− = 0; see Theorem 1.2. Since they
are Montesinos, Hatcher-Oertel’s algorithm implemented by Dunfield (see [Du]) implies that their boundary
slopes are given by

bs(2,3,5,5) = {0, 4, 6, 10, 14, 16, 18, 20, 22, 24, 26, 28, 30,∞}

bs(2,5,3,5) = {0, 4, 6, 10, 14, 16, 18, 20, 22, 26, 28, 30,∞}

It follows that the set bsK is not invariant under knot mutation.

1.2. The degree of the colored Jones function is a quadratic quasi-polynomial. In the previous
section, we took the shortest path to formulate a conjecture relating the degree of the colored Jones function of
a knot with incompressible surfaces in the knot complement. In this section we will motivate our conjecture,
and add some structure to it. Let us recall that in 1985, Jones introduced the famous Jones polynomial
JK(q) ∈ Z[q±1] of a knot (or link) K in 3-space; [Jo]. The Jones polynomial of a knot is a Laurent
polynomial with integer coefficients that tightly encodes information about the topology and the geometry
of the knot.

Unlike the Alexander polynomial, not much is known about the topological meaning of the coefficients of
the Jones polynomial, nor about its degree, nor about the countable set of Jones polynomials of knots.

This unstructured behavior of the Jones polynomial becomes more structured when one fixes a knot K
and considers a stronger invariant, namely the colored Jones function JK,n(q). The latter is a sequence of
elements of Z[q±1] indexed by n ∈ N which encodes the TQFT invariants of a knot colored by the irreducible
(n + 1)-dimensional representation of SU(2), and normalized to be 1 at the unknot; see [Tu2]. With these
conventions, JK,0(q) = 1 and JK,1(q) is the Jones polynomial of K.

In many ways, the sequence JK,n(q) is better behaved, and suitable limits of the sequence JK,n(q) have
a clear topological or geometric meaning. Let us give three instances of this phenomenon:

(a) A suitable formal power series limit JK,n−1(e
h) ∈ Q[[h, n]] (known as the Melvin-Morton-Rozansky

Conjecture) equals to 1/∆K(enh) and determines the Alexander polynomial ∆K(t) of K (see [B-NG]).
(b) An analytic limit JK,N−1(e

α/N ) for small complex numbers α near zero equals to 1/∆K(eα) also
determines the Alexander polynomial of K; see [GL1, Thm.2].

(c) The exponential growth rate of the sequence JK,N−1(e
2πi/N ) (the so-called Kashaev invariant) of a

hyperbolic knot is conjectured to equal to the volume of K, divided by 2π; see [Ks].

On the other hand, one can easily construct hyperbolic knots with equal Jones polynomial but different
Alexander polynomial and volume.

Some already observed structure regarding the colored Jones function JK,n(q) is that it is q-holonomic, i.e.,
it satisfies a linear recursion relation with coefficients in Z[qn, q]; see [GL1]. The present paper is concerned
with another notion of regularity, namely the degree of the colored Jones function JK,n(q) with respect to n.
Since little is known about the degree of the Jones polynomial of a knot, one might expect that there is little
to say about the degree of the colored Jones function JK,n(q). Once observed, the regularity of the degree
seems obvious as Bar-Natan suggests; see [B-NL, Lem.3.6] and [Me]. Moreover, the degree of the colored
Jones function motivates the introduction of two knot invariants, the Jones slopes of a knot (a finite set of
rational numbers) and the Jones period of a knot (a natural number).

1.3. q-holonomic functions and quadratic quasi-polynomials. To formulate our new notion of regu-
larity, we need to recall what is a quasi-polynomial. A quasi-polynomial p(n) is a function

p : N −→ N, p(n) =

d
∑

j=0

cj(n)nj

for some d ∈ N where cj(n) is a periodic fuction with integral period for j = 1, . . . , d; [St, BR]. If cd(n) is not
identically zero, then the degree of p is d. We will focus on two numerical invariants of a quasi-polynomial,
its period and its slopes.
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Definition 1.6. (a) The period π of a quasi-polynomial p(n) as above is the common period of cj(n).
(b) The set of slopes of a quadratic quasi-polynomial p(n) is the finite set of twice the rational values of the
periodic function c2(n).

Notice that if p(n) is a quasi-polynomial of period π, then there exist polynomials p0, . . . , ps−1 such that
p(n) = pi(n) when n ≡ i mod π, and vice-versa. Notice also that the set of slopes of a quasi-polynomial is
always a finite subset of Q.

Quasi-polynomials of period 1 are simply polynomials. Quasi-polynomials appear naturally in counting
problems of lattice points in rational convex polytopes; see for example [BP, BR, BV, Eh, St]. In fact, if P is
a rational convex polytope, then the number of lattice points of nP is the so-called Ehrhart quasi-polynomial
of P , useful in many enumerative questions [BP, BR, BV, Eh, St].

The next theorem seems obvious, once observed. The proof, given in [Ga2], uses ideas from differential
Galois theory of D-modules and the key Skolem-Mahler-Lech theorem from number theory. Let deg(f(q))
denote the degree of a rational function f(q) with respect to q.

Theorem 1.1. [Ga2] If fn(q) is a q-holonomic sequence of rational functions, then for large n, deg(fn(q))
is a quadratic quasi-polynomial. Moreover, the leading term of fn(q) satisfies a linear recursion relation with
constant coefficients.

The restriction for large n in Theorem 1.1 is necessary, since the sequence ((1 + (−1)n)qn2

+ q17) is q-
holonomic, and its degree (given by 17 if n ≤ 4, by n2 if n ≥ 5 is even and by 17 if n ≥ 5 is odd) is not
a quasi-polynomial. On the other hand, if n ≥ 5, the degree is given by the quadratic quasi-polynomial
n2(1 + (−1)n)/2 + 17.

