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Abstract. We prove that the HOMFLYPT polynomial of a link, colored by partitions
with a fixed number of rows is a q-holonomic function. Specializing to the case of knots
colored by a partition with a single row, it proves the existence of an (a, q) super-polynomial
of knots in 3-space, as was conjectured by string theorists. Our proof uses skew Howe
duality that reduces the evaluation of web diagrams and their ladders to a Poincare-Birkhoff-
Witt computation of an auxiliary quantum group of rank the number of strings of the
ladder diagram. The result is a concrete and algorithmic web evaluation algorithm that is
manifestly q-holonomic.
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1. Introduction

1.1. The colored Jones polynomial. The best-known quantum invariant of a knot or
link L in 3-space is the Jones polynomial JL, which when properly normalized, is a Laurent
polynomial in a variable q with integer coefficients. Jones’s discovery of this polynomial
marked the birth of quantum topology [Jon87], and shortly afterwards a plethora of quantum
invariants of knots and links were discovered by Reshetikhin-Turaev; see [RT90] and also the
books [Oht02, Tur94].

Although Jones’s definition of the Jones polynomial came from the von Neumann algebras
and their subfactors, a connection of the Jones polynomial with the simplest non-abelian
simple Lie algebra, sl2, and its representations was soon discovered.

More precisely, given a simple Lie algebra g and an irreducible (finite dimensional) rep-
resentation V (usually called a color, in the physics literature) and a knot K, the theory of
ribbon category [RT90, Tur94] defines an invariant Jg

K(V ) ∈ Z[q±1]. The original construc-
tion of this invariant was a rational function in a fractional power of q, and a normalization
of this invariant was shown in [Lê00] to be an element of Z[q±2]. The Reshetikhin-Turaev
construction extends to framed oriented links as well, each component of which is colored
by an irreducible representation of g.

Specializing to sl2, and using the well-known fact that there is one irreducible represen-
tation hn of sl2 of dimension n + 1 for every natural number n, it follows that a knot K
gives rise to a sequence of polynomials J sl2

K (hn) ∈ Z[q±1] for n = 0, 1, 2, . . . . This sequence,
although infinite, satisfies some finiteness property which in particular implies that it is de-
termined by finitely many initial terms (the number of initial terms depends on the knot
though). More precisely, it was proven by two of the authors in [GL05] that for every knot
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K there exists a recursion

(1) cd(q
n, q)J sl2

K (hn+d) + cd−1(qn, q)J sl2
K (hn+d−1) + · · ·+ c0(qn, q)J sl2

K (hn) = 0

for all n ∈ N, where d ∈ N, cj(u, v) ∈ Q[u±1, v±1] for all j = 0, . . . , d and cd 6= 0. Here
in this paper, N denotes the set of all non-negative integers. The recursion depends on the
knot, and although it is not unique, it can be chosen canonically.

Aside from the above-mentioned finiteness statement, the importance of this minimal re-
cursion (often called the Â-polynomial) is not a priori clear. Keeping in mind that PSL(2,C)
is the isometry group of orientation preserving isometries of 3-dimensional hyperbolic space,
there are at least two connections between the Â-polynomial and hyperbolic geometry: (a)
specializing the coefficients of the above recursion to q = 1, is conjectured to recover the
defining polynomial for the SL(2,C)-character variety of the knot complement, restricted to
the boundary torus of the knot complement. This so-called AJ Conjecture is one link of the
colored Jones polynomial with the geometry of SL(2,C) representations; see [Gar04, Lê06].
(b) Such a recursion can be used to numerically compute several terms of the asymptotics
of the colored Jones polynomial at complex roots of unity, a fascinating story that connects
quantum topology to hyperbolic geometry and number theory. For a sample of computations,
the reader may consult [Garb, GZ].

Returning back to recursion relations, sequences that satisfy a recursion relation of the
form (1) are q-holonomic, a key concept introduced by Zeilberger [Zei90]. q-holonomic func-
tions enjoy several closure properties. A key theorem of Wilf-Zeilberger is that a multisum of
a q-proper hypergeometric term (where we sum all but one variable) is q-holonomic [WZ92,
Thm.5.1]. This theorem, and the fact that quantum knot invariants are multisums of q-
proper hypergeometric terms (coming from structure constants of corresponding quantum
groups), explains why the quantum knot invariants are q-holonomic functions.

Converting the above statement into a theorem and a proof requires additional work. To
begin with, one needs to consider functions of several variables. For instance the sl3-colored
Jones polynomial of a knot, or the sl2-colored Jones polynomial of a 2-component link is a
function of two discrete variables. A definition of q-holonomic functions of several variables
was given by Sabbah [Sab93] using the language of homological algebra. Sabbah used a
theory of Hilbert dimension for modules over rings generated by q-commuting variables, and
proved a key Bernstein inequality. A survey of Zeilberger’s and Sabbah’s work was given
by two of the authors in [GL], where detailed proofs and examples of q-holonomic functions
is discussed. A summary of the main definitions and properties of q-holonomic functions is
given in Section 4.

1.2. The colored HOMFLYPT polynomial. Shortly after the discovery of the Jones
polynomial, five groups independently discovered a two-variable polynomial, the HOM-
FLYPT polynomial W that takes values in the ring Q(q)[x±1] [FYH+85, PT87]. Turaev
[Tur88] showed that the latter unifies the quantum link invariants J sln

L (h1, . . . , h1), where
h1 = Cn is the defining representation of sln, as follows: for every n ≥ 2 and every framed
oriented link L whose components are colored by Cn, we have:

J̃ sln
L (h1, . . . , h1) = WL|x=qn .

Here J̃L is a normalized version of JL, see Section 2.
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Let P denote the set of partitions λ = (λ1, λ2, . . . ) where λ1 ≥ λ2 ≥ · · · ≥ 0 is a decreasing
sequence of nonnegative natural numbers, all but finitely many zero. As usual, a partition
is presented by a Young diagram. Let Pn−1 be the set of partitions with at most n − 1
rows. Irreducible representations of sln are parameterized by partitions in Pn−1, and we
will identity a partition λ ∈ Pn−1 with its corresponding irreducible sln-module (which has
highest weight λ, see [FH91]). With this identification, the partition ha, which has one row
and a boxes, is the a-th symmetric power of h1, and the partition ea, which has one column
and a boxes, is the a-th external power of h1 = e1.

Wenzl [Wen90], generalizing Turaev’s result, showed that the sln-quantum link invariants
interpolate a two-variable function in the following sense. If L is an oriented framed link
with r ordered components and λi are partitions with at most ` rows for i = 1, . . . , r, then
there exists a two-variable colored HOMFLYPT function WL(λ1, . . . , λr) ∈ Q(q)[x±1] such
that for all natural numbers n with n ≥ `+ 1 we have:

J̃ sln
L (λ1, . . . , λr) = WL(λ1, . . . , λr)|x=qn .

A detailed definition of the HOMFLYPT polynomial and its colored version in terms of the
HOMFLYPT polynomial of cables of the link is given in [ML03, MM08].

1.3. Statement of our results. The set P of all partitions has an involution defined by
λ 7→ λ† which transposes columns and rows of a partition. The map ι` : N` → P` given by

ι`(n1, . . . , n`) = (λ1, . . . , λ`) ∈ P`, where λi =
`−i+1∑
j=1

nj

is a bijection, and so is ι†` : N` → P†` (where P†` is the set of all partitions with at most `

columns) defined by ι†`(n1, . . . , n`) = (ι`(n1, . . . , n`))
†.

Theorem 1.1. Suppose L is an oriented, framed link with r ordered components and ` a
nonnegative integer. Then, the following functions

WL ◦ (ι`)
r : Nr` → Q(q)[x±1], WL ◦ (ι†`)

r : Nr` → Q(q)[x±1]

are q-holonomic.

Corollary 1.2. For a framed oriented knot K colored with partitions with a single row, the
sequence WK(ha) for a = 0, 1, 2, . . . is q-holonomic.

Some special cases of the above corollary are known; see Cherednik [Che] for the case
of torus knots, Wedrich [Wed] for the case of 2-bridge knots, and Kawagoe [Kaw] for some
2-bridge knots and some pretzel knots.

On the set of all functions from N to Q(x, q) define two operators L,M by

(Lf)(a) = f(a+ 1), (Mf)(a) = qaf(a) .

Then LM = qML, and a recurrence for f has the form Pf = 0, where

P =
d∑
j=0

cj(q, x,M)Lj, cj(q, x,M) ∈ Z[q, x,M ] .
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When non-zero recurrence for f exists, there are many of them, and there is a unique one,
up to sign, such that (i) d is minimal, (ii) the total degree in q, x,M,L is minimal, and (iii)
all the integer coefficients of P are co-primes, see [Gar04, Lê06]. For a knot K, we denote
such a minimal recurrence for WK(ha) by AK(M,L, x, q).

Physicists have conjectured the existence of the 4-variable polynomial (see for instance the
works [GSV05a, AV]), and have further conjectured that when we set q = 1, the correspond-
ing 3-variable polynomial AK(M,L, x, 1) is equal, after some universal (i.e., knot indepen-
dent) change of variables with a 3-variable polynomial that comes out of knot contact homol-
ogy [Ng08, AENV14]. In the physics literature, AK(M, L, Q, 1) is often called the Q-deformed
A-polynomial of a knot and it appears in string theory in geometry of spectral curves, topo-
logical strings, matrix models, and M-theory dualities. There is a lot of literature on this
polynomial following the pioneering work of Gukov, Fuji, Stosic, Su lkowski and others. For a
detailed discussion, see [AV, DG10, DGR06, FGS13, FGSA12, GL05, GS14, GS12, GSV05b].

Remark 1.3. The proof of Theorem 1.1 implies the function N×Nr` → Z[q±1] defined by

(n, ~m) ∈ N×Nr` 7→ (WL ◦ (ι`)
r)(~m)|x=qn

is q-holonomic in all r`+ 1 variables. The latter was conjectured in [GvdV14].

1.4. An example. Suppose K is the right-hand trefoil, see Figure 6, with 0 framing. Define

a0 = xM6(x2M2 − 1)(M4 − q6x2)

a1 = q(q8M2x4 − x4q4 + M6q2x4 + M6x4 −M6q6x2 −M6q2x2 −M8x2 + M10)(M4 − q4x2)

a2 = −x5q6(q4M2 − 1)(M4 − x2q2).

Then for all m ≥ 0,

(2) a2WK(hm+2) + a1WK(hm+1) + a0WK(hm) = 0.

Remark 1.4. In [FGS13], a conjectural formula for the colored HOMFLYPT function
WK(hm) is given, for the case when K is the left-hand trefoil (and other torus knots). Based
on this conjectural formula, the authors of [FGS13], using a computer program of Zeilberger
[PWZ96], found a recurrence formula for WK(hm), which is different from (2) since another
normalization was used. In Appendix C, we will give a proof of (2).

1.5. Plan of the proof. The quantum group invariants require familiarity with category
theory, representation theory of quantum groups as well as a understanding the accompany-
ing graphical notation.

In Section 2 we discuss three categories nRep∧, nWeb and nLad which are related to
representations of quantum groups as well as to a diagrammatic description of links and
their invariants. In Section 3 we discuss how to unify the sln link invariants to one that is
independent of n. In Section 4 we discuss the basic definitions, examples and properties of
q-holonomic functions. In Section 5 we give the proof of Theorem 1.1. The proof is concrete
and algorithmic, with a detailed example for the case of the right-handed trefoil given in
Section 3.7. We summarize the steps here, using the notation of the proof.
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(a) We start with a braid word representative β whose closure cl(β) is the link L. The
corresponding braid has m strands and a fixed number of letters. For the trefoil, this
is given in equation (36).

(b) The link is now given by joining to the braid the bottom and top part of the closure
consisting of cup/cap diagrams, respectively. We replace the bottom part by a mono-
mial in some operators Ei, the braid word by a product of Lusztig braid operators
Ti(b)

±1 defined in section 3.4, and the top part by a monomial in some operators Fj.
For the trefoil, this is given in equation (37).

(c) Each operator Ti(b)
±1 is a sum (over the integers) of operators Ei and Fj (see equa-

tions (29a)–(29b)).
(d) The operators Ei and Fj satisfy the quantum group q-commutation relations given in

equations (14a)–(14d), and using those we can sort the above expressions by moving
all the E’s to the right and all the F ’s to the left.

(e) The fact that the operators Ei annihilate the last bit 1ϑ, corresponding to the pro-
jection onto a highest weight determined from the link diagram, adds a product of
delta functions in our sum.

