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Incompressibility criteria for spun-normal surfaces

NATHAN M. DUNFIELD
STAVROS GAROUFALIDIS

We give a simple sufficient condition for a spun-normal scefen an ideal trian-
gulation to be incompressible, namely that it is a verteXasaa with non-empty
boundary which has a quadrilateral in each tetrahedronlé/this condition is far
from being necessary, it is powerful enough to give two nesults: the existence
of alternating knots with non-integer boundary slopes, amoof of the Slope
Conjecture for a large class of 2-fusion knots.

While the condition and conclusion are purely topologi¢hk proof uses the
Culler-Shalen theory of essential surfaces arising fromalgoints of the character
variety, as reinterpreted by Thurston and Yoshida. Thegaih itself comes from
the work of Kabaya, which we place into the language of nosndiace theory.
This allows the criterion to be easily applied, and givesftamework for proving
that the surface is incompressible.

We also explore which spun-normal surfaces arise from igeadts of the defor-
mation variety. In particular, we give an example where nidereor fundamental
surface arises in this way.
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2 Nathan M. Dunfield and Stavros Garoufalidis

1 Introduction

Let M be a compact oriented 3-manifold whose boundary is a torygoperly embed-
ded surfacesin M is calledessentialf it is incompressible, boundary-incompressible,
and not boundary-parallel. B has boundary, this consists of pairwise-isotopic essen-
tial simple closed curves on the tora# ; the unoriented isotopy class of these curves
is theboundary slopeof S. Such slopes can be parameterized by the corresponding
primitive homology class itH1(0M; Z)/(£1); if a basis ofH1(0OM; Z) is fixed, slopes

can also be recorded as elementgJof) {co}.

Our focus here is on the set b) of all boundary slopes of essential surfaces in
M, which is finite by a fundamental result of Hatchétatl]. This is an important
invariant of M, for instance playing a key role in the study of exceptionahBfilling.
Building on Haken’s fundamental contributionddk], Jaco and Sedgwickl§ used
normal surface theory to give a general algorithm for cormgutosM). As with
most normal-surface algorithms, this method seems imiped&ven for modest-sized
examples (however, some important progress has been mattésdoy [BRT]). For
certain special cases, such as exteriors of Montesinos kfast algorithms do exist
[HT, HO, DunZ], and additionally character-variety techniques can gomes be used
to find boundary slopesJCGLS Cul]. However, there remain quite small examples
where bsk/) is unknown, e.g. for the exteriors of certain 9-crossingtkrin S3.

Here, we introduce a simple sufficient condition that enstinat a normal surface is
essential. While our condition is far from being necessaiypowerful enough to give
two new results: the existence of alternating knots with-imbeger boundary slopes,
and a proof of the Slope Conjecture for all 2-fusion knotsog with BRT], these
are the first results that come via applying directly normaface algorithms, which
have been much studied for their inherent interest in thefiagears.

We work in the context of an ideal triangulatidh of M and Thurston’s corresponding
theory of spun-normal surfaces (throughout, see Se&ifam definitions). In normal
surface theoryyertex surfacesorresponding to the vertices of the projectivized space
of normal surfaces play a key role. Our basic result is

1.1 Theorem Supposes is a vertex spun-normal surfaceIn with non-trivial bound-
ary. If S has a quadrilateral in every tetrahedrorlof thenS is essential.
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While this statement is purely topological, the proof uges Culler-Shalen theory of
essential surfaces arising from ideal points of the charaeriety [CS CGLY, as
reinterpreted by ThurstorThul] and Yoshida Yos] in the context of the deformation
variety defined by the hyperbolic gluing equations for Theoreml.1is a strength-
ening of a result of Kabay&jab], who shows that, with the same hypotheses, that the
boundary slope oEisin bs(M). Our contribution to Theorerh.1lis restating Kabaya'’s
work in the language of normal surface theory, allowing ibteasily applied, and
showing thatSis itself incompressible.

1.2 Alternating knots

Our main application of Theoreth1concerns the boundary slopes of (the exteriors of)
alternating knots irS®. In the natural meridian-longitude basis fdi(OM), Hatcher
and Oertel HO] showed that the boundary slopes of alternating Montedinots were
always even integers, generalizing what Hatcher and Tdwuisad found for 2-bridge
knots HT]. Hatcher and Oertel asked whether this was trueafbalternating knots.
We use Theoreni.1to settle this 20 year-old question:

1.3 Theorem There are alternating knots with nonintegral boundary esopn partic-
ular, the knotlO;9 has boundary slope)/3 and—10/3.

Many additional such examples are listed in Tahle

1.4 Dehn filling

The technique of Kabaya that underlies Theotkefhcan be generalized to manifolds
that arise from Dehn filling all but one boundary componenaahore complicated
manifold. Specifically, in the language of Sectibwe show:

1.5 Theorem Let W be a compact oriented 3-manifold whey&\/ consists of tori
To, T1,...,Tn. Let S be a spun-normal surface in an ideal triangulatibnof W,
with nonempty boundary slopg on eachTy. Suppose tha$ has a quadrilateral in
every tetrahedra of , and is a vertex surface for the relative normal surface espac
corresponding td- , 1, ...,vn). Then~g is a boundary slope oN(-,v1, ..., 7).

This broadens the applicability of Kabaya's approach siaeg givenM arises in
infinitely many ways by Dehn filling, and thus a fixed surfaBec M has many
chances where Theorein5 might apply.
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Figure 1.7: The link L.

1.6 The Slope Conjecture for 2-fusion knots

Our application of Theorerfi.5involves constructing a boundary slope for every knot
of a certain 2-parameter family. We use this to prove the &opnjecture ofGar]] in
the case of 2-fusion knots. This conjecture relates thesdegfithe Jones polynomial of
a knot and its parallels to boundary slopes of essentighsesfin the knot complement.
To state our result, consider the 3-component linkrom Figurel.7. For a pair of
integers (g, mp) € 72, let L(my, mp) denote the knot obtained by-{/my, —1/mp)
filling on the cuspsC; and C, of L, leaving the cusgCy unfilled. The 2-parameter
family of knots L(my, np), together with the double-twist knots coming from filling 2
cusps of the Borromean link, is the set of all knots of fusiomber at most 2; see
[Gard. The family L(myg, mp) has some well-known memberk(2,1) = L(—1,2) is
the (—2,3,7) pretzel knot,L(—2,1) is the 5 knot, L(—1, 3) is kd4z which was the
focus of [GL], andL(my, 1) is the 2, 3,3m + 3) pretzel knot.

SO

Figure 1.8: The (-2, 3,7) pretzel, the 5knot, and thek4; knot.
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Together with the results offard, the following confirms the Slope Conjecture for
2-fusion knots in one of three major cases:

1.9 Theorem Form; > 1, mp > 0, one boundary slope af{my, my) is:
(my — 1)

3(1+my) +9mp + ——
(1+m) + 9mp —

It is mysterious how the Jones polynomial selects one (ouh@fmany) boundary
slopes of a knot, and it was fortunate that this slope happef® one of the few
accessible by the special method of Theotk&ifor the family L(my, mp) of 2-fusion
knots. Indeed, we tried without success to apply our sambadeb confirm the Slope
Conjecture for the rest of the 2-fusion knots. Note also thatresults of fKP] do not
imply Theoreml.9as the former only produce integer boundary slopes.

1.10 Technical results

In addition to Theoremd4.1 and 1.5, we make progress on the question of which
spun-normal surfaces in an ideal triangulati@n arise from an ideal point of the
deformation varietyD(7) (see Sectio for more on the latter). In particular, given an
ideal triangulationZ” of a manifoldM with one torus boundary component, the goal is
to determine all the boundary slopes that arise from idemitp@f D(7"). Of course,
one can find all such detected slopes by computing®tfpelynomial, but this is often

a very difficult computation, involving projecting an algealr variety (i.e. eliminating
variables).

For a fixed surfaces, we give a relatively easy-to-check algebro-geometricddoon
(Lemmad.15 which is both necessary and sufficient ®to come from an ideal point.
However, there are often only finitely many ideal points bitiitely many spun-normal
surfaces, and so Lemndal5does not completely solve this problem. A natural hope
is that the surfaces associated to ideal points would bexertfundamental surfaces,
but we give a simple example in Secti®r2 where this is not the case.