Corollary 1.7. If fn(q) is a q-holonomic sequence of rational functions and δ(n) = deg(fn(q)) then

{
2

n2
δ(n) |n ∈ N}′ = slopes(δ)

Proof. Consider a subsequence kn of the natural numbers such that

l = lim
n

2
δ(kn)

k2
n

Since d(n) is (for large n) given by a quasi-polynomial, it follows that d(n) = c2(n)n2 + O(n) for a periodic
function c2 : N −→ Q and for all n ∈ N. Since c2 takes finitely many values, it follows that there is a
subsequence mn of kn such that c2(mn) = s for all n, where s is a slope of δ(n). Since d(n) = c2(n)n2 +O(n)
for all n, it follows that l = 2s. I.e., l is a slope of δ. Conversely, it is easy to see that every slope of δ is the
limit point for a subsequence taken to be an arithmetic progression on which c2 takes a constant value. �

1.4. The Jones slopes and the Jones period of a knot. Given a knot K, we set

(3) δK(n) = deg(JK,n(q))

Combining the q-holonomicity of the colored Jones function JK,n(q) of a knot K with Theorem 1.1, it follows
that δK is a quadratic quasi-polynomial for large n.

Definition 1.8. (a) The Jones period πK is the period of δK .
(b) The Jones slopes jsK is the finite set of slopes of δK .

Corollary 1.7 implies that for every knot K we have:

{
2

n2
deg(JK,n(q)) |n ∈ N}′ = slopes(δK)

where the right-hand side (and consequently, the left-hand side, too) is a finite subset of Q.

Lemma 1.9. For every knot K we have:

{
2

n2
deg(JK,n(q)) |n ∈ N}′ = slopes(δK)

where slopes(δK) is a finite subset of Q.
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The δK invariant records the growth rates of the (maximum) degree of the colored Jones function of K.
We can also record the minimum degree as follows. If K∗ denotes the mirror image of K, then JK∗,n(q) =
JK(q−1). Let us define

(4) δ∗K(n) = −δK∗(n) = mindeg(JK,n(q)), js∗K = slopes(δ∗K).

Notice that Conjecture 1.2 applied to K∗ implies that

js∗K ⊂ bsK .

The next proposition gives a bound for the Jones slopes of a knot K in terms of the number c±K of
positive/negative crossings of a planar projection.

Proposition 1.10. For every knot K, every s ∈ jsK and every s∗ ∈ js∗K we have

(5) − c−K ≤ s∗, s ≤ c+
K .

The reader may compare the above lemma with Example 1.3.
Our next theorem confirms Conjecture 1.2 for all alternating knots. Consider a reduced planar projection

of K with c±K crossings of positive/negative sign.

Theorem 1.2. If K is alternating, then

(6) πK = 1, jsK = {c+
K}, js∗K = {−c−K}.

In addition, the two checkerboard surfaces of K (doubled, if need, to make them orientable) are incompressible
with slopes 2c+

K and −2c−K.

Our final lemma relates the Jones slopes and the period of a knot.

Lemma 1.11. If a(n) is an integer-valued quadratic quasi-polynomial with period π, then for every slope s
of a(n) we have

sπ2 ∈ Z.

In particular, for every knot K we have

π2
K jsK ⊂ Z, π2

K js∗K ⊂ Z.

Thus, if a knot has a non-integral Jones slope, then it has period bigger than 1.

1.5. The symmetrized Jones slopes and the signature of a knot. In this section we discuss the
symmetrized version δ±K of δK :

(7) δ+
K = δK − δ∗K , δ−K = δK + δ∗K .

Of course, δK = 1/2(δ+
K + δ−K) and δ∗K = 1/2(−δ+

K + δ−K). Pictorially, we have:

As we will see below, the symmetrized degree δ±K of the colored Jones function has a different flavor, and

relates (at least for alternating knots) to the signature of the knot. δ+
K(n) is the span of JK,n(q), i.e., the

difference between the maximum and minimum degree of JK,n(q). On the other hand, δ−K(n) is the sum of

the minimum and maximum degree of JK,n(q), and appears to be less studied. Of course, δ±K are quadratic
quasi-polynomials. Since the colored Jones function is multiplicative under connected sum, and reverses q
to q−1 under mirror image, it follows that

(8) δ−K1#K2
= δ−K1

+ δ−K2
, δ−K∗ = −δ−K .

Our next theorem computes the δ±K quasi-polynomials of an alternating knot K in terms of three basic
invariants: the signature σK , the writhe wK and the number of crossings cK of a reduced projection of K.
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Our result follows from elementary linear algebra using the results of Kauffman, Murasugi and Thistlethwaite,
[Kf, Mu, Th], further simplified by Turaev [Tu1]. See also [Li, p.42] and [Le, Prop.2.1].

Theorem 1.3. (a) For all alternating knots K we have:

δ−K(n) =
wK

2
n2 +

wK − 2σK

2
n(9)

δ+
K(n) =

cK

2
n2 +

cK

2
n(10)

(b) The Jones polynomial JK(q) determines cK by:

(11) δ+
K(1) = cK .

(c) The Jones polynomial of K and its 2-parallel determines wK and σK by:

(12) σK = −3δ−K(1) + δ−K(2), wK = −2δ−K(1) + δ−K(2).