(f) The requirement that all weights appearing in the sum are positive introduces Heav-
iside functions into the sum as explained in the proof of Proposition 5.2.

(g) This way, we obtain a multidimensional sum over the integers, whose summand is a
product of extended q-binomial coefficients of linear forms (with integer coefficients)
of the summation variables, times a sign raised to a linear form of the summation
variables. These sums are always terminating. For the trefoil, this 6-dimensional
sum is given in equation (39).

(h) We show in section 5.1 that such multisums are q-holonomic.

Hidden in the above algorithm is the quantum skew Howe duality [CKM14], which allows
us to compute colored sln-invariants by evaluating ladder diagrams in 2m strands using an
auxiliary quantum group based on the Lie algebra gl2m. Steps (c)-(e) are exactly a Poincare-
Birkhoff-Witt computation on gl2m.

To avoid any confusion or misunderstanding, in an earlier article [Gara] one of the authors
reduced the q-holonomicity of the colored HOMFLYPT polynomial to the q-holonomicity of
the evaluation of MOY graphs, and observed that the latter would follow from the existence
of a q-holonomic evaluation algorithm for MOY graphs. Unfortunately, such an algorithm
based on simplifications of MOY graphs or web diagrams has yet to be found.

1.6. Computations and questions. With regards to computation of the 4-variable poly-
nomial of a knot, there are several formulas for the HOMFLYPT polynomial of some links in
the literature colored by partitions with one row, see for example [Kaw, NRZS12, IMMM12b,
IMMM12a]. These formulas are manifestly q-holonomic, as follows by the fundamental the-
orem of WZ theory. Using these formulas and Wilf-Zeilberger theory, one can sometimes
compute the 4-variable knot polynomial. For sample computations for the case of twist knots
and some torus knots, see [NRZS12].

The next question is inaccessible with our methods. A positive answer would be useful in
the study of LMOV (also known as BPS) invariants of links [LMV00]. First, using linearity
extend the colored HOMFLYPT function to the case when the color of each link component
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is a Z-linear combination of Young diagrams. Let pa =
∑a

k=0(−1)k(k, 1a−k). Note that
(k, 1a−k) is a hook partition with one row with k boxes and one column with a− k boxes.

Question 1.5. Is it true that the HOMFLYPT polynomial of a knot colored by pa is a
q-holonomic function of a?

2. Categories, links and their invariants

Throughout the paper, N,Z and Q denote respectively the set of non-negative integers,
the set of integers, and the set of rational numbers. We emphasize that our N contains 0.
Also n will denote an integer greater than or equal to 2. We will denote by Q(q1/n) the field
of rational functions in an indeterminate q1/n, and Q(q) its subfield generated by q = (q1/n)n.
Also Z[q±1] ⊂ Q(q) will denote the ring of Laurent polynomials in q with integer coefficients.

In this section we will discuss three categories nRep∧, nWeb and nLad which are con-
nected by functors

(3) nLad
Ψn→ nWeb

Γn→ nRep∧

A ring homomorphism f : Q(q1/n) → Q(q1/n) (thought of as a homomorphism from the
empty set to the empty set), is the multiplication by a scalar, and we denote this scalar by
ev(f) ∈ Q(q1/n).

These categories are intimately related to diagrammatic descriptions of framed tangles
and of quantum groups.

2.1. The quantized enveloping algebras Uq(gln) and Uq(sln). Consider the lattice Zn

with the standard Euclidean inner product 〈·, ·〉, and the root vectors

αi = (0, . . . , 0, 1,−1, 0, . . . , 0) ∈ Zn ,

with 1 on the i-th position.
The quantized enveloping algebra Uq(gln) is the associative algebra over Q(q) generated

by Li, i = 1, . . . , n and Ei, Fi, i = 1, . . . , n− 1, subject to the relations

LaLb = La+b, L0 = 1

LaEj = qaj−aj+1EjLa, LaFj = qaj+1−ajFjLa

E
(2)
i Ei+1 − EiEi+1Ei + Ei+1E

(2)
i = 0 = F

(2)
i Fi+1 − FiFi+1Fi + Fi+1F

(2)
i

EiFj − FjEi = δij
Ki −K−1

i

q − q−1

EiEj = EjEi, FiFj = FjFi for |i− j| > 1.

Here La = La1
1 . . . Lann for a = (a1, . . . , an) ∈ Zn, Ki = LiL

−1
i+1, and

E
(r)
i = Er

i /[r]!, F
(r)
i = F r

i /[r]!, where [r]! :=
r∏
j=1

qj − q−j

q − q−1
.
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There is a structure of a Hopf algebra on Uq(gln) with the co-product and the antipode,
see e.g. [Jan96, CP94, Lus10].

The quantized enveloping algebra Uq(sln) is the subalgebra of Uq(gln) generated byEi, Fi, K
±1
i ,

i = 1, . . . , n− 1. Then Uq(sln) inherits a Hopf algebra structure from that of Uq(gln).
A weight of Uq(gln) (resp., Uq(sln)) is an element a ∈ Zn (resp., an element a ∈ Zn such

that
∑

i ai = 0). A Uq(sln)-module V is called a weight module (or perhaps better, a weighted
module) if V =

⊕
a V[a], where each a is a Uq(sln)-weight and

V[a] = {v ∈ V | Ki(v) = q〈αi,a〉v}.

For a partition λ = (l1, . . . , l`) with l1 ≥ l2 ≥ · · · ≥ l` > 0 we call ` = length(λ) the length
of λ and |λ| =

∑
i li the weight of λ. Denote by λ† the conjugate of λ, which is the partition

whose Young diagram is the transpose of that of λ. For a thorough treatment of partitions,
see [Mac95]. Finite-dimensional irreducible weight Uq(sln)-modules are parameterized by
partitions λ ∈ Pn−1, i.e. partitions of length ≤ n − 1, see e.g [CP94, Jan96]. For every
λ ∈ Pn−1 denote by Vλ the corresponding irreducible weight Uq(sln)-module.

2.2. The category of Uq(sln)-modules and link invariants. The category nRep of
finite-dimensional weight Uq(sln)-modules is a ribbon category [Tur94], where the braiding
comes from the universal R-matrix. To be precise, one needs to extend the ground field to
Q(q1/n) so that the braiding and the ribbon element can be defined.

By the theory of ribbon categories, for a framed oriented link L in 3-space with r ordered
components and r objects V1, . . . , Vr of nRep, one can define an invariant

J sln
L (V1, . . . , Vr) ∈ Q(q1/n).

If λ1, . . . , λr ∈ Pn−1, we use the notation

J sln
L (λ1, . . . , λr) = J sln

L (Vλ1 , . . . , Vλr).

It is known that a properly normalized version of JslnL (V1, . . . , Vr) belongs to Z[q±2], see [MW98,
Lê00]. A special case of this integrality phenomenon is the following. Let `ij be the link-
ing number between the i-th and the j-component of L, with `ii the framing of the i-th
component. Define

(4) J̃ sln
L (λ1, . . . , λr) = q

1
n

P
i,j `ij |λi||λj |J sln

L (λ1, . . . , λr).

Then we have

(5) J̃ sln
L (λ1, . . . , λr) ∈ Z[q±1].

Not only is J̃ sln
L (λ1, . . . , λr) a Laurent polynomial in q, but it also enjoys the following

stability (with respect to the rank n) property.

Proposition 2.1 ([Wen90]). There exists an invariant WL(λ1, . . . , λr) ∈ Q(q)[x±1] such that
for any n greater than the length of any of λj, we have

WL(λ1, . . . , λr)|x=qn = J̃ sln
L (λ1, . . . , λr).
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WL is usually called the colored HOMFLYPT function. The theorem was first proved
by Wenzl using quantum group theory. For a detailed proof using skein theory see [Luk01,
Theorem 11.4.18]. The theorem also follows from our proof of Theorem 1.1 below. For the
simplest case, when all partitions have one box, Proposition 2.1 was first proved by Turaev
[Tur88].

Remark 2.2. The integrality (5) shows that the polynomial P = WL(λ1, . . . , λr) ∈ Q(q)[x±1]
has the property that P |x=qn ∈ Z[q±1] for all integer n > 1. Such a polynomial P ∈ Q(q)[x±1]
is called q-integral and is studied in [BCL14, Sec. 2.3].

Remark 2.3. Our WL(λ1, . . . , λr) is equal to P (L∗(Qλ1 , . . . , Qλr)) in the notation of [MM08,
Section 6], with our q and x equal to respectively s and v−1 there.

2.3. Properties of the colored HOMFLYPT polynomial. Let Λ be the free Q-vector
space with basis the set P of all Young diagrams, including the empty one. Suppose L is
a framed oriented link with r ordered components. The invariant WL(λ1, . . . , λr) can be
extended to a Q-multi-linear map

WL : Λr → Q(q)[x±1].

There is a Q-algebra structure on Λ which makes it isomorphic to the algebra of symmetric
functions, see e.g. [Mac95]. Under this isomorphism, a Young diagram λ is mapped to the
Schur function Sλ corresponding to λ.

We collect here some well-known properties of the quantum invariant WL.

Proposition 2.4. Let L be a framed oriented link in the 3-space with k ordered components.
(a) Suppose L′ is the same L with the components renumbered by a permutation σ of
{1, . . . , k}. Then

WL′(λ1, . . . , λr) = WL(λσ1, . . . , λσr).

(b) Suppose ∆L is the result of replacing the first component of L by two copies of its parallel
push-off (using the framing). Then

W∆L(λ′1, λ
′′
1, λ2, . . . , λr) = WL(λ′1λ

′′
1, λ2, . . . , λr).

(c) We have:

(6) WL(λ1, . . . , λr) = WL(λ†1, . . . , λ
†
r)|q→−q−1 .

Parts (a) and (b) follow from the corresponding properties for JL, see [Tur94]. While (a)
is trivial, (b) follows from the hexagon equation of the braiding in the braided category. Part
(c) is well-known and has been discussed in many papers, see e.g. [LMV00, Equ. 4.41]. For
completeness, we give proofs of parts (b) and (c) in Appendix B.

2.4. The category nRep∧. Let ea be the partition whose Young diagram is a column with
a boxes, i.e. ea = (1a) in the standard notation of partitions. The Uq(sln)-module Vea with
1 ≤ a ≤ n− 1 is called a fundamental Uq(sln)-module. We also use e0 to denote the empty
Young diagram, which corresponds to the trivial Uq(sln)-module.

Let nRep∧ be the full subcategory of nRep whose objects are those isomorphic to tensor
products of the fundamental Uq(sln)-modules. Then nRep∧ inherits a ribbon category
structure from nRep.
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The advantage of nRep∧ is that it has a remarkable presentation using planar diagrams
called spider webs described in the next section. Since nRep is the idempotent completion
of nRep∧, we don’t lose much working with nRep∧.

2.5. The category nWeb. We describe here the category nWeb of sln-webs, following
Cautis-Kamnitzer-Morrison [CKM14]. Recall that a pivotal monoidal category is a category
with tensor products and a coherent notion of duality in which the double dual functor is
naturally isomorphic to the identity. The morphisms and the relations among morphisms
of such categories afford a diagrammatic description using planar diagrammatics. They are
essentially equivalent to the description of the Temperley-Lieb algebra for n = 2 and to
Kuperberg’s spider webs [Kup96] (for n = 3) and the planar algebras of Jones [Jon]. They
are also closely related to the MOY graphs of Murakami, Ohtsuki, and Yamada [MOY98].
Standard references for pivotal categories include the books [Tur94, Chpt.XI], [KRT97] as
well [EGNO15, Chpt.4.7].

An n-web is a compact subset Z of the horizontal strip R × [0, 1] with additional data
satisfying (i)-(iii).

(i) Each connected component of X is either an oriented circle or a directed graph (i.e.
a finite 1-dimensional CW-complex) where the degree of each vertex is 1, 2, or 3.
Every circle component and every edge is labeled by an integer in [1, n− 1].

(ii) The set ∂Z of univalent vertices of Z is in the union of the top and bottom lines of
the strip and Z \ ∂Z is in the interior of the strip.

(iii) Up to isotopy there are 2 types of trivalent vertices and 2 types of bivalent vertices
as in the following figure (with labeling of edges attached to the vertex):

(7)

b

a + b

a

,

a + b

a b

,

a

n− a

,

a

n− a

The third and the fourth graphs depict bivalent vertices but not trivalent vertices,
as the small tag there is not officially an edge. The tag provides a distinguished side
and makes the bivalent vertices not rotationally symmetric.

