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Abstract. A local lattice point counting formula, and more generally a local Euler-Maclaurin formula
follow by comparing two natural families of meromorphic functions on the dual of a rational vector space
V , namely the family of exponential sums (S) and the family of exponential integrals (I) parametrized
by the set of rational polytopes in V . The paper introduces the notion of an interpolator between these
two families of meromorphic functions. We prove that every rigid complement map in V gives rise to an
effectively computable SI-interpolator (and a local Euler-MacLaurin formula), an IS-interpolator (and a
reverse local Euler-MacLaurin formula) and an IS0-interpolator (which interpolates between integrals and
sums over interior lattice points.) Rigid complement maps can be constructed by choosing an inner product

on V or by choosing a complete flag in V . The corresponding interpolators generalize and unify the work
of Berline-Vergne, Pommersheim-Thomas, and Morelli.
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1. Introduction

1.1. What is a local lattice-point counting formula? The relationship between sums and integrals
has been of interest to mathematicians since the ancient Greeks. The classical Euler-Maclaurin formula,
discovered in the first half of the eighteenth century shortly after the development of modern calculus, may
be viewed as a relationship between the sum of a function over the lattice points in a one-dimensional
polytope with integer vertices and the integral of the function over the polytope. One naturally asks the
same question in higher dimensions: Given a polytope P in an n-dimensional space V equipped with an
n-dimensional lattice Λ and a function f on V , can one express the sum of f over the lattice points in P in
terms of the integral f over P? In such a formula, one would expect a main term involving the integral of
f over P as well as correction terms involving the integrals of f over the proper faces of F ⊂ P .

In the simplest case, let us suppose that f is a constant function. Then, the question becomes that of
expressing the number of lattice points in P in terms of volume of P and the volumes of the faces F of P .
If P is 2-dimensional, the celebrated Pick’s formula [Pic99]

#(P ) = A +
1

2
b + 1

expresses the number #(P ) of lattice points in a convex lattice polygon in terms of its area A = vol(P ), and
the number of lattice points b = vol(∂P ) of its boundary. For example, we have:

#(P ) = 4, A = 1, b = 4.

Here and throughout, we follow the usual convention that all volumes vol(F ) of faces are normalized so that
a lattice basis of Λ∩L, where L is the linear space parallel to F , has volume 1. Unfortunately, Pick’s formula
is not local, due to the presence of the term 1. Here, locality means that for each face F of P , the formula
contains a term that is the volume vol(F ) multiplied by a coefficient that depends only on the supporting
cone Supp(P, F ) to P along F . The supporting cone is defined as the union of rays whose endpoint is in
F and which remain in P for a positive distance. See Section 2.1 below for a precise definition. McMullen
[McM79] proved the existence of local lattice point counting formulas. More precisely, he proved the existence
of a function µ from rational, convex cones to rational numbers such that for any integral polytope P , the
number #(P ) of lattice points in P is given by

(1) #(P ) =
∑

F

µ(Supp(P, F ))vol(F ).

Here the sum is taken over all faces F of P , and vol(P ) denotes the volume of the face F .
Part of the difficulty constructing and computing a function µ that satisfies (1) is that µ is far from unique.

The second author and Thomas gave an explicit construction of a rational valued function µ satisfying (1),
given a fixed complement map, a notion introduced in Thomas’s thesis (cf. [Tho04]). A complement map
is a systematic choice of complements of linear subspaces of a vector space; see Section 2.4 for a precise
definition. Also note that all of the complement maps in this paper will be rigid. Two natural ways to get a
rigid complement map are to choose: (1) an inner product, or (2) a complete flag. Given an inner product or
a complete flag, [PT04] construct effectively a map µ that satisfies Equation (1). For the triangle depicted
above, the Pommersheim-Thomas values of µ at the supporting cones to the vertices for an inner products
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or complete flags are as follows:

The values on the left arise from the standard inner product on Z2, according to [PT04, Cor.1], and may be
computed by multiplying out the Todd polynomial in the ring presentation given in [PT04, Prop.2]. Readers
wishing more details on this should consult Section 5.2. The values in the figure on the right are those
arising from the choice of the complete flag in V ∗ = Z2 whose 1-dimensional subspace is spanned by the
point (d1, d2). These values can be computed using the method outlined in [Mor93, p.198]. They can also be
computed by multiplying out the Todd polynomials using [PT04, Thm.3]. One feature of this construction
is that if one chooses a complement map arising from a complete flag, one recovers exactly the lattice point
formulas of Morelli [Mor93], who gave a function µ that satisfies Equation (1) and takes values on the field
of rational functions on a Grassmannian. For example, in the triangle on the right above, the values shown
are rational functions on the Grassmannian of 1-dimensional subspaces of V ∗. The construction of [PT04]
is based on the theory of toric varieties, and gives an answer to a question of Danilov about the existence of
a local expression for the Todd class of a toric variety.

1.2. What is a local Euler-MacLaurin summation formula? Returning to the Euler-Maclaurin ques-
tion, Berline and Vergne constructed in [BV07] an explicit local Euler-MacLaurin formula for the sum of
a polynomial function f over the lattice points P ∩ Λ of an n-dimensional polytope P in a rational vector
space V with lattice Λ. The Berline-Vergne formula has the form

(2)
∑

x∈P∩Λ

f(x) =
∑

F

∫

F

D(P, F ) · f

where the sum is over the set of faces F of P , and D(P, F ) an infinite-order constant-coefficient differential
operator D(P, F ) that depends only on the supporting cone Supp(P, F ). Equation (2) is a generalization of
(1). Indeed, if D(P, F ) satisfies (2), and we define µ(Supp(P, F )) to be the constant term of D(P, F ), then
the local lattice point formula (1) holds.

As in McMullen’s case, the infinite order differential operators D(P, F ) are not uniquely determined by
(2). The construction of Berline-Vergne requires an inner product on the vector space V , and their results
apply to rational polytopes, rather than just integral polytopes. Their construction associates to each cone
K in V a meromorphic function µ(K) on the dual space that is regular at the origin. For cones of dimension
at most 2, the value of this function at 0 (the constant term of the operator D(P, F )) coincides with the µ
constructed in [PT04] for the special case of complement maps arising from an inner product. In this way,
for the example triangle above, the Berline-Vergne construction recovers the the numbers 1

4 , 9
20 , 3

10 arising
out of the inner product case of the Pommersheim-Thomas construction. This fact that this coincidence
holds is new to this paper; see Theorem 3.1, properties (5) and (6).

1.3. An informal presentation of the results of this paper. The local Euler-MacLaurin formula (2) is
a consequence of a relationship between the integral and the sum of an exponential function over a polytope.
In this paper, we introduce the concept of an interpolator between the families of exponential sums (S) and
exponential integrals (I) over rational polytopes in a rational vector space V . We now discuss our results
about interpolators informally, leaving the precise definitions and statements for Sections 2 and 3.

If P is a rational polytope, or more generally a rational polyhedron (region, not necessarily compact,
defined by linear inequalities with rational coefficients) in a rational vector space V , one can associate to
P two important meromorphic functions, the exponential sum S(P ) ∈ M(V ∗) and the exponential integral
I(P ) ∈ M(V ∗) where M(V ∗) is the algebra of meromorphic functions on the dual space V ∗⊗C. The values
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of these functions at a point ξ ∈ V ∗ ⊗ C are given by:

(3) S(P )(ξ) =
∑

x∈P∩Λ

e〈ξ,x〉, I(P )(ξ) =

∫

P

e〈ξ,x〉dx

provided |e〈ξ,x〉| is summable (resp. integrable) over P . Here, the integral is taken with respect to the relative
Lebesgue measure on aff(P ), normalized so that a basis of Λ ∩ W , where W is the linear subspace parallel
to the affine span of P , has volume 1. The fact that Equations (3) define meromorphic functions, as well as
the precise characterization and properties of the functions S and I, is essentially the content of Lawrence’s
theorem [Law91], reviewed in Section 2.2 below.

The local Euler-Macluarin formula (2) follows in a straighforward manner from a formula of the following
shape for a rational polyhedron P

(4) S(P ) =
∑

F

µ(Supp(P, F ))I(F )

where µ is a function on the set of cones in V with values in M(V ∗). We call such a function an SI-
interpolator, or simply an interpolator. The main result of this paper (Theorem 3.1) states that a complement
map on the vector space V gives rise in a natural way to an effectively computable SI-interpolator on V ,
and hence a local Euler-Maclaurin formula of the form 2; see Theorem 3.2.