1.11 Outline of contents

In Sections2 and 3 we review the basics of spun-normal surfaces and deformatio
varieties. Then in Sectiod, we study a class of algebraic varieties which includes
these deformation varieties. We place Kabaya's motivatesgylt into that context
(Proposition4.12) and also give a necessary and sufficient condition for theige
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an ideal point with certain data (Lemmdalb). Section5 is devoted to the proof of
Theoreml.1, and then Sectio@applies this result to give non-integral boundary slopes
for alternating knots. Likewise, Sectiatproves Theoremi.5and Sectior8 applies it

to the Slope Conjecture for 2-fusion knots. Finally, Set8@xplores the effectiveness
and limitations of the methods studied here.
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2 Spun-normal surfaces

In this section, we sketch Thurston’s theory of spun-norsuwafaces in ideal triangu-
lations. We follow Tillmann’s expositionTil1] which contains all the omitted details
(see alsoKang KR]). Let M be a compact oriented 3-manifold whose boundary is
a nonempty union of tori. An ideal triangulatich of M is a A-complex (in the lan-
guage of HatZ) made by identifying faces of 3-simplices in pairs so tfat (vertices)

is homeomorphic to inMl). Thus7 is homeomorphic tdvl with each component of
OM collapsed to a point.

A spun-normal surfac&in 7 is one which intersects each tetrahedron in finitely many
quads and infinitely many triangles marching out toward eactex (see Figurg.1(a)).
While there are infinitely many pieces, in fastis typically the interior of a properly
embedded compact surface i whose boundary has been “spun” infinitely many
times around each component@¥ . (The other possibility foiS near a vertex is that

it consists of infinitely many disjoint boundary-paralletit) Notice from Figure2.1(a)
that on any face of atetrahedron, there is exactly one hexaguon and infinitely many
four-sided regions. Thus to specify a spun-normal surfaoee need only record the
number and type of quads in each tetrahedrofi p§ince the need to glue hexagons to
hexagons uniquely specifies how the local pictureS aiust be glued together across
adjoining tetrahedra. As there are three kinds of quads, Hasn tetrahedra thers
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Figure 2.1: At left is the intersection of a spun-normal surface withragée tetrahedron,
with infinitely many triangles in each corner. At right areetdge shifts of the hexagon
regions as defined in Figuge2

is uniquely specified by a vector i” called itsQ-coordinates. This vector satisfies
certain linear equations which we now describe as they wplan how ideal points
of the deformation variety give rise to such surfaces.

For an edge of a tetrahedron, Ietbe the amount the adjacent hexagons are shifted
relative to each other; the orientation convention is ginmdrigure2.2, and Figure2.1(b)
shows the resulting shifts on all edges of a tetrahedrons tiot so hard to see that
AS Zi” corresponds to a spun-normal surface if and only if

(a) There is at most one non-zero quad weight in any giveahetiron.

(b) Aswe go once around an edge, the positions of the hexagateh up. That is,
the sum of the shifts must be 0.

The shifts are linear functions of the entriesvofsee Figure.1), and so the conditions
in (b) form a linear system of equations called tBematching equations

As their Q-coordinates satisfy various linear equalities and inétjeis, spun-normal
surfaces fit into the following geometric picture. L&(7) be the intersection dRi”
with the subspace of solutions to tli-matching equations. Thu§(7) is a finite-
sided convex cone. If we impose conditios) &s well, we get a seff(7) which is

a finite union of convex cones whose integral points are pedgithe Q-coordinates
of spun-normal surfaces. Within each convex cond-¢f), vector addition ofQ-
coordinates corresponds to a natural geometric sum operati the associated spun-
normal surfaces.
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s=2 s=0 s=-1

Figure 2.2: The shift parametes of an edge describes the relative positions of the adjacent
hexagons, as viewed from outside the simplex Here A is oriented by the orientation

of M, and the induced orientation ofA distinguishes betwees > 0 ands < 0. As
each picture is invariant under rotation by the shift doesotdepend on an orientation

of the edges themselves. The convention here agreesTifith. [

It is natural to projectivize=(7") by intersecting it with the affine subspace where the
coordinates sum to 1. The resulting $&t'(7) is a finite union of compact polytopes.
Since all the defining equations had integral coefficiehesyertices of these polytopes
lie in Q3". For such a vertew, consider the smallest rational multiple @fwhich
lies in Zi“; that vector gives a spun-normal surface, calleceeex surface Vertex
surfaces play a key role in normal surface theory generaltytaere in particular.

One major difference between spun-normal surface theodytlaa ordinary kind for
non-ideal triangulations is that normalizing a given scefés much more subtle. Thisis
because of the infinitely many intersections of a spun sanfeth the 1-skeleton of .
However, building on ideas of Thurston, Walsh has showngbséntial surfaces which
are not fibers or semi-fibers can be spun-normalized, usiatacteristic submanifold
theory Wal]. Despite this, some key algorithmic questions remain snemed for
spun-normal surfaces. Forinstance, widrhas one boundary component, do all the
strict boundary slopes arise fromertexspun-normal surfaces which are also essential?
For an ordinary triangulation d¥1 (which will typically have more tetrahedra than an
ideal one), the answer is ye3§ Theorem 5.3].

2.3 Ends of spun-normal surfaces

We now describe how a spun-normal surface gives rise to aeggopmbedded surface
in M, closely following Sections 1.9-1.12 ofiij1]. For notational simplicity, we
assume thaM has a single boundary component. Llebe the vertex of7, and
consider a small neighborhodd, of v bounded by a normal torus, consisting of
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one normal triangle in each corner of every tetrahedrofd inWe can assume th&,
andS are in general position and thil, meets only normal triangles &.

We put a canonical orientation on the curvesSoh B, as follows. First, triangulate
N, by taking the cone tw of the triangulation ofB,. If n is a normal triangle of
S meetingN,, its interior meets exactly one tetrahedrax§ in N,. We orientn by

Figure 2.4: Orienting SN B, . Notice thatS meets the triangle dB, in at most two of
the three possible types of normal arcs.

assigning+-1 to the component oA \ n which containse. This induces a consistent
transverse orientation for each componengof B, as shown in Figur@.4.

By Lemma 1.31 of Till], we can also do a normal isotopy & so that all the
components o5N B, are nonseparating in the tor&s . If the components 06N B,
don't all have the same orientation, apply the proof of Lemix@l of [Till] to an
annulus between two adjacent components with oppositatatiens to reduce the
size of SN B,. Thus we can assume that all componentsSof B, have the same
orientation. It then follows from Lemma 1.35 dfi[1] that SN N, consists of parallel
half-open annuli spiraling out towand.

We now identify 7\ int(N,) with M. ThenS = SN M is a properly embedded
surface inM. Since we understan8n N,, it's easy to see that the isotopy type ®f
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Figure 3.1: The relationship between the shape parameters of the efigesasiented
tetrahedron ifH®. Our convention here agrees witBIPW] and [Til1, Section 2.2].

is independent of the choice of subl. (Here isotopies o8 are allowed to movéS
within OM; the isotopy class 08 with 93 fixed typically does depend on the choice
of Ny.) Thus, it makes sense to talk about the number of boundanpooents ofS
and their slope.

3 Deformation varieties

Asin Sectior2, let 7 be anideal triangulation of a compact oriented 3-manifdlevith
boundary a union of tori. Thurstormhu2] introduced the deformation variety(7)
parameterizing (incomplete) hyperbolic structures orfiMNtwhere each tetrahedron
in 7 has the shape of some honest ideal tetrahedrdfi*inThe deformation variety
plays a key role in understanding hyperbolic Dehn fillifidni2, NZ], and is closely
related to the PSIC-character variety ofry(M). Via the latter picture, ideal points
of D(7) often give rise to essential surfacesNh and spun-normal surfaces are the
natural way to understand this process. In this section ketek the needed properties
of D(7) from the point of view of Pun3 Til2] which contain the omitted details.

Suppose) is a non-degenerate ideal tetrahedrofilify which has an intrinsic orienta-
tion (i.e. an ordering of its vertices). Each edgevhas asshape parametedefined as
follows. We apply an orientation preserving isometrylt so that the vertices o\
are (Q 1, oo, 2) and so this ordering induces the orientationof The shape parameter
of the edge (D) is thenz, which lies inC \ {0,1}. Opposite edges have the same
parameter, and any parameter determines all the othergsasliked in Figure.1, or
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as encoded in
(3.2) Z1l-2=1 and zZZ' = —1.

Returning to our ideal triangulatiol , suppose it has tetrahedra. An assignment
of hyperbolic shapes to all the tetrahedra is given by a @aifC3)" which satisfies
n copies of the equation8.Q). Thedeformation variety [7"), also called theluing
equation varietyis the subvariety of possible shapes where we require iitiaddhat
the edge equationare satisfied: for each edge the product of the shape pananuéte
the tetrahedra around it is 1. This requirement says thabyperbolic structures on
the individual tetrahedra glue up along the edge.

BecauseD(7) ¢ C® satisfies the conditions coming fror8.), at a point ofD(7)
no shape parameter takes on a degenerate val{ie, @fco}. Consequently, a point
of D(7) gives rise to a developing map from the universal cavieto H?3 which takes
each tetrahedron of to one of the appropriate shape (see Len8rtsbelow). This
developing map is equivariant with respect to a correspantdolonomy representation
p. m1(M) — PSLC. In fact, there is a regular map

(3.3) D(7) — X(M) whereX(M) is the PSkLC-character variety ofr1(M).