Remark 1.12. Part (c) of Theorem 1.3 is sharp. The Jones polynomial of an alternating knot determines
the number of crossings, but it does not determine the signature nor the writhe of the knot. Shumakovitch
provided us with a table of pairs of alternating knots with up to 14 crossings (using the Thistlethwaite
notation) with equal Jones polynomials and unequal signature. An example of such a pair is with 12
crossings is the knot 12a669 and its mirror image:

12a669 has Jones polynomial

J12a669,1(q) = −
1

q6
+

2

q5
−

4

q4
+

6

q3
−

7

q2
+

9

q
− 9 + 9q − 7q2 + 6q3 − 4q4 + 2q5 − q6

and signature −2. Since the signature is nonzero, 12a669 is not amphicheiral, and yet has palindromic Jones
polynomial. The next colored Jones polynomial is given by:

J12a669 ,2(q) =
1

q17
−

2

q16
+

1

q15
+

3

q14
−

7

q13
+

4

q12
+

6

q11
−

13

q10
+

6

q9
+

8

q8
−

15

q7
+

7

q6
+

7

q5
−

15

q4
+

11

q3
+

6

q2
−

21

q

+18 + 9q − 30q
2 + 20q

3 + 15q
4
− 35q

5 + 16q
6 + 20q

7
− 32q

8 + 7q
9 + 22q

10
− 22q

11
− 2q

12 + 17q
13

−9q
14

− 5q
15 + 7q

16
− q

17
− 2q

18 + q
19

and it is far from being palindromic. This is another example where the pattern of the Jones polynomial is
blurred, but the pattern of the colored Jones function is clearer.

Results similar to Theorem 1.2 and 1.3 have been also been obtained independently in [CT] using the
Jones polynomial of an alternating knot.

Let us end this section with two comments. In this paper K is a knot, but without additional effort one
can state similar results for a link (and even a knotted trivalent graph, or quantum spin network) in 3-space.
In addition, we should point out that there are deeper aspects of stability and integrality of the coefficients
of the colored Jones function. We will discuss them in a future publication.
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1.6. Plan of the proof. In Section 3 we use the Kauffman bracket skein module and the work of Kauffman,
Le, Murasugi Thistlethwaite to give a proof of Proposition 1.10 and Theorems 1.2 and 1.3. This proves our
Slope Conjecture for all alternating knots.

In Section 4 we give computational evidence for the degree of the colored Jones polynomials (and for
the Slope Conjecture) of the non-alternating knots with 8 and 9 crossings. In addition, we verify the Slope
Conjecture for all (−2, 3, p) pretzel knots (using the fusion state-sum formulas of the colored Jones function
studied in [GL3, Co, GVa]), and all torus knots (using Morton’s formula for the colored Jones function of
those, [Mo]). The reader may note that the pretzel knots (−2, 3, p) are well-known examples of Montesinos
knots, with non-integral slopes (for p 6= −1, 1, 3, 5), which are not quasi-alternating, thus the results of [FKP]
do not apply for this family.

2. Future directions

In this section we will discuss some future directions, and pose some questions, problems and conjectures.
The Slope Conjecture involves knots in 3-space, and relates the degree of the colored Jones function to

their set of boundary slopes. The Slope Conjecture may be extended in three different directions: one may
consider (a) links in 3-space, (b) general 1-cusped manifolds and (c) general Lie algebras. These extensions
have been considered by the author. In [GVu] we introduce a Slope Conjecture for knots and arbitrary Lie
algebras. One may also consider 1-cusped manifolds with the homology of S1 × D2, i.e., knot complements
in integer homology spheres. For those, the colored Jones polynomial exists (though it is not a polynomial,
but rather an element of the Habiro ring; see [GL2]). The colored Jones function is q-holonomic, and we can
use the non-commutative A-polynomial of this sequence to define the set of slopes.

The following problem appears mysterious and tandalizing.

Problem 2.1. Understand the Selection Principle which selects

(a) the Jones slope from the set of boundary slopes,
(b) the colored Jones function from the vector space of solutions of the linear q-difference equation.

Now, let us post some questions, based on the limited experimental evidence. Several authors have studied
the diameter dK of the set bsK

dK = max{|s − s′| s, s′ ∈ bsK}

See for example [IM1, IM2, MMR]. Y. Kabaya pointed out to us that there are alternating knots K with
diameter bigger than twice the number of crossings; see Example 1.3. Let jdK denote the Jones diameter

(13) jdK = max{|s − s∗| s ∈ jsK , s∗ ∈ js∗K}.

Proposition 1.10 shows that jdK ≤ cK . Moreover, the bound is achieved for alternating knots, and more
generally for adequate knots; see [FKP]. The next question concerns the class of knots of maximal Jones
diameter.

Question 2.2. Is it true that a prime knot K is adequate if and only if jdK = cK?

The class of alternating knots is included in two natural classes: quasi-alternating knots, and adequate
knots. Knot Homology (and its exact triangles) can tell whether a knot is quasi-alternating or not (see
[MO]), but it seems hard to tell whether a knot is alternating or not. Adequate knots appeared in [LT] in
relation to the Jones polynomial and also in [FKP]. It was pointed out to us by D. Futer, E. Kalfagianni J.
Purcell and P. Ozsváth that the pretzel knots (−2, 3, p) are not adequate nor quasi-alternating for p > 5.

In all examples, the set jsK consists of a single element, whereas the set bsK can have arbitrarily many
elements. Thus, Conjecture 1.2 sees only a small part of the set bsK . Our next conjecture claims that the
colored Jones function JK,n(q) of K may see all the elements in bsK . To formulate it, recall that JK,n(q) is
a q-holonomic sequence, and satisfies a unique, minimal order recursion relation of the form

d
∑

k=0

ak(qn, q)JK,n+k(q) = 0
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where ak[u, v] ∈ Q[u, v] are polynomials with greatest common divisor 1; see [Ga1]. The 3-variable poly-

nomial qAK(E, Q, q) =
∑d

k=0 ak(Q, q)Ek is often called the non-commutative A-polynomial of K. The AJ
Conjecture of [Ga1] states that every irreducible factor of qAK(L, M, 1) is a factor of AK(L, M2) or is L-free,
and vice-versa. Here AK denotes the A-polynomial of K and AK contains all components of the SL(2, C)

character variety of K (including the abelian one). Let bsA
K denote the slopes of the Newton polygon of A.