Thus, in particular, an inner product on V or a complete flag in V gives rise to a local Euler-Maclaurin
formula. These interpolators have interesting connections with previous results. For complement maps
arising from the choice of an inner product, one recovers the µ constructed in [BV07]. In addition, we show
that the values of these functions µ at 0 are given by the functions µ in [PT04] for cones of dimension at
most 2, and conjecture that these coincidences hold in all dimensions. In the case of complete flags, one
obtains interpolators µ that are entirely new, as can be seen by calculations in dimension 2. In this case,
the values of the constant term µ(K)(0) coincide with values constructed by Morelli for cones of dimension
at most 2, and conjecturally in all dimensions. One can also vary the chosen flag, thus associating to each
cone K a meromorphic function µ(K) on Fl(V ∗) × V ∗, where Fl(V ∗) is the complete flag variety of V .
This function µ(K) is naturally defined and effectively computable independent of any choices; see Theorem
3.3. In Morelli’s work, he constructs what amounts to the constant term µ(K)(0) of this meromorphic
function. Working dimension-by-dimension, Morelli chooses to view this term as a rational function on a
Grassmannian, rather than on the entire flag variety.

In Section 3.2, we show that a complement map on V also leads naturally to the construction of a local
IS-interpolator, expressing the exponential integral I(P ) in terms of the exponential sums S(F ), for F a
face of P ; see Theorem 3.4. This construction, which works only in the case of integral polyhedra, allows
one to obtain a reverse local Euler-MacLaurin formula expressing the integral of a polynomial function over
a polytope in terms of the sums of the function over lattice points in the various faces of the polytope; see
Theorem 3.6.

Finally, we show how a complement map yields an IS0-interpolator, where we use S0 to denote the sum
over interior lattice points of a polytope. Part of the interest in IS0-interpolators lies in an observation of
Morelli, who asked essentially (in the language of the present paper) if the same function can simultaneously
serve as the constant term of an SI-interpolator and as the constant term of an IS0-interpolator on the dual
space. He observed that the constant terms that he constructs do exactly this in dimensions at most 4. We
give a proof of these coincidences in dimensions 1 and 2, and extend these results to the case of complement
maps arising from inner products. Our arguments are essentially geometric, in contrast to Morelli’s rather
algebraic argument. (See Sections 3.3 and 6 for a complete discussion.)

Section 5 contains explicit computations of the functions µ(K) for some cones K of dimensions at most
2. We compute these functions for complement maps arising both from inner products and from complete
flags. In Section 5.2, we exhibit Equation 4 in the case of two triangles including the triangle depicted above.
for both the inner product and complete flag cases, matching the constant terms with those constructed by
Pommersheim-Thomas and Morelli shown in the above figure.
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2. Polytopes, exponential sums/integrals and interpolators

2.1. Polytopes. We will use standard terminology for rational polytopes, polyhedra, cones and faces, fol-
lowing for example [Ful93]. We will fix a finite dimensional lattice Λ, isomorphic to Zk for some k ∈ N, and
consider the rational vector space V = Λ⊗Z Q. All polyhedra will be rational and convex, and all cones will
be rational, polyhedral and may be affine. A polytope is a compact polyhedron. If P is a polyhedron and F
is a face of P , then the tangent cone Tan(P, F ) is defined by picking a point x in the relative interior of F
and looking at all the directions that one can go and stay in P :

Tan(P, F ) = {v ∈ V |x + ǫv ∈ P for small ǫ > 0}

This cone is independent of the choice of x and contains the origin. Let aff(F ) denote the affine span of F ,
i.e., the smallest affine subspace of V that contains F . Let lin(F ) denote the linear subspace of V parallel to
aff(F ). lin(F ) is the maximal linear subspace of V contained in Tan(P, F ). The supporting cone Supp(P, F )
is the tangent cone translated back to its original position:

Supp(P, F ) = Tan(P, F ) + x

for x in the relative interior of F .

2.2. Exponential sums and integrals. Let V ∗ = HomQ(V, Q) denote the dual vector space to V , and
〈·, ·〉 : V ∗ × V −→ Q denote the natural evalutation pairing on V . By a meromorphic function on V ∗ we
will mean a meromorphic function on the complexified dual space V ∗

C , where VC = V ⊗Q C denotes the
complexification of V . Let M(V ∗) denote the algebra of meromorphic functions on V ∗ and Mr(V ∗) denote
the subalgebra of meromorphic functions regular (i.e., analytic) at the origin. Note that if W is a rational
subspace of V , then Λ′ = Λ ∩ W is a full rank lattice in W which naturally induces a relative Lebesgue
measure on W , normalized so that a basis of Λ′ has volume 1. Likewise, every rational affine subspace of V
has a natural measure induced by the lattice.

Given a polyhedron P in a rational vector space V with lattice Λ as above, there are two important
meromorphic functions S(P ) and I(P ) with rational coefficients in V ∗, namely the generating function of
exponential sums and exponential integrals.

These functions are uniquely characterized by the following properties.

(A1) If P contains a straight line, then S(P ) = I(P ) = 0.
(A2) S (resp. I) is a valuation (resp. a simple (or solid) valuation). That is, if the characteristic functions

of a family of polyhedra satisfy a relation
∑

i riχ(Pi) = 0, then the functions S(Pi) satisfy the
relation

∑

i riS(Pi) = 0 (resp. restrict the sum to those Pi that do not lie in a proper affine subspace
of V .)

(A3) For every s ∈ V and every ξ ∈ V ∗ we have

(5) I(s + P )(ξ) = e〈ξ,s〉I(P )(ξ),

and

(6) S(s + P )(ξ) = e〈ξ,s〉S(P )(ξ), s ∈ Λ.

(A4) If ξ ∈ V ∗ is such that |e〈ξ,x〉| is integrable (resp. absolutely summable) over P , then

(7) I(P )(ξ) =

∫

P

e〈ξ,x〉dmP (x), S(P )(ξ) =
∑

x∈P∩Λ

e〈ξ,x〉
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where dmP denotes the relative Lebesgue measure on aff(P ).

The existence of the functions I and S is by no means obvious, and is essentially the content of Lawrence’s
theorem; [Law91]. (A1)-(A4) determine the value of I and S on a simplicial cone as follows.

(A5) If K = Cone(v1, . . . , vk) is a simplicial cone generated by k independent vectors v1, . . . , vk, (where
k = dim(V ) in the case of S) and �(v1, . . . , vk) denote the parallelepiped generated by v1, . . . , vk,
we have:

(8) I(K)(ξ) = (−1)k vol(�(v1, . . . , vk))
∏k

i=1〈ξ, vi〉
, S(K)(ξ) =





∑

x∈�(v1,...,vk)∩Λ

e〈ξ,x〉





k
∏

i=1

1

1 − e〈ξ,vi〉
,

Since any polyhedron can be subdivided (or virtually subdivided, using a linear combination of characteristic
functions) into a union of simplicial cones, together with Equation (8) above, one obtains an algorithm to
compute I(P ) and S(P ). The complexity of such an algorithm is discussed in [Bar94]. The next theorem
which computes I(P ) and S(P ) of a polyhedron in terms of the tangent cones of its vertices was obtained
by Brion (using toric varieties) and Lawrence (using combinatorics) independently.

Proposition 2.1. [Bri88, Law91] Let P be a polyhedron in V . Then,

(9) I(P ) =
∑

v∈V(P )

I(Supp(P, v)), S(P ) =
∑

v∈V(P )

S(Supp(P, v))

where the sums are over the set V(P ) of vertices of P .

2.3. SI-Interpolators. So far, our discussion of the meromorphic functions S(P ) and I(P ) was parallel but
independent: our formulas did not mix S and I. It is natural to ask for an interpolation between S(P ) and
I(P ). Indeed, if P is a polytope, then letting ξ = 0 reduces to a classic problem: expressing the number of
lattice points in P in terms of the volumes of the faces of P . Let C(V ) denote the set of cones of V .

Definition 2.2. An SI-interpolator (or simply, interpolator) on V is map

µ : C(V ) −→ M(V ∗)

such that for any rational polyhedron P in V we have:

(10) S(P ) =
∑

F∈F(P )

µ(Supp(P, F ))I(F )

where the sum is over the set F(P ) of all faces of P . An interpolator is regular if µ takes values in Mr(V ∗).

