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tionFor a 
losed 3-manifold M , the Cheeger-Chern-Simons invariant [6, 7℄ of a representation ρ of
π1(M) in SL(n, C) is given by the Chern-Simons integral(1.1) ĉ(ρ) =

1

2

∫

M
s∗
(
Tr(A ∧ dA +

2

3
A ∧ A ∧ A)

)
∈ C/4π2Z,where A is the �at 
onne
tion in the �at SL(n, C)-bundle Eρ with holonomy ρ, and s : M → Eρis a se
tion of Eρ. Sin
e SL(n, C) is 2-
onne
ted a se
tion always exists, and a di�erent 
hoi
e ofse
tion 
hanges the value of the integral by a multiple of 4π2.When n = 2, the imaginary part of the Cheeger-Chern-Simons invariant equals the hyperboli
volume of ρ. More pre
isely, if D : M̃ → H3 is a developing map for ρ and νH3 is the hyperboli
volume form, Im(ĉ(ρ)) equals the integral of D∗(νρ) over a fundamental domain for M . In parti
ular,if M = H3/Γ is a hyperboli
 manifold, and ρ is a lift to SL(2, C) of the geometri
 representation

ρgeo : π1(M) → PSL(2, C), the imaginary part equals the volume of M . In fa
t, in this 
ase we have(1.2) ĉ(ρ) = i(Vol(M) + iCS(M)),where CS(M) is the Chern-Simons invariant of M (with the Riemannian 
onne
tion). Althoughthis result is known to experts, no proof seems to be available (see [8, 21℄ for dis
ussions). Wegive a proof in Se
tion 2. The invariant Vol(M) + iCS(M) is often referred to as 
omplex volume.Motivated by this, we de�ne the 
omplex volume VolC of a representation ρ : π1(M) → SL(n, C) by(1.3) ĉ(ρ) = iVolC(ρ)



THE COMPLEX VOLUME OF SL(n, C)-REPRESENTATIONS OF 3-MANIFOLDS 3and de�ne the volume of ρ to be the real part of the 
omplex volume, i.e. the imaginary part ofthe Cheeger-Chern-Simons invariant. Surprisingly, as we shall see, the relationship to hyperboli
volume seems to persist even when n > 2.The set of SL(n, C)-representations is a 
omplex variety with �nitely many 
omponents, and the
omplex volume is 
onstant on 
omponents. This follows from the fa
t that representations in thesame 
omponent have 
ohomologous Chern-Simons forms. Hen
e, for any M , the set of 
omplexvolumes is a �nite set.We show that the de�nition of the Cheeger-Chern-Simons invariant naturally extends to 
ompa
tmanifolds with boundary, and representations ρ : π1(M) → SL(n, C) that are boundary-unipotent,i.e. take peripheral subgroups to a 
onjugate of the unipotent group N of upper triangular matri
eswith 1's on the diagonal. We formulate all our results in this more general setup.The main result of the paper is a 
on
rete algorithm for 
omputing the set of 
omplex vol-umes. The idea is that the set of (
onjuga
y 
lasses of) boundary-unipotent representations 
an beparametrized by a variety, 
alled the Ptolemy variety, whi
h is de�ned by homogeneous polynomialsof degree 2. The Ptolemy variety depends on a 
hoi
e of triangulation, but if the triangulation issu�
iently �ne, every representation is dete
ted by the Ptolemy variety. We show that a point cin the Ptolemy variety naturally determines an element λ(c) in Neumann's extended Blo
h group
B̂(C), su
h that if ρ is the representation 
orresponding to c, we have(1.4) R(λ(c)) = iVolC(ρ),where R : B̂(C) → C/4π2Z is a Rogers dilogarithm.There is a 
anoni
al group homomorphism(1.5) φn : SL(2, C) → SL(n, C)de�ned by taking a matrix A to its (n − 1)th symmetri
 power (see Se
tion 11). The map φnpreserves unipotent elements, and we show that 
omposing a boundary-unipotent representation in
SL(2, C) with φn multiplies the 
omplex volume by (n+1

3

). If M = H3/Γ is a hyperboli
 3-manifold,the geometri
 representation ρgeo always lifts to a representation in SL(2, C), but if M has 
usps,lifts are not ne
essarily boundary-unipotent. In fa
t, by a result of Calegari [5℄, if M has a single
usp, any lift of the geometri
 representation takes a longitude to an element with tra
e −2. When
n is even, we shall thus, more generally, be interested in boundary-unipotent representations in(1.6) p SL(n, C) = SL(n, C)

/
〈±I〉.Su
h representations have a 
omplex volume de�ned modulo π2i, and our algorithm 
omputes theseas well. By studying representations in p SL(n, C), we make sure that when M is hyperboli
, thereis always at least one representation with non-trivial 
omplex volume, namely φn ◦ ρgeo.Walter Neumann has 
onje
tured that every element in the Blo
h group B(C) is an integral linear
ombination of Blo
h group elements of hyperboli
 3-manifolds. Sin
e the extended Blo
h groupequals the Blo
h group up to torsion, Neumann's 
onje
ture would imply that all 
omplex volumesare, up to rational multiples of iπ2, integral linear 
ombinations of 
omplex volumes of hyperboli