We will declare isotopic webs to be equal.
Let ∂−Z = (iε11 , . . . i

εk
k ), where i1, . . . , ik are the labels of the edges ending on the bottom

line listed from left to right, and εj = + if the orientation at the j-th ending point is upwards
and εj = − otherwise. One defines ∂+Z exactly the same way, using the top line instead of
the bottom line.

The category nWeb is the pivotal monoidal Q(q1/n)-linear category whose objects are
sequences in the symbols {1±, . . . , (n − 1)±}. Given objects a, b of nWeb, the set of mor-
phisms HomnWeb(a, b) is the set of Q(q1/n)-linear combinations of n-webs Z such that
∂−Z = a, ∂+Z = b, subject to certain local relations described in [CKM14, Section 2.2].
In [CKM14], our nWeb is denoted by Sp(SLn). The tensor product Z1 ⊗ Z2 is obtained by
placing Z2 to the right of Z1. The composition Z1Z2 is the result of placing Z1 atop Z2, after
an isotopy to make the top ends of Z2 match the bottom ends of Z1.
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For example, the first diagram in (7) represents a morphism from a+ ⊗ b+ = (a+, b+) →
(a+ b)+, and the second one represents a morphism from a− ⊗ b− → (a+ b)−.

The monoidal unit nWeb is the empty sequence. The planar isotopy condition implies
that the object a+ is dual to the object a−. The cap and cup morphisms

(8)

a

a

give rise to maps a+ ⊗ a− → ∅ and ∅ → a− ⊗ a+ that realize this duality.
For simplicity we allow diagrams to carry labels of 0 and n with the understanding that

n-labelled edges connected to a trivalent vertex should be deleted and replaced by a tag as
in the cap and cup diagrams:

(9)

n− a

n

a

=
n− aa

n− a

n

a

=
n− a a

and the remaining edges and loops labeled 0 or n should be deleted.
Note that the cap and cup diagrams coming from the duality a+ with a− arising from the

pivotal structure do not require tags.
The followings are consequences of the relations among generators of sln-webs:

a

n− a

= (−1)a(n−a)

a

n− a

(10)

a

a

n− a =

a

a

(11)

Remark 2.5. The tags appearing in n-web (which do not appear in [MOY98]) play an
important role keeping track of the fact that while (Vea)

∗ is isomorphic to Ven−a , this iso-
morphism is not canonical. The tags in sln-webs keep track of these isomorphisms and
contribute signs that would have otherwise been missed by wrongly identifying the dual of
a+ with (n− a)+.

2.6. An equivalence between nWeb and nRep∧. The main result of [CKM14] is the
construction of an equivalence, which is a Q(q1/n)-linear pivotal functor,

Γn : nWeb→ nRep∧
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defined on objects by Γn(a+) = Vea and Γn(a−) = (Vea)
∗. The ribbon structure of nRep∧

can be pulled back to make nWeb a ribbon category. In particular, we have a braiding
Xa,b : a⊗ b→ b⊗ a for any two objects a, b of nWeb. For simple objects a, b ∈ [1, n− 1] we
use the diagrams with crossings as in Figure 1 to denote the braiding Xa,b its inverse X−1

b,a .
The braiding allows us to introduce crossings in diagrams representing morphisms of nWeb.

Xa,b =

a b

b a

X−1
b,a =

ab

ba

Figure 1. The braiding Xa,b (left) and its inverse X−1
b,a .

Suppose D is a link diagram in the plane in general position with respect to the height
function, whose components are labeled by integers in [0, n− 1]. Then D defines morphism
in the category nWeb from ∅ to ∅. Since HomnWeb(∅, ∅) = Q(q1/n), the morphism D is
determined by the scalar ev(D) ∈ Q(q1/n). The equivalence Γn shows that this scalar ev(D)
is equal to the invariant J sln

L (ea1 , . . . , eak), i.e.

(12) J sln
L (ea1 , . . . , eak) = ev(D),

where L is the framed link whose blackboard diagram is D and a1, . . . , ak are the labels of
the components of L.

2.7. The Ladder Category. We give the definition of ladder category Ladm, which a dia-
grammatic presentation of Lusztig’s idempotent form U̇q(glm) of the quantum group Uq(glm).

Typically, U̇q(glm) is regarded as a Q(q)-algebra where the unit is replaced by a system of
mutually orthogonal idempotents 1a indexed by the weight lattice of glm. In [CKM14], using
the quantum skew-Howe duality, they showed that there is a braided monoidal functor from
the ladder category to the category nWeb. We explain how to use this result to calculate
quantum Uq(sln)-invariants of links using ladders.

A ladder Z with m sides is a uni-trivalent graph drawn in the strip R× [0, 1], with

(i) m parallel vertical lines running from the bottom line to the top line of the strip,
oriented upwards,

(ii) some number of oriented horizontal lines in the interior of the strip R× [0, 1], called
steps, connecting adjacent sides,

(iii) a labeling of each interval (steps or segments of sides) by integers, such that the
signed sum of the labels at each trivalent vertex is zero. Here the sign of each
incoming vertex is positive, and the sign of each outgoing vertex is negative.

Let ∂−Z (resp. ∂+Z) be the sequence of labels appearing on the bottom (resp. top) edge
of the strip. Then ∂−Z, ∂+Z ∈ Zm are considered as weights of Uq(glm).

The category Ladm is the Q(q)-linear category whose set of objects is Zm. Given two
objects a, b, the morphisms HomLadm(a, b) is the set of allQ(q)-linear combinations of ladders
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2112

2013

1

1

2

1

1

1

Figure 2. A morphism in Lad4.

Z with m sides such that ∂−Z = a, ∂+Z = b, subject to the relations described in Equations
(14a)-(14e) below.

Composition of morphisms is given by vertical concatenation of ladders. Note that Ladm
does not have dual objects and hence is not pivotal.

For an object a = (a1, . . . , am) of Ladm and for i such that 1 ≤ i ≤ m− 1, and r ∈ N let

E
(r)
i 1a and F

(r)
i 1a denote the following ladders:

E
(r)
i 1a := . . . . . .

ai−1 ai ai+1 ai+2

ai + r ai+1 − r

r
∈ HomLadm(a, a+ rαi)

F
(r)
i 1a := . . . . . .

ai−1 ai ai+1 ai+2

ai − r ai+1 + r

r
∈ HomLadm(a, a− rαi)

Here and in what follows, we draw the steps of a ladder using slightly slanted lines instead
of horizontal lines such that the orientation of the step is upwards. With this convention
we do not have to mark the orientation in a ladder diagram, since all segments are oriented
upwards.

Comparing the sequence at the end of these ladders it is clear that

(13) E
(r)
i 1a = 1a+rαiE

(r)
i = 1a+rαiE

(r)
i 1a, F

(r)
i 1a = 1a−rαiF

(r)
i = 1a−rαiF

(r)
i 1a,

When the specific weight is clear we will write Ei instead of Ei1a and Fi instead of Fi1a. For

example, F
(r)
i E

(s)
j 1a means F

(r)
i 1a+sαjE

(s)
j 1a.
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With this convention, the relations of the morphisms of Ladm are given by

E
(r)
i F

(s)
i 1a =

min(r,s)∑
t=0

[
〈a, αi〉+ r − s

t

]
F

(s−t)
i E

(r−t)
i 1a(14a)

E
(r)
i F

(s)
j 1a = F

(s)
j E

(r)
i 1a if i 6= j(14b)

E
(r)
i E

(s)
j 1a = E

(s)
j E

(r)
i 1a if |i− j| > 1, likewise for F ’s(14c)

E
(s)
i E

(r)
i 1a =

[
r + s

r

]
E

(r+s)
i 1a and likewise for F ’s(14d)

EiEjEi1a = (E
(2)
i Ej + EjE

(2)
i )1a if |i− j| = 1, likewise for F ’s.(14e)

for all r, s ∈ N, 1 ≤ i ≤ m− 1 and a ∈ Zm.
Recall 〈a, αi〉 = ai− ai+1 is the standard inner product on Zm, and the quantum integers,

factorial and binomial coefficients are defined by

[r] =
qr − q−r

q − q−1
, r ∈ Z(15a)

[r]! =
r∏

k=1

[k], r ≥ 0(15b)

[
r

s

]
=

{Qr
k=r−s+1[k]

[s]!
r, s ∈ Z, s ≥ 0

0 s < 0.
(15c)

Remark 2.6. If k is a field and C is a k-linear category, it gives rise to an algebra A(C)
whose underlying vector space is the direct sum of all Hom spaces ⊕a,bHom(a, b). The
product of x ∈ Hom(b, a) and y ∈ Hom(b′, a′) defined to be zero unless b = a′, in which
case the product is defined to be the composite xy. A(C) is a k-algebra without unit,
in general. Since the relations (14a)–(14e) are the defining relations Lusztig’s idempotent
algebra U̇q(glm), A(Ladm) ∼= U̇q(glm).

2.8. The Schur quotient, the highest weight ϑ, and evaluation. Fix positive integers
m and n. The Schur quotient nLadm is defined to be the Q(q1/n)-linear category with set of
objects all a = (a1, . . . , am) ∈ Zm such that a ∈ [0, n]m, i.e. 0 ≤ ai ≤ n for all i. The algebra
of morphisms of nLadm is the quotient of the algebra of morphisms of Ladm, with ground
field extended to Q(q1/n), by the two-sided ideal generated by all 1a with a 6∈ [0, n]m.

For example, E
(r)
i 1a is always 0 in nLadm when r > n.

Let

(16) ϑ(n,m) := (nm, 0m) ∈ Z2m

often abbreviated by ϑ. Considered as an object of nLad2m, ϑ is a highest weight element
for nLad2m, in the sense that for every i = 1, . . . , 2m− 1, we have

Ei1ϑ = 0, 1ϑFi1ϑ+αi = 0.(17a)
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This is because ϑ+αi has entries outside [0, n]. It follows that the algebra of endomorphisms
of ϑ is isomorphic to the ground field Q(q1/n). In other words, we have an evaluation map

(18) evn,m : HomnLad2m(ϑ, ϑ)
'→ Q(q1/n), x = evn,m(x)1ϑ.

2.9. Braiding for ladders. The category nLadm does not have a tensor product and hence
is not a monoidal category. However, nLad :=

⊕∞
m=1 nLadm is monoidal. This category

doesn’t have duals since all webs are directed upwards. But it is a braided monoidal category,
as follows. The objects of nLad are sequences a = (a1, . . . , am) of integers ai ∈ [0, n]. Given
two objects a = (a1, . . . , am) and b = (b1, . . . , bp), HomnLad(a, b) = HomnLadm(a, b) if p = m
and 0 otherwise.

The tensor product of objects a⊗ b is the horizontal concatenation of a and b from left to
right, and similarly for morphisms.

In [CKM14, Section 6] it is shown that nLad admits a braided monoidal category struc-
ture, i.e. it has a braiding, which is a system of natural isomorphisms Xa,b : a ⊗ b → b ⊗ a
satisfying the hexagon equations [RT90, Tur94]. The braiding for nLad is constructed using
Lusztig’s braid elements [Lus10].

We also use the diagrams with crossings in Figure 1 to denote the braiding Xa,b and its
inverse X−1

a,b in the category nLadm.
When β is a braid on m strands and a = (a1, . . . , am) ∈ Zm, let β1a ∈ HomnLadm(a, β(a))

be the morphism described in Figure 3. Here β(a) is obtained from a by applying the
permutation corresponding to the braid β. For example, σi1a and σ−1

i 1a, where σi, σ
−1
i are

the i-th standard braid generator and its inverse, are depicted in Figure 3.

β1a =

a1 a2 am−1 am

...

...

β

σi1a =

a1 ai−1 ai ai+1 amai+2

... ...
σ−1
i 1a =

a1 ai−1 ai ai+1 amai+2

... ...

Figure 3. The morphisms β1a, σi1a, and σ−1
i 1a

Then σ±1
i 1a ∈ HomnLadm(a, σi(a)). We record here the formula for the braidings from

[CKM14]:

σi1a = (−1)ai+aiai+1qai−
aiai+1
n

∑
r,s≥0

s−r=ai−ai+1

(−q)−sE(r)
i F

(s)
i 1a(19)

σ−1
i 1a = (−1)ai+aiai+1q−ai+

aiai+1
n

∑
r,s≥0

s−r=ai−ai+1

(−q)sE(r)
i F

(s)
i 1a(20)
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Note that the right hand sides are finite sums, since F
(r)
i and E

(r)
i are 0 for r > n. Also

σ−1
i 1a is obtained from σi1a by the involution q → q−1.