This map need not be onto, see e.g. the last part of Sectiof [IDun3. However,

if M is hyperbolic and no edge df is homotopically peripheral, then the image is
nonempty. In particular, it contains a 1-dimensional itreille component containing
the discrete faithful representation (M) — PSL,C coming from the unique oriented
complete hyperbolic structure dvi.

3.4 Remark InLemma 2.2 ofTil2], the existence 0f3.3) is predicated on the edges
of 7 being homotopically non-peripheral, whereas this coadiis not mentioned in
[Dun3. Indeed it is not necessary to restrit, but as pung is terse on this point,
we give a proof here of:

3.5 Lemma For any triangulatiori , a point inD(7) gives rise to a developing map
M — HZ3, and hence a holonomy representatiafM) — PSLC.

In fact, the proof will show that iD(7") is nonempty, then a posteriori every edgeZin
is homotopically non-peripheral, meshing with Lemma 2.2T02]. A more detailed
proof of a generalization of Lemn®&5is given in [ST].

Proof LetN = M\ oM which we identify with the underlying space @f minus the
vertices. Looking that the universal coverf we seek a map

d: N — H3
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which takes each ideal simplex N to an ideal simplex offl® with the assigned
shape (in particular, we are not yet trying to define the mapfatdity). Let N* be N
minus the 1-skeleton df , which deformation retracts to the dual 1-skeletoryafin
particular,w1(N") is free, and universal covés of N* consists of tetrahedra with their
1-skeletons deleted, arranged so the dual 1-skeleton ifiaite tree. Thus itis trivial
to inductively define a map

d: U—H®

which takes what's left of each tetrahedronurto a correctly shaped ideal tetrahedron
in H3 with its edges deleted. L&" be N minus the lifted 1-skeleton of . Then we
have coverd) — N — N°. The coverN' — N* corresponds to the normal subgroup
I" of m1(N") generated by the boundaries of the dual 2-cell§ ¢fone corresponding
to each edge. The condition that the shape parameters hagegprl for each edge
mean that is invariant under the deck transformation correspondinthé boundary
of a dual 2-cell; hencel descends to a mag of N* = U/T to H3. The same edge
condition also means that extends over the deleted 1-skeleton to the desired map
d: N — H3. (This is perhaps easier to understand if one only wantsdiresponding
representation: the holonomy representatiafN’) — PSL,C for d clearly has the
boundary of each dual 2-cell in its kernel, and thus factorsugh to a representation
of m1(N).)

Now that we haved: N — H?2 in hand, it is not hard to extend it to a continuous
map from the end-compactificatioN of N to H = H3 U & . This gives a pseudo-
developing map in the sense @yinl, Section 2.5], and a posteriori certifies that the
edges of7 are homotopically non-peripheral, since they go to infigiedesics under
d which have two distinct limit points i€, . O

3.6 Ideal points and spun-normal surfaces

We now describe the connection betwee(i/) and essential surfaces M, which
has its genesis in the work of Culler and Shalen on the claraatiety [CS CGLY.
WhenM has one boundary component, a geometric compone{6) has complex
dimension one, and it is common that all irreducible comptmef D(7) are also
curves. Thus for simplicity we focus on an irreducible cuiYe— D(7); for the full
story of ideal points as points in Bergman’s logarithmicitiset, seeTil2].

As D is an affine algebraic variety, it is not compact. l2tbe a smooth projective
model forD, which in particular is a compact Riemann surface togethtr awational
mapf: D — D which is generically 1-1. Aideal pointof D is a point ofD wheref
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is not defined. For each edge of a tetrahedroffi jnthe corresponding shape parameter
z gives an everywhere-defined regular functmnD — PX(C). From @.2), it is easy

to see that at an ideal point, the three shape parameterdvaratgtrahedron are either
(zZ,Z") = (0,1,00) (or some cyclic permutation thereof), or all take on valires
C\{0,1}.

We next describe how to define from an ideal pajnbf D a spun-normal surface
S(¢). For each tetrahedroi of 7', we label each edge by the order of zero of the
corresponding shape parameteg gpoles count as negative order zeros). For instance,
in Figure 3.1, if z has a zero of order 2 &, then the formulae fo and Z’ mean
that the edges of\ are labeled as shown in Figugl(b). In general, the labeling
associated tg similarly arises as the edge shifts of a unique spun-noricalne in A.

In the case just mentioned, this is shown in Fig2i#a); in general, ifn is the largest
order of zero of the shape parameters, ti%f) N A hasn quads which are disjoint
from the edges whose shape parameters are£l dthat these local descriptions of
S(¢) actually give a spun-normal surface can be seen as folldvegus on an edge

of 7, and letz, ...,z be the shape parameters of the tetrahedra around it. Now on
D(7) and hence o we have[[z = 1, and taking orders of zeros turns this into the
Q-matching equation for that edge, namely that the sum oftititsss 0.

Before addressing the question of whg(g) is essential, we mention that there is a
closely related construction of Yoshidéds] which also associates a surface to an ideal
point of D; see Segermarsg] for the exact relationship between these two surfaces.

3.7 Ideal points and essential surfaces

Culler and Shalen showed how to associate to an ideal poititeotharacter variety
X(M) an essential surface via a non-trivial action on a t@§] However, not every
ideal point¢ of D(7) gives rise to an essential surface, as sometimes ideatspufin
D(7) map to ordinary points ak(M). We now describe how wheg(¢) has non-empty
boundary (in the sense of Secti@r8) then it does come from an ideal point ¥{M).

Asthisisthe key condition, we first sketch how to determimetherS(¢) has nonempty
boundary along a componefitof OM or instead consists of infinitely many boundary-
parallel tori; for details seeTjl2, Section 4] andTill, Sections 1 and 3]. For an
elementy € 71(JT), here is how to calculate the intersection number betweand
09(&). For a pointD(7), the holonomy in the sense dftiul] and [NZ] is given by

h(y) = z1z, - - - z¢  for certain shape parametezs
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View the components 00S¢) on T as all oriented in the same direction, which
direction being determined by ho®(¢) is spinning out toward the boundary (s@d1,
Section 3.1]). Then the algebraic intersection numbey @ind 0S(¢) is the order of
zero ofh(v) at £. In particular, by taking a basis far;(T), it is easy to check whether
S(¢) has boundary and, if so, what the slope is.

We now turn to the question of whe3{¢) can be reduced to an essential surface, in the
following sense: asurfac®is said taeduceo S ifthere is a sequence of compressions,
boundary compressions, elimination of trivial 2-spheeex] elimination of boundary-
parallel components which turrSinto S. We then say tha8 is areductionof S.

It will be convenient later to consider more broadly spumpnal surfacesS whose
Q-coordinates are a rational multiple of thoseSgf); we call suchS associatedo &.

3.8 Theorem Let ¢ be an ideal point of a curv® C D(7). Suppose a two-sided
spun-normal surfac& associated t@ has non-empty boundary with slope on a
componenil of OM. Then any reduction d& has nonempty boundary alofigwith
slopec:. In particular,S can be reduced to a non-empty essential surfadé imhich
also has boundary slope.

Proof This will follow easily from [Til2, Section 6], but to this end we note that we
have defined “spun-normal” slightly differently thafilR]. In particular, what we call
spun-normal with non-empty boundary he calls simply spamaal. Moreover, in
[Til2] the surfaceS(¢) is made two-sided simply by doubling i@-coordinates if it's
not; we adopt this convention for this proof.

First, we reduce from an arbitrar$y associated t¢ to §¢) itself. Let § be the
spun-normal surface corresponding to the primitive latiioint on the rayR, - S,
i.e. S = (1/9)S whereg is the gcd of the coordinates & If S is two-sided, then
both S and §(&) are simply a disjoint union of parallel copies &, and thus we can
focus ong(¢) instead. Should have a one-sided component, therSeend S(&) are
two-sided, they are both integer multiples of ), and again we can focus &{¢).

We now relateS(€) to the Bass-Serre tree associated to an ideal point of the®S
character varietyX(M). Following Section 5.3 ofTil2], we use%y to denote the
simplicial tree dual to the spun-normal surfé®g). (Unlike [Til2], we requireS(£) to
have infinitely many triangles in every corner of every tegdron; hence the dual tree
to S(¢) is Ty rather than thé&s of Section 5.2 of Til2].) LetN = 7\ 79 = M\ oM,
and letp: N — N be the universal covering map. (Note: duris calledM in [Til2].)
There is an equivariant map N — Sy where the preimage of the midpoints of the
edges inZy is preciselyp~(S(¢)).
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Now fix a simple closed curved € 7w1(T) which intersectsa exactly once. As
discussed above, we can oriefitso that the holonomy(3) has a pole at. By
Proposition 6.10 ofTil2], there is an associated ideal po#itof a curve inX(M) so
that there is ar;(M)-equivariant map fron€y to the simplicial tre€T,, associated to
¢'. In particular, sincen(5) has a pole, the action gf on T,/ is by a fixed-point free
loxodromic transformation. Because of the m&p — T/, it follows that 3 also acts
on ¥y by a loxodromic.