3-manifolds. In parti
ular, the volumes should all be integral linear 
ombinations of volumes ofhyperboli
 manifolds.Our algorithm has been implemented by Matthias Goerner. The algorithm uses Magma [3℄to 
ompute a primary de
omposition of the Ptolemy variety, and then uses (1.4) to 
ompute the
omplex volumes. For n = 2, we have 
omputed primary de
ompositions of the Ptolemy varietiesfor all 
ensus manifolds with ≤ 8 simpli
es (these usually �nish within a fra
tion of a se
ond) andall link 
omplements with ≤ 16 simpli
es in the SnapPy 
ensus [9℄ of knots with up to 11 
rossingsand links with up to 10 
rossings. When there are more than 16 simpli
es some of the 
omputations



4 STAVROS GAROUFALIDIS, DYLAN P. THURSTON, AND CHRISTIAN K. ZICKERTdon't terminate. For n = 3, 
omputations are feasible for many manifolds with up to 4 simpli
es,but for n = 4 the 
omputations run out of memory for all manifolds with more than 2 simpli
es. Itwould be interesting to perform numeri
al 
al
ulations for n ≥ 4. Our 
omputations have revealednumerous (numeri
al) examples of linear 
ombinations as predi
ted by Neumann's 
onje
ture. Tothe best of our knowledge, our examples are the �rst 
on
rete 
omputations (the �rst of whi
h were
arried out in 2009) of the Cheeger-Chern-Simons invariant (
omplex volume) for n > 2.1.1. Statement of our results. This se
tion gives a brief summary of our main results. Moredetails 
an be found in the paper.1.1.1. The Ptolemy variety. Let M be a 
ompa
t, oriented 3-manifold with (possibly empty) bound-ary, and let K be a 
losed 3-
y
le (triangulated 
omplex; see De�nition 4.1) homeomorphi
 to thespa
e obtained from M by 
ollapsing ea
h boundary 
omponent to a point. We identify ea
h of thesimpli
es of K with a standard simplex(1.7) ∆3
n =

{
(x0, x1, x2, x3) ∈ R4

∣∣ 0 ≤ xi ≤ n, x0 + x1 + x2 + x3 = n
}

.Let ∆3
n(Z) be the set of points in ∆3

n with integral 
oordinates, and let ∆̇3
n(Z) be ∆3

n(Z) withthe 4 vertex points removed.De�nition 1.1. A Ptolemy assignment on ∆3
n is an assignment ∆̇3

n(Z) → C∗, t 7→ ct, of a non-zero
omplex number ct to ea
h (non-vertex) integral point t of ∆3
n su
h that for ea
h α ∈ ∆3

n−2(Z), thePtolemy relation(1.8) cα03
cα12

+ cα01
cα23

= cα02
cα13is satis�ed. Here, αij denotes the integral point α+ei+ej . A Ptolemy assignment on K is a Ptolemyassignment ci on ea
h simplex ∆i of K su
h that the Ptolemy 
oordinates agree on identi�ed fa
es.Remark 1.2. The name is inspired by the resemblan
e of (1.8) with the Ptolemy relation betweenthe lengths of the sides and diagonals of an ins
ribed quadrilateral (see Figure 1). In the workof Fo
k and Gon
harov [14℄, the Ptolemy relations appear as relations between 
oordinates on thehigher Tei
hmüller spa
e when the triangulation of a surfa
e is 
hanged by a �ip.
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Figure 1. A quadrilat-eral is ins
ribed in a 
ir
leif and only if ab + cd = ef . Figure 2. Ptolemy assignment for n = 3. ThePtolemy relation for α = 1000 is c2001c1110 +
c2100c1011 = c2010c1101.It follows immediately from the de�nition that the set of Ptolemy assignments on K is an algebrai
set Pn(K), whi
h we shall refer to as the the Ptolemy variety.



THE COMPLEX VOLUME OF SL(n, C)-REPRESENTATIONS OF 3-MANIFOLDS 5The extended pre-Blo
h group P̂(C) is generated by tuples (u, v) ∈ C2 with eu + ev = 1, and theextended Blo
h group B̂(C) ⊂ P̂(C) is the kernel of the map P̂(C) → ∧2(C) taking (u, v) to u ∧ v.We refer to Se
tion 3 for a review. Using (1.8), we obtain that a Ptolemy assignment c on ∆3
n givesrise to an element(1.9) λ(c) =

∑

α∈T 3(n−2)