For the next definition, recall that if W is a quotient of V with projection π : V −→ W , then there is a
natural map C(W ) −→ C(V ) given by K 7→ π−1(K). Moreover, W ∗ is naturally a subspace of V ∗, and there
is a restriction map M(V ∗) −→ M(W ∗).

Definition 2.3. An SI-interpolator µ on V is hereditary if for every rational quotient W of V , the composition
µ̄ : C(W ) −→ M(W ∗) given by the following diagram

C(W ) C(V )

M(W ∗) M(V ∗)

-

?

µ̄

?

µ

�

is an interpolator on W .

The next lemma reduces the checking of the interpolator equation (10) to the case of cones.

Lemma 2.4. µ is an interpolator if and only if it satisfies (10) for all cones P in V .
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Proof. This follows from Proposition 2.1. Indeed, we have:

S(P ) =
∑

v∈V(P )

S(Supp(P, v))

=
∑

v∈V(P )

∑

F ′∈F(Supp(P,v))

µ(Supp(Supp(P, v), F ′))I(F ′).

Since every face of Supp(Supp(P, v), F ′) is a face of Supp(P, F ) for some face F of P , it follows that

S(P ) =
∑

F∈F(P )

µ(Supp(P, F ))
∑

v∈V(F )

I(Supp(F, v)) =
∑

F∈F(P )

µ(Supp(P, F ))I(F ).

The result follows. �

2.4. Rigid Complement maps. A rigid complement map gives us a systematic way to extend a function
on a linear subspace of a vector space to the entire vector space. This notion was introduced in the thesis
of Thomas [Tho04] and used in [PT04], where it is shown that a choice of complement map leads naturally
to a local formula for the number of lattice points in a polytope and a local formula for the Todd class of a
toric variety. In our paper, we will only use the notion of a rigid complement map. The curious reader may
consult [PT04, Tho04] for the definition of the general complement maps.

Definition 2.5. A rigid complement map on V ∗ is a map Ψ from a collection LΨ of linear subspaces in V ∗

to the set of linear subspaces of V ∗ satisfying two properties:

(a) For every U ∈ LΨ, Ψ(U) is complementary to U ; i.e., Ψ(U) ∩ U = {0} and Ψ(U) + U = V ∗.
(b) If U1 ⊂ U2 ⊂ V ∗ with U1, U2 ∈ LΨ, then Ψ(U2) ⊂ Ψ(U1).

There are two easy ways to construct rigid complement maps: (a) an inner product Q on V ∗, and (b) a
complete flag L on V ∗.

Lemma 2.6. (a) An inner product Q on V ∗ defines a complement map ΨQ with domain LQ the set of all
subspaces of V ∗ such that

Ψ(U) = U⊥

where U⊥ denotes the subspace of V ∗ perpendicular to U ⊂ V ∗ under the inner product Q.
(b) A complete flag L = (L0, . . . , Ln) on V ∗ satisfying L0 = {0} ⊂ L1 ⊂ · · · ⊂ Ln = V ∗ defines a complement
map on V ∗ by

ΨL(U) = Ln−dim(U)

for any linear subspace U of V ∗ which is complementary to Ln−dim(U). This complement map is only defined
generically, i.e., for subspaces that meet the flag generically.

Our main theorem, Theorem 3.1 below, requires cones that are generic with respect to a rigid complement
map Ψ. Let us define what generic means. Fix a rigid complement map Ψ on V ∗.

Definition 2.7. (a) A quotient W of V is Ψ-generic if W ∗ ∈ LΨ, where W ∗ ⊂ V ∗.
(b) A subspace U of V is Ψ-generic if V/U is Ψ-generic.
(c) A cone K of V is Ψ-generic if lin(F ) is Ψ-generic for every face F of K.
(d) A polyhedron P of V is Ψ-generic if for every face F of P , Supp(P, F ) is Ψ-generic.

The next lemma states that the notion of a complement map on V ∗ is hereditary, i.e., a complement map
on V ∗ gives rise to a complement map on every W ∗, where W is a Ψ-generic rational quotient of V .

Lemma 2.8. If Ψ is a rigid complement map on V ∗ and W is a Ψ-generic rational quotient of V , then there
is a natural complement map Ψ̄ on W ∗ defined by

Ψ̄(U) = Ψ(U) ∩ W ∗

for all U ⊂ W ∗ such that Ψ(U) ∩ W ∗ is complementary to U .

The next lemma gives the promised extension of functions on a linear subspace W ∗ to ones on the entire
space V ∗.
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Lemma 2.9. If Ψ is a rigid complement map on V ∗ and W is a Ψ-generic quotient of V , then the decom-
position

V ∗ = W ∗ ⊕ Ψ(W ∗)

defines a unique linear projection map
π : V ∗ −→ W ∗

that annihilates Ψ(W ∗) and is the identity on W ∗. This allows any function on W ∗ to be extended to V ∗.

We now come to a main definition. Fix a rigid complement map Ψ on V ∗. Let CΨ(V ) denote the set of
Ψ-generic cones of V .

Definition 2.10. A Ψ-compatible interpolator µ on V is a function µ : CΨ(V ) −→ M(V ∗) satisfying

(a) Equation (10) for all Ψ-generic polytopes P ,
(b) µ is Ψ-hereditary, i.e., for every Ψ-generic quotient W of V , the composition µ̄ : C(W ) −→ M(W ∗)

given by the following diagram

(11)

CΨ̄(W ) CΨ(V )

M(W ∗) M(V ∗)

-

?

µ̄

?

µ

�

satisfies Equation (10) for all Ψ̄-generic polytopes P in W .
(c) Moreover, the following diagram commutes:

(12)

CΨ̄(W ) CΨ(V )

M(W ∗) M(V ∗)

-

?

µ̄

?

µ

-
π

where π is given in Lemma 2.9.

3. Statement of the results

3.1. SI-interpolators and local Euler-MacLaurin formula. Our main result is that a rigid complement map
Ψ on V ∗ determines algorithmically a unique Ψ-compatible interpolator µΨ on V . This generalizes results
of [BV07, Mor93, PT04]. The proof uses the techniques of [BV07], which were a motivation and inspiration
for us.

Theorem 3.1. (a) If V is a rational vector space and Ψ is a rigid complement map on V ∗, there is a unique
Ψ-compatible interpolator µΨ.
(b) In addition, µΨ satisfies the following properties on the collection of Ψ-generic cones on V :

(1) (Additivity) If the characteristic functions of a finite collection of cones Ki with vertex v ∈ V satisfy
the relation

∑

i riχ(Ki) = 0, then the functions µΨ(Ki) satisfy the relation
∑

i riµ
Ψ(Ki) = 0 .

(2) (Lattice Invariance) If v ∈ Λ, then µΨ(v + K) = µΨ(K).
(3) (Isometry Equivariance) If g is a lattice-preserving linear automorphism of V and g∗ is the inverse

transpose, then µgΨ(g(K))(g∗(ξ)) = µΨ(K)(ξ).
(4) (Regularity) µΨ is regular at ξ = 0.

Moreover, µΨ generalizes previous results of [Mor93] and [BV07]:

(5) (Constant Term) Let K be a top dimensional cone in V with vertex at zero, and suppose that V
has dimension at most 2. Then for Ψ arising from an inner product or a complete flag, the constant
term of µΨ(K) agrees with the Todd class coefficient µ(K∨) of the dual cone K∨ that depends on Ψ,
constructed in [PT04, Cor.1]. In particular, for Ψ coming from a complete flag, the constant term
of µΨ(K) gives Morelli’s formula [Mor93].
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(6) (Inner Product) For Ψ coming from an inner product Q∗ on V ∗, the function µΨ(K) agrees with
µ(K̄) constructed in [BV07], where K̄ is the image of K in V/V (K), where V (K) denotes the linear
subspace parallel to the largest affine subspace contained in K.

There are two corollaries of Theorem 3.1: a local version of the Euler-MacLaurin formula for polytopes
(promised in the introduction), and a meromorphic function on Fl(V ∗)×V ∗ associated to a pointed cone K
in V , where Fl(V ∗) is the variety of complete flags of V .