As in Section2.3, we identify M with a suitable subset di, and henceforth abuse
notation by denotingsn M by S. By restricting the domain, we get th&tis dual to
the equivariant map: M — Ty. Now if S is a reduction ofS, we can modifyf so
that thatS is still dual toTy. If TN S were empty, it follows thatr;(T) acts on%y
with a global fixed point. Thus sincé acts on¥y as a loxodromic, we have th&
has nonempty boundary aloig as claimed. O

4 ldeal points of varieties of gluing equation type

In this section, we consider a class of complex algebraitetias that arise from
the deformation varieties of the last section by focusinga@ingle shape parameter
for each tetrahedron. Such varieties were first considesedhurston ThuZ and
Neumann-ZagierNZ].

We start with a subgroup. ¢ Z2"1, which we call dattice even when its rank is not
maximal. LetC* = C\ {0,1}, and consider the variety(A) c (C*)" of points
satisfying

(4.) 2% -2 1 -2)% (- z)™ = (-1

forall (a1,...,an,b1,...,bp,¢) € A. Sincez and (1— z) are never 0 forz € C*,
these equations always make sense even when gporeb; is negative. Henceforth,
we assume that rankj < n— 1, and call such &(A) avariety of gluing equation
type In the final application, the variety (A) will be a complex curve and hence
rankA) =n—1.

4.2 Remark Replacing the lattice\ with an arbitrary subsef of Z?"*1 does not
broaden this class of examples, sin¢g) = V(span((2) ). Conversely, when testing
whether a point is inV(A), it suffices to consider only the finitely many equations
coming from a givenZ-basis forA. More precisely, letM(A) be a matrix whose
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rows are a basis foA, and write it as

(4.3) M(A)( A B c)

where A andB arer x n matrices, andt is anr x 1 column vector. Thetv(A) can
be described by4(1) for all rows @y, ..., a, by, ..., by, c) of the matrixM(A).

4.4 Example As in Section3, suppos€7 is an ideal triangulation of a manifoli,
and consider its deformation varieB(7) c C3", wheren is the number of tetrahedra
in 7. If we fix a preferred edge in each tetrahedron, then its shpgrameterz
determinesz and z’ as noted in Figure.1; using these expressions fgr and Z’
turns each edge equation into one of the fodrl) Thus projecting away the other
coordinates gives an injection(7) — (C*)", and the image variety is given by
V(A) for someA. The number of edges &f is equal ton, but if D(7") is non-empty
then we argue that the rank of is n — k, wherek is the number of components of
OM.

First, the matrixM(A) minus its last column has rank= n — k; this is Proposition
2.3 of [NZ] when M is hyperbolic, and Theorem 4.1 and remark following it el

for the general case. Thus has a basis where of the vectors have nonzemor b

components, and the rest have only theomponent being nonzero. SinE¥7) is

assumed nonempty, all of the latter must correspond to thetem 1= 1 rather than
1 = —1 and hence may be omitted. Thwusis defined by a lattice\ of rankr. As

r < n-—1, the projectionv of D(7) is indeed a variety of gluing equation type.

4.5 Remark F. Rodriguez Villegas pointed out to us thatA) is the intersection of a
toric variety with an affine subspace. PreciselyCif = C \ {0} then it is isomorphic
to the subspace of{')>"+1 cut out by

(4.6) 72222 AwwR...owhu® =1 forall (ag,...,an,bi,...,bn,0) € A.

together withu = —1 andz +w; = 1 for 1 < i < n. This seems potentially very
useful, though we do not exploit it here.

4.7 ldeal points

LetC* = C\ {0} andC" = C\ {1}. Now in (C*)", consider the closur&(A) of
V(A) in (equivalently) either the Zariski or the analytic (n@vtopology. Points of
V \ V will be calledideal points In the context of Examplé.4 and Sectior8.6, these
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are images of ideal points of D(7") where the preferred shape parameters are either
0 or nondegenerate &t By choosing the shape parameters appropriately, any ideal
point of D(7") gives an ideal point of the correspondis{A). The individual ideal
points of D(7") can be found by analyzing the local structure, typicallyhy singular,

of the ideal points of th&/(A).

So returning to the context of a geneMl= V(A), we seek to understand the local
structure ofV near an ideal poinp. In particular, we need to find a holomorphic map
from the open unit dis®© C C of the form

(4.8) f: (D,0)— (V,p) wheref(D\ {0}) C V.
Takingt as the parameter dn, we have
(4.9) 7 = thu(t)

whered; > 0 andu; are holomorphic functions o® with u;(0) # O for all i, and
u(0) # 1 whend, = 0. As always, eachy; can be represented by a convergent power
series inC[[]].

The lattice A constrains the possibilities fat = (dq, do, . . . , dy) as follows. Consider
the equations coming from a mati(A) as in @.3), and substitute4(9) into (4.1). If
we sendt — 0, it follows thatd is in ker(A). This motivates:

4.10 Definition A degeneration vectais a nonzero elemert € ker(A) N (Z>o)". It
is genuineif it arises as in4.9) for some ideal point o¥/(A).

4.11 Remark If V comes fromD(7) as discussed in Exampled, then degeneration
vectors correspond precisely to tkecoordinates of certain spun-normal surfaces as
follows. In a tetrahedron with a preferred shape parametave say thepreferred
quadis the one with shift+-1 along the preferred edge; equivalently, the preferred
quad of the tetrahedron labeled as in FigB8ré&is shown in Figure2.1(a). Now, in
the notation of Sectio, consider the fac€’ of C(7) where all non-preferred quads
have weight zero. The relationship described in Secligbetween edge equations
and Q-matching equations shows that if we focus on the subspapeetdrred quads,
the Q-matching equations are simply given by tAepart of theM(A) matrix. Thus
degeneration vectors are precisely the integer points’paind each corresponds to a
spun-normal surface. So whehis genuine, it is the)-coordinates of a spun-normal
surfaceS(d) associated to an ideal poigtof D(7). (Technical aside: we have not
insisted thaff in (4.8) is generically 1— 1, thusd may be an integer multiple of the
vector of the orders of zero of theat the corresponding ideal poigt Hence,S(d)
may be some integer multiple &¢).)
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Thus the key question for us here is when a given degeneratictor is genuine. The
following is the main technical tool fromKJab], and underlies our Theorenisl and
1.5

4.12 Proposition Suppose a degeneration veatois totally positive, i.e. eacti, > 0.
If A has rankn — 1, thend is genuine.

We include a detailed proof of this in our current framewag part of a more general
discussion of which degeneration vectors are genuine.

4.13 Genuine degeneration vectors

Fix a degeneration vectar which we wish to test for being genuine. For convenience,
we reorder our variables so thdt = 0 for preciselyi > k > 1. Taking our lead from
the substitution in4.9), and arbitrarily foldingu; into t, we consider

7w C" = C" givenby € p,...,u) — (%, t%u,, ... t%uy,)
We setW(A, d) to be the preimage of underm, regarded as a subvariety of
U=r1(C")") = (@C)"\ {t* = L,t%y =1}
Equivalently, using4.9), we seeW(A, d) is the subset o cut out by
(4.14) U2 U1 — 9P (L — (%up)®2 - (1 — ) = (—1)°

for (a,b,c) € A. To examine whethed is genuine, we need to allowto be zero. So
consider

U=Cx (€)1 {t% =1,thy =1}
and letW(A, d) be the closure ofV(A, d) in U. Defining
Wo(A, d) = W(A,d) N {t =0},
we have a simple test for whahis genuine:

4.15 Lemma If d is genuine, thenNo(A,d) is nonempty. Almost conversely, if
Wo(A, d) is nonempty then a positive integer multipledbfs genuine.

The reader whose focus is on Theorelrisandl1.5may skip the proof of Lemmé.15
as the proof of PropositioA.12does not depend on it.
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Proof First suppose thad is genuine. Consider the analytic functiongt) in (4.9);
by replacingt with t(ul(t))_l/dl, which is analytic neat = 0, we may assuma;(t)
is the constant function 1. Now, for smalt~ O the function

t— (t,ua(t), us(®), . . ., Un(t))

has image contained W(A, d). Thus by continuity, the poinf0, ux(0), . . . , u,(0)) is
in Wo(A, d), as needed.

Now suppose insteag is a point of Wo(A, d). Dropping A andd from the notation,
we argue it is enough to show

4.16 Claim There is an irreducible curv&é C W containingp on whicht is noncon-
Stant.

If the claim holds, letC be a smooth projective model f&&, with f: C — C the
corresponding rational map. If we taketo be a holomorphic parameter @which

is 0 at some preimage @, thenw o f o s shows thaim- d is a genuine degeneration
vector, wherem > 0 is the order of zero of the-coordinate off ats= 0.