Remark 2.7. Originally Luzstig [Lus10, 5.2.1] defined the braiding and its inverses using
triple product formulas. The simplification of Lusztig’s formula’s to double products in
equations (19)–(20) was first observed for q = 1 by Chuang and Rouquier [CR08]. For
general q, a proof of this simplification can be found in [CKM14, Lem.6.1.1].

2.10. From ladders to webs. In [CKM14, Section 5] it is proved that there is a Q(q1/n)-
linear functor

Ψn,m : nLadm → nWeb

defined as follows. For an object a = (a1, . . . , am) of nLadm, Ψn,m(a) is obtained from a by
deleting 0s and ns from a and converting k to k+. For a morphism f of nLadm which is a
ladder, Ψn,m(f) is the same f considered as an n-web, using the convention about labelings
0 and n. This means edges connected to the label 0 should be deleted from the diagrams
and those connected to the label n should be truncated to the “tags” depicted in the last
two diagrams in equation (7) as explained in (9). The existence of Ψn,m is a consequence of
the quantum skew-Howe duality.

The functors Ψn,m : nLadm → nWeb, with all m, piece together to give a functor
Ψn : nLad → nWeb. By Theorem [CKM14, Theorem 6.2.1], Ψn is a braided monoidal
functor.

b1 b2 bm−1 bm

...

...

β

Figure 4. The standard closure of a braid β with 4 strands.

Suppose β is a braid on m strands. We view β as a diagram with crossings in the standard
plane with strands oriented upwards. Let cl(β) be the link diagram obtained by closing β in
the standard way (see Figure 4) and L = L(β) be the corresponding framed link. Assume
L has r ordered components which are labeled by integers a1, . . . , ar ∈ [1, n − 1]. Let
a = (a1, . . . , ar). Let b1, . . . , bm be the induced labeling of strands of β from left to right (at
the bottom of β). Of course each bi is one of the aj’s.
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Let Lcl(β, a), called the ladder closure of β, be the endomorphism of ϑ(n,m) in the
category nLad2m given by the ladder described in Figure 5. Here the labels of the strands of
the braids are b1, . . . , bm which are determined by the labels a1, . . . , ar of the link L. All the
dashed vertical lines of the m left sides are labeled by n while all the dashed vertical lines
of the m right sides are labeled by 0. Then the remaining labels are uniquely determined by
the rule that the signed sum at every trivalent vertex is 0.

Figure 5. The ladder closure of a braid β with 4 strands, with labels. Here
ci = n− bi.

Proposition 2.8. We have

evn,m(Lcl(β, a)) = JL(ea1 , . . . , ear).

Proof. Let L denote the closure of β. L is a link colored by a. Identities (10) and (11) show
that

Ψn(L, a) = Lcl(β, a).
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Since Ψn is a Q(q1/n)-linear braided functor, we have

ev(Lcl(β, a)) = ev(Ψn(L, a))

= JL(ea1 , . . . , ear).

where the second identity follows from (12). �

3. Introducing the variable x = qn

Proposition 2.8 allows one to calculate the quantum sln-invariant of a link L for each fixed
n ≥ 2. In this section, we introduce an algebra that allows us to unify the quantum sln
invariants of links into Laurent polynomials of a variable x = qn.

3.1. Free associative algebra on Ei, Fj. Let

(21) Xm = {E1, . . . , Em−1, F1, . . . , Fm−1}

and Am be the free associative unital Q(q)-algebra generated by Xm. For i = 1, . . . ,m− 1,
define the divided powers by

E
(r)
i := Er

i /[r]! ∈ Am, F
(r)
i := F r

i /[r]! ∈ Am,

where [r]! is given by equation (15b). A Q(q)-basis of Am can be described as follows. For
Y = (Y1, . . . , Yr) ∈ (Xm)r and k = (k1, . . . , kr) ∈ Nr define

Y (k) := Y
(k1)

1 Y
(k2)

2 . . . Y (kr)
r .

Then the set of all Y (k), where Yi 6= Yi+1 and ki ≥ 1, along with k = ∅, is a Q(q)-basis of
Am.

Note that for each a ∈ Zm, Y (k)1a is a morphism in the category nLadm. For a, b ∈ Zm
and n > 1, define the Q(q)-linear map

pna,b : Am → HomnLadm(a, b), pna,b(Y
(k)) = 1aY

(k)1b.

The algebra Am admits a natural Zm-grading, called weight, defined by

w(Fi) = −αi, w(Ei) = αi.

Observe that pna,b(Y
(k)) = 0 unless a = b+ w(Y (k)).

Let Is be the two-sided ideal of A generated by E
(r)
i , F

(r)
i , with i = 1, . . . ,m − 1 and

r ≥ s. It is clear that Is+1 ⊂ Is. Let Âm be the completion of Am with respect to the nested
sequence of ideals Is. Since pna,b(Is) = 0 if s > n, we can extend pna,b to a map, also denoted
by pna,b,

pna,b : Âm → HomnLadm(a, b).
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3.2. Convention on negative powers. The divided powers E
(r)
i and F

(r)
i are defined for

non-negative integers r. It is convenient to extend them to negative powers by the following
convention. For r < 0, a ∈ Zm, we use the following convention

E
(r)
i = F

(r)
i = 0 in Âm

E
(r)
i 1a = F

(r)
i 1a = 0 in Ladm

With the above convention, Equations (14a), (14b), and (14d) can be rewritten in the
following form: For all r, s ∈ Z and i 6= j, we have the following identities in Ladm.

E
(r)
i F

(s)
i 1a =

∑
t∈Z

[
〈a, αi〉+ r − s

t

]
F

(s−t)
i E

(r−t)
i 1a(22)

E
(r)
i F

(s)
j 1a = F

(s)
j E

(r)
i 1a(23)

E
(s)
i E

(r)
i 1a =

[
r + s

r

]
E

(r+s)
i 1a, F

(s)
i F

(r)
i 1a =

[
r + s

r

]
F

(r+s)
i 1a.(24)

3.3. Evaluation. Fix positive integers n,m. Recall that ϑ given by (16) is an object of
nLad2m, and recall the evaluation map (18). This gives rise to an evaluation map

(25) evn : Â2m → Q(q1/n), evn(x) := evn,m
(
pnϑ,ϑ(x)

)
.

Given a monomial z in Ei, Fj the element evn(z) can be calculated by a simple algorithm
moving each divided power in Ei appearing in z to the right using equations (22) and (23).
Note that we are not moving divided powers of Ei past divided powers of Ej. Since the
Ei’s annihilate the weight 1ϑ, all that remains after sliding all Ei’s to the right is a sum of
products of the quantum binomials produced from the application of (22). For details see
the example in Section 3.7 and Proposition 5.2.

Suppose Y = (Y1, . . . , Yk) ∈ (X2m)k and b = (b1, . . . , bk) ∈ Zk. There is an easy case when
evn(Y (b)) = 0, namely when 1ϑY

(b)1ϑ factors through a weight with a negative component.
The weight of Y (b) is denoted by

w(Y (b)) = (w1(Y (b)), . . . ,w2m(Y (b))) ∈ Z2m.

We say Y (b) has negative weight if wj(Y
(b)) < 0 for some j with m < j ≤ 2m. For an index

i, 1 ≤ i ≤ k define the i-th tail Taili(Y, b) by

Taili(Y, b) = Y
(bi)
i Y

(bi+1)
i+1 . . . Y

(bk)
k .

We say (Y, b) is tail-negative if there is an index i, 1 ≤ i ≤ k, such that Taili(Y, b) has negative
weight.

Lemma 3.1. Suppose (Y, b) is tail-negative. Then evn(Y (b)) = 0 for all n.

Proof. Note that Y (b)1ϑ factors through Taili(Y, b)1ϑ ∈ HomLadn2m
(µ, ϑ), where

µ = w(Taili(Y, b)) + ϑ.
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Suppose wj(Taili(Y, b)) < 0 for some j > m and 1 ≤ i ≤ k. We have µj = w(Taili(Y, b)) +
ϑj = wj(Taili(Y, b)) < 0. By definition, Taili(Y, b)1ϑ = 0 in Ladn2m. Hence Y (b)1ϑ = 0 in
Ladn2m. �

The tail-negative condition can be characterized by the following function

(26) H(Y, b) :=
2m∏

j=m+1

k∏
i=1

He(wj(Taili(Y, b))).

where

(27) He(x) =

{
1 if x ≥ 0

0 if x < 0.

denotes the Heaviside function. Note that

(28) H(Y, b) =

{
0 if (Y, b) is tail-negative

1 otherwise.

3.4. Braiding in Â. Suppose a = (a1, . . . , am) ∈ Zm and 1 ≤ i ≤ m− 1. Let

Ti(a) = (−1)ai+aiai+1qai
∑
s∈Z

(−q)−sE(s+ai+1−ai)
i F

(s)
i ∈ Â(29a)

T−1
i (a) = (−1)ai+aiai+1q−ai

∑
s∈Z

(−q)sE(s+ai+1−ai)
i F

(s)
i ∈ Â(29b)

Recall that we use the convention E
(r)
i = F

(r)
i = 0 if r < 0. Note that T−1

i (a) is obtained
from Ti(a) by the involution q → q−1. From equation (19) and (20) it follows that for ε = ±1,

(30) σεi 1a = q−ε
aiai+1
n T εi (a)1a in nLadm.

3.5. Special functions. Let Y = (Y1, . . . , Yk) ∈ (Xm)k. A function H : Zr → Âm is called
a Y -special if

(31) H(a) =
∑
s∈Zt

(−1)g1(a,s)qg2(a,s)Y (f(a,s)),

where

• g1 : Zr+t → Z is quadratic, i.e. given by a polynomial with integer coefficients of
total degree ≤ 2,
• g2 : Zr+t → Z is linear, and
• f : Zr+t → Zk is affine such that f(a, ·) : Zt → Zk is injective for every a ∈ Zk.

The injectivity property ensures that the right hand side of (31) defines an element in Âm.
The next lemma is easy to verify.
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Lemma 3.2. (a) The functions Ti, T
−1
i : Zm → Âm given by Equations (29a) and (29b) are

(Ei, Fi)-special.

(b) Suppose f : Zk → Zr is a linear function. Then the function H : Zk → Âm given by

H(a) = Y (f(a))

is Y -special.
(c) If H ′ is Y ′-special and H ′′ is Y ′′-special, then H ′H ′′ is Y ′ × Y ′′-special.

3.6. Unifying the sln-link invariant. For a = (a1, . . . , ar) ∈ Zr let ‖a‖∞ be the usual
norm defined by ‖a‖∞ = maxi |ai|.

Proposition 3.3. Suppose L is framed oriented link in the 3-space with r ordered compo-
nents which is the closure of a braid with m strands. Then there exist a sequence Y of letters

in X2m and a Y -special function H : Zr → Â2m such that for all integers a1, . . . , ar ∈ [0, n−1],
we have

(32) J̃ sln
L (ea1 , . . . , ear) = evn(H(a1, . . . , ar)).

Moreover, (Y, f(a, s)) is tail-negative whenever ‖s‖∞ > ‖a‖∞. Here f(a, s) is the function
appearing in the presentation (31) of H.

Proof. Let L be the closure of a braid β ∈ Bm as in Figure 4, and a = (a1, . . . , ar) ∈ Nr.
Suppose 1m⊗ β, the braid (in B2m) obtainted by adding m straight strands to the left of β,
has a presentation

(33) 1m ⊗ β = σε1i1 . . . σ
εt
it
, ij ∈ {m+ 1, . . . , 2m− 1} and εj ∈ {±1} for j = 1, . . . , t,

where σi is the i-th standard generator of the braid group (see Figure 1). Here t is the
number of crossings of β.

Write b = (b1, . . . , bm) and c = (cm, cm−1, . . . , c1) to denote the sequences of labels labeling
the ladder closure Lcl(β, a) as in Figure 5, so that ci = n−bi and each bi is one of (a1, . . . , ar).
The horizontal lines at the bottom and the top of the braid β decomposes Lcl(β) into 3
morphisms in nLad2m:

Lcl(β, a) = Capm(a) (1c ⊗ β1b) Cupm(a).

Each part can be written in a form that does not depend on n.

Indeed, the lower morphism Cupm(a) is a composition of F
(bj)
i for various i, j. Hence

Cupm(a) = Vm(a)1ϑ(n,m),

where Vm(a) ∈ A2m is the product of several F
(bj)
i . Explicitly,

Vm(a) =
−→∏

k∈[1,m]

[(←−∏
i∈[1,k−1]

(
F

(bk)
m+kF

(bk)
m−k

))
F (bk)
m

]
,

where −→∏
i∈[1,k]

xi := x1x2 . . . xk,
←−∏

i∈[1,k]
xi := xkxk−1 . . . x1.