To formulate these results, fix a rigid complement map Ψ on V , a Ψ-generic rational convex polyhedron
P and a face F of P . Consider the Taylor series expansion of µΨ(Supp(P, F ))(ξ) and the corresponding
differential operator (of infinite order, with constant coefficients):

(13) DΨ(P, F ) = µΨ(Supp(P, F ))(∂x).

Theorem 3.2. Let Ψ be a complement map on V ∗, let P be a Ψ-generic rational polytope in V , and let
h(x) be a polynomial function on V . With the above notation, we have

(14)
∑

x∈P∩Λ

h(x) =
∑

F∈F(P )

∫

F

DΨ(P, F ) · h.

In particular, if h(x) = 1 then

(15) #(P ) =
∑

F∈F(P )

µΨ(Supp(P, F ))(0)vol(F )

where #(P ) (resp. vol(P )) denotes the number of lattice points (resp. the volume) of P .

For concrete examples, see Section 5. Equation (15) computes the number of lattice points of a polytope
as a weighted sum of the volume of its faces.

Suppose now that Ψ comes from a flag L. Letting L vary, we obtain the following.

Theorem 3.3. Given a pointed cone K in V there exists an effectively computable meromorphic function
µ(K) in Fl(V ∗) × V ∗ which is regular in a Zariski open subset of Fl(V ∗) × {0}.

For an algorithmic computation of µ(K) for cones K of dimension at most 2, see Section 5.
The next conjecture identifies the constant term of a Ψ-compatible interpolator with the one of [PT04].

We post it as a conjecture for now, and hope to discuss it in a future publication.

Conjecture 3.1. Part (5) of Theorem 3.1 holds in all dimensions.

Question 3.2. Is there any relation between the rational functions µ(K) in Fl(V ∗) × V ∗ and the quantum
cohomology ring on Fl(V ∗)?

3.2. IS-interpolators and reverse Euler-MacLaurin formula. The definition of the SI-interpolator leads in a
natural way to the notion of an IS-interpolator, which may be a useful notion to numerical approximations
of integrals by sums. The next notion requires us to restrict attention to lattice polyhedra, i.e., polyhedra
whose vertices are points of the lattice Λ. Below, a lattice cone K in V is a rational cone such that U ∩Λ 6= ∅,
where U is the largest affine subspace contained in K.

Definition 3.3. An IS-interpolator is map λ, from the set of all lattice cones in V to M(V ∗) such that for
any lattice polyhedron P in V we have:

(16) I(P ) =
∑

F∈F(P )

λ(Supp(P, F ))S(F )

where the sum is over all faces F of P . An IS-interpolator is regular if λ takes values in Mr(V ∗).

Hereditary and Ψ-compatible IS-interpolators are defined in an analogous way to Definition 2.3 and 2.10.
The statement and proof of Theorem 3.1 holds with minor modification for IS-interpolators.
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Theorem 3.4. (a) If V is a rational vector space and Ψ is a rigid complement map on V ∗, there is a unique
Ψ-compatible IS-interpolator λΨ.
(b) In addition, satisfies properties (2)-(5) of Theorem 3.1 and the following version of additivity:

(1) (Additivity) If K is a cone that does not contain a linear subspace and is subdivided into a finite
union of cones Ki, then λΨ(K) =

∑

i:dim(Ki)=dim(K) λΨ(Ki).

One can obtain directly a formula for λΨ in terms of the interpolator µΨ of Theorem 3.1 as follows, by
observing that µΨ(Supp(K, K)) = 1.

Theorem 3.5. If K is a positive (resp. zero) dimensional lattice cone then

(17)
∑

F∈F(K)

λΨ(F )µΨ(Supp(K, F )) = 0, (resp.) λΨ(K) = 1.

The interpolator λΨ gives a reverse Euler-MacLaurin summation formula. Fix a rigid complement map
Ψ on V , a Ψ-generic lattice polyhedron P and a face F of P . Consider the Taylor series expansion of
λΨ(Supp(P, F ))(ξ) and the corresponding differential operator (of infinite order, with constant coefficients):

(18) ∆Ψ(P, F ) = λΨ(Supp(P, F ))(∂x)

Theorem 3.6. With the above assumptions, for every lattice polytope P and every polynomial function h(x)
on V we have

(19)

∫

P

h(x) =
∑

F∈F(P )

∑

x∈F∩Λ

(

∆Ψ(P, F ) · h
)

(x).

In particular, if h(x) = 1 then

(20) vol(P ) =
∑

F∈F(P )

λΨ(Supp(P, F ))(0)#(F )

where #(F ) denotes the number of lattice points of F .

Equation (20) computes the volume of a lattice polytope as a weighted sum of the number of lattice points
of its faces. A formula of this type was first written down by Morelli, [Mor93, Eqn.(5)].

3.3. IS0-interpolators and Morelli’s work. When Ψ comes from a complete flag, Equations (15) and
(20) are similar with some results [Mor93, Eqn.(5),Eqn.(6)] of Morelli. To explain this, let us introduce the
variant S0 of the exponential sum function defined by:

(21) S0(P ) = S(P 0)

where P 0 denotes the (relative) interior of a polyhedron P . The set P 0 is not a polyhedron itself, however
it is a virtual sum of polyhedra. Then, we can talk about IS0-interpolators ν on lattice cones. Theorems 3.4
and 3.5 have the following analogue.

Theorem 3.7. (a) If V is a rational vector space and Ψ is a rigid complement map on V ∗, there is a unique
Ψ-compatible IS0-interpolator νΨ. In addition,
(b) (Additivity) If K is a cone that does not contain a linear subspace and is subdivided into a finite union
of cones Ki, then νΨ(K) =

∑

i:dim(Ki)=dim(K) νΨ(Ki).

(c) νΨ satisfies properties (2)-(5) of Theorem 3.1.
(d) If K is a lattice cone then

(22)
∑

F∈F(K)

νΨ(F )µΨ(Supp(K, F )) = 1.
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Fix a lattice polytope P and a face F of P . If Ψ comes from a complete flag L in V ∗ as in Lemma 2.6, and
we vary the flag, we obtain two rational functions ν(Supp(P, F )) and µ(Supp(P, F )) on Fl(V ∗)×V ∗ which are
regular at a Zariski open subset of Fl(V ∗)× 0. Thus, we can consider the constant terms νΨ(Supp(P, F ))(0)
and µΨ(Supp(P, F ))(0) which are rational functions on Fl(V ∗).

On the other hand, Morelli constructs a pair of rational functions νk(ϑF P ) and µk(ϑF P ) (where k is the
dimension of lin(Supp(P, F ))) that appear respectively in Equations (5) and (6) of [Mor93] (unfortunately,
Morelli denotes the two functions with the same notation, although he clearly recognizes that they are
distinct functions). Morelli’s construction uses K-theory, localization and the Bott residue theorem.

The following proposition is a re-expression of the flag case of Theorem 3.1, part (5).

Proposition 3.4. With the above notations, for polytopes P of dimension at most 2, we have:

(23) ν(Supp(P, F ))(0) = νk(ϑF P ), µ(Supp(P, F ))(0) = µk(ϑF P ).

In [Mor93, p.191] and also in [Mor93, Thm.5], Morelli observes that

(24) µ(K)(0) = ν(K∨)(0)

for lattice cones K of dimension 4 or less, and that Equation (24) fails in dimensions more than 4. This
mysterious and seemingly deep coincidence is easy to explain from our point of view, for cones of dimension
at most 2. The rational functions ν(K) and µ(K∨) are distinct, in fact they are functions on distinct spaces
(Fl(V ∗) × V ∗ and Fl(V ) × V , respectively). Their constant terms coincidentally agree in small dimensions.
For a discussion, see Section 6.2.