To prove the claim, lely be an irreducible component &/ containingp. SinceW
was defined by taking the closure 0f in U, it follows thatt is nonconstant oiY. If

j =dimY > 1, we will construct an irreducible subvarie¥y of dimensionj — 1 which
containsp and on whicht is nonconstant. Repeating this inductively will produce th
needed curve.

As Y is irreducible, andYp = Y N {t = O} is a nonempty proper algebraic subset, it
follows that dimYp = j — 1. There are coefficients; € C so that the polynomial

0= ai+ azlz + agUz+ -+ anln

is nonconstant orveryirreducible component ofy, and whereg(p) = 0. (If we
temporarily viewp as the origin of our coordinate system, then any linear fonet
whose kernel fails to contain the linear envelope of any camept of Yo works for
g.) Now setY’ = Y N {g = 0}, which containsp and has dimensiop— 1 asg is
nonconstant orYY. MoreoverY' N {t = 0} = Yo N {g = 0} has dimensiorj — 2
asg is nonconstant on every component¥gf. Thus an irreducible component uf
containingp has dimension — 1 andt is nonconstant on it, as needed. |
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4.17 The first-order system

Suppose thatt = (0, 32, 33, ..., 3n) is a point of W(A, d). Substitutingt = 0 into
(4.14 we get thati satisfies

(4.18) 2B — B> (L - Ba)™ = (—1)° forall (a;b;c) € A.

We call the union of all such equations, together with 0, thefirst-order systemand
denote the corresponding subset{6f x (C*)*~2 x (C*)"~k+1 by Wy(A, d). Notice
thatWo(A, d) containsWy(A, d), but is not a priori equal to it, as the latter may contain
points which are not in the closure @W(A, d). As the former is easier to work with in
practice, we show

4.19 Lemma SupposeWy(A,d) is nonempty and has dimension 0. Then some
multiple ofd is genuine.

As we discuss later, in small examples this condition is éassheck using Gibner
bases. As with Lemmd.15 on which it depends, it is not actually used to prove
Proposition4.12

Proof Consider the subvariety of U cut out by the equationg (14) coming from the
r rows of a fixed matrixM(A) defining our original variety/(A). ThenW contains both
Wo(A, d) andW(A, d). Let p be a point ofWy(A, d), andY an irreducible component
of W containingp. As W is defined byr < n— 1 equations and ditd = n, the
variety Y must have dimension at least 1. XS0 {t = O} is contained in the finite
setWp(A, d), it follows that all but finitely many points o¥ are inW(A,d). Hence
p € W(A,d), and Lemmat.15implies that a multiple ofl is genuine. |

We now have the needed framework to show Propos#tidi2

Proof of Proposition 4.12 Let d be a totally positive degeneration vector. By hypoth-
esis, the submatrid of M(A) has rankn — 1, and so in particulaM(A) hasn — 1
rows. We reorder the variables so that the ma#ixyotten by deleting the first column
of A also has rank — 1.

To showd is genuine, we start by examining the solutiofg(A, d) to the first-order
equations. As altl > 0, these equations are simply= 0 and

(4.20) B0 - -+ i = (—1)¢ forall (a;b;c) € A.
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where we require each € C*. Note that any solution if©"~? to the linear equations
(4.21) aXo +agXs+ -+ -+ apXy = cmi forall (a;b;c) € A

gives rise to one 0f4.20) via the mapC"~! — (C*)"~! which exponentiates each
coordinate. Since rank() = n — 1, the equations4(21) have a solution and hence so
do (4.20.

We will use the inverse function theorem to show tldais genuine. To set this up,
let W be the subvariety of" with coordinates t{us, Us, .. ., U,) cut out by then — 1
equations4.14) coming from rows of the matrit (A). Fixa point3 € Wy(A, d) € W,
and letJ be the (i — 1) x n Jacobian matrix of these equations/at Let J' be the
submatrix ofJ gotten by deleting the first column (which correspond@tét). If J'
has rankn — 1, then the inverse function theorem implies thitis a smooth curve at
(. Moreover, this curve is transverse {6 = 0} since rankl’) = n— 1 forces any
nonzero element of kel = Tp\7v to have nonzero first component.

Thus it remains to calculatd’. As all d > 0, taking 9/0u; of (4.14) at 5 gives
aj(—1)°/G;. Thus the columns of’ are nonzero multiples of those &f, and hence
rank@’) = rank@®’) = n— 1 as needed. Thusis genuine. O

4.22 Examples

Both hypotheses of Propositighl2are independently necessary, even for the weaker
conclusion that the first-order equations have a solutioarekire two examples with
V(A) # 0 which illustrate this.

First, forn = 2 consider the span of (0,1; 1, —1; 1); here V(A) is given by a single
equation

(1-2)

4.23
(4.23) 1 2

-1

which defines the nonempty plane coriz, = 1. For the degeneration vector
d = (1,0), the first-order system is

B2

1-062

which is equivalent to &= —1 and hence has no solutions. & not genuine, even

thoughA = (0, 1) has maximal rank. This shows the total positivitycbis necessary
for Proposition4.12

—1,
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Second, again fon = 2, consider the span of (0,0; 1, 1; —1). ThenV(A) is again
a nonempty plane conic, and is given by

(4.24) 1-z)1-2)= -1

Here, anyd is a degeneration vector sinéde= (0,0), so taked = (1,2). Then the
first-order system is simply £ —1 which has no solutions. Sbis not genuine, even
thoughd is totally positive. This shows that the condition that rgidkis maximal is
also necessary for Propositidnl 2

5 Proof of Theorem1.1

In this section, we prove

1.1 Theorem Let 7T be an ideal triangulation of a compact oriented 3-manifdid
with OM a torus. Suppos8 is a vertex spun-normal surface Hh with non-trivial
boundary. IfS has a quad in every tetrahedrondf thenS is essential.

The requirement thabM is a single torus, rather than several, is simply for nota-
tional convenience; the proof works whene&has at least one non-trivial boundary
component.

We first rephrase Theoreflin the form in which we will prove it. Throughout this
section, let7 be an ideal triangulation as in Theorelrl. Recall from Sectior? if

7T hasn tetrahedra, then th®-coordinates of a spun-normal surface are given by a
vector in R3" that lives in the linear subspadg7) of solutions to theQ-matching
equations. Specifically, each spun-normal surface givésteger vector in the convex
coneC(7) = L(T) N R,

Suppose we fix a preferred type of quad in each tetrahedrasty awchoice will be
denoted byQ. Let IR{”Q C R3" be the corresponding subspace where all non-preferred
quads have weight 0. Defing7,Q) = L(7) N Rg andC(7,Q) =C(7)nN Rg. We

will show the following:

5.1 Theorem Supposeéis a spun-normal surface with non-empty boundary which has
aquad in every tetrahedron. L@tbe the corresponding quad typedimL(7,Q) =1,
thenS is essential.



Incompressibility criteria for spun-normal surfaces 23

Proof of Theorem 1.1from Theorem 5.1 Let S be a vertex spun-normal surface
which has a quad in every tetrahedron; we need to show thaL @ Q) = 1. Since
C(T)=L(T)n Ri”, a face (of any dimension) &Z(7") corresponds to setting some
subset of the coordinates to 0. Thus sii&is a vertex solution, there are coordinates
Ui so thatC(7) N {u; = --- = ux = 0} isthe rayR - S. Let Q be the unique quad
type compatible withs. As S has nonzero weight on every quad@) we must have

(5.2) Ry -S=C(T)N{ui=0|u ¢Q} =C(T)NRy=C(T,Q)

Next we argue thaC(7,Q) = L(7,Q) N Ri” has the same dimension &§7, Q)
itself. This follows since all]Rig—coordinates ofS are positive, and thus all nearby
points toSin L(7,Q) are also inC(7,Q). Thus dimC(7,Q) = dimL(7,Q). As
dimC(7,Q) = 1 by (6.2), the fact that din€(7,Q) = dimL(7,Q) shows that the
hypotheses of Theorefnlimply those of Theorerb.1 (In fact, the hypotheses of the
two theorems are equivalent.) O

We break the proof of Theorem1into two lemmas.

5.3 Lemma SupposeS is a spun-normal surface with a quad in every tetrahedron.
Suppose thadim L(7, Q) = 1 for the quad typ&) determined byS. Then there is an
ideal point¢ of D(7) so thatS is associated t6.

5.4 Lemma SupposeS is a connected, two-sided, spun-normal surface with a quad
in every tetrahedron. Suppose thtan L(7, Q) = 1 for the quad typ&) determined
by S. If every reduction ofS has nonempty boundary, théns essential.

We establish these lemmas below after first deriving thermadrom them.