Then Vm(a), as a function of a is a special function, see Lemma 3.2.
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Similarly, the top morphism

Capm(a) = Λm(a)1c⊗b = 1ϑ(n,m)Λm(a)1c⊗b

is a special function. Explicitly,

Λm(a) =
←−∏

k∈[1,m]

[
E(bk)
m

−→∏
i∈[1,k−1]

(
E

(bk)
m+kE

(bk)
m−k

)]
.

Now consider the middle morphism 1c ⊗ β1b. Using (33) and (30), we have

1c ⊗ β1b = q−
1
n

P
ij `ij aiaj z1(a)z2(a) . . . zt(a)1c⊗b,

where
zj(a) = T

εj
ij

(
σij+1 . . . σit(c, b)

)
.

Using equation (29a) and (29b) for T±1
i (b), we see that zj is a special function. Let

(34) H(a) = Λm(a)z1(a)z2(a) . . . zt(a)Vm(a).

Then H : Zk → Â2m, is a product of special functions, hence is a special function (see
Lemma 3.2). By (30), we have

Lcl(β, a) = q−
1
n

P
ij `ij aiaj1ϑH(a)1ϑ.

Applying the evaluation map evn to both sides, using Proposition 2.8 and the normaliza-
tion (4) of J̃L for the left hand side, we obtain that

J̃L(ea1 , . . . , eak) = evn(H(a)).

This proves (32).
Let us have a closer look at the formula of H. By (29a) and (29b), zj has the form

zj =
∑
sj∈Z

(−1)gj(a,sj)qεjhj(a,sj)E
(fj(a,sj))
ij

F
(sj)
ij

,(35)

where gj is a quadratic function, and hj, fj are linear functions. From (34), it follows that
H has a presentation (31), where s = (s1, . . . , st), and

Y (f(a,s)) = Λm(a)

(−→∏
j∈[1,t]

E
(fj(a,sj))
ij

F
(sj)
ij

)
Vm(a).

Assume ‖s‖∞ > ‖a‖∞, i.e. there is l such that |sl| > ‖a‖∞. We can assume that sl > 0,

since other wise sl < 0 and the factor F
(sl)
il

on the right hand side of (35) is 0. We will show

that the il-th component of the weight of F
(sl)
il

z is negative, where

z =

(−→∏
j∈[l+1,t]

E
(fj(a,sj))
ij

F
(sj)
ij

)
Vm(a).

This will prove that (Y, f(a, s)) is tail negative, since il > m. Note that

w(z) = w(zl+1(a) . . . zt(a)Vm(a)) = (cm − n, . . . , c1 − n, b′),
where b′ is a permutation of b. Since ‖b′‖∞ = ‖b‖∞ = ‖a‖∞, we have

wil(F
(sl)
il

z) = −sl + (b′)il < 0,
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which completes the proof of the proposition. �

Remark 3.4. Our evaluation algorithm should be closely related to the variant of skew
Howe duality defined for so-called doubled Schur algebras in [QSb, QSa].

3.7. An example: the trefoil knot. Before we proceed further, let us illustrate Proposi-
tion 3.3 by computing the invariant of the trefoil, and draw some useful conclusions regarding
q-holonomicity of the invariant.

We take

(36) β = σ3
1 = σ1σ1σ1, m = 2, ϑ = (n, n, 0, 0) .

Then L = cl(β) is the right-handed trefoil knot, colored by a ∈ N∩ [0, n− 1] (see Figure 6).

Figure 6. The ladder closure of braid β = σ3
1.

By Proposition 3.3, and equation (34) we obtain that J̃ sln
31

(ea) = evn(H(a)), where

(37) H(a) = E
(a)
2 E

(a)
1 E

(a)
3 E

(a)
2 (T3)3F

(a)
2 F

(a)
3 F

(a)
1 F

(a)
2 ,

where T3 = T3(n− a, n− a, a, a). Using Equation (29a), we replace each occurrence of T3 by
a sum over the integers, and obtain the following triple sum formula

H(a) =
∑

s1,s2,s3∈Z
(−q)s1+s2+s3E

(a)
2 E

(a)
1 E

(a)
3 E

(a)
2 (E

(s1)
3 F

(s1)
3 E

(s2)
3 F

(s2)
3 E

(s3)
3 F

(s3)
3 )F

(a)
2 F

(a)
3 F

(a)
1 F

(a)
2 .(38)

This is an explicit form of special function for H.
Next, we use the commutation rules given in equations (22)–(24) to sort the expression of

H(a)1ϑ, moving all the E’s to the right and all the F ’s to the left. Every time we move E
(r)
i

(from the left) past an F
(s)
i (from the right), we obtain a 1-dimensional sum over the integers.

Then, use equation (17a) to add some delta functions in the sum. Finally, Equ. (53), which is
explained later in the proof of Proposition 5.2, tells us to add Heaviside functions He(k) (see
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Section 4). Doing so, we eventually get the following formula for the quantum sln-invariant
of the trefoil colored by ea (the details are given in Appendix A).

J̃ sln
L (ea) =[na]

P
s∈Z6 (−q)−(s1+s2+s3)He(a−s1)He(a−s2)He(a−s3)He(a+s1+s2−s4)He(a+s2+s3−s5)He(τ)

[s2+s1
s4

][s2+s3
s5

][τ+s2+s6
s6

][s1+s2−s4
s1

][ τ
s1+s2−s4][

s2+s3−s5
s3

][ τ
s2+s3−s5][

a
a−τ][

n−τ
a ](39)

where τ = s1 + s2 + s3− s4− s5− s6 and s = (s1, . . . , s6) ∈ Z6. Keep in mind the convention
that

[
r
s

]
= 0 if s < 0.

Let us end this example with some observation. The above formula has the form

(40) J̃ sln
L (ea) =

∑
s∈Z6

F (a, s),

where F (a, s) is a finite product of factors of the following shape

(i) (±q)A(a,s),
(ii) He(A(a, s)),

(iii) quantum binomial
[
A(a,s)
B(a,s)

]
,

(iv) quantum binomial
[
n+A(a,s)
B(a,s)

]
=
[
qn;A(a,s)
B(a,s)

]
, where for s, l ∈ Z we define

(41)

[
x; s

l

]
=

{
0 if l < 0∏l

j=1
xqs−j+1−x−1q−s+j−1

qj−q−j if l ≥ 0.

Here A(a, s) and B(a, s) are Z-linear functions. Moreover, for each integer value of a and n,
the sum on the right hand side of (40) is terminating in the sense that only a finite number
of terms are non-zero. The number of terms are bounded by a polynomial function of a.

We will show that a similar formula exists for any framed oriented link colored with ea.
But before we do so, let us recall what is a q-holonomic function.

4. q-holonomic functions

q-holonomic functions of one variable were introduced by the seminal paper of Zeilberger
[Zei90]. The class of q-holonomic functions resembles in several ways the class of holonomic
D-modules, as is acknowledged by conversations of Zeilberger and Bernstein prior to the
introduction of holonomic functions, [Zei90]. An extension of the definition to q-holonomic
functions with several variables was given by Sabbah [Sab93] using the language of homo-
logical algebra. In this section we will review the definition of q-holonomic functions of
several variables, give examples, and list the closure properties of this class under some op-
erations. Our exposition follows Zeilberger and Sabbah, and the survey paper of two of the
authors [GL].

We should point out, however, that the precise definition of q-holonomic functions is not
used in the proof of Theorem 1.1. If the reader wishes to take as a black box the examples
of q-holonomic functions given below, and their closure properties, then they can skip this
section altogether and still deduce the proof of Theorem 1.1.
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4.1. The quantum Weyl algebra. Let V denote a fixed (not necessarily finitely generated)
A-module, where A = Z[q±1]. For a natural number r, let Sr(V ) be the set of all functions
f : Zr → V and Sr,+(V ) the set of functions f : Nr → V . For i = 1, . . . , r consider the
operators Li and Mi which act on functions f ∈ Sr(V ) by

(Lif)(n1, . . . , ni, . . . , nr) = f(n1, . . . , ni + 1, . . . , nr)(42)

(Mif)(n1, . . . , nr) = qnif(n1, . . . , nr).(43)

It is clear that Li, Mj are invertible operators that satisfy the q-commutation relations

MiMj = MjMi(44a)

LiLj = LjLi(44b)

LiMj = qδi,jMjLi(44c)

for all i, j = 1, . . . , r.

Definition 4.1. The r-dimensional quantum Weyl algebra Wr is the A-algebra generated by
L±1

1 , . . . , L±1
r ,M±1

1 , . . . ,M±1
r subject to the relations (44a)–(44c). Let Wr,+ be the subalgebra

of Wr generated by the non-negative powers of Mj, Lj.

Given f ∈ Sr(V ), the annihilator Ann(f) (a left Wr module) is defined by

(45) Ann(f) = {P ∈Wr |Pf = 0}
This gives rise to a cyclic Wr-module Mf , defined by Mf = Wrf ⊂ Sr(V ), and isomorphic
to Wr/Ann(f).

4.2. Definition of q-holonomic functions. In this section we follow closely the work
of Sabbah [Sab93]. Let N be a finitely-generated Wr,+-module. Consider the increasing
filtration F on Wr,+ given

(46) FnWr,+ = {A-span of all monomials MαLβ with α, β ∈ Nr with total degree ≤ n} .
The filtration F on Wr,+ induces an increasing filtration on N , defined by FnN = FnWr,+·N .
Note that FnWr,+, and consequently FnN , are finitely-generated A-modules for all natural
numbers n. An analog of Hilbert’s theorem for this non-commutative setting holds: the
dimension of the Q(q)-vector space Q(q) ⊗A FnN is a polynomial in n, for big enough n.
The degree of this polynomial is called the dimension of N , and is denoted by d(N).

In [Sab93, Theorem 1.5.3] Sabbah proved that d(N) = 2r − codim(N), where

codim(N) = min{j ∈ N | ExtjWr,+
(N,Wr,+) 6= 0}.

Sabbah also proved that d(N) ≥ r if N is a non-zero and does not have monomial torsion.
Here a monomial torsion is a monomial P in Wr,+ such that Px = 0 for a certain non-zero
x ∈ N . It is easy to see that N embeds in the Wr-module Wr ⊗Wr,+ N if and only if N has
no monomial torsion. Throughout the paper, we will assume that all Wr,+-modules do not
have monomial torsion.

Definition 4.2. (a) A Wr,+-module N is q-holonomic if N = 0 or N is finitely-generated,
does not have monomial torsion, and d(N) = r.
(b) An element f ∈ N , where N is a Wr,+-module, is q-holonomic over Wr,+ if Wr,+ · f is a
q-holonomic Wr,+-module.
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The above definition defines q-holonomic Wr,+ modules, and our next task is to define q-
holonomic Wr modules. Let M be a non-zero finitely-generated left Wr-module. Following
[Sab93, Section 2.1], the codimension and dimension of M are defined in terms of homological
algebra by

codim(M) = min{j ∈ N | ExtjWr
(M,Wr) 6= 0}, dim(M) = 2r − codim(M).

The key Bernstein inequality (proved by Sabbah [Sab93, Thm.2.1.1] in the q-case) asserts
that if M 6= 0 is a finitely generated Wr-module, then dim(M) ≥ r.

Definition 4.3. (a) A Wr-module M is q-holonomic if either M = 0 or M is finitely-
generated and dim(M) = r.
(b) An element f ∈ M , where M is a Wr-module, is q-holonomic over Wr if Wr · f is a
q-holonomic Wr-module.

Next we compare q-holonomic modules over Wr versus over Wr,+. The following proposi-
tion was proven in [GL, Sec.3] Next we compare q-holonomic modules over Wr versus over
Wr,+. using Sabbah [Sab93, Cor.2.1.4].

Proposition 4.4. Suppose f ∈ M , where M is a Wr-module. Then f is q-holonomic over
Wr if and only if it is q-holonomic over Wr,+.

The next corollary is taken from [GL, Sec.3].

Corollary 4.5. If f ∈ Sr(V ) is q-holonomic and g ∈ Sr,+(V ) is its restriction to Nr, then g
is q-holonomic.

Remark 4.6. The definition of q-holonomic A-modules can be extended to q-holonomic
R-modules where R is the ring (and also an A-module)

(47) R = Q(q)[x±1] .

Proposition 4.4 and Theorems 4.7 and 4.8 below hold after replacing A by R.

4.3. Properties of q-holonomic functions. In this section we summarize some closure
properties of q-holonomic functions, whose proofs can be found in [GL, Sec.5].