4. Proofs

4.1. Proof of Theorem 3.1. Fix a rigid complement map Ψ on a rational vector space V with lattice
Λ, and consider a Ψ-compatible interpolator µΨ and a Ψ-generic rational polytope P . We will show by
induction on the dimension of P the existence and uniqueness of µΨ(P ). All cones in this section will be
assumed to be Ψ-generic. By Lemma 2.4 it suffices to assume that P = K is a cone in V . To avoid confusion,
we denote the map µ : CΨ(V ) −→ M(V ∗) by µV and for every Ψ-generic quotient W of V , we denote the

map µ̄ : CΨ̄(W ) −→ M(W ∗) by µW .
If K is pointed with vertex v, then we can single out the contribution from the 0-dimensional face of K

in Equation (10), and together with hereditary property of Equation (11), it follows that

(25) µΨ
V (K)(ξ) = e−〈ξ,v〉





∑

x∈K∩Λ

e〈ξ,x〉 −
∑

F,dim(F )>0

µΨ̄
V/lin(F )(Supp(K, F ))(π(ξ))

∫

F

e〈ξ,x〉dmF (x)





where Supp(K, F ) denotes the image of Supp(P, F ) in the quotient space V/lin(F ), and π : V ∗ −→
(V/lin(F ))∗ is the projection using the decomposition V ∗ = (V/lin(F ))∗ ⊕ Ψ((V/lin(F ))∗) given by the
rigid complement map Ψ

On the other hand, if K is a non-pointed cone in V , let V (K) denote the linear subspace of V parallel to
the largest affine subspace contained in K, and consider the image K̄ of K in V/V (K), which is a pointed
cone of dimension strictly less than the dimension of K. Equations (11) and (12) imply that

(26) µΨ
V (K)(ξ) = µΨ̄

V/V (K)(K̄)(ξ̄)

where ξ ∈ V ∗, π : V ∗ −→ (V/V (K))∗ is the projection using the decomposition V ∗ = (V/V (K))∗ ⊕
Ψ((V/V (K))∗) given by the rigid complement map Ψ and ξ̄ ∈ (V/V (K))∗ is the image of ξ under the above
projection.

Equations (25) and (26) uniquely define µΨ
V from µΨ

W for dim(W ) < dim(V ). On the other hand, when
V is a 0-dimensional space, we have µΨ

V ({0}) = 1. This uniquely determines µΨ
V . An explicit computation

of µΨ(K) for cones K of dimension 0, 1 and 2 is given in Section 5.
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Additivity of µΨ follows from the above inductive definition of µΨ and the additivity (property (A2)) of
the exponential sum and exponential integrals. This is presented in detail in the proof of [BV07, Prop.15].

Remark 4.1. In fact, Berline-Vergne in [BV07] work with the transverse cone T(K, F ) of a face F of K
defined to be the image of Supp(K, F ) under the projection map V −→ V/lin(F ). The transverse cone
T(K, F ) is always a pointed cone. In fact this gives a 1-1 correspondence

(27) {cones in V } ↔ {pointed cones in quotients of V }

Using this correspondence, and an inner product Q on V , Berline-Vergne inductively construct µQ defined
on the set of pointed cones on the quotients of V . For visual reasons, we prefer to work with the supporting
cones Supp(K, F ) rather than the transverse cones T(K, F ).

Going back to the proof of Theorem 3.1, the lattice invariance and the isometry equivariance of µΨ follows
easily by induction and the invariance of the I and S functions.

The regularity of the meromorphic function µΨ(K) at zero follows by induction and a residue calculation,
discussed in detail in [BV07, Prop.18], using the following fact about the exponential sum and integral
functions.

(A6) If K is a cone in V with primitive integral generators v1, . . . , vk, then

(28)

k
∏

i=1

〈ξ, vi〉S(K)(ξ),

k
∏

i=1

〈ξ, vi〉I(K)(ξ)

are regular functions and the residues of the meromorphic functions S(K) and I(K) along the
hyperplane v1 = 0 satisfy the equations

(29) Resv1
(S(K)) = −S(K̄), Resv1

(I(K)) = −I(K̄).

(A6) follows in turn by additivity and Equation (8) which evaluates the I and S functions on simplicial
cones.

We defer the proof of Property (5) of Theorem 3.1 until the example section (Section 5). See the proofs
immediately following Examples 5.6 and 5.7.

Finally property (6) of Theorem 3.1 follows directly from [BV07, En.4].

4.2. Proof of Theorem 3.2. Fix a polynomial function h(x) on V and a polytope P on V . Consider the
constant coefficient differential operator h(∂ξ) which acts on the function ξ 7→ e〈ξ,x〉 by:

(30) h(∂ξ)e
〈ξ,x〉 = h(x)e〈ξ,x〉.

The definition (7) of S(P ) and the above gives that

h(∂ξ)S(P ) =
∑

x∈P∩Λ

h(x)e〈ξ,x〉

Let ev denote the evaluation at ξ = 0. It follows that

(31) (ev ◦ h(∂ξ))S(P ) =
∑

x∈P∩Λ

h(x).

On the other hand, Theorem 3.1 gives that:
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S(P )(ξ) =
∑

F∈F(P )

µΨ(T(P, F ))(ξ)I(F )(ξ)

=
∑

F∈F(P )

∫

F

µΨ(T(P, F ))(ξ)e〈ξ,x〉dmP (x)

=
∑

F∈F(P )

∫

F

µΨ(T(P, F ))(∂x)e〈ξ,x〉dmP (x)

=
∑

F∈F(P )

∫

F

DΨ(P, F ) e〈ξ,x〉dmP (x)

where the last equality follows from the definition (13) of the differential operator DΨ(P, F ). Applying the
differential operator h(∂ξ) to both sides it follows that

h(∂ξ)I(P )(ξ) =
∑

F∈F(P )

∫

F

DΨ(P, F )h(x)e〈ξ,x〉dmP (x).

Evaluating at ξ = 0, it follows that

(32) (ev ◦ h(∂ξ))S(P ) =
∑

F∈F(P )

∫

F

DΨ(P, F ) · h.

Equations (31) and (32) complete the proof of Theorem 3.2.

4.3. Proof of Theorem 3.4. The proof of Theorem 3.1 applies verbatim, with the following observation,
which explains the need for lattice polyhedra.

If K is a rational pointed cone with vertex v for which (16) applies, then one of the terms in (16) is
F = {v}. In that case, T(K, {v}) = K and the corresponding term in (16) is ν(K)S({v}). Now, (A3) and
(A5) imply that

S({v})(ξ) =

{

e〈ξ,v〉 if v ∈ Λ

0 otherwise.

Thus, when K is not a lattice cone, then we cannot solve for ν(K). In the case of SI-interpolators, as
discussed in Section 2.4, the corresponding term of (10) was µ(K)I({v}) and (A3) and (A5) imply that

I({v})(ξ) = e〈ξ,v〉.

4.4. Proof of Theorems 3.5 and 3.7. Theorem 3.5 follows from the fact that the composition of an
SI-interpolator with an IS-interpolator is an SS-interpolator, and the fact that an SS-interpolator is unique.
More precisely, fix an SI-interpolator µ and an IS-interpolator λ, and consider a lattice cone K. Then, on
the one hand we have

S(K) =
∑

F ′∈F(K)

µ(Supp(K, F ′))I(F ′).

On the other hand for every face F ′ of K, we have

I(F ′) =
∑

F∈F(F ′)

λ(Supp(F ′, F ))S(F )

Substituting the second equation into the first, it follows that

S(K) =
∑

F,F ′: F⊂F ′

µ(Supp(K, F ′))λ(Supp(F ′, F ))S(F ).



14 STAVROS GAROUFALIDIS AND JAMES POMMERSHEIM

This motivates the following definition. Consider the function

Supp(P, F ) 7→ (λ ◦ µ)(Supp(P, F )) :=
∑

F ′: F⊂F ′

µ(Supp(K, F ′))λ(Supp(F ′, F )).

It is easy to see that λ◦µ is an SS-interpolator. Moreover, if µ and λ are Ψ-compatible, so is their composition.
On the other hand, there is a unique Ψ-compatible SS-interpolator. Thus (λ ◦ µ)(Supp(P, F )) = 0 resp. 1
for F 6= P (resp. F = P ). This concludes the proof of Theorem 3.5.

Theorem 3.7 follows by an analogous computation, using the fact that the map (ν ◦ µ) is a Ψ-compatible
SS0-intepolator, the uniqueness of such interpolators, and the fact that the map that sends every cone to 1
is a Ψ-compatible SS0-intepolator.

5. Computations and Examples

5.1. Computation of µΨ for low dimensional cones. As was mentioned earlier, the meromorphic func-
tions µΨ(K) are effectively computable given a complement map Ψ. In this section we illustrate this, by
explicitly computing µΨ(K) for cones K of dimension at most 2.

Proposition 5.1. Suppose that K = {0} in the vector space V = {0}. Then µ(K) is the constant function
1, independent of Ψ.