These are the so-called visible slopes of a knot. It follows by Culler-Shalen theory (see [CS, CGLS, CCGLS])

that bsA
K ⊂ bsK .

Let us define the q-Newton polytope qNK of K to be the convex hull of the monomials qcQbEa of
qAK(E, Q, q). qN is a convex polytope in R3, and we may consider the image of it in R2 under the
projection map R3 −→ R2 which maps (a, b, c) to (a, b) (i.e., sends the monomial qcQbEa to QbEa).

Definition 2.3. The q-slopes qsK of a knot K are the slopes of the projection of qN to R2.

Problem 2.4. Show that for every knot K we have

(14) 2qsK = bsA
K .

It is easy to see that for every knot K we have jsK ⊂ qsK . In fact, this holds for arbitrary q-holonomic
sequences; see [Ga4, Prop.1.2] for a detailed discussion. Thus, Problem 2.4 implies Conjecture 1.2. The AJ
Conjecture motivates Problem 2.4. This is discussed in detail in [Ga4].

Our next problem concerns the symmetrized quasi-polynomial δ− of a knot from (7). Although δ− is not
a concordance invariant, it determines the signature of an alternating knot.

Problem 2.5. Show that δ− determines a Knot Homology invariant.

3. The Jones slopes and the Jones period of an alternating knot

In this Section we prove Proposition 1.10 and Theorems 1.2 and 1.3 for an alternating knot K, using the
Kauffman bracket presentation of the colored Jones polynomial.

The following lemma of Le [Le, Prop.2.1], (based on well-known properties of the Kauffman bracket skein
module) shows that the sequences δ∗K(n) and δK(n) have at most quadratic growth rate with respect to n.
More precisely, for every knot K we have:

(15) −
1

2
c−Kn2 + O(n) ≤ δ∗K(n) ≤ δK(n) ≤

1

2
c+
Kn2 + O(n)

This implies that the slopes s of the quadratic quasi-polynomial δK satisfy −c−K ≤ s ≤ c+
K . Replacing K by

its mirror K∗, it implies the same inequality for the slopes s∗ of δ∗K and concludes the proof of Proposition
1.10. �

Consider a reduced planar projection of an alternating knot K with c±K positive/negative crossings. Then,

the number of crossings cK and the writhe wK of K are given by cK = c+
K + c−K and wK = c+

K − c−K . Let σK

denote the signature of K. Then we can express the minimum and maximum degrees δ∗K(n) and δK(n) of K
in terms of wK , cK and σK . This was shown by Kauffman, Murasugi and Thistlethwaite, [Kf, Mu, Th], and
further simplified by Turaev [Tu1]. See also [Li, p.42] and [Le, Prop.2.1]. With our conventions, Proposition
2.1 of [Le] states that for all n we have:

δK(n) =
(cK + wK)

4
n2 +

−|A| + 2c+
K + 1

2
n(16)

δ∗K(n) =
(−cK + wK)

4
n2 +

|B| − 2c−K − 1

2
n(17)



THE JONES SLOPES OF A KNOT 9

where |A| (resp. |B|) is the number of circles of the A (resp. B) smoothing of the planar projection. For
example, for the right-handed trefoil T , we have

JT,0(q) = 1

JT,1(q) = q + q3 − q4

JT,2(q) = q2 + q5 − q7 + q8 − q9 − q10 + q11

JT,3(q) = q3 + q7 − q10 + q11 − q13 − q14 + q15 − q17 + q19 + q20 − q21

JT,4(q) = q4 + q9 − q13 + q14 − q17 − q18 + q19 − q22 − q23 + 2q24 − q28 + 2q29 − q32 − q33 + q34

and

δT (n) =
3

2
n2 +

5

2
n, δ∗T (n) = n

δ+
T (n) =

3

2
n2 +

3

2
n, δ−T (n) =

3

2
n2 +

7

2
n

and

c+
T = 3, c−T = 0, cT = 3, wT = 3, σT = −2, |A| = 2, |B| = 3.

Murasugi and Turaev observe that [Tu1, p.219-220]

(18) |A| + |B| = cK + 2, cK = c+
K + c−K , wK = c+

K − c−K , σK = |A| − 1 − c+
K = −|B| + 1 + c−K .

Equation (16) implies that δK(n) is a quadratic polynomial (i.e., a quasi-polynomial of period 1) with
coefficient of n2 equal to c+

K/2, i.e., with slope c+
K . This concludes the proof of Theorem 1.2. Equations (7),

(16), (16) and (18) prove the first part of Theorem 1.3.
It remains to show that the two checkerboard surfaces of a reduced projection of an alternating knot K

have slopes 2c+
K and −2c−K . Observe that if s = pm + ql is the slope of a surface S (where (m, l) is the

standard meridian-longitude pair) and 〈·, ·〉 denotes the form in the boundary of a neighborhood of K, then
q = 〈m, s〉, p = 〈s, l〉. If S is a black surface with slope s = pm+ ql, then the geometrically s and m intersect
at a point, thus q = ±1. In addition, s follows the knot K as we move towards the crossing, and intersects l
twice around each positive crossing, and none around each negative crossing. The result follows. �

Remark 3.1. Let V denote the 3-dimensional Q-vector space spanned by the functions c, w, σ on the set of
alternating knots. There is an involution K 7→ K∗ on this set, which includes an involution on V :

c∗ = c, w∗ = −w, σ∗ = −σ.