(c̃α03
+ c̃α12

− c̃α02
− c̃α13

, c̃α01
+ c̃α23

− c̃α02
− c̃α13

) ∈ P̂(C),where the tilde denotes a bran
h of logarithm (the parti
ular 
hoi
e is inessential). We thus have amap(1.10) λ : Pn(K) → P̂(C), c 7→
∑

i

ǫiλ(ci),where the sum is over the simpli
es of K. Let RSL(n,C),N (M) denote the set of 
onjuga
y 
lasses ofboundary-unipotent representations π1(M) → SL(n, C). The following theorem (as well as Theo-rem 1.12 below) gives an e�
ient algorithm for 
omputing 
omplex volumes. For numerous exam-ples, see Se
tion 10.Theorem 1.3 (Proof in Se
tion 9.5). A Ptolemy assignment c uniquely determines a boundary-unipotent representation R(c) ∈ RSL(n,C),N (M). The map λ has image in B̂(C), and we have a
ommutative diagram(1.11) Pn(K)
λ

//

R
��

B̂(C)

R
��

RSL(n,C),N (M)
i VolC

// C/4π2Z.Moreover, if the triangulation is su�
iently �ne (a single bary
entri
 subdivision su�
es), the map
R is surje
tive. �Remark 1.4. We show in Se
tion 9 that there is a one-one 
orresponden
e between points in Pn(K)and generi
ally de
orated (see Se
tion 5) boundary-unipotent SL(n, C)-representations. Under this
orresponden
e, the map R is just the forgetful map ignoring the de
oration. Note that Pn(K)depends on the triangulation and may be empty.Let H ⊂ SL(n, C) denote the group of diagonal matri
es, and let h denote the number of boundary
omponents of M . In Se
tion 4.1 we de�ne an a
tion of Hh on Pn(K). We denote the quotient by
Pn(K)red. The a
tion only 
hanges the de
oration, so R fa
tors through Pn(K)red.De�nition 1.5. A boundary-unipotent representation ρ : π1(M) → SL(n, C) is peripherally wellbehaved if the image of ea
h peripheral subgroup is either trivial or 
ontains an element with amaximal Jordan blo
k. If the latter 
ondition holds for ea
h peripheral subgroup, we say that ρ isperipherally non-degenerate.Remark 1.6. When n = 2 all representations are peripherally well behaved.Theorem 1.7 (Proof in Se
tion 9.5). The image of R : Pn(K)red → RSL(n,C),N (M) 
onsists of theset of representations admitting a generi
 de
oration (see De�nition 5.2). If su
h a representationis peripherally non-degenerate, the preimage in Pn(K)red is a single point. If ρ is peripherally wellbehaved, any two preimages of R have the same image in B̂(C).Corollary 1.8. A peripherally well behaved boundary-unipotent representation ρ in SL(n, C) de-termines an element [ρ] ∈ B̂(C) su
h that R([ρ]) = iVolC(ρ). �



6 STAVROS GAROUFALIDIS, DYLAN P. THURSTON, AND CHRISTIAN K. ZICKERTRemark 1.9. In general the pre-image of a representation under R 
an have large dimension.1.1.2. Hyperboli
 manifolds and p SL(n, C)-representations. Let φn : SL(2, C) → SL(n, C) denotethe 
anoni
al irredu
ible representation. Note that when n is odd φn fa
tors through PSL(2, C). Ifa representation ρ is in the image of Pn(K) → RSL(n,C),N (M), we say that Pn(K) dete
ts ρ.Theorem 1.10 (Proof in Se
tion 11.1). Suppose M = H3/Γ is an oriented, hyperboli
 manifoldwith �nite volume and geometri
 representation ρgeo : π1(M) → PSL(2, C). If the triangulation of
K has no non-essential edges, and if n is odd, Pn(K) is non-empty and dete
ts φn ◦ ρgeo. �When n is even, φn ◦ ρgeo is only a representation in p SL(n, C) = SL(n, C)

/
〈±I〉.De�nition 1.11. Let σ ∈ Z2(∆3

n; Z/2Z) be a 
o
y
le. A p SL(n, C)-Ptolemy assignment on ∆3
nwith obstru
tion 
o
y
le σ is an assignment of Ptolemy 
oordinates to the integral points of ∆3
nsu
h that(1.12) σ2σ3cα03

cα12
+ σ0σ3cα01

cα23
= cα02

cα13
.Here σi ∈ Z/2Z = 〈±1〉 is the value of σ on the fa
e opposite the ith vertex of ∆3

n. A p SL(n, C)-Ptolemy assignment on K with obstru
tion 
o
y
le σ ∈ Z2(K; Z/2Z) is a 
olle
tion of p SL(n, C)-Ptolemy assignments ci on ∆i with obstru
tion 
lass σ∆i
su
h that the Ptolemy 
oordinates agreeon 
ommon fa
es.The set of p SL(n, C)-Ptolemy assignments on K with obstru
tion 
o
y
le σ is an algebrai
 set