Proof. S(K) = I(K) = 1 forces µ(K) = 1. �

If {v1, . . . , vk} is a collection of vectors in V , let (v1, . . . , vk) = Q+v1 + · · ·+Q+vk denote the cone spanned
by those vectors, where Q+ is the set of non-negative rational numbers.

Proposition 5.2. Now suppose that V is one-dimensional and K = Cone(v) is a ray in V generated by a
primitive vector v ∈ Λ. Then, independent of Ψ, we have

µ(K)(ξ) = B(〈ξ, v〉),

where

(33) B(z) =
1

1 − ez
+

1

z
=

1

2
−

z

12
+

z3

720
−

z5

30240
+ . . .

is the generating series of the Bernoulli numbers.

Proof. Use the property of interpolators

S(K) = µ(Supp(K, K))I(K) + µ(Supp(K, 0))I(0),

µ(Supp(K, K)) = 1 by the previous proposition and compatibility under quotients. In addition, we have
S(K)(ξ) = 1/(1 − eξ) and I(K)(ξ) = −1/ξ. The result follows. �

For the following proposition, recall that if K is a subset of V , then we define the dual K∨ by

(34) K∨ = {w ∈ V ∗ | 〈w, v〉 ≥ 0, for all v ∈ K}.

Also, if Λ is a lattice in V , then Λ∗ = {w ∈ V ∗ |〈w, v〉 ∈ Z, for all v ∈ Λ} is the dual lattice in V ∗. Below,
we will denote by µL (resp. µQ) the Ψ-compatible SI-interpolator where Ψ comes from a complete flag L on
V (resp. an inner product Q on V ), as in Lemma 2.6.

Proposition 5.3. Suppose V is two-dimensional, and K ⊂ V is a half-plane with boundary a line U through
the origin.
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Let ρ ∈ Λ∗ be the primitive generator of the ray K∨. Suppose the Ψ is defined by a complete flag L in V ∗,
and let c be a generator of L∗

1, where L1 is the one-dimensional subspace of the flag L (the only nontrivial
subspace in the flag.) Then

µL(K)(ξ) = B

(

〈ξ, c〉

〈ρ, c〉

)

.

Now suppose Ψ is defined by an inner product Q on V . Then

µQ(K)(ξ) = B

(

Q(ξ, ρ)

Q(ρ, ρ)

)

.

Proof. We use the Ψ-compatibility together with our one-dimensional formula above. To do so, we must
compute the projection from π : V ∗ → W ∗ where W = V/U . This projection is computed using the
decomposition V ∗ = W ∗ ⊕ Ψ∗(W ∗) given by the complement map Ψ. Suppose the 1-dimensional subspace
Ψ(W ∗) ⊂ V ∗ is generated by d. Then for ξ ∈ V ∗, find scalars ω1, ω2 such that

(35) ξ = ω1ρ + ω2d,

Then from Ψ-compatibility and the one-dimensional formula, we obtain

µ(K)(ξ) = B(ω1).

For Ψ coming from a complete flag, we pair both sides of Equation (35) with the generator c. Since 〈d, c〉 = 0,
we find

ω1 =
〈ξ, c〉

〈ρ, c〉
,

and the formula for µL(K) follows. For Ψ coming from the inner product Q, we note that Q(d, ρ) = 0. Thus
Equation (35) yields

ω1 =
Q(ξ, ρ)

Q(ρ, ρ)
,

which completes the proof. �

Using the defining property of interpolators, we immediately get the following proposition, an explicit
expression for µ of a nonsingular 2-dimensional cone.

Proposition 5.4. Suppose V is two-dimensional and K = Cone(v1, v2) where v1, v2 form a basis of Λ ⊂ V .
Let F1 = Cone(v1) and F2 = Cone(v2), and let ρ1, ρ2 ∈ Λ∗ denote the primitive normals to F1 and F2. Then
for Ψ coming from a complete flag L in V ∗, we have

(36) µL(K) =
1

(1 − e〈ξ,v1〉)(1 − e〈ξ,v2〉)
−

1

〈ξ, v1〉〈ξ, v2〉
+

1

〈ξ, v1〉
B

(

〈ξ, c〉

〈ρ1, c〉

)

+
1

〈ξ, v2〉
B

(

〈ξ, c〉

〈ρ2, c〉

)

.

For Ψ coming from an inner product Q on V ∗, we have

(37) µQ(K) =
1

(1 − e〈ξ,v1〉)(1 − e〈ξ,v2〉)
−

1

〈ξ, v1〉〈ξ, v2〉
+

1

〈ξ, v1〉
B

(

Q(ξ, ρ1)

Q(ρ1, ρ1)

)

+
1

〈ξ, v2〉
B

(

Q(ξ, ρ2)

Q(ρ2, ρ2)

)

.

Remark 5.5. Replacing 1/(1− ex) with B(x)− 1/x, it follows that Equations (36) and (37) can be written
in the form:

µL(K) = B(〈ξ, v1〉)B(〈ξ, v2〉) +
1

〈ξ, v1〉

(

B

(

〈ξ, c〉

〈ρ1, c〉

)

− B(〈ξ, v2〉)

)

+
1

〈ξ, v2〉

(

B

(

〈ξ, c〉

〈ρ2, c〉

)

− B(〈ξ, v1〉)

)

µQ(K) = B(〈ξ, v1〉)B(〈ξ, v2〉) +
1

〈ξ, v1〉

(

B

(

Q(ξ, ρ1)

Q(ρ1, ρ1)

)

− B(〈ξ, v2〉)

)

+
1

〈ξ, v2〉

(

B

(

Q(ξ, ρ2)

Q(ρ2, ρ2)

)

− B(〈ξ, v1〉)

)

.
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5.2. Examples. In this section we explicitly compute some low dimensional examples and match them with
the ones given by Morelli, Pommersheim-Thomas and Berline-Vergne.

Example 5.6. Consider the triangle P with vertices v0 = (0, 0), v1 = (1, 0), v2 = (0, 1) in the lattice
Λ = Z2 ⊂ V = Q2, where V ∗ is also identified with Z2.

Let Ψ be the complement map coming from the complete flag L = (L0, L1, L2) in V ∗ such that L1 =
Span{(d1, d2)}. To compute µL of the supporting cones, we use lattice invariance to translate them to the
origin. In other words, consider the tangent cones Ki = Tan(P, vi) for i = 0, 1, 2, to P at vi. Specifically we
have

K0 = Cone((1, 0), (0, 1)), K1 = Cone((−1, 1), (−1, 0)), K2 = Cone((0,−1), (1,−1)).

Then for ξ = (ξ1, ξ2) ∈ V ∗, we have

µL(K0)(ξ) =
1

(1 − eξ1)(1 − eξ2)
−

1

ξ1ξ2
+

1

ξ2
B

(

ξ1 −
d1

d2
ξ2

)

+
1

ξ1
B

(

ξ2 −
d2

d1
ξ1

)

µL(K1)(ξ) =
1

(1 − eξ2−ξ1)(1 − e−ξ1)
+

1

ξ1(ξ2 − ξ1)
−

1

ξ1
B

(

ξ2 −
d2

d1
ξ1

)

+
1

ξ2 − ξ1
B

(

d2ξ1 − d1ξ2

d1 − d2

)

µL(K2)(ξ) =
1

(1 − eξ1−ξ2)(1 − e−ξ2)
+

1

ξ2(ξ1 − ξ2)
−

1

ξ2
B

(

ξ1 −
d1

d2
ξ2

)

+
1

ξ1 − ξ2
B

(

d2ξ1 − d1ξ2

d1 − d2

)

These functions are analytic at ξ = (0, 0). For example, µL(K0)(ξ) has the Taylor expansion

µL(K0)(ξ) =

(

d2
1 + d2

2 + 3d1d2

12d1d2

)

+

(

−1

24

)

ξ1 +

(

−1

24

)

ξ2 +

(

3d4
1 + 3d4

2 + 5d2
1d

2
2

720d2
1d

2
2

)

ξ1ξ2

+

(

−3d4
1 − d4

2

720d3
1d2

)

ξ2
1 +

(

−3d4
2 − d4

1

720d3
2d1

)

ξ2
2 + · · ·

Denoting the constant term of each µL(Ki) by µL
0 (Ki), we find

µL
0 (K0) =

d2
1 + d2

2 + 3d1d2

12d1d2

µL
0 (K1) =

5d2
1 − 5d1d2 + d2

2

12d1(d1 − d2)

µL
0 (K2) =

5d2
2 − 5d1d2 + d2

1

12d2(d2 − d1)

in exact agreement with Morelli’s example [Mor93, p.198-199]. These rational functions can also be computed
by multiplying the Todd polynomials using [PT04, Theorem 3] In particular, these three rational functions
sum to 1 in agreement with Equation (15).