On the other hand, δ, δ∗ and δ± belong to V and

(δ+)∗ = δ+, (δ−)∗ = −δ−.

Thus, δ+ is a Q-linear combination of c, and δ− is a Q-linear combination of w and σ. This is precisely the
content of Theorem 1.3.

Remark 3.2. Let f [k] denote the coefficient of nk in a polynomial f(n). Equations (9) and (10) imply that
for all alternating knots K we have:

(19) cK = 2δ+
K [1] = 2δ+

K [2]

and

(20) σK = δ−K [2] − δ−K [1], wK = 2δ−K [2].
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4. Computing the Jones slopes and the Jones period of a knot

4.1. Some lemmas on quasi-polynomials. To better present the experimental (and in some cases,
proven) data presented in the next section, let us give some lemmas on quasi-polynomials. If a(n) is a
sequence of numbers, consider the generating series

(21) Ga(z) =

∞
∑

n=0

a(n)zn.

The next well-known lemma characterizes quasi-polynomials. appears in [St, Prop.4.4.1] and [BR, Lem.3.24].

Lemma 4.1. [St, Prop.4.4.1][BR, Lem.3.24] The following are equivalent:
(a) a(n) is a quasi-polynomial of period π
(b) the generating series

Ga(z) =
P (z)

Q(z)

is a rational function where P (z), Q(z) ∈ C[z], every zero α of Q(z) satisfies απ = 1 (provided that P (z)/Q(z)
has been reduced to lowest term) and degP < degQ.
(c) For all n ≥ 0,

(22) a(n) =

k
∑

i=1

pi(n)γn
i

where each pi(n) is a polynomial function of n and each γi satisfies γπ
i = 1.

Moreover, the degree of pi(n) in (22) is one less than the multiplicity of the root γ−1
i in Q(z), provided

P (z)/Q(z) has been reduced to lowest terms.

Definition 4.2. We say that a quadratic quasi-polynomial a(n) is mono-sloped if it has only one slope s.
In other words, we have

a(n) =
s

2
n2 + b(n)

where b(n) is a linear quasi-polynomial.

To phrase our next corollary, let Φn(z) denote the n-th cyclotomic polynomial, and let φ(n) denote Euler’s
φ-function.

Corollary 4.3. a(n) is mono-sloped if and only if

Ga(z) =
az2 + bz + c

(1 − z)3
+

∑

d>1

Rd(z)

Φd(z)cd

where the summation is over a finite set of natural numbers and cp ≤ 2 and Rd(z) ∈ C[z] has degree less
than φ(d)cd. Moreover,

s = a + b + c.

Proof. Observe that
∞
∑

n=0

(αn2 + βn + γ)zn =
az2 + bz + c

(1 − z)3

if and only if

α =
1

2
(a + b + c), β =

1

2
(−a + b + 3c), γ = c.

�
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Proof. (of Lemma 1.11) Given s, there exists an arithmetic progression πn + k such that for all natural
numbers n we have

a(πn + k) =
s

2
(πn + k)2 + β(πn + k) + γ

Now, let

b(n) =
s

2
(πn + k)2 + β(πn + k) + γ = sπ2

(

n

2

)

+

(

βπ + kπs +
π2s

2

)

n + γ + βk +
k2s

2
.

Now, b takes integer values at all integers. This implies that

sπ2, βπ + kπs +
π2s

2
, γ + βk +

k2s

2
∈ Z

(see [BR]). The result follows. �

It is often easier to detect the periodicity properties of the the difference

(∆a)(n) := a(n + 1) − a(n)

of a sequence a(n). It is easy to recover Ga(z) from G∆a(z) and Ga(0).

Lemma 4.4. With the above conventions, we have:

(23) G∆a(z) =
Ga(z)(1 − z) − Ga(0)

z

Proof. We have:

G∆a(z) =
∞
∑

n=0

(a(n + 1) − a(n))zn

= 1/z

∞
∑

n=0

a(n + 1)zn+1 −

∞
∑

n=0

a(n)zn

= 1/z(Ga(z) − Ga(0)) − Ga(z).

�

We can iterate the above by considering the k-th difference defined by ∆0a = a and ∆ka = ∆(∆k−1a) for
k ≥ 1.

4.2. Computing the colored Jones function of a knot. There are several ways to compute the colored
Jones function JK,n(q) of a knot K. For example, one may use a planar projection and R-matrices; see for
example, [Tu2, GL1] and also [B-N]). Alternatively, one may use planar projections and shadow formulas as
discussed at length in [Co] and [GVa]. Or one may use fusion quantum spin networks and recoupling theory,
discussed in [CFS, KL, Co, GVa]. All these approaches gives various useful formulas for JK,n(q) presented
as a finite sum of a proper q-hypergeometric summand [GL1]. A careful inspection of the summand allows
in several cases to compute the degree of JK,n(q).

4.3. Guessing the colored Jones function of a knot. In this section we guess the sequence δK of knots
with a small number of crossings, using the following strategy, inspired by conversations with D. Zagier.
Using the KnotAtlas [B-N] we compute as many values JK,n(q) of the colored Jones function as we can,
and record their degree. This gives us a table of values of the quadratic quasi-polynomials δK(n) and δ∗K(n).
Taking the third difference of this table results into a degree 0 quasi-polynomial, i.e., a periodic function. At
this point, we make a guess for this periodic function, and the corresponding generating series. Then, we use
Lemma 4.4 and our guess for the second different to obtain a formula for GδK

(z) and Gδ∗
K

(z). The partial
fraction decomposition then gives us a formula for δK(n) and δ∗K(n). In some cases, using explicit finite
multi-dimensional sum formulas for the colored Jones polynomial, one can prove that the guessed formula
for δK(n) and δ∗K(n) are indeed correct. In this section, we will not bother with proofs.