P σ
n (K), whi
h up to 
anoni
al isomorphism, only depends on the 
ohomology 
lass of σ. The ob-stru
tion 
lass to lifting a boundary-unipotent representation in p SL(n, C) to a boundary-unipotentrepresentation in SL(n, C) is a 
lass in H2(M,∂M ; Z/2Z) = H2(K; Z/2Z). For σ ∈ H2(K; Z/2Z),let Rσ

p SL(n,C),N (M) denote the set of (
onjuga
y 
lasses of) boundary-unipotent representations in
p SL(n, C) with obstru
tion 
lass σ. If M is hyperboli
 we let σgeo ∈ H2(K; Z/2Z) denote theobstru
tion 
lass of the geometri
 representation.Theorem 1.12 (Proof in Se
tion 9.5). Let n be even. For ea
h σ ∈ H2(K; Z/2Z), we have a
ommutative diagram (B̂(C)PSL is de�ned in Se
tion 3.2)(1.13) P σ

n (K)
λ

//

R
��

B̂(C)PSL

R

��

Rσ
p SL(n,C),N (M)

i VolC
// C/π2Z.If the triangulation of K is su�
iently �ne, R is surje
tive. If M = H3/Γ is hyperboli
, and if Khas no non-essential edges, P

σgeo
n (K) dete
ts φn ◦ ρgeo. �Remark 1.13. The analogue of Theorem 1.7 also holds, ex
ept that the preimage of a peripherallywell behaved representation is now parametrized by Z1(K; Z/2Z) (see Se
tion??).Remark 1.14. If the triangulation has a non-essential edge, all Ptolemy varieties are empty. Hen
e,if P σ

2 (K) is non-empty for some σ, and if M is hyperboli
, the Ptolemy variety P σgeo(K) will dete
tthe geometri
 representation.Theorem 1.15 (Proof in Se
tion 11). Let ρ be a peripherally well behaved representation in SL(2, C)or PSL(2, C). The extended Blo
h group element of φn ◦ ρ is (n+1
3

) times that of ρ. In parti
ular,
omposition with φn multiplies 
omplex volume by (n+1
3

). �



THE COMPLEX VOLUME OF SL(n, C)-REPRESENTATIONS OF 3-MANIFOLDS 71.1.3. The Cheeger-Chern-Simons 
lass. The Cheeger-Chern-Simons invariant 
an be viewed as a
hara
teristi
 
lass H3(SL(n, C)) → C/4π2Z, and the result underlying the proof of 
ommutativityof (1.11) is Theorem 1.16 below, giving an expli
it 
o
y
le formula for the Cheeger-Chern-Simons
lass. The formula generalizes the formula in Goette-Zi
kert [17℄ for n = 2. Re
all that a homology
lass 
an be represented by a formal sum of tuples (g0, . . . , g3). To su
h a tuple, we 
an assign aPtolemy assignment c(g0, . . . , g3) de�ned by(1.14) c(g0, . . . , g3)t = det
(
{g0}t0 ∪ · · · ∪ {g3}t3

)
, t = (t0, . . . , t3),where {gi}ti denotes the ordered set 
onsisting of the �rst ti 
olumn ve
tors of gi. One 
an alwaysrepresent a homology 
lass by tuples, su
h that all the determinants in (1.14) are non-zero.Theorem 1.16 (Proof in Se
tion 8). The Cheeger-Chern-Simons 
lass ĉ fa
tors as(1.15) H3(SL(n, C))

λ
// B̂(C)

R
// C/4π2Z ,where λ is indu
ed by the map taking a tuple (g0, . . . , g3) to λ(c(g0, . . . , g3)) ∈ P̂(C). �1.1.4. Thurston's gluing equations. When n = 2, Thurston's gluing equation variety V (K) is anothervariety, whi
h is often used to 
ompute volume. It is given by an equation for ea
h edge of K andan equation for ea
h generator of the fundamental groups of the boundary-
omponents of M (seeSe
tion 12).Theorem 1.17 (Proof in Se
tion 12). Suppose M has h boundary 
omponents. There is a surje
tiveregular map(1.16) ∐

σ∈H2(K;Z/2Z)

P σ
2 (K) → V (K)with �bers disjoint 
opies of (C∗)h. �Remark 1.18. The Ptolemy variety seems to o�er signi�
ant 
omputational advantage over thegluing equations, but a

ording to Fabri
e Rouillier (private 
ommuni
ations) one 
an manipulatethe gluing equations to mitigate this.1.1.5. Algebrai
 K-therory. As shown in Zi
kert [30℄, the extended Blo
h group 
an also be de�nedover a number �eld F , and we have a 
anoni
al isomorphism B̂(F ) ∼= K ind

3 (F ).Theorem 1.19 (Proof in Se
tion 13). Let F be a number �eld. A boundary-unipotent representation
ρ : π1(M) → SL(n,F ) determines an element of B̂(F ) = K ind

3 (F ) su
h that for ea
h embedding
τ : F → C, we have(1.17) R(τ([ρ])) = iVolC(τ ◦ ρ).If ρ is irredu
ible, [ρ] lies in B̂(Tr(ρ)), where Tr(ρ) ⊂ F is the tra
e �eld of ρ. �1.2. Neumann's 
onje
ture. The fa
t that (1.10) has image in B̂(C) as opposed to P̂(C) hasvery interesting 
onje
tural 
onsequen
es. It is well known (see e.g. Suslin [27℄) that the Blo
hgroup B(C) is a Q-ve
tor spa
e, and Walter Neumann has 
onje
tured that it is generated by Blo
hinvariants of hyperboli
 manifolds. More generally, Walter Neumann has proposed the followingstronger 
onje
ture [22℄:Conje
ture 1.20. Let F ⊂ C be a 
on
rete number �eld whi
h is not in R. The Blo
h group B(F )is generated (integrally) modulo torsion by hyperboli
 manifolds with invariant tra
e �eld 
ontainedin F .