Proof of Theorem 5.1 First, we reduce to the case tHats two-sided and connected.
Let & be the spun-normal surface corresponding to the primitatiice point on the
ray R, -S,i.e. S = (1/g)Swhereg is the gcd of the coordinates 8f The surfaces
must be connected, since if not it would be the sum of two sedanC(7, Q) which

is justR, - Ssince dimL(7,Q) = 1. Now, the surfacé& is essential if and only i&

is, so we shift focus t&. If & is one-sided, then by definitio® is essential if and
only if 2 - & is, and we focus on the latter (which is still connected). Stue have
reduced to the case th&tis connected and two-sided.

Now by Lemmab.3, there is an ideal poin§ of D(7) so thatS is associated t@.
By Theorem3.8 the surfaceS can be reduced to a nonempty essential surféice
with nonempty boundary. By Lemnta4, the surfaceS = S and S is essential, as
required. |
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Proof of Lemma5.3 In each tetrahedroh of 7, focus on the edge which has shift
+1 with respect to the quad that is &1 By Example4.4, if we focus solely on the
corresponding shape parameters, this expresses the @famnvariety D(7) as a
variety V(A) of gluing equation type. Moreover, as discussed in Rerdaltld, the
degeneration vectord of V(A) correspond precisely to the spun-normal surfaces
in C(7,Q). Indeed, theQ-matching equations cutting owt(7, Q) from ]Rig are
equivalent to those given by thie submatrix ofM(A).

Let d be the degeneration vector corresponding to the suSa&ince dinL(7,Q) =
1, by the connection above we must have r@)ké n — 1. Thus by Propositiod.12,
the degeneration vectaris genuine, and so by Rematkl1the surfaceSis associated
to some ideal poin of D(7), as needed. O

Before proving Lemmd.4, we sketch the basic idea, which was suggested to us by
Saul Schleimer and Eric Sedgwick. $fcompresses, do so once to yield a surf&ce
which is disjoint fromS. Now normalizeS to S’; while this may result in additional
compressions, the surfa& is nonempty by hypothesis. The original normal surface
S acts as a barrier during the normalization $f[Rub], and soS’ is disjoint from

S. Thus the quads I8’ are compatible with those @&. Now as dinL(7,Q) = 1,

we must have thag = S’ and so the initial compression was trivial and helxes
essential.

If S was an ordinary (non-spun) normal surface, this sketch dvasksentially be
a complete proof. Unfortunately, the spun-normal casedhices some additional
technicalities, particularly as we are not assuming Mdt hyperbolic, and hence we
can't appeal directly to\jval] to ensure tha8 can be normalized at all.

Proof of Lemma5.4 As in Section2.3, we pick a neighborhood\,, of the vertexv

of 7 so thatS meets the toru8, = 0N, in nonseparating curves with consistent
canonical orientations. We now identify with 7"\ int(N,). Except for the very end
of the proof, we will focus or5SN M and so denote it simply b$.

If Sis not essential as the lemma claims, there are three plitfesibi

(@) Shas a genuine compressing di3c
(b) Sisincompressible but has a genuilecompressiorD.
(c) Sis boundary parallel.

Case ¢) is ruled out sinces can be reduced to an essential surface. In dgsednsider
the arca = D N OM. If the end points oty are on the same component @®, then
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Figure 5.5: Some normal discs in a truncated tetrahedron, with a chdicgentation for
the arcs meetingM. Comparing with the copy of Figur2.4 at right, we see the quad
can be spun but not the lower triangle.

the incompressibility ofS forces D to be a trivial 9-compression. When instead
joins two components ofM, incompressibility means that the connected surface
is an annulus. But then compressiSgalong D gives a discS whose boundary is
inessential ifM. This contradicts that that every reduction®yields a surface with
nonempty boundary.

Thus it remains to rule ou]. Now let D be a compressing disc f@. Compress
Salong D and slightly isotope the result to yield a surfa8edisjoint from S. Now
further compress and otherwise redusgin the complement of to give a surface

S which is disjoint fromS and essential in its complement. By hypothe§s,has
non-empty boundary. 1§ is not connected, replace it by any connected component
with non-empty boundary.

Now M has a cell structurd coming from7 consisting of truncated tetrahedra, and
note thatSis normal with respect t@ . Our goal is to normaliz&, in 7 and then spin
the result into a spun-normal surface. However, not everynabsurface in 1, 7)
can be spun. The boundary curves need an orientation whisfiesithe condition in
Section 1.12 of Til1], and that orientation must be compatible with the “tilt” thie
normal discs (see Figue5). To finesse this issue, we isotofg in the complement
of S so thatoS, consists of normal curves, each of which lies just to thetpesside

of a parallel curve imMS.

Now normalizeS, with respect to7 to yield a surfaceS; (see e.g.¥at, Ch. 3]). As
mentioned above, this normalization takes place in the ¢emgnt ofS. A concise
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Figure 5.6: There are at most two kinds of normal arcsdSs, labeled herea andb.
From the their position relative to the surfaBgany normal disc of5; adjacent to0S;
must be parallel to those i8.

way of seeing this is to cu¥l open alongS to yield M’ with a cell structureT’. If we
normalizeS, in M’ with respect taZ’, the result is necessarily normal with respect to
T . Moreover the final surface is still disjoint from the two é@p of Sin oM’ since
normalizing never increases the number of intersectionbefurface with an edge.

The normalization process may resultin compressions eroéductions to the surface.
However, sinces; is essential inM’, it follows that S has the same topology &.

(If M’ is irreducible, thenS, and & are of course isotopic.) Focus on a component
of OM N M’, which is an annulu®\. The components ofS; in A are all normally
isotopic, and moreover intersect any 2-dimensional fac& ot most once (see the
right half of Figure5.5). Thus the firsto-compression that occurs while normalizing

S must join two distinct boundary components, reducing tie ttumber of boundary
components. AS andS; have the same number of boundary components, there can
be nod-compressions during normalization and@® and0S; are setwise the same.

Focus now on one normal arg in 9S3. By construction, it lies just to the positive
side of a normal are¥’ of 9S. If n is a normal disc ofS; with « as an edge, from
Figure 5.6 we see that must be parallel to the normal disc &falong o’. Hence,
we can build a spun-normal surfa& from S; which is disjoint fromS by attaching
half-open annuli inN, which are combinatorially parallel to those Nf, N S.

Now S andS are disjoint spun-normal surfacesfand hence they have compatible
quad types. ThuS§ is in L(7,Q). We know that bothS and S are nonempty, two-
sided, connected, and not vertex linking tori. Hencd @&, Q) is one dimensional,



Incompressibility criteria for spun-normal surfaces 27

the Q-coordinates ofS and S must be the same. Hence they are normally isotopic
and so they have the same topology. This contradicts thataveed with a genuine
compression o8, ruling out (a). Hences is essential. O

6 Slopes of alternating knots

In this section, we prove Theorefn3 by showing that the alternating knot 0=
10a78 has nonintegral boundary slopes, namely3Ll&nd —10/3. Additional nonin-
tegral slopes of alternating knots are given in Tahle Let M denote the complement
of 10;9; asM is amphichiral, we simply show that 18 is a boundary slope.

To apply Theorem..1, we need to specify an ideal triangulati@gnwith a spun-normal
surfaceS and check:

(@) The ideal triangulatio is homeomorphic to the complement ofz4@nd the
peripheral basis that comes wifh is the standard homological one.

(b) The surfaceS is a vertex surface with a quad in every tetrahedron. In the
reformulation of Theorenb.l, the former is equivalent to di(7,Q) = 1,
whereQ is the quad type determined I3/

(c) The boundary slope &is 10/3, which can be done as described in Seclah

The triangulation7 we use has 14 tetrahedra and is given by the file_.790
certificate.tri” available atDG]. The surfaceS has the same quad type in each
tetrahedron, namely the one disjoint from the edges 01 anth Z3gure 3.1, which
also corresponds to the shape degeneration0. The number of quads is given by

$=1(2,3,3,3,2521,4,1,3,1,33) € Ry

Now (a) above is easily checked using SnapRYPW]. The information needed for
(b-c) comes directly from thé part of the matrixM(A) describing the gluing equations
for 7 together with the corresponding part of the cusp equatidasplicitly, using
SnapPy within Sage5AGH| the following suffices to confirm Theoreth3

sage: from snappy import *

sage: M = Manifold("10_79-certificate.tri")

sage: N = Manifold("10_79")

sage: M.is_isometric_to(N, return_isometries=True) [1]
0->0

[1 0]

[0 1]

Extends to link
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10a8: —20/3 11a275: —20/3 12a120: —52/3
10a78: —10/3,10/3  11a281: —28/3 12a125: —10/3,-2/3, 2/3
10a95: 43 11a284: —2/3 12a126: —2/3
11a17: -2/3 11a296: 343 12a127: —22/3
11a19: —2/3 11a299: —4/3 12a132: —2/3
11a25: —2/3 11a300: —28/3, 34/3 12a134: 23