12 STAVROS GAROUFALIDIS

As an example of our method, we will guess a formula for δ(n) and δ∗(n) for the (−2, 3, 7) pretzel knot.
One can actually prove that our guess is correct, using the fusion formulas for the 3-pretzel knots, but we
will not bother. The values of δ∗(n) starting with n = 0 are given by:

δ∗ : 0, 5, 10, 15, 20, 25, 30, 35, 40, 45, 50, 55, 60, 65, 70, . . .

Taking the first difference we get the following values of (∆δ∗)(n) starting with n = 0:

∆δ∗ : 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, . . .

appears to be the constant sequence from which we guess that δ∗(n) = 5n, and correspondingly the generating
series is

Gδ∗(z) =
5z

(1 − z)2

More interesting is the sequence δ(n) starting with n = 0:

δ : 0, 13, 35, 67, 108, 158, 217, 286, 364, 451, 547, 653, 768, 892, 1025, 1168, 1320, 1481, 1651, 1831, . . .

Taking the first, second and third difference we obtain:

∆δ : 13, 22, 32, 41, 50, 59, 69, 78, 87, 96, 106, 115, 124, 133, 143, 152, 161, 170, 180, . . .

∆2δ : 9, 10, 9, 9, 9, 10, 9, 9, 9, 10, 9, 9, 9, 10, 9, 9, 9, 10, . . .

∆3δ : 1,−1, 0, 0, 1,−1, 0, 0, 1,−1, 0, 0, 1,−1, 0, 0, 1, . . .

Thus, we guess that ∆3δ is a periodic sequence with period 4 and generating series

G∆3δ(z) =
∞
∑

n=0

(

z4n − z4n+1
)

=
1

(1 + z)(1 + z2)

Using Lemma 4.4 three times, we compute

Gδ(z) =
13z + 9z2 + 10z3 + 9z4 − 4z5

(1 − z)3(1 + z + z2 + z3)
=

−3 + 216z − 65z2

16(1 − z)3
+

3 + 4z − z2

16(1 + z + z2 + z3)

Taking the partial fraction decomposition, it follows that

δ(n) =

[

37

8
n2 +

17

2
n

]

=
37

8
n2 +

17

2
n + ǫ(n),

where ǫ(n) is a periodic sequence of period 4 given by:

ǫ(n) =



















0 if n = 0 mod 4
1
8 if n = 1 mod 4
1
2 if n = 2 mod 4
1
8 if n = 3 mod 4

4.4. A summary of non-alternating knots. In this section we list the quasi-polynomials δK and δ∗K of
non-alternating knots K with 8 and 9 crossings. In the Rolfsen table of knots, the non-alternating knots with
8 crossings are 8k where k = 19, . . . , 21, with 9 crossings are 9k where k = 42, . . . , 49. Let us give a combined
table of the non-alternating knots K with 8 and 9 crossings, their period πK , their Jones slopes jsK and
js∗K , and their distinct boundary slopes. The boundary slopes bsK are computed using the program of [HO],
corrected in [Du], which computes the boundary slopes of all Montesinos knots except 949 which is not a
Montesinos knots. In all those cases, the set of boundary slopes agrees with the slopes of the A-polynomial
of [Cu, CCGLS], once 0 is included.
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K πK jsK js∗K bsK

819 2 6 0 {0, 12}
820 3 4/3 −5 {−10, 0, 8/3}
821 2 1/2 −6 {−12,−6,−2, 0, 1}
942 2 3 −4 {−8, 0, 8/3, 6}
943 3 16/3 −2 {−4, 0, 6, 8, 32/3}
944 3 7/3 −5 {−10,−2, 0, 1, 2, 14/3}
945 2 1/2 −7 {−14,−10,−8,−4,−2, 0, 1}
946 2 1 −6 {−12, 0, 2}
947 2 9/2 −3 {−6, 0, 4, 8, 9, 16}
948 2 11/2 −2 {−4, 0, 4, 8, 11}
949 2 15/2 0 {0, 4, 6, 12, 15}

The above data are in agreement with Conjecture 1.2. Let us make a phenomenological remark regarding
all examples of non-alternating knots with 8 or 9 crossings.

(a) δ∗(n) and δ(n) are mono-sloped, i.e., they are of the form sn2/2 + ǫ(n) where ǫ(n) is a linear quasi-
polynomial.

(b) For all knots, 2js is a boundary slope, though not necessarily the largest one.
(c) In the case of the 820, 943 and 944 knots, the degree of ǫ(n) is 1 and in all other cases, it is zero.
(d) The period of all non-alternating knots was greater than 1. 820, 943, 944 knots have period 3, and

(−2, 3, 7) has period 4. The period of (−2, 3, p) for odd p ≥ 5 appears to be p − 3, and the number
of crossings is p + 5. Thus the period can be asymptotically as large as the number of crossings.

(e) For the case of 821, 945, 946, 947, the leading coefficient is 2 and for 948, 949 it is −2.

4.5. The 8-crossing non-alternating knots.

4.5.1. The 819 knot. In the data below, we will give the first few values of δ∗(n) and δ(n), the guessed
decomposition of the generating series Gδ∗(z) and Gδ(z) of the quasi-polynomials δ∗ and δ.

Some values of δ∗(n) and δ(n) starting with n = 0:

δ∗ : 0, 3, 6, 9, 12, 15, 18, 21, . . .

δ : 0, 8, 23, 43, 70, 102, 141, 185, . . .