8 STAVROS GAROUFALIDIS, DYLAN P. THURSTON, AND CHRISTIAN K. ZICKERTUsing Theorems 1.3 and 1.12, Conje
ture 1.20 implies:Conje
ture 1.21. Let ρ be a boundary-unipotent representation of π1(M) in SL(n, C) or p SL(n, C).There exist hyperboli
 3-manifolds M1, . . . ,Mk and integers r1, . . . , rk su
h that(1.18) VolC(ρ) =
∑

ri VolC(Mi) ∈ C/iπ2Q.In parti
ular, Vol(ρ) =
∑

ri Vol(Mi) ∈ R.We give some examples in Se
tion 10.Remark 1.22. The Ptolemy 
oordinates may be 
onsidered as a 3-dimensional analogue of Fo
kand Gon
harov's A-
oordinates [14℄. They were de�ned for 3-manifolds in Zi
kert [30℄ (under thename ideal 
o
hain), and have subsequently been studied by several other authors. These in
ludeBergeron-Falbel-Guilloux [2℄, Garoufalidis-Goerner-Zi
kert [15℄ and Dimofte-Gabella-Gon
harov [10℄.1.3. Overview of the paper. Se
tion 2 gives a detailed review of the Cheeger-Chern-Simons
lasses for �at bundles. Many details are in
luded in order to give a self-
ontained proof of (1.2).Se
tion 3 gives a brief review of the two variants of the extended Blo
h group, and Se
tion 4 re-views the theory, introdu
ed in Zi
kert [31℄, of de
orated representations and relative fundamental
lasses. In Se
tion 5, we introdu
e the notion of generi
 de
orations and de�ne the Ptolemy variety
Pn(K). In Se
tion 6, we 
onstru
t a 
hain 
omplex of Ptolemy assignments, and use it to 
onstru
ta map from H3(SL(n, C), N) to B̂(C) 
ommuting with stabilization. This shows that a de
oratedboundary-unipotent representation determines an element in the extended Blo
h group, whi
h isgiven expli
itly in terms of the Ptolemy 
oordinates. In Se
tion 7, we show that the extended Blo
hgroup element of a de
orated, peripherally well behaved representation is independent of the de
ora-tion, and in Se
tion 8, we show that the Cheeger-Chern-Simons 
lass is given as in Theorem 1.16. InSe
tion 9, we show that the Ptolemy variety parametrizes generi
ally de
orated representations, andgive an expli
it formula for re
overing a representation from its Ptolemy 
oordinates. In Se
tion 10,we give some examples of 
omputations, and list some interesting �ndings. Se
tion 11 dis
ussesthe irredu
ible representations of SL(2, C), and Se
tion 12 dis
usses the relationship to Thurston'sgluing equations when n = 2. Finally, Se
tion 13 is a brief dis
ussion of other �elds.1.4. A
knowledgment. The authors wish to thank Ian Agol, Johan Dupont, Matthias Goernerand Walter Neumann for stimulating 
onversations, and the referees for valuable 
omments and
orre
tions. We are parti
ularly grateful to Matthias Goerner for a 
omputer implementation ofour formulas, and for supplying our theory with 
omputational data for more than 20000 manifolds.The software has been in
orporated into SnapPy [9℄, and 
omputational data 
an be found athttp://unhyperboli
.org/ptolemy.html.2. The Cheeger-Chern-Simons 
lassesThe Cheeger-Chern-Simons 
lasses [6, 7℄ are 
hara
teristi
 
lasses of prin
ipal bundles with 
on-ne
tion. For general bundles, the 
hara
teristi
 
lasses are di�erential 
hara
ters [6℄, but for �atbundles they redu
e to ordinary (singular) 
ohomology 
lasses. In this paper we will fo
us ex
lu-sively on �at bundles. Let F denote either R or C, and let Λ be a proper subring of F. Let G be aLie group over F with �nitely many 
omponents. There is a 
hara
teristi
 
lass SP,u for ea
h pair
(P, u) 
onsisting of an invariant polynomial P ∈ Ik(G; F) and a 
lass u ∈ H2k(BG; Λ), whose imagein H2k(BG; F) equals W (P ), where W is the Chern-Weil homomorphism(2.1) W : Ik(G; F) → H2k(BG; F).