Theorem 4.7. Suppose f, g ∈ Sr(V ) are q-holonomic functions. Then,
(a) f + g is q-holonomic.
(b) fg is q-holonomic.
(c) Restriction. For a fixed a ∈ Z, the function g ∈ Sr−1(V ) defined by

g(n1, . . . , nr−1) = f(n1, . . . , nr−1, a)

is q-holonomic.
(d) Extension. The function h ∈ Sr+1(V ) defined by

h(n1, . . . , nr+1) = f(n1, . . . , nr)

is q-holonomic.
(e) Linear substitution. If A ∈ GL(r,Z) and f ∈ Sr(V ) is q-holonomic, so is the composition
f ◦ A ∈ Sr(V ).
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Let Sr−1,1(V ) denote set of all functions f : Zr → V such that for every (n1, . . . , nr−1) ∈
Zr−1, f(n1, . . . , nr) = 0 for all but a finite number of nr.

Theorem 4.8. (a) Suppose f ∈ Sr−1,1(V ) is q-holonomic. Then, g ∈ Sr−1(V ), defined by

g(n1, . . . , nr−1) =
∑
nr∈Z

f(n1, . . . , nr) ,

is q-holonomic.
(b) Suppose f ∈ Sr(V ) is q-holonomic. Then h ∈ Sr+1(V ) defined by

(48) h(n1, . . . , nr−1, a, b) =
b∑

nr=a

f(n1, n2, . . . , nr)

is q-holonomic.

4.4. Elementary q-holonomic functions. A function g : Zs → Zr is affine if there is an
r × s matrix A with integer entries and b ∈ Zr such that g(a) = Aa + b. If b = 0, such a
function is called linear.

A function f : Zr → Q(q)[x±1] is called an elementary block if f is a finite product of
compositions of a linear function Zr → Zs (for s = 1, 2) with one of one of the following
functions:

(i) Z→ Z[q±1], k → (−1)k, or k → qk, or k → He(k),

(ii) Z2 → Z[q±1], (k, l)→ (−1)kl, or (k, l)→ δk,l, or (k, l)→
[
k
l

]
,

or (k, l)→
[
x; k
l

]
.

Observe that functions of the form (i) or (ii) above are q-holonomic [GL]. Regarding the
function f(n1, n2) = (−1)n1n2 , its annihilator ideal contains the monic operators L2

1 − 1 and
L2

2 − 1 which generate a q-holonomic ideal [GL, Thm.7.2(a)], hence f is q-holonomic.
A function f : Zr → Q(q)[x±1] is called elementary if can be presented by a terminating

sum

f(a) =
∑
b∈Zl

g(a, b),

where g : Zk+l → Q(q)[x±1] is an elementary block. Here the sum is terminating means for
each a there are only a finite number of b such that g(a, b) 6= 0. Theorems 4.7 and 4.8 imply
the following.

Corollary 4.9. Every elementary block and every elementary function is q-holonomic.

5. Proof of Theorem 1.1

5.1. Evaluation of monomials is q-holonomic. For n ∈ Z let evaln : Q(q)[x±1]→ Q(q)
be the Q(q)-algebra homomorphism defined by

(49) evaln(f) = f |x=qn .

The next lemma recovers an element of Q(q)[x±1] from its evaluations.
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Lemma 5.1. Suppose that f, g ∈ Q(q)[x±1] satisfy evaln(f) = evaln(g) for infinitely many
n. Then f = g.

Proof. This follows from the fact that a Laurent polynomial in x has at most k roots, where
k is the difference between the highest order and the lowest order in x. �

Let X = (X1, . . . , Xk) be a sequence of elements of the set X2m from equation (21). Recall
that for b = (b1, . . . , bk) ∈ Zk, the monomial X(b) ∈ A2m and its weight are defined in Section
3.1. By convention, X(b) = 0 if one of bi is negative. The goal of this subsection is to calculate

evn(X(b)) = ev(1ϑX
(b)1ϑ)

where ϑ = (nm, 0m) ∈ Z2m.

Proposition 5.2. Suppose X = (X1, . . . , Xk) is a sequence of elements of the set X2m.
There exists a unique function

QX : Zk → Q(q)[x±1]

such that for all b ∈ Zk, n ∈ N,

(50) evn(X(b)) = evaln(QX(b).

Moreover, QX is an elementary function given by

(51) QX(b) =
∑
j∈Zl

FX(b, j)

for certain l ∈ N and elementary block FX : Zk+l → Q(q)[x±1]. In addition,

(i) FX(b, j) = 0 if ‖j‖∞ > ‖b‖∞ (which implies the sum (51) is terminating), and
(ii) FX(b, j) = 0 if (X, b) is tail-negative or if one of the component of b is negative.

Proof. The uniqueness follows from Lemma 5.1. Let us prove the existence.
The idea is to move the Ei to the right of Fj using Equations (22) and (23) (this creates

a sum of a product of q-binomials) and then use Equation (17a), which creates a product of
δ-functions. Besides, we insert Heaviside functions to make the sum terminating. The result
is an elementary function. Now we give the details of the proof.

Let l ≤ k be the maximal index such that Xl ∈ {E1, . . . , E2m−1}. We use induction on k,
then induction on l. If k = 0 the statement is obvious.

For fixed k, we use induction on l, beginning with l = k and going down.
(a) Suppose l = k. Recall that ϑ = (nm, 0m). Using (17a), we have

X(b)1ϑ = δbk,0Y
(b′)1ϑ,

where Y = (X1, . . . , Xk−1) and b′ = (b1, . . . , bk−1). For Y the statement holds. Define

FX(b, j) := FY (b′, j)δbk,0, QX(b) =
∑
j∈Zl

FX(b, j)

Then FX(b, j) is an elementary summand. Both statements (i) and (ii) for FX(b, j) follow
immediately from those for FY (b′, j). Then QX is an elementary q-holonomic function, and
(50) holds.

(b) Suppose l < k. Assume that Xl = Er and Xl+1 = Fs. Let Y = (Y1, . . . , Yk) be the
sequence defined by Yi = Xi for all i except Yl = Xl+1 and Yl+1 = Xl. By induction, the
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statement holds for Y , and we can define an elementary summand FY (b, j) for (b, j) ∈ Zk+l.
Consider two cases.

Case 1: r 6= s. Because ErFs = FsEr, we have X(b) = Y (b′) where b′ is obtained from b by
swapping the l-th and (l+ 1)-components. This case is reduced to the case of Y by defining
FX(b, j) = FY (b′, j).

Case 2: r = s. We have

X(b) = Xleft

(
E(bl)
r F (bl+1)

r

)
Xright

where

Xleft =
−→∏

j∈[1,l−1]
X

(bj)
j , Xright =

−→∏
j∈[l+2,k]

X
(bj)
j .

We have Xright1ϑ ∈ HomnLad2m(ϑ, µ), where

µ = ϑ+ w(Xright) = ϑ−
k∑

j=l+2

bjαij .

Here the index ij is defined so that Xj = Fij for j > l. Using (14a), we have

X(b)1ϑ =
∑
t∈Z

[
〈µ, αr〉+ bl − bl+1

t

]
XleftF

(bl+1−t)
r E(bl−t)

r Xright1ϑ

=
∑
t∈Z

[
〈µ, αr〉+ bl − bl+1

t

]
Y (b′)1ϑ,(52)

where b′ = (b′1, . . . , b
′
k) such that b′i = bi for all i except for i = l, l+1, with b′l = bl+1−t, b′l+1 =

bl − t. Clearly b′ is a linear function of (b, t).
Note that 〈ϑ, αr〉 = nδ(r,m). From the definition of µ,

〈µ, αr〉+ bl − bl+1 = nδ(r,m) + Lin(b)

where Lin(b) = 〈w(Xright), αr〉 + bl − bl+1 is a Z-linear form of b. For j ∈ Zl+1 we write
j = (j′, t), i.e. t is the last component of j. For b ∈ Zk and j ∈ Zl+1, define

(53) FX(b, j) =



[
x; Lin(b)

t

]
FY (b′, j′)H(X, b) if r = m[

Lin(b)

t

]
FY (b′, j′)H(X, b) if r 6= m,

where H(X, b), defined by (26), is an elementary function of b.
Then FX(b, j) is an elementary function. Let us prove (i) and (ii), which claim FX(b, j) = 0

under certain conditions. If t < 0, then the first factor on the right hand sides of (53) is 0.
Hence we will assume t ≥ 0 in what follows.

(i) Suppose ‖j‖∞ > ‖b‖∞. Then either ‖j′‖∞ > ‖b‖∞ or |t| > ‖b‖∞. In the first case,
‖j′‖∞ > ‖b‖∞ ≥ ‖b′‖∞, and FY (b′, j′) = 0. In the latter case, the l-th component of b′ is
negative. By (ii) we have FY (b′, j′) = 0. Hence FY (b, j) = 0.

(ii) First assume that one of the component of b is negative. Then one of the component
of b′ is negative. Hence FY (b′, j′) = 0, implying FX(b, j) = 0.
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Now assume that (X, b) is tail-negative. Then the third factor in the right hand sides of
(53) is 0. Hence FX(b, j) = 0.

Let us prove (50). If (X, b) is tail-negative, then both sides of (50) are 0, by Lemma 3.1
and the property of H(X, b). Assume now (X, b) is not tail-negative. Then H(X, b) = 1,
and (50) follows from (52), (53), and the identity (50) applicable to Y .

This completes the proof of the proposition. �

5.2. Coloring with partitions with one column.

Theorem 5.3. Suppose L is an oriented, framed link with r ordered components. There
exists a unique function

QL : Nr → Q(q)[x±1]

such that for any integer n ≥ 2 and a = (a1, . . . , ar) ∈ Nr ∩ [0, n− 1]r,

(54) J̃ sln
L (ea1 , . . . , ear) = evaln (QL(a)) .

Moreover, QL is elementary, hence a q-holonomic function.

Proof. The uniqueness follows from Lemma 5.1. Let us prove the existence. Suppose L is
the closure of a braid β on m strands, as in Section 3.5. By Proposition 3.3, there exists a
sequence X = (X1, . . . Xk) of elements from Ei, Fi with i = 1, . . . , 2m−1 and linear functions
g1, g2 : Zr+t → Z and f : Zr+t → Zk such that

J̃ sln
L (ea1 , , . . . , ear)) =

∑
s∈Zt

(−1)g1(a,s)qg2(a,s)evn
(
X(f(a,s))

)
.

By Proposition 5.2, there exists elementary summand function FX : Zk+l → Q(q)[x±1] such
that

J̃ sln
L (ea1 , , . . . , ear) =

∑
s∈Zt

(−1)g1(a,s)qg2(a,s)evaln

∑
j∈Zl

FX(f(a, s), j)

 .

By (i) of Proposition 5.2,

FX(f(a, s), j) = 0 if ‖j‖∞ > ‖f(a, s)‖∞.(55)

When ‖s‖∞ > ‖a‖∞, (X, f(a, s)) is tail-negative, see Proposition 3.3 . Hence, by (ii) of
Proposition 5.2,

FX(f(a, s), j) = 0 if ‖s‖∞ > ‖a‖∞.(56)

Equations (55) and (56) imply that the sum

QL(a) :=
∑
s∈Zt

∑
j∈Zl

(−1)g1(a,s)qg2(a,s)F (f(a, s), j)

is terminating for each a ∈ Zr.
Then QL is elementary q-holonomic, and equation (54) holds. �

Remark 5.4. By our construction, QL vanishes in Zr \Nr.
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Remark 5.5. Theorem 5.3 gives an alternative construction of the colored HOMFLYPT
polynomial WL of a framed, oriented link colored by partitions with one column. By the
uniqueness,

QL(a1, . . . , ar) = WL(ea1 , . . . , ear).

5.3. The Jacobi-Trudi formula. In this section we explain how to extend the q-holonomicity
of the HOMFLYPT polynomial of a link colored by partitions with one row to the case of
partitions with a fixed number of rows. The key idea is the Jacobi-Trudi formula which ex-
presses the Schur function sλ of a partition λ ∈ P`, considered as an element of the algebra
Λ, as a determinant of a matrix whose entries are partitions with one row. Observe that for
partitions with one row (resp. one column) we have s(a) = ha (resp., s(1a) = ea).

The Jacobi-Trudi formula [Mac95] states that if λ = (λ1, . . . , λ`) ∈ P`, then in Λ,

sλ = det
(

(eλ†i+j−i
)`i,j=1

)
where the right hand side is an `× ` determinant, with the convention e0 = 1 and en = 0 for
n < 0. For example, if λ is a partition with three rows with λ1, λ2 and λ3 boxes, then we
have

sλ1,λ2,λ3 =− eλ1+2eλ2eλ3−2 + eλ1+1eλ2+1eλ3−2 + eλ1+2eλ2−1eλ3−1

− eλ1eλ2+1eλ3−1 − eλ1+1eλ2−1eλ3 + hλ1eλ2eλ3 .