Gδ∗(z) =
3z

(1 − z)2

Gδ(z) =
8z + 7z2 − 3z3

(1 − z)3(1 + z)

=
−1 + 36z − 11z2

4(1 − z)3
+

1

4(1 + z)

δ∗(n) = 3n

δ(n) = 3n2 +
11

2
n −

1

4
+ ǫ(n)

where ǫ(n) = (−1)n/4 is a 2-periodic sequence. Note that in this example the values of δ∗K(n) for n = 0, 1, 2, 3
suffice to prove that δK(n) is not a polynomial of n.

4.5.2. The 820 knot.

δ∗ : 0,−5,−15,−30,−50,−75,−105,−140,−180,−225,−275,−330,−390,−455,−525,−600,−680,

−765,−855,−950,−1050, . . .

δ : 0, 1, 2, 7, 12, 16, 26, 35, 42, 57, 70, 80, 100, 117, 130, 155, 176, 192, 222, 247, 266, . . .
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Gδ∗(z) = −
5z

(1 − z)3

Gδ(z) =
z + z2 + 5z3 + 3z4 + 2z5

(1 − z)3(1 + z + z2)2

=
−2 + 12z + 2z2

9(1 − z)3
+

2 + 7z + 4z2 + 2z3

9(1 + z + z2)2

δ∗(n) = −
5n(n + 1)

2

δ(n) =
2

3
n2 +

2

9
n −

2

9
+ ǫ(n)

where ǫ(n) is a linear quasi-polynomial with period 3.

4.5.3. The 821 knot.

δ∗ : 0,−7,−20,−39,−64,−95,−132,−175, . . .

δ : 0,−1,−1,−1, 0, 1, 3, 5, . . .

Gδ∗(z) =
−7z + z2

(1 − z)3

Gδ(z) =
−z + z2 + z3

(1 − z)3(1 + z)

=
−1 − 4z + 9z2

8(1 − z)3
+

1

8(1 + z)

δ∗(n) = −n(3n + 4)

δ(n) =
1

4
n2 − n −

1

8
− ǫ(n)

where ǫ(n) = (−1)n/8 is a 2-periodic sequence.

4.6. The 9-crossing non-alternating knots.

4.6.1. The 942 knot.

δ∗ : 0,−3,−10,−21,−36,−55,−78,−105, . . .

δ : 0, 3, 10, 19, 32, 47, 66, 87, . . .

Gδ∗(z) =
−3z − z2

(1 − z)3

Gδ(z) =
z(3 + 4z − z2)

(1 − z)3(1 + z)

=
1 − 16z + 3z2

4(−1 + z)3
+

1

4(1 + z)

δ∗(n) = −n(2n + 1)

δ(n) =
3

2
n2 + 2n−

1

4
+ ǫ(n)

where ǫ(n) = (−1)n/4 is a 2-periodic sequence.
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4.6.2. The 943 knot.

δ∗ : 0, 0,−2,−6,−12,−20,−30,−42, . . .

δ : 0, 7, 17, 37, 60, 85, 122, 161, . . .

Gδ∗(z) = (2z)/(−1 + z)3

Gδ(z) = (z(−7 − 10z − 20z2 − 9z3 − 5z4 + 3z5))/((−1 + z)3(1 + z + z2)2)

= (5 − 72z + 19z2)/(9(−1 + z)3) + (5 + 16z + 13z2 + 8z3)/(9(1 + z + z2)2)

δ∗(n) = −n(n − 1)

δ(n) = −(5/9) + (38n)/9 + (8n2)/3 + ǫ(n)

where ǫ(n) is a linear quasi-polynomial with period 3.

4.6.3. The 944 knot.

δ∗ : 0,−5,−15,−30,−50,−75,−105,−140, . . .

δ : 0, 2, 5, 13, 22, 31, 47, 63, . . .

Gδ∗(z) = (5z)/(−1 + z)3

Gδ(z) = −((z(2 + 3z + 8z2 + 5z3 + 3z4))/((−1 + z)3(1 + z + z2)2))

= (2 − 21z − 2z2)/(9(−1 + z)3) + (2 + 7z + 4z2 + 2z3)/(9(1 + z + z2)2)

δ∗(n) = −5n(n + 1)/2

δ(n) = −(2/9) + (13n)/18 + (7n2)/6 + ǫ(n)

where ǫ(n) is a linear quasi-polynomial with period 3.

4.6.4. The 945 knot.

δ∗ : 0,−8,−23,−45,−74,−110,−153,−203, . . .

δ : 0,−1,−1,−1, 0, 1, 3, 5, . . .

Gδ∗(z) = −((−8z + z2)/(−1 + z)3)

Gδ(z) = −((z(−1 + z + z2))/((−1 + z)3(1 + z)))

= (1 + 4z − 9z2)/(8(−1 + z)3) + 1/(8(1 + z))

δ∗(n) = −n(7n + 9)/2

δ(n) = −(1/8)− n + n2/4 + ǫ(n)

where ǫ(n) = (−1)n/8 is a periodic sequence with period 2.

4.6.5. The 946 knot.

δ∗ : 0,−6,−18,−36,−60,−90,−126,−168, . . .

δ : 0, 0, 2, 4, 8, 12, 18, 24, . . .

Gδ∗(z) = −
6z

(1 − z)3

Gδ(z) =
2z2

(1 − z)3(1 + z)

=
−1 + 4z + z2

4(1 − z)3
+

1

4(1 + z)
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δ∗(n) = −3n(n + 1)

δ(n) = −(1/4) + n2/2 + ǫ(n)

where ǫ(n) = (−1)n/4 is a periodic sequence with period 2.

4.6.6. The 947 knot.

δ∗ : 0,−2,−7,−15,−26,−40,−57,−77, . . .

δ : 0, 5, 15, 29, 48, 71, 99, 131, . . .