http://unhyperbolic.org/ptolemy.html


THE COMPLEX VOLUME OF SL(n, C)-REPRESENTATIONS OF 3-MANIFOLDS 9The 
hara
teristi
 
lass SP,u asso
iates to ea
h �at G-bundle E → M a 
ohomology 
lass SP,u(E) ∈
H2k−1(M ; F/Λ).2.1. Simply 
onne
ted, simple Lie groups. If G is simply 
onne
ted and simple, H1(G; Z) and
H2(G; Z) are trivial, and H3(G; Z) ∼= Z. Hen
e, by the Serre spe
tral sequen
e for the universalbundle, we have an isomorphism(2.2) S : H4(BG; Z) ∼= H3(G; Z) ∼= Z
alled the suspension. The Killing form on G de�nes an invariant polynomial B ∈ I2(G; F), andsin
e B is real on the maximal 
ompa
t subgroup K of G, W (B) is a real 
lass. Hen
e, there existsa unique positive real number α su
h that W (αB) is a generator of H4(BG; 4π2Z). We refer to αBas the renormalized Killing form, and denote the Cheeger-Chern-Simons 
lass SαB,W (αB) by ĉ.Re
all that every 
lass in H3(G; F) 
an be represented by a G-invariant 3-form. The following iswell known (see e.g. Kamber-Tondeur [19, (5.74) p. 116℄).Proposition 2.1. Let P ∈ I2(G; F). The suspension of W (P ) is represented by the invariant
3-form(2.3) σ(P ) = −1

6
P (ω ∧ [ω, ω]) ∈ Ω3(G; F)Gwhere ω is the Maurer-Cartan form on G. �Let E → M be a G-bundle with �at 
onne
tion θ. We 
an view θ as a map g∗ → Ω1(E; F), soby taking exterior powers, θ indu
es a map(2.4) θ : Ω3(G)G = ∧3(g∗) → Ω3(E; F).Note that θ(σ(P )) = −1

6P (θ ∧ [θ, θ]). In the following, P denotes the renormalized Killing form.Proposition 2.2 ([6, Proposition 2.8℄). Let E → M be a G-bundle, with �at 
onne
tion θ, over a
losed 3-manifold M . The 
ohomology 
lass ĉ(E) ∈ H3(M ; F/4π2Z) satis�es(2.5) ĉ(E)([M ]) =

∫

M
s∗
(
θ(σ(P ))

)
∈ F/4π2Z,where s is a se
tion of E (whi
h exists sin
e G is 2-
onne
ted). �Remark 2.3. Sin
e σ(P ) ∈ H3(G; 4π2Z) is a generator, it follows that a 
hange of se
tion 
hangesthe integral by a multiple of 4π2Z.Example 2.4. For G = SL(n, C), the renormalized Killing form P equals 1

2Tr, where Tr is thetra
e form (A,B) 7→ Tr(AB). For a �at 
onne
tion, dθ = −1
2 [θ, θ] = −θ ∧ θ, so (2.5) yields(2.6) ĉ(E)([M ]) =

1

2

∫

M
s∗
(
Tr(θ ∧ dθ +

2

3
θ ∧ θ ∧ θ)

)
∈ C/4π2Zre
overing the Chern-Simons integral (1.1). Note that P also equals the (renormalized) se
ondChern-polynomial c2. It thus follows that ĉ = ĉ2.2.2. Complex groups and volume. Re
all that there is a 1-1 
orresponden
e between �at G-bundles over M and representations π1(M) → G up to 
onjugation. This 
orresponden
e takes a�at bundle to its holonomy representation. If ρ : π1(M) → G is a representation, we let Eρ denotethe 
orresponding �at bundle. In the following G denotes a simply 
onne
ted, simple, 
omplex Liegroup, and M a 
losed, oriented 3-manifold. The following de�nition is motivated by Theorem 2.8below.



10 STAVROS GAROUFALIDIS, DYLAN P. THURSTON, AND CHRISTIAN K. ZICKERTDe�nition 2.5. The 
omplex volume VolC(ρ) of a representation ρ : π1(M) → G is de�ned by(2.7) ĉ(Eρ)([M ]) = iVolC(ρ) ∈ C/4π2Z.The volume Vol(ρ) of ρ is the real part of VolC(ρ).The bundle Eρ is isomorphi
 to M̃×ρG, and we thus have a 1-1 
orresponden
e between se
tions of
Eρ and ρ-equivariant maps M̃ → G su
h that f : M̃ → G 
orresponds to the se
tion s(x) = [x̃, f(x̃)].Lemma 2.6. For any ρ-equivariant map f : M̃ → G, we have iVolC(ρ) =

∫
D f∗(σ(P )), where D isa fundamental domain for M in M̃ .Proof. For any invariant form η ∈ Ω3(G)G, the form θ(η) ∈ Ω3(Eρ; F) is indu
ed by the pullba
k of

η under the proje
tion M̃ × G → G. Letting η = σ(P ), the result follows from (2.5). �Let H3 = SL(2, C)/SU(2) be hyperboli
 3-spa
e. We identify the orthonormal frame bundle
F (H3) of H3 with PSL(2, C).Lemma 2.7. For G = SL(2, C), σ(P ) = −h∗ ∧ e∗ ∧ f∗, where h =

(
1 0
0 −1

), e = ( 0 1
0 0 ) and f = ( 0 0

1 0 )are the standard generators of sl(2, C) over C.Proof. As in Example 2.4, P = 1
2Tr. Using the fa
t that Tr(AB) = Tr(BA), it follows from (2.3)that σ(P ) ∈ Ω3(G)G = ∧3(g∗) is given by(2.8) g × g × g → C, (A,B,C) 7→ −1