In addition, one checks by direct computation that
∑

F

µL(Supp(P, F ))I(F ) = S(P ) = 1 + eξ1 + eξ2 .

in agreement with the definition of an interpolator.

Indeed, this example provides a general proof of the coincidence of our construction and the flag case of
[PT04] for cones of dimension at most 2, and hence the coincidence with Morelli’s formulas.

Proof of 3.1, part (5) for flags: In dimension 1, the [PT04] values are always equal to 1
2 , independent of

complement map. Using Proposition 5.2, we see that this coincides with the constant term of µ. For the
two-dimensional case, we first use the additivity of [PT04] and of our construction (Theorem 1, Property (1))



SUM-INTEGRAL INTERPOLATORS AND THE EULER-MACLAURIN FORMULA FOR POLYTOPES 17

to reduce to nonsingular 2-dimensional cones. By functoriality, we may assume that K is the cone K0 from
example 5.6, generated by the standard basis of Z2. In this case, we note that the values of µL

0 (K0) given
in Example 5.6 match the values in [Mor93, p.198-199]. By [PT04, Corollary 2], these values also match the
values in [PT04]. This completes the proof.

Example 5.7. We consider the same triangle P from Example 5.6, but now with a complement map Ψ
coming from an inner product Q on V ∗, given by the matrix

(

a b
b c

)

We can use Proposition 5.4 to compute µQ(Ki) for the supporting cones Ki of P . We find

µQ(K0)(ξ) =
1

(1 − eξ1)(1 − eξ2)
−

1

ξ1ξ2
+

1

ξ2
B

(

ξ1 +
b

a
ξ2

)

+
1

ξ1
B

(

ξ2 +
b

c
ξ1

)

µQ(K1)(ξ) =
1

(1 − eξ2−ξ1)(1 − e−ξ1)
+

1

ξ1(ξ2 − ξ1)
−

1

ξ1
B

(

ξ2 +
b

c
ξ1

)

+
1

ξ2 − ξ1
B

(

−aξ1 − bξ1 − bξ2 − cξ2

a + 2b + c

)

µQ(K2)(ξ) =
1

(1 − eξ1−ξ2)(1 − e−ξ2)
+

1

ξ2(ξ1 − ξ2)
−

1

ξ2
B

(

ξ1 +
b

a
ξ2

)

+
1

ξ1 − ξ2
B

(

−aξ1 − bξ1 − bξ2 − cξ2

a + 2b + c

)

This time, we find the constant terms are given by

µQ
0 (K0) =

3ac− ab − bc

12ac

µQ
0 (K1) =

ab + 4ac + 10bc + 2b2 + 5c2

12(ac + 2bc + c2)

µQ
0 (K2) =

5a2 + 2b2 + 10ab + 4ac + bc

12(a2 + 2ab + ac)

These agree with the values of µ constructed in [PT04, Cor.1] for Ψ coming from an inner product.
In particular, the three rational functions above sum to 1. For the standard inner product on V ∗ = Z2,
(corresponding to a = c = 1, b = 0), we find

µQ
0 (K0) =

1

4
µQ

0 (K1) =
3

8
µQ

0 (K2) =
3

8
.

For completeness and comparison, we detail how these numbers arise, in a seemingly very different way,
out of the construction of Pommersheim-Thomas. We begin, according to [PT04, Cor.1(iv)] by considering
the outer normal fan of P . The rays of this fan are ρ0 = (1, 1), ρ1 = (−1, 0), and ρ2 = (0,−1). We must
then multiply the second-degree Todd polynomial T =

∑

i<j DiDj + 1
12

∑

i D2
i in the ring given in [PT04,

Prop.2]. In this ring, one finds D2
0 = 1

2D0D1 + 1
2D0D2, D2

1 = D0D1, and D2
2 = D0D2. Hence

T =
1

4
D1D2 +

3

8
D0D2 +

3

8
D0D1,

from which one reads off the values of µ0(K0) = 1
4 , µ0(K1) = 3

8 , and µ0(K2) = 3
8 . In fact, more generally,

let K = cone(v1, v2) be any nonsingular cone in V with vertex at 0, and let Q be an inner product on V ∗.
Then an easy computation similar to the above can be used to compute the value of µ0 of [PT04] for this
cone K. Indeed, if K∗ = cone(ρ1, ρ2) is the dual cone, then using presentation of [PT04, Proposition 2], one
finds that the coefficient of D1D2 in T is given by

(38)
1

4
−

Q(ρ1, ρ2)

12

(

1

Q(ρ1, ρ1)
+

1

Q(ρ2, ρ2)

)

=
1

4
+

Q∗(v1, v2)

12

(

1

Q∗(v1, v1)
+

1

Q∗(v2, v2)

)

,

where Q∗ denotes the dual inner product on V .
Indeed, this calculation proves the inner product case of Theorem 3.1, part (5), as we now show.
Proof of 3.1, part (5) for inner products: As in the flag case, the [PT04] values are always equal to 1

2 ,
independent of complement map, matching the constant term of the functions in Proposition 5.2. For the
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two-dimensional case, we again use additivity and functoriality to reduce to the case in which K is the cone
K0 from example 5.6. We then note that the formula of Equation 38 for the [PT04] construction matches

the values of µQ
0 (K0) given in Example 5.7. This completes the proof.

A comparison of the functions µQ
0 (Ki) of Example 5.7 with the functions µL

0 (Ki) of Example 5.6 reveals
that they are indeed different, confirming the fact that interpolators that come from flags are different from
those that come from an inner product.

Let us repeat the previous example with a different triangle.

Example 5.8. Consider the triangle P with vertices v0 = (0, 0), v1 = (2, 0), v2 = (0, 1).

As above, let Ψ be the complement map coming from the complete flag L = (L0, L1, L2) in V ∗ such
that L∗

1 = Span{(d1, d2)}. Denoting, as before, the tangent cones at the vertex vi by Ki, we see that
K0 = Cone((1, 0), (0, 1)), and K1 = Cone((−1, 0), (−2, 1)) are nonsingular cones, whose µ values may be
computed from Proposition 5.4. On the other hand, the cone K2 = Cone((0,−1), (2,−1)) is singular. We
can compute µL(K2) by subdividing K2 into two cones

K2 = C1 ∪ C2, C1 = Cone((0,−1), (1,−1)), C2 = Cone((1,−1), (1,−2))

using the ray ρ = Cone((1,−1)). The additivity of µ implies that

µL(K2) = µL(C1) + µL(C2) − µL(ρ).

The terms on the right hand side can be computed using Propositions 5.4 and 5.2. Alternatively, one
can compute µL(K2) directly from the defining formula for interpolators. Letting F1 = Cone((0,−1)) and
F2 = Cone((2,−1)) denote the one dimensional faces of K2, we get

µL(K2) = S(K2) − I(K2) − µL(Supp(K2, F1))I(F1) − µL(Supp(K2, F2))I(F2)

=
1 + eξ1−ξ2

(1 − e−ξ2)(1 − e2ξ1−ξ2)
+

2

ξ2(2ξ1 − ξ2)
+

1

−ξ2
B

(

ξ1 −
d1

d2
ξ2

)

+
1

2ξ1 − ξ2
B

(

d1ξ2 − d2ξ1

d2 − 2d1

)

The constant terms of µL(Ki) are Morelli’s rational functions

µL
0 (K0) =

d2
1 + 3d1d2 + d2

2

12d1d2

µL
0 (K1) =

11d2
1 − 7d1d2 + d2

2

12d1(2d1 − d2)

µL
0 (K2) =

d2
1 − 4d1d2 + 2d2

2

−6d2(2d1 − d2)

agreeing with the numbers shown in figure in the introduction.

Again, one can verify by direct computation that
∑2

i=0 µL
0 (Ki) = 1 and

∑

F

µL(Supp(P, F ))I(F ) = S(P ) = 1 + eξ1 + e2ξ1 + eξ2 .