Let L denote a framed, oriented link L with r ordered components, and choose a partition
λ ∈ P`, and partitions µ2, . . . , µr. Then, part (c) of Proposition 2.4 implies that

(57) WL(λ, µ1, . . . , µr) =
∑

σ∈Sym`

sgn(σ)WL′(eλ1+σ(1)−1, . . . , eλ`+σ(`)−`, µ1, . . . , µr).

where L′ is the link obtain from L by replacing the first framed component of L by ` of its
parallels.

5.4. Proof of Theorem 1.1. Fix a framed oriented link L with r ordered components.
Using the symmetry of the HOMFLYPT polynomial from part (c) of Proposition 2.4, it
suffices to show that the colored HOMFLYPT polynomial of L, colored by partitions with at
most ` rows, is q-holonomic. Said differently, it suffices to show that the function WL ◦ (ι†`)

r :
Nr` → Q(q)[x±1] is q-holonomic. Let λ = (λ1, . . . , λr`) ∈ Nr`. Using Equation (57), we have

(WL ◦ (ι†`)
r)(λ) =

∑
σ

sgn(σ)W∆L(efσ,1(λ), . . . , efσ,r`(λ))

where the sum is over σ = (σ1, . . . , σr) ∈ (Sym`)
r, sgn(σ) = sgn(σ1) . . . sgn(σr) and ∆L is the

link with r` components obtained from L by replacing each component with its `-th parallel
and fσ,i : Zr` → Z are affine. Parts (a) and (e) of Theorem 4.7 together with Theorem 5.3

imply that WL◦(ι†`)
r) is a sum of q-holonomic functions, thus is q-holonomic. This concludes

the proof of Theorem 1.1. �



32 STAVROS GAROUFALIDIS, AARON D. LAUDA, AND THANG T.Q. LÊ
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Appendix A. The formula for the invariant of the trefoil

In this section we give the omitted details of how equation (38) implies equation (39). We
start with equation (38), and observe that

∑
s1,s2,s3∈Z

(−q)−(s1+s2+s3)E
(a)
2 E

(a)
1 E

(a)
3 E

(a)
2 E

(s1)
3 F

(s1)
3 E

(s2)
3 F

(s2)
3 E

(s3)
3 F

(s3)
3 F

(a)
2 F

(a)
3 F

(a)
1 F

(a)
2 1(n,n,0,0)

(58)

=
∑

s1,s2,s3∈Z
(−q)−(s1+s2+s3)E

(a)
2 E

(a)
1 E

(a)
3 E

(a)
2

(
E

(s1)
3 F

(s1)
3 E

(s2)
3 F

(s2)
3 E

(s3)
3 F

(s3)
3 1(n−a,n−a,a,a)

)
F

(a)
2 F

(a)
3 F

(a)
1 F

(a)
2 1(n,n,0,0)

where we used (13) to include the idempotent in the middle term (and the fact that
(n, n, 0, 0)−aα1−2aα2−aα3 = (n−a, n−a, a, a). The term in parenthesis can be simplified
as follows.

E
(s1)
3 F

(s1)
3 E

(s2)
3 F

(s2)
3

(
E

(s3)
3 F

(s3)
3 1(n−a,n−a,a,a)

)
(14a)

E
(s1)
3 F

(s1)
3 F

(s2)
3 E

(s2)
3 F

(s3)
3 E

(s3)
3 1(n−a,n−a,a,a)

(13) (
F

(s1)
3 E

(s1)
3 1(n−a,n−a,a,a)

)
F

(s2)
3 E

(s2)
3 F

(s3)
3 E

(s3)
3

(14a)
F

(s1)
3 E

(s1)
3 F

(s2)
3 E

(s2)
3 F

(s3)
3 E

(s3)
3 1(n−a,n−a,a,a)

(13)
F

(s1)
3 1(n−a,n−a,a+s1,a−s1)E

(s1)
3 F

(s2)
3 1(n−a,n−a,a+s2,a−s2)E

(s2)
3 F

(s3)
3 1(n−a,n−a,a+s3,a−s3)E

(s3)
3

(3.1)
He(a−s1)He(a−s2)He(a−s3)F

(s1)
3

(
E

(s1)
3 F

(s2)
3 1(n−a,n−a,a+s2,a−s2)

)(
E

(s2)
3 F

(s3)
3 1(n−a,n−a,a+s3,a−s3)

)
E

(s3)
3

(14a)
He(a−s1)He(a−s2)He(a−s3)

∑
s4,s5

[s2+s1
s4

][s2+s3
s5

]F (s1)
3

(
F

(s2−s4)
3 E

(s1−s4)
3 1(n−a,n−a,a+s2,a−s2)

)
×
(
F

(s3−s5)
3 E

(s2−s5)
3 1(n−a,n−a,a+s3,a−s3)

)
E

(s3)
3 1(n−a,n−a,a,a)

(13)
He(a−s1)He(a−s2)He(a−s3)

∑
s4,s5

[s2+s1
s4

][s2+s3
s5

]F (s1)
3 F

(s2−s4)
3 1(n−a,n−a,a+s1+s2−s4,a−s1−s2+s4)

×
(
E

(s1−s4)
3 F

(s3−s5)
3 1(n−a,n−a,a+s2+s3−s5,a−s2−s3+s5)

)
E

(s2−s5)
3 E

(s3)
3 1(n−a,n−a,a,a)

(3.1)
He(a−s1)He(a−s2)He(a−s3)He(a+s1+s2−s4)He(a+s2+s3−s5)×∑

s4,s5
[s2+s1

s4
][s2+s3

s5
]F (s1)

3 F
(s2−s4)
3

(
E

(s1−s4)
3 F

(s3−s5)
3 1(n−a,n−a,a+s3+s2−s5,a−s3−s2+s5)

)
E

(s2−s5)
3 E

(s3)
3 1(n−a,n−a,a,a)

(14a)
He(a−s1)He(a−s2)He(a−s3)He(a+s1+s2−s4)He(a+s2+s3−s5)×∑

s4,s5,s6
[s2+s1

s4
][s2+s3

s5
][s1+2s2+s3−s4−s5

s6
]F (s1)

3 F
(s2−s4)
3

(
F

(s3−s5−s6)
3 E

(s1−s4−s6)
3

)
E

(s2−s5)
3 E

(s3)
3 1(n−a,n−a,a,a)
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(3.1)
He(a−s1)He(a−s2)He(a−s3)He(a+s1+s2−s4)He(a+s2+s3−s5)He(a+s1+s2+s3−s4−s5−s6)×∑

s4,s5,s6
[s2+s1

s4
][s2+s3

s5
][s1+2s2+s3−s4−s5

s6
]
(
F

(s1)
3 F

(s2−s4)
3 F

(s3−s5−s6)
3

)(
E

(s1−s4−s6)
3 E

(s2−s5)
3 E

(s3)
3

)
1(n−a,n−a,a,a)

(14d)
He(a−s1)He(a−s2)He(a−s3)He(a+s1+s2−s4)He(a+s2+s3−s5)He(a+s1+s2+s3−s4−s5−s6)×∑

s4,s5,s6
[s2+s1

s4
][s2+s3

s5
][s1+2s2+s3−s4−s5

s6
][s1+s2−s4

s1
][s1+s2+s3−s4−s5−s6

s1+s2−s4 ]

×[s2+s3−s5
s3

][s1+s2+s3−s4−s5−s6
s2+s3−s5 ]F (s1+s2+s3−s4−s5−s6)

3 E
(s1+s2+s3−s4−s5−s6)
3 1(n−a,n−a,a,a).

Then to complete the computation of YE(a)1ϑ from equation (58), set τ = s1 + s2 + s3 −
s4 − s5 − s6 for simplicity and use the above computation to simplify each term in the sum
from (58)

1(n,n,0,0)E
(a)
2 E

(a)
1 E

(a)
3 E

(a)
2 F

(s1+s2+s3−s4−s5−s6)
3 E

(s1+s2+s3−s4−s5−s6)
3 F

(a)
2 F

(a)
3 F

(a)
1 F

(a)
2 1(n,n,0,0)

=E
(a)
2 E

(a)
1 E

(a)
3

(
E

(a)
2 F

(τ)
3

)(
E

(τ)
3 F

(a)
2

)
F

(a)
3 F

(a)
1 F

(a)
2 1(n,n,0,0)

(14b)
E

(a)
2 E

(a)
1 E

(a)
3

(
F

(τ)
3 E

(a)
2

)(
F

(a)
2 E

(τ)
3

)
F

(a)
3 F

(a)
1 F

(a)
2 1(n,n,0,0)

(13)
E

(a)
2 E

(a)
1

(
E

(a)
3 F

(τ)
3 1(n−a,n,τ,a−τ)

)
E

(a)
2 F

(a)
2

(
E

(τ)
3 F

(a)
3 1(n−a,n,a,0)

)
F

(a)
1 F

(a)
2

(14a)
∑
p1,p2

[ τp2][
τ
p1

]E(a)
2 E

(a)
1

(
F

(τ−p2)
3 E

(a−p2)
3 1(n−a,n,τ,a−τ)

)
E

(a)
2 F

(a)
2

(
F

(a−p1)
3 E

(τ−p1)
3 1(n−a,n,a,0)

)
F

(a)
1 F

(a)
2

=

∑
p1,p2

[ τp2][
τ
p1

]1ϑ
(
E

(a)
2 E

(a)
1 F

(τ−p2)
3

)
E

(a−p2)
3 E

(a)
2 F

(a)
2 F

(a−p1)
3

(
E

(τ−p1)
3 F

(a)
1 F

(a)
2

)
1ϑ

(14b) ∑
p1,p2

[ τp2][
τ
p1

]1ϑ
(
F

(τ−p2)
3 E

(a)
2 E

(a)
1

)
E

(a−p2)
3 E

(a)
2 F

(a)
2 F

(a−p1)
3

(
F

(a)
1 F

(a)
2 E

(τ−p1)
3

)
1ϑ

=

∑
p1,p2

[ τp2][
τ
p1

]
(

1ϑF
(τ−p2)
3

)
E

(a)
2 E

(a)
1 E

(a−p2)
3 E

(a)
2 F

(a)
2 F

(a−p1)
3 F

(a)
1 F

(a)
2

(
E

(τ−p1)
3 1ϑ

)
(17a) ∑

p1,p2
[ τp2][

τ
p1

]
(

1ϑδτ,p2

)
E

(a)
2 E

(a)
1 E

(a−p2)
3 E

(a)
2 F

(a)
2 F

(a−p1)
3 F

(a)
1 F

(a)
2

(
δτ,p11ϑ

)
(13)

E
(a)
2 E

(a)
1 E

(a−τ)
3

(
E

(a)
2 F

(a)
2 1z(n−a,n,τ,a−τ)

)
F

(a−τ)
3 F

(a)
1 F

(a)
2 1ϑ

(14a) ∑
s7

[n−τs7 ]E(a)
2 E

(a)
1 E

(a−τ)
3

(
F

(a−s7)
2 E

(a−s7)
2 1(n−a,n,τ,a−τ)

)
F

(a−τ)
3 F

(a)
1 F

(a)
2 1ϑ

=

∑
s7

[n−τs7 ]E(a)
2

(
E

(a)
1 E

(a−τ)
3 F

(a−s7)
2

)(
E

(a−s7)
2 F

(a−τ)
3 F

(a)
1

)
F

(a)
2 1ϑ

(14b) ∑
s7

[n−τs7 ]E(a)
2

(
F

(a−s7)
2 E

(a)
1 E

(a−τ)
3

)(
F

(a−τ)
3 F

(a)
1 E

(a−s7)
2

)
F

(a)
2 1ϑ

(13) ∑
s7

[n−τs7 ]
(
E

(a)
2 F

(a−s7)
2 1(n,n−s7,s7,0)