2
Tr(A[B,C]).A simple 
omputation shows that if A = ( a1 a2

a3 −a1
), B =

(
b1 b2
b3 −b1

) and C = ( c1 c2
c3 −c1 )(2.9) − 1

2
Tr(A[B,C]) = − det

( a1 a2 a3

b1 b2 b3
c1 c2 c3

)
= −h∗ ∧ e∗ ∧ f∗(A,B,C).This proves the result. �Theorem 2.8. Let M = H3/Γ be a 
losed hyperboli
 3-manifold, and let ρ : π1(M) → SL(2, C) bea lift of the geometri
 representation. We have(2.10) ĉ(Eρ)([M ]) = i(Vol(M) + iCS(M)) in C/2π2Z,where CS(M) = 2π2 cs(M), and cs(M) is the (Riemannian) Chern-Simons invariant [7, (6.2)℄.Proof. The fa
t that the imaginary part equals volume is well known, and follows from the fa
t (seeDupont [12℄) that the imaginary part of σ(P ) is 
ohomologous to the pullba
k of the hyperboli
volume form. Yoshida [29, Lemma 3.1℄ shows that the real part of the form h∗∧e∗∧f∗ equals 2π2 cs,where cs is the Riemannian Chern-Simons form on F (H3) = PSL(2, C) (pulled ba
k to SL(2, C).Note that the Riemannian 
onne
tion on F (H3) = PSL(2, C) des
ends to the Riemannian 
onne
tionon F (M) = PSL(2, C)/Γ. If f : M̃ → SL(2, C) is ρ-equivariant, the 
omposition(2.11) M̃

f
// SL(2, C) // PSL(2, C) // PSL(2, C)/Γ = F (M)is ρ-invariant, and thus des
ends to a se
tion of F (M). The result now follows from Yoshida's resulttogether with Lemma 2.7 and Lemma 2.6. �Remark 2.9. Note that Theorem 2.8 implies that modulo 2π2, the 
omplex volume of a represen-tation lifting the geometri
 representation only depends on M and not on the 
hoi
e of lift.
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e P is real on K, the imaginary part of σ(P ) is 
ohomologous to an invariant
3-form on G/K. Sin
e H3(g, k; R) = R, there is a unique su
h form up to s
aling. We may thusthink of Im(σ(P )) as a volume form.2.3. The universal 
lasses and group 
ohomology. The Cheeger-Chern-Simons 
lasses are alsode�ned for the universal �at bundle EGδ → BGδ. For an expli
it 
onstru
tion, we refer to Dupont-Kamber [13℄ or Dupont-Hain-Zu
ker [11℄. In parti
ular, we have a 
lass ĉ ∈ H3(BGδ; C/4π2Z). If
ρ : π1(M) → G is a representation, with 
lassifying map Bρ : M → BGδ, we thus have(2.12) ĉ(Bρ∗([M ])) = iVolC(ρ).It is well known that the homology of BGδ is the homology of the 
hain 
omplex C∗ ⊗Z[G] Z,where C∗ is any free Z[G]-resolution of Z. A 
onvenient 
hoi
e of free resolution is the 
omplex C∗,generated in degree n by tuples (g0, . . . , gn), and with boundary map given by(2.13) ∂(g0, . . . , gn) =

∑
(−1)i(g0, . . . , ĝi, . . . , gn).The homology of C∗⊗Z[G]Z is denoted H∗(G), so H∗(G) = H∗(BGδ). Theorem 1.16 gives a 
on
rete
o
y
le formula for ĉ : H3(SL(n, C)) → C/4π2Z.2.4. Compa
t manifolds with boundary. In Se
tion 6.1 below, we 
onstru
t a natural extensionof ĉ : H3(SL(n, C)) → C/4π2Z to a homomorphism(2.14) ĉ : H3(SL(n, C), N) → C/4π2Z,where N is the subgroup of upper triangular matri
es with 1's on the diagonal.De�nition 2.11. Let ρ : π1(M) → SL(n, C) be a boundary-unipotent representation. The 
omplexvolume of ρ is de�ned by(2.15) ĉ(Bρ∗([M,∂M ])) = iVolC(ρ),where Bρ : (M,∂M) → (B SL(n, C)δ, BN δ) is a 
lassifying map for ρ.Remark 2.12. Unlike when M is 
losed, the 
lassifying map is not uniquely determined by ρ; itdepends on a 
hoi
e of de
oration (see Se
tion 4). The 
omplex volume, however, is independent ofthis 
hoi
e (See Remark 8.5).2.5. Central elements of order 2. For any simple 
omplex Lie group G, there is a 
anoni
alhomomorphism (de�ned up to 
onjugation)(2.16) φG : SL(2, C) → G.The element sG = φG(−I) is a 
entral element of G of order dividing 2, and equals (−I)n+1 if