Example 5.9. We consider the same triangle P from Example 5.8, but now with a complement map Ψ
coming from an inner product Q on V ∗, given by the matrix

(

a b
b c

)

As in Example 5.8, the function µQ of the singular cone K2 may be computed either by subdividing, or by
direct use of the defining property of interpolators. We find that µQ(K2) is given by

1 + eξ1−ξ2

(1 − e−ξ2)(1 − e2ξ1−ξ2)
+

2

ξ2(2ξ1 − ξ2)
+

1

−ξ2
B

(

ξ1 −
b

a
ξ2

)

+
1

2ξ1 − ξ2
B

(

−aξ1 − 2bξ1 − bξ2 − 2cξ2

a + 4b + 4c

)

.
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The constant terms, in agreement with the construction of [PT04], are

µQ
0 (K0) =

3ac − ab − bc

12ac

µQ
0 (K1) =

ab + 5ac + 4b2 + 25bc + 22c2

12(ac + 4bc + 4c2)

µQ
0 (K2) =

2a2 + 8ab + 7ac + 2b2 + 2bc

6(a2 + 4ab + 4bc)

which add up to 1. For the standard inner product, these coefficients are

µQ
0 (K0) =

1

4
µQ

0 (K1) =
9

20
µQ

0 (K2) =
3

10
.

Again for comparison, let us detail how these numbers arise out of the construction of Pommersheim-
Thomas. To apply [PT04, Cor.1(iv)], we first consider the outer normal fan of P . The rays of this fan
are ρ0 = (1, 2), ρ1 = (−1, 0), and ρ2 = (0,−1). A nonsingular subdivision is achieved by adding the ray
ρ3 = (0, 1). As before, we multiply the Todd polynomial T =

∑

i<j DiDj + 1
12

∑

i D2
i in the ring given in

[PT04, Proposition 2]. One calculates D2
0 = 1

5 (2D0D2−2D0D3), D2
1 = 0, D2

2 = 2D0D2, and D2
3 = −2D0D3.

Hence

T =
1

4
D1D2 +

9

20
D0D2 +

1

20
D0D3 +

1

4
D1D3,

Using additivity under subdivision [PT04, Cor.1(iii)], one finds µ0(K0) = 1
4 , µ0(K1) = 9

20 , and µ0(K2) =
1
20 + 1

4 = 3
10 .

6. Comparison with Morelli’s work

In this section we compute values of ν and discuss the relations Morelli noticed between the constant
terms of µ and ν.

6.1. Computation of νΨ for low dimensional cones. For cones of dimension 0, 1 and 2 it is easy to
compute νΨ(K) explicitly, just as we did for µΨ(K) in Section 5. The proofs in this case are similar.

Proposition 6.1. Suppose that K = {0} in the vector space V = {0}. Then ν(K) is the constant function
1, independent of Ψ.

Proposition 6.2. Now suppose that V is one-dimensional and K = Cone(v) is a ray in V generated by a
primitive vector v ∈ Λ. Then, independent of Ψ, we have

ν(K)(ξ) = B(−〈ξ, v〉),

Proposition 6.3. With the notation of Proposition 5.3, we have

νL(K)(ξ) = B

(

−
〈ξ, c〉

〈ρ, c〉

)

.

and

νQ(K)(ξ) = B

(

−
Q(ξ, ρ)

Q(ρ, ρ)

)

.

Proposition 6.4. With the notation of Proposition 5.4, we have

νL(K) =
1

〈ξ, v1〉〈ξ, v2〉
−

[

e〈ξ,v1〉

1 − e〈ξ,v1〉
B

(

−
〈ξ, c〉

〈ρ1, c〉

)

+
e〈ξ,v2〉

1 − e〈ξ,v2〉
B

(

−
〈ξ, c〉

〈ρ2, c〉

)

+
e〈ξ,v1〉e〈ξ,v2〉

(1 − e〈ξ,v1〉)(1 − e〈ξ,v2〉)

]

and

νQ(K) =
1

〈ξ, v1〉〈ξ, v2〉
−

[

e〈ξ,v1〉

1 − e〈ξ,v1〉
B

(

−
Q(ξ, ρ1)

Q(ρ1, ρ1)

)

+
e〈ξ,v2〉

1 − e〈ξ,v2〉
B

(

−
Q(ξ, ρ2)

Q(ρ2, ρ2)

)

+
e〈ξ,v1〉e〈ξ,v2〉

(1 − e〈ξ,v1〉)(1 − e〈ξ,v2〉)

]

.
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6.2. Morelli’s coincidence in dimensions 1 and 2. In this section we will prove Morelli’s observation
(24) for lattice cones of dimension at most 2, using the computations of νΨ(K) for cones K of dimension
at most 2 from Section 6.1. Using these propositions, we can prove the following relation between µ and ν
for cones of dimension at most 2. The following theorem, proved by Morelli in the flag case, shows that the
coincidence of constant terms holds also in the case of inner products.

Theorem 6.1. Let K be a cone with vertex at 0 in V , and assume that the dimension of V is at most 2.
Let Ψ be a complement map on V induced by an inner product on V ∗ or a complete flag in V ∗ and let Ψ∗

be the corresponding complement map on V . Then we have

νΨ(K)(0) = µΨ∗

(K∨)(0).

Proof. For cones of dimension 0, the constant term of both µ and ν is always equal to 1. For cones of
dimension 1, the constant term of both µ and ν is always 1/2. Now let K have dimension 2. From the
inversion formula of Theorem 3.7, it follows that

µ(K)(0) + ν(K)(0) =
1

2
.

Hence, the desired conclusion is equivalent to

µ(K)(0) + µ(K∨)(0) =
1

2
.

Suppose that µ is induced by an inner product. The inner product gives us an identification of V with
V ∗, allowing us to consider K and K∨ as both living in the same space V . If K = Cone(v1, v2), then
K∨ = Cone(w1, w2) with vi orthogonal to wi, i = 1, 2, under the inner product. Furthermore, considering
the orthogonal cones L1 = Cone(v1, w1), L2 = Cone(v2, w2), we have the following equation of characteristic
functions:

χK1
+ χK∨ = χL1

+ χL2
,

and hence

µ(K1) + µ(K∨) = µ(L1) + µ(L2).

Now the desired result follows from the fact that µ(L)(0) = 1/4 for orthogonal 2-dimensional cones L. To
see this note that L and its image rotπ/2(L) under rotation by π/2 form a half-space, and rotation is an
isomorphism of V that preserves the inner product, hence µ(L)(0) = µ(rotπ/2(L))(0).

Now suppose Ψ is induced by a complete flag in V ∗. This flag is determined by a line U in V ∗, and Ψ∗

is induced by the dual flag, determined by the dual line U∗ in V . Now choose an identification i : V → V ∗.
Under this identification U pulls back to a line perpendicular to U∗. It follows that

µΨ∗

(K∨)(0) = µΨ(rotπ/2i
−1(K∨))(0).

But rotπ/2i
−1(K∨) and K fit together to form a half-space. Hence

µΨ(K)(0) + µΨ(rotπ/2i
−1(K∨))(0) =

1

2
.

The result follows. �

Example 6.5. Consider the triangle P from Example 5.6 with vertices v0 = (0, 0), v1 = (1, 0), v2 = (0, 1).
For Ψ corresponding to the standard inner product, recall that the constant terms of the µ of the vertex
cones are 1/2, 3/8, and 3/8. According to the discussion above, we have that the constant terms of the ν’s
are found by subtracting from 1/2:

ν(K0)(0) =
1

4
ν(K1)(0) =

1

8
ν(K2)(0) =

1

8
.

One can then check that the volume of this triangle is given by summing ν(F )(0) values times the number
lattice points in the relative interior of F . Indeed, since the only lattice points are the vertices, one has

Vol(P ) =
1

4
+

1

8
+

1

8
=

1

2
.
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For the triangle from Example 5.8, with vertices v0 = (0, 0), v1 = (2, 0), v2 = (0, 1), one similarly computes
the ν(K) constant terms (again using the standard inner product):

ν(K0)(0) =
1

4
ν(K1)(0) =

1

20
ν(K2)(0) =

1

5
.

This time there is one lattice point in the relative interior of an edge. The corresponding ν constant term is
1/2, according to Proposition 6.3. Thus, we check

Vol(P ) =
1

4
+

1

20
+

1

5
+

1

2
= 1.
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