Gδ∗(z) = (2z + z2)/(−1 + z)3

Gδ(z) = (z(−5 − 5z + z2))/((−1 + z)3(1 + z))

= (1 − 44z + 7z2)/(8(−1 + z)3) + 1/(8(1 + z))

δ∗(n) = −n(3n + 1)/2

δ(n) = −(1/8) + 3n + (9n2)/4 + ǫ(n)

where ǫ(n) = (−1)n/8 is a periodic sequence with period 2.

4.6.7. The 948 knot.

δ∗ : 0,−1,−4,−9,−16,−25, . . .

δ : 0, 6, 18, 35, 58, 86, . . .

Gδ∗(z) = −((−z − z2)/(−1 + z)3)

Gδ(z) = (z(−6 − 6z + z2))/((−1 + z)3(1 + z))

= (1 − 52z + 7z2)/(8(−1 + z)3) + 1/(8(1 + z))

δ∗(n) = −n2

δ(n) = −(1/8) + (7n)/2 + (11n2)/4 + ǫ(n)

where ǫ(n) = (−1)n/8 is a periodic sequence with period 2.

4.6.8. The 949 knot.

δ∗ : 0, 2, 4, 6, 8, 10, . . .

δ : 0, 9, 26, 50, 82, 121, . . .

Gδ∗(z) = (2z)/(−1 + z)2

Gδ(z) = (z(−9 − 8z + 2z2))/((−1 + z)3(1 + z))

= (1 − 76z + 15z2)/(8(−1 + z)3) + 1/(8(1 + z))

δ∗(n) = 2n

δ(n) = −(1/8) + (11n)/2 + (15n2)/4 + ǫ(n)

where ǫ(n) = (−1)n/8 is a periodic sequence with period 2.
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4.7. The case of the (−2, 3, p) pretzel knots. A triple sum formula for the colored Jones polynomial of
pretzel knots with 3 pretzels is available, and using it we can compute δK(n) and δ∗K(n) for all pretzel knots
of the form (−2, 3, p) for odd p; see [GVa]. We will state the result of the computation here. Recall the k-th
difference ∆kf of a sequence f from Section 4.1. When p > 0 is odd, we have:

Gδ∗(z) =
(p + 3)z

2(1 − z)2
, G∆3δ(z) =



















zp−7(1−z)
1−zp−3 p ≥ 7

− 3
1+z p = 5

− 2
1+z p = 3

0 p = 1

It follows that

δ∗(n) =
(p + 3)n

2
, δ(n) =











5
2n2 + ǫp(n) p = 1

3n2 + ǫp(n) p = 3
(p2

−p−5)n2

2(p−3) + ǫp(n) p ≥ 5

where ǫp(n) are linear quasi-polynomials. When p < 0 is odd we have:

∆3Gδ∗(z) =















0 p = −1

− 4+4z+3z2+z3

(1+z+z2)2 p = −3

z|p|−4
−2z|p|−3

−
P2|p|−4

k=|p|−2
zk

(
P|p|−1

k=0
zk)2

p ≤ −5

Gδ(z) =
z(p + 13 − (p + 3)z)

2(1 − z)3

It follows that

δ∗(n) =

{

5
2n2 + ǫp(n) p = −1
(p+1)2n2

2p + ǫp(n) p ≤ −3
δ(n) =

n(5n + (p + 8))

2

where ǫp(n) are linear quasi-polynomials. Notice that the above formulas single out exceptional behavior at
p = −3,−1, 1, 3, 5. The Jones period and the Jones slopes are given by

(24) π =











p − 3 p ≥ 5

2 p = 3

|p| p ≤ 1

js =











p2
−p−5
p−3 p ≥ 5

6 p = 3

5 p ≤ −1

js∗ =











0 p ≥ 5

0 p = 3
(p+1)2

p p ≤ 1

On the other hand, Hatcher-Oertel and Dunfield (see [HO] and [Du]) compute the slopes of those Montesinos
knots

(25) bsp =

{

{0, 16, 2(p2
−p−5)

p−3 , 2(3 + p)} p ≥ 7

{0, 10, 2 (p+1)2

p , 2(p + 3)} p ≤ −1

Compare also with Mattman [Ma, p.32] who computes which of those slopes are visible from the geometric
component of the A-polynomial. Equations (24) and (25) together with the fact that 0 is a boundary slope
confirm Conjecture 1.2 for all (−2, 3, p) pretzel knots.

4.8. The case of torus knots. In this section we will use Morton’s formula for the colored Jones function
of a torus knot to compute the degree of the colored Jones function and verify Conjecture 1.2.

Let T (a, b) denote the (a, b) torus knot for a pair of coprime integers a, b. Since the mirror image of
T (a, b) is T (a,−b), we will focus on the case of a, b > 0. With our conventions, Morton’s formula [Mo] for
the colored Jones function is the following:

(26) JT (a,b),n(q) =
q

1
4

abn(n+2)

q
n+1

2 − q−
n+1

2

n
2

∑

k=−
n
2

(

q−abk2+(a−b)k+ 1
2 − q−abk2+(a+b)k− 1

2

)
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For example,

JT (2,3),1(q) = q + q3 − q4

JT (3,4),2(q) = q6 + q9 + q12 − q13 − q16 − q19 + q20 − q22 + q23

The summand of Equation (26) consists of two monomials with exponents quadratic functions of k. A little
calculation reveals that the maximum and minimum degree of the colored Jones function is given by

δT (a,b)(n) =
ab

4
n2 +

ab − 1

2
n − (1 − (−1)n)

(a − 2)(b − 2)

8

δ∗T (a,b)(n) =
(a − 1)(b − 1)

2
n

Thus the period πT (a,b) is 2 when a, b 6= 2 and 1 when a = 2 or b = 2. The boundary slopes of T (a, b) are
{0, ab} (see for example [HO]). This confirms Conjecture 1.2 for torus knots.
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