11a38: 103 11a301: —22/3,34/3 12a154: —20/3
11a49: —28/3 11a313: —20/3 12a155: 43
11a102: —16/3 11a314: —2/3 12a162: —20/3
11a113: 23 11a320: —46/3, —22/3 12a177: 103, 22/3
11a125: —34/3 11a321: 203 12a186: 343
11a127: —40/3 11a323: 263 12a188: 23
11a129: 403 11a326: 223, 28/3 12a211: 23
11a130: —34/3 11a329: —4/3 12a222: —23/2
11a136: —34/3 11a345: —10/3 12a223: —10/3
11a147: —34/3 11a349: 343 12a224: —27/2
11a151: 343 12a45; 263 12a233: —23/2
11a152: —40/3 12a46. 72, 22/3 12a264: —40/3
11a156: —4/3 12a52: —52/5 12a267: —28/3
11a157: 403 12a53: —32/3 12a276: —20/3
11a158: 283 12a57: 163 12a284: 43
11a162: 343 12a59: —8/3 12a292: 273
11a164: 343 12a63: —8/3 12a293: —14/3
11a168: —10/3 12a65: 263 12a294: 343
11a169: 273 12a70: 343, 46/3 12a296: —8/3
11a171: —34/3 12a72: 343, 46/3 12a301: —22/3
11a217: 403 12a88: —52/3,-8/3,68/5 12a309: 223
11a218: 23 12a89: 343 12a311: —76/3
11a227: —2/3 12a91: —58/3, —8/3 12a315: —4/5,4/3
11a233: 283 12a93: —48/5 12a316:  3@5, 28/3
11a239: 2723 12a94: —32/3 12a317: 103
11a244: —2/3 12a100: 72 12a318: 465, 34/3
11a249: —20/3 12a101: 785 12a319: —13/2
11a251: —4/3 12a102: —32/3, 28/5 12a320: —52/3,-4/3
11a253: —4/3 12a105: —8/3 12a321: —40/3, —26/3, —8/3
11a255: 343 12a107: —32/3, 28/5 12a334: 163
11a256: —40/3,—-20/3 12a108: —52/3 12a337: 273
11a272: —10/3 12a109: 72 12a339: —40/3, —16/3
11a273: 2723 12a111: —58/3,-8/3 12a340: —64/3
11a274: —28/3,34/3  12al15: 785 12a344: —52/3,-27/2

Table 6.1: Some nonintegral boundary slopes of alternating knots,bered as infiT];
the first three are 149, 10,9, and 1Qgg in the standard tabléRol]. These were proven to
exist by Theoreni.1using triangulations with 14-23 tetrahedra.
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sage: data = M.gluing_equations(form="rect")
sage: gluing_data, cusp_data = datal:-2], data[-2:]

sage: A = matrix( [e[0] for e in gluing_data] )
sage: B = matrix( [e[1] for e in gluing_ data] )
sage: ¢ = matrix( [ [e[2]] for e in gluing_datal )

sage: cusp_holonomy_A_part = matrix( [e[0] for e in cusp_datal] )
sage: L = A.right_kernel(); L

Free module of degree 14 and rank 1 over Integer Ring

Echelon basis matrix:

[2333252141313 3]

sage: S = L.basis() [0]

sage: cusp_holonomy_A_part * S

(-3, 10)

7 Dehnfilling

We turn to the case of a 3-manifolld wheredW consists of several tofiig, T1, . .., Tp.
For k > 0, we pick a slopey on Ti. If we fix an ideal triangulatiornZ” of W, we
can consider all spun-normal surfac&svhose boundary slope oFy is either~y or

(. Equivalently, we consider surfac&where the geometric intersection of with
SN Tk is 0. By the discussion in Sectidh7, for eachk this requirement imposes
an additional linear condition on the col®&7) of spun-normal surfaces. We call
the resulting subcon€(7, {+«}) therelative normal surface space corresponding to
(+,71,---,7). This section is devoted to:

1.5Theorem Let W be a compact oriented 3-manifold whey&/ consists of tori
To, T1,..., Tp. LetS be a spun-normal surface in an ideal triangulatiorof W, with
nonempty boundary slopg, on eachTy. Suppose thab has a quadrilateral in every
tetrahedra ofl, and is a vertex surface @(7 ,{~1,...,7}). Thenyo is a boundary
slope o\W(-, 71, ..., )

Proof We consider the relative gluing equation varidd{7, {x}) obtained from
adding theb conditions that the holonomig(+y) of each~y is 1. For the Dehn filled
manifold M = W(-,v1,...,7p), the relative varietyD(7, {~}) is closely related
to the character varietX(M). However, while every point irD(7, {v}) gives a
representatiorp: w1(W) — PSLC, these representations do not all factor through
m1(M); the conditionh(~x) = 1 only gives thato(yx) is trivial or parabolic. However,
p(7) can only be nontrivial ith(a)) = 1 for every elementy € m1(Ty).
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As in Section4.11, we take the preferred shape parameten a tetrahedron to be
the one where the quad & has shift+-1. Then following Sectior.4, we consider
the varietyV = V(A) arising from D(7, {7«}) by focusing on the preferred shape
parameters. IfZ hasn tetrahedra, then the rank d@f is at mostn — 1 since there
aren — b — 1 equations coming frond(7") (by Section4.4) and also one equation
for each conditionh(~x) = 1 (by Section3.7). ThusV is indeed a variety of the
kind studied in Sectiod. Just as in Sectiod.11, the degeneration vectors fot are
precisely the spun-normal surfaces in the relative spa¢g, {~«}). Thus we can
apply Propositiort.12to see that the surfacgis associated to an ideal poiptof V.
Let f: (D,0) — (V,p) be an associated holomorphic map. For ekch 0, pick a
curve ax on Tg which meetsy in one point. Then asy is the boundary slope &,
the functionh(ay) o f has a nontrivial pole or zero at 0. In particular, we can feistr
the domainD of f so thath(ax) # 1 onf(D \ {0}). Then every point irf(D \ {0})
gives rise to a representation of(M). Thus we have found an ideal poiaitof X(M)
where tr p(ag)) has a pole and tp(vo)) = +2. The essential surface associated to
has boundary slopeyp, as needed. |

8 The 2-fusion link

Let W be the complement of the link in Figuie7. The manifoldW has a hyperbolic
structure obtained by gluing two regular ideal octahedra dabhsider a certain ideal
triangulation7 of W with 8 tetrahedra described in the file “2fusion-certificatée
available atPG]. As in Sectiong, we look at surfaces with the same quad type in each
tetrahedron, the one which corresponds to the shape degiemez — 0, and useQ

to denote this choice of quads.

One finds that the first part of the matf(A) = (A|BJc) is

1 0 -1 0 0 0 0 0

0 -1 0 1 0 0 0 1

-1 1 1 -1 0 -2 0 0

A— 0 0 0 0 0 0 0 0
- 0 0 -1 0 0 2 1 -1

0 0 0 1 -1 0 0 0

0 0 1 -1 1 0 -1 0

0 0 0 0 0 0 0 0

which has rank 5. Three vectors which spanket L(7, Q) are
S =(0,1,0,1,1,0,0,0)
$=(0,2,0,0,0,1,0,2)
$=(1,0,1,0,0,0,1,0)
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Thus onL(7,Q) = {&a1S + &S + a3Ss}, the condition definingC(7, Q) that the
original variables satisfy > 0 translates into having eael > 0. HenceC(7, Q) is
simply the positive orthant ib(7, Q) with respect to the basisS;, S, S3}. So we can
identify the projective solution spad®(7, Q) with the triangle spanned by the vertex
surfacess.

Now with the peripheral basis curves ordered,(\o, 111, A1, 12, A2), the A part of the
matrix specifying the cusp equations is

0 -1 0 0 0 O 0 0
-1 2 0 0 0 O 0 0
0 0 0 0 00 -1 -1
0 0O 0 0 0 O 0 -1
0 01 0 0 O 0 0
0 1 0 0 0 O 0 -1

and hence the boundary slopes of each of our vertex surfaces i

To Ty T2
(8.1) 0S1 :© 2up+ o 0 p2
0 © dug+2 o —2u1+2)\ 0

0S —Ho A1 -2

We will show

8.2 Proposition The surfaceS = 1S, + &S + a3S; for ax € N has non-empty
boundary slopesy, 1,7, on each boundary torug,, and-~g is a boundary slope of
M= W( 7/71772)'

Proof Since allax > 0, itis clear from 8.1) that 9S has nontrivial coefficients along
each)\y and so has non-empty boundary slogeon eachTy. Consider the boundary
slope map from the convex hull of th& to the spaceR* = Hy(T1;R) @ Hi(To; R).
From @.1), it is clear this is injective, even if we projectivize themage. Thus, the
relative normal surface spa&®7, {~y1,72}) is just the ray generated iy, and soS
is a vertex surface fo€(7, {~1,72}). Hence we can apply Theorehbto see thaty
is a boundary slope dfl. |

We now prove Theorerh.9 by considering the surface

S=2(m - 1)S + mS + 2(m — 1)mpS
for somem; > 1 andm, > 0. This surface has boundary slopes as follows, written as
elements ofQ:

_(m1—3)rr12—2m1+2 1

1
Yo = m1+m2_1 ) ’Yl—_ﬁa ’YZ__E
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Thus by Propositio8.2, the slopeyy above is a boundary slope for
M=W(-,-1/m;,—1/mp)

Now, the manifoldM is the exterior of the knot.(m;, m;) from Theoreml1.9, but
the peripheral basig o, Ao} is the one that comes frof/, and so)g is not the
homological longitude\pfor M. As the component€; and C; are unlinked, we can
adjust for this via

Ao = (—my - IK(Co, C1)* — my - 1k(Co, C2)%) 110 + Ao = (—4my — 9Mp) o + Ao
and thus find that in the usual homological basis
my — 1)?
Yo = (4mg + 9Mp) + 0 = 3(My + 1) + 9y + D)

is a boundary slope df(m, mp), proving Theoreni.9.