)
E

(a)
1 E

(a−τ)
3 F

(a−τ)
3 F

(a)
1

(
E

(a−s7)
2 F

(a)
2 1ϑ

)
(14a) ∑

s7,v1,v2
[n−τs7 ][n−s7v1

][n−s7v2
]
(

1ϑF
(a−s7−v2)
2 E

(a−v2)
2

)
E

(a)
1 E

(a−τ)
3 F

(a−τ)
3 F

(a)
1

(
F

(a−v1)
2 E

(a−s7−v1)
2 1ϑ

)
=

∑
s7,v1,v2

[n−τs7 ][n−s7v1
][n−s7v2

]
(

1ϑF
(a−s7−v2)
2

)
E

(a−v2)
2 E

(a)
1 E

(a−τ)
3 F

(a−τ)
3 F

(a)
1 F

(a−v1)
2

(
E

(a−s7−v1)
2 1ϑ

)
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(17a) ∑
s7,v1,v2

[n−τs7 ][n−s7v1
][n−s7v2

]
(

1ϑδv2,a−s7

)
E

(a−v2)
2 E

(a)
1 E

(a−τ)
3 F

(a−τ)
3 F

(a)
1 F

(a−v1)
2

(
δv1,a−s71ϑ

)
=

∑
s7

[n−τs7 ][n−s7a−s7][
n−s7
a−s7]E

(s7)
2 E

(a)
1 E

(a−τ)
3 F

(a−τ)
3 F

(a)
1 F

(s7)
2 1ϑ

(13) ∑
s7

[n−τs7 ][n−s7a−s7][
n−s7
a−s7]E

(s7)
2 E

(a)
1

(
E

(a−τ)
3 F

(a−τ)
3 1(n−a,n+a−s7,s7,0)

)
F

(a)
1 F

(s7)
2 1ϑ

(14a) ∑
s7,v3

[n−τs7 ][n−s7a−s7][
n−s7
a−s7][

s7
v3

]E(s7)
2 E

(a)
1

(
F

(a−τ−v3)
3 E

(a−τ−v3)
3 1(n−a,n+a−s7,s7,0)

)
F

(a)
1 F

(s7)
2 1ϑ

(14b) ∑
s7,v3

[n−τs7 ][n−s7a−s7]
2
[s7v3]
(

1ϑF
(a−τ−v3)
3

)
E

(s7)
2 E

(a)
1 F

(a)
1 F

(s7)
2

(
E

(a−τ−v3)
3 1ϑ

)
(17a) ∑

s7,v3
[n−τs7 ][n−s7a−s7]

2
[s7v3]
(

1ϑδv3,a−τ

)
E

(s7)
2 E

(a)
1 F

(a)
1 F

(s7)
2

(
δv3,a−τ1ϑ

)
(13) ∑

s7
[n−τs7 ][n−s7a−s7]

2
[ s7a−τ]E

(s7)
2

(
E

(a)
1 F

(a)
1 1(n,n−s7,s7,0)

)
F

(s7)
2

(14a) ∑
s7,v4

[n−τs7 ][n−s7a−s7]
2
[ s7a−τ][

s7
v4

]E(s7)
2

(
F

(a−v4)
1 E

(a−v4)
1 1(n,n−s7,s7,0)

)
F

(s7)
2 1ϑ

(14b) ∑
s7,v4

[n−τs7 ][n−s7a−s7]
2
[ s7a−τ][

s7
v4

]
(

1ϑF
(a−v4)
1

)
E

(s7)
2 F

(s7)
2

(
E

(a−v4)
1 1ϑ

)
(17a) ∑

s7
[n−τs7 ][n−s7a−s7]

2
[ s7a−τ]z[s7a ]1ϑE(s7)

2 F
(s7)
2 1ϑ(59)

Tracing through this computation we have placed the symbol z to indicate places where we
must introduce Heaviside functions, so that the end result should be multiplied by He(τ).
The Heaviside functions He(a − τ)He(a − s7)He(s7 − a) are implied by the definition of
quantum binomial coefficients (15c). Thus, s7 = a and the sum simplifies to

He(τ)[n−τa ][n−a0 ][n−a0 ][ a
a−τ][

a
a]1(n,n,0,0)E

(a)
2 F

(a)
2 1(n,n,0,0)

=He(τ)[n−τa ][ a
a−τ]1(n,n,0,0)E

(a)
2 F

(a)
2 1(n,n,0,0)

(14a)
He(τ)

∑
v6

[n−τa ][ a
a−τ][

n
v6

]1(n,n,0,0)F
(a−v6)
2 E

(a−v6)
2 1(n,n,0,0)

(17a)
He(τ)[n−τa ][ a

a−τ][
n
a]1ϑ

(17a)
He(τ)[n−τa ][ n

a−τ]1ϑ(60)

Putting it altogether, the a-colored trefoil evaluates to equation (39).

Appendix B. Proof of parts (b) and (c) of Proposition 2.4

For a compact oriented surface (possibly with boundary) Σ let S(Σ) be the HOMFLYPT
skein algebra of Σ, as defined in [AM98, MM08]. Recall that as a Q(x, q)-module, S(Σ) is
generated by oriented links diagrams on Σ modulo the regular isotopy, the two relations

− = (q − q−1)
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= x

and the relation that a disjoint trivial knot can be removed from a diagram at the expense
of multiplication with x−x−1

q−q−1 . The product L1L2 of two links diagrams is the obtained by

placing L1 atop L2. When Σ is a disk, S(Σ) ∼= Q(q, x) via a map L → 〈L〉, where 〈L〉 is a
framed version of the HOMFLYPT polynomial.

The HOMFLYPT skein algebra of the annulus contains the subalgebra C+ generated by
the closure of all braids. It is known that C+ is isomorphic to the algebra of symmetric
functions (with ground ring Q(q, x)). Under this isomorphism, the Schur function sλ of
a partition λ corresponds to a certain skein element Qλ which will be recalled later. The
relation with the colored HOMFLYPT polynomial is as follows. For an oriented link diagram
L on the disk with r ordered components, and for partitions λi for i = 1, . . . , r we have:

(61) WL(λ1, . . . , λr) = 〈L ∗ (Qλ1 , . . . , Qλr)〉
Here, L ∗ (Qλ1 , . . . , Qλr) is the Q(q, x)-linear combination of link diagrams on the disk ob-
tained by replacing the ith component of L by Qλi . The above equality implies part (b) of
Proposition 2.4.

Let σ : Q(x, q)→ Q(x, q) denote the Q-algebra automorphism given by σ(x) = x, σ(q) =
−q−1. One can easily check that σ extends to a Q-linear automorphism of S(Σ) for any Σ
by setting σ(L) := L for any link diagram L on Σ. It is easy to see that y is an element of
the HOMFLYPT skein algebra of the disk, then

(62) σ(〈y〉) = 〈σ(y)〉.

Lemma B.1. For any partition λ one has

(63) σ(Qλ) = Qλ† .

Proof. In [AM98], Morton-Aiston gave a geometric description of Qλ in terms of closures
of braids. Let us recall this formula for partitions with one row ha = (a) or one column
ea = (1a) from [AM98, p.11]:

(64) Q(a) =
1

α(a)

∑
π∈Syma

ql(π)ω̂π, Q(1a) =
1

α(1a)

∑
π∈Syma

(−q−1)l(π)ω̂π .

Here, for a permutation π of Symn, ωπ denotes the positive braid corresponding to π, and
ω̂π ∈ C denotes the closure of ωπ. Moreover, αλ is given by [AM98, p.14]

(65) αλ =
∏

(i,j)∈λ

qj−i[hook(ij)]

where hook(ij) is the hook-length of the cell (i, j) of the partition λ.
From Equations (64) and (65) one can readily check that σ(Q(a)) = Q(1a), proving the

lemma for the case λ = ha = (a). The case of general λ can be proved similarly, using
explicit formulas of Qλ as described in [AM98]. Alternatively, one can reduce the general
case to the case of one row as follows. The two Jacobi-Trudy formulas

sλ = det
(
(hλi+j−i)

`
i,j=1

)
, sλ† = det

(
(eλi+j−i)

`
i,j=1

)
,
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together with the case λ = ha implies the lemma for general partitions. �

Suppose L is an oriented link diagram L on the disk with r ordered components, and λi
for i = 1, . . . , r are partitions. We have

σ(WL(λ1, . . . , λr)) = σ (〈L ∗ (Qλ1 , . . . , Qλr)〉) by (61)

= 〈σ(L ∗ (Qλ1 , . . . , Qλr))〉 by (62)

= 〈L ∗ (σ(Qλ1), . . . , σ(Qλr))〉
= 〈L ∗ (Qλ†1

, . . . , Qλ†r
)) by (63)

= WL(λ†1, . . . , λ
†
r).

This concludes the proof of part (c). �

Appendix C. The recursion for the colored HOMFLYPT of the trefoil

Let λ ∈ Pn−1 be a partition of length ≤ n− 1. We also use λ to denote the corresponding
Uq(sln)-module. For every positive integer k, the theory of ribbon categories gives a repre-
sentation J : Bk → Aut(λ⊗k), where Bk is the braid group on k strands and Aut(λ⊗k) is
the group of Uq(sln)-linear automorphisms of λ⊗k.

Suppose β ∈ Bm is a braid on m strands, and L = cl(β) is the oriented framed link
obtained by closing β in the standard way, with blackboard framing. Then

(66) JL(λ, λ, . . . ) = trλ
⊗m

q (J(β)),

where for a Uq(sln)-linear map f : V → V ,

trVq (f) = tr(fg, V ) .

Here the right hand side is the usual trace of fg acting on V , and g ∈ Uq(sln) is the
so-called charm element whose exact formula is not needed here. In particular, for a finite-
dimensional weight a Uq(sln)-module V , the quantum dimension dimq(V ) := JU(V ) (where
U is the unknot) is

dimq(V ) := trVq (id) = tr(g, V ) .

Let σ be the standard generator of B2 (see Xa,b of Figure 1). Then J(σ) is defined by
the universal R-matrix and the action of J(σ) on h⊗2

m can be calculated as follows. The
decomposition of h⊗2

m into irreducible Uq(sln)-modules has the form

h⊗2
m =

m⊕
k=0

µm,k ,

where µm,k is the partition (2m − k, k). Since J(σ) is Uq(sln)-linear, Schur lemma shows
that there are scalars cm,k ∈ Q(q1/n) such that on h⊗2

m ,

(67) J(σ)|h⊗2
m

=
m⊕
k=0

cm,kidµm,k .

One of the axioms of the ribbon structure of Uq(sln) is that

(68) J(σ2)|V⊗W = (r−1
V ⊗ r−1

W )rV⊗W ,
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where r is the ribbon element, which belongs to the center of a certain completion of Uq(sln)
and acts on any finite-dimensional weight Uq(sln)-module, see [Tur94, Oht02]. Geometrically,
r = JT , where T is the trivial 1-1 tangle with framing 1, and its action on λ is known (see
e.g. [Lê00, Equ 1.7]):

(69) r|Vλ = r(λ)idλ, where r(λ) = q〈λ,λ+2ρ〉.

Here 〈·, ·〉 is the inner product on the weight space of Uq(sln) normalized such that each root
has square length 2, and 2ρ is the sum of all positive roots.

Using (68) in the square of (67), we get

(cm,k)
2 = r(µm,k) r(hm)−2 .

Taking the square root and using (69)), one gets the value of (cm,k), up to sign ±1. The sign
can be determined by noting that when q = 1, J(σ) is the permutation, J(σ)(x1 ⊗ x2) =
x2 ⊗ x1. Eventually, we get

(70) cm,k = (−1)kq−m
2/nqm

2−2mk+k2−k.

Suppose Ts is the link closure of σs, which is a torus link of type (2, s). By (66) and the
decomposition (67),

J̃Ts(hm) = qsm
2/nJTs(hm) = qsm

2/n

m∑
k=0

(cm,k)
s dimq(µm,k)

=
m∑
k=0

(−1)skqs(m
2−2mk+k2−k) dimq(µm,k)

=
m∑
k=0

(−1)skqs(m
2−2mk+k2−k)

[
x; k − 2

k

][
x; 2m− k − 1

2m− k

]
[2m− 2k + 1]

[2m− k + 1]
,(71)

where x = qn. In the last equality we use the well-known formula for the quantum dimension,
see e.g. [ML03, Equ. (11)], which was first established by Reshetikhin. The right hand side
of (71) gives a formula for WTr(hm). When s = 3, we get another formula of WT3 for the
trefoil, which is simpler than the one given in Section 3.7, since it is a one-dimensional sum.

For odd s, let T̊s be the torus knot Ts with 0 framing. Then, adjusting the framing, from
(71) we get

(72) WT̊s
(hm) = x−m

m∑
k=0

(−1)kqs(m−2mk+k2−k)

[
x; k − 2

k

][
x; 2m− k − 1

2m− k

]
[2m− 2k + 1]

[2m− k + 1]
.

Using the Zeilberger algorithm [PWZ96], we get the recurrence relation for WT̊3
(hm) as

described in Section 1.4.
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