9 Which spun-normal surfaces come from ideal points?

Given an ideal triangulatiod” of a 3-manifoldM with one torus boundary component,
we would like to determine all the boundary slopes that drim@ ideal points oD(7).
Of course, one can find all such detected slopes by compuimg-polynomial, but
this is often a very difficult computation, involving projewy an algebraic variety
(i.e. eliminating variables). While Culler has a clever newmnerical method for such
computations Cul], there are still 9 crossing knots whogepolynomials have not
been computed.

For a spun-normal surfac&with nonempty boundary, we have an effectively checkable
condition (Lemma4.15 which is necessary and sufficient f8rbe associated to an
ideal point of D(7"). However, since there are typically infinitely many spwormal
surfaces, this does not allow for the computation of all suetected slopes unless we
can restrict to a finite set of surfaces. From the point of vidwormal surface theory,
two natural finite subsets are:

(a) The vertex surfaces introduced in Sectibn

(b) The larger set of fundamental surfaces, which are thegatt points inC(7)
which are not proper sums of other such points.

However, we show below that neither of these subsets suffibedact, there is a
geometric triangulatiori/ of the complement of the knots6xherenoneof the 22
fundamental surfaces is associated with an ideal poili(af)!
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Independent of this issue, we've also seen three conditidmsh ensure that a surface
Sis associated to an ideal point B{(7):

(@) Kabaya's original criterion, Propositich12, which was used in proving The-
orem 1.1 This requires thatS is a vertex surface and has a quad in every
tetrahedron.

(b) Lemmad4.19 applies when the first-order systeWip(A, d) has dimension 0,
whered is the degeneration vector correspondingsto

(c) Lemmad.15applies whenVy(A, d) is nonempty.

Here, each condition implies the next, amilié necessary as well as sufficient. Con-
dition (b) is easier to check tham)(as it only needs the dimension of a variety, which
is one of the easiest tasks fordbner bases. In contrast) (requires eliminating a
variable, albeit one that appears only in fairly simple dmumes, and thusd) is still
much easier than finding th&-polynomial using Gobner bases. For manifolds with
less than 20 tetrahedra, tests (a) and (b) are usually caatedie for any given surface.
However, a naive Gibner basis approach to applying (c) sometimes failed even f
manifolds with less than 10 tetrahedra.

9.1 Experimental Data

There are 173 Montesinos knots with 11 crossings. As we know the boundary
slopes for theseHO, DunZ], we tested the three methods above on each of them, using
triangulations with between 2 and 15 tetrahedra. Theseskmaie an average of 6.1
boundary slopes, but the metha) yields an average of only 1.2 slopes, or about 20%
of the total. Whenlg) is applied to all vertex surfaces, it finds an average of R8es,

or about 64% of the actual number of slopes. The third ®sivas not practical on
enough of these vertex surfaces to give any real data.

When the manifolds were ordered by the size of their triaatjnhs, the number

of slopes found byd) decreased (in absolute and relative terms) as the number of
tetrahedra increased. A more marked variant of this patt@sobserved in punctured
torus bundles; when the triangulations were small there avaaverage of 1.0 slope
found with @), but when there were 15 tetrahedra the average had droppmeddw <

0.1.

Also for punctured torus bundles, methda) é&lways found exactly two slopes. Henry
Segerman pointed out to us that these are the two surfacessponding to the edges
of the Farey strip inffH]. This can be deduced fron8gg2 where the solutions to
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the tilde equations of Section 8 are closely related toWw(h, d). Another interesting
observation of Segerman is the following simple way thatthat can fail. If the
detected surfac8 has a tube of quads encircling an edge, then all the edge pteem
around it are 1 at the ideal point. Thus the equatba§ for that edge is simply & 1
and so the dimension &lg(A, d) will be at least one if it is not empty, and hend® (
will not apply. Of course, such aB has an obvious compression from the tube of
quads (which is typically a genuine compression), but ferékamples in$eg? the
spun-normal surfaces associated to ideal points frequdothave such tubes.

9.2 The knot 63

We illustrate some of the subtleties of these questions thi#hcomplemeniM of the
hyperbolic knot g in S*. Using that this is the two-bridge kndt(5/13), one finds
that the boundary slopes are:6, —2, 0, 2,6. (The symmetry here comes from the fact
thatM is amphichiral.)

From theA-polynomial, we see that the character vari&{v) has a single irreducible
component (excluding the component of reducible represents). All boundary
slopes are strongly detected &itM), with the exception of 0 which comles from a
fibration of M over the circle. We focus on the boundary slope 2, which is@ated
to a unique ideal point oK(M).

From now on, let7 be the canonical triangulation &fi as saved in “63-canon.tri”
available at DG]. It has 6 tetrahedra, which come in three different shapes.

e Tets 0 and 2 have the same shape, which is an isosceles ¢tiang|
e Tets 1 and 3 have the same shape, which has no symmetries.

e Tets 4 and 5 have the same shape, which is the mirror imagesé tbf tets 1
and 3.

All of this is compatible with the fact that the isometry gpof M is the dihedral
group with eight elements. It turns out that there are 16 gpumal vertex surfaces,
all of which have non-trivial boundary slopes, and also £ofandamental surfaces.

Four vertex surfaces have slope 2, all of which are comgtilith a single quad-type
Q =1[Q03 Q13 Q13 Q03 Q13 Q13]
and have weights
$=1[0,1,20,1,1] S0=1[2,1,0,0,1,1]
$=1[0,0,2,1,1,1] S1=1[2,0,0,1,1,1]
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While each of these vertex surfaces has exactly one bourndamponent, they differ
in the direction the surface is spun out to the boundary. ThiasesS and & are
spun one way, an®;p and S;; are spun the other. Additionally, there are two other
fundamental surfaces in this component¢f):

S = (1/2)(Ss + Swo) =[1,1,1,0,1,1]
S =1/2)(S+S1) =[1,0,1,1,1,1]

Oddity the first: The surfacesys and S, are compatible and each has nonempty
boundary, buss + Sy is actually a closed surface. In fact, it's the doublesgfivhich
has genus 2 and is just the boundary torus plus a tube linking@dgee;. This is in
stark contrast with the non-spun case, where compatiblaalmsurfaces with boundary
always sum to a surface with nonempty boundary. (This isumzshe two surfaces
lie on a common branched surface.) Thus this is a potentiddl@m for proving that
all boundary slopes can be determined solely by looking atsipun-normal vertex
surfaces.

Oddity the second: None of the 22 fundamental surfaces arise from an ideal pdint
the gluing equation varietyp(7). For instance, for the surfaces with slope 2, chose
the preferred edge parameters so that> 0 corresponds to the quad @. Then the
gluing equations include, = z3 andz4 = z5; the former is not compatible with any of
the above fundamental surfaces. Instead, after some wionkg out that Lemma4.15
shows that the surfaces

S=8 +S$S=9 +S= [17173717272]
S = So+S=Su+S= [37171717272]
are associated to the two ideal points @f7) which detect the slope +2. (These

two ideal points map to the same ideal point{M), and differ in the direction the
associated surfaces are spun out toward the boundary.)

(9.3)

A posteriori, the failure of the fundamental surfaces toesgmat ideal points ob(7)

is not so surprising given the large symmetry grdamf 7. The four vertex surfaces
above are the vertices of a tetrahederin the projectivized spac€F' (7)) of embedded
spun-normal surfaces. The subgrddf G which preserves\ isisomorphictaZ /2@
Z,/2 and acts transitively on the vertices Af by orientation preserving symmetries.
Now D(7) has two ideal points with slope 2 and there is a unique ngratelement

g of H which fixes both; thigy acts byS — S and S — S1 (i.e. interchanges the
pairs of surfaces that spin in the same direction). Thusfaseiassociated with either
ideal point must lie on the line segment joining/A(S% + S) to (1/2)(Sio + St1)
and hence can not be a fundamental surface. However, sin@sa&know thatg
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interchangess, and S,, we can see that the surfac8and S in (9.3) will indeed be
fixed by g.
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