G = SL(n, C) (see e.g. Fo
k-Gon
harov [14, Corollary 2.1℄). Let(2.17) pG = G/〈sG〉.Note that φG des
ends to a homomorphism PSL(2, C) → pG. The following follows easily from theSerre spe
tral sequen
e.Proposition 2.13. Suppose sG has order 2. The 
anoni
al map p∗ : H4(BpG; Z) → H4(BG; Z) issurje
tive with kernel of order dividing 4. �Corollary 2.14. There is a 
anoni
al 
hara
teristi
 
lass ĉ : H3(pG) → C/π2Z.Proof. By Proposition 2.13, there exists a 
anoni
al 
lass u ∈ H4(BpG;π2Z) su
h that p∗(u) =
W (P ) ∈ H4(BG;π2Z). De�ne ĉ = SP,u. �



12 STAVROS GAROUFALIDIS, DYLAN P. THURSTON, AND CHRISTIAN K. ZICKERTIn Se
tion 6.3, we 
onstru
t a homomorphism(2.18) ĉ : H3(p SL(n, C), N) → C/π2Z,whi
h extends ĉ to a 
hara
teristi
 
lass of bundles with boundary-unipotent holonomy. The 
omplexvolume of a representation in p SL(n, C) is de�ned as in De�nition 2.11.3. The extended Blo
h groupWe use the 
onventions of Zi
kert [30℄; the original referen
e is Neumann [21℄.De�nition 3.1. The pre-Blo
h group P(C) is the free abelian group on C \ {0, 1} modulo the �veterm relation(3.1) x − y +
y

x
− 1 − x−1

1 − y−1
+

1 − x

1 − y
= 0, for x 6= y ∈ C \ {0, 1}.The Blo
h group is the kernel of the map ν : P(C) → ∧2(C∗) taking z to z ∧ (1 − z).De�nition 3.2. The extended pre-Blo
h group P̂(C) is the free abelian group on the set(3.2) Ĉ =

{
(e, f) ∈ C2

∣∣ exp(e) + exp(f) = 1
}modulo the lifted �ve term relation(3.3) (e0, f0) − (e1, f1) + (e2, f2) − (e3, f3) + (e4, f4) = 0if the equations(3.4) e2 = e1 − e0, e3 = e1 − e0 − f1 + f0, f3 = f2 − f1

e4 = f0 − f1, f4 = f2 − f1 + e0are satis�ed. The extended Blo
h group is the kernel of the map ν̂ : P̂(C) → ∧2(C) taking (e, f) to
e ∧ f .An element (e, f) ∈ Ĉ with exp(e) = z is 
alled a �attening with 
ross-ratio z. Letting µC denotethe roots of unity in C∗, we have a 
ommutative diagram.
(3.5)

0

��

0

��

0

��

0 // µC
2 log

//

χ

��

C/4πiZ //

χ

��

C∗/µC
//

��

0

��

0 // B̂(C) //

π

��

P̂(C)
bν

//

π

��

∧2(C) //

��

K2(C) // 0

0 // B(C) //

��

P(C)
ν

//

��

∧2(C∗)

��

// K2(C) //

��

0

0 0 0 0The map π is indu
ed by the map taking a �attening to its 
ross-ratio, and χ is the map taking
e ∈ C/4πiZ to (e, f + 2πi) − (e, f), where f ∈ C is any element su
h that (e, f) ∈ Ĉ.
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h of logarithm, we may write a �attening with 
ross-ratio
z as [z; p, q] =

(
log(z) + pπi, log(1 − z) + qπi

), where p, q ∈ Z are even integers. There is a wellde�ned regulator map(3.6) R : P̂(C) → C/4π2Z,

[z; p, q] 7→ Li2(z) +
1

2
(log(z) + pπi)(log(1 − z) − qπi) − π2/6.3.2. The PSL(2, C)-variant of the extended Blo
h group. There is another variant of theextended Blo
h group using �attenings [z; p, q], where p and q are allowed to be odd. This group isde�ned as above using the set(3.7) Ĉodd =

{
(e, f) ∈ C2

∣∣ ± exp(e) ± exp(f) = 1
}

,and �ts in a diagram similar to (3.5). We use a subs
ript PSL to denote the variant allowing odd�attenings. We have an exa
t sequen
e(3.8) 0 // Z/4Z // B̂(C) // B̂(C)PSL
// 0.For odd �attenings, the regulator (3.6) is well de�ned modulo π2Z.Theorem 3.3 (Neumann [21℄, Goette-Zi
kert [17℄). There are natural isomorphisms(3.9) H3(PSL(2, C)) ∼= B̂(C)PSL, H3(SL(2, C)) ∼= B̂(C)su
h that the Cheeger-Chern-Simons 
lasses agree with the regulators. �The following result is needed in Se
tion 7. The �rst part is proved in Zi
kert [30, Lemma 3.16℄,and the se
ond has a similar proof, whi
h we leave to the reader.Lemma 3.4. For (e, f) ∈ Ĉ and p, q ∈ Z, we have

(e + 2πip, f + 2πiq) − (e, f) = χ(qe − pf + 2pqπi) ∈ P̂(C),(3.10)
(e + πip, f + πiq) − (e, f) = χ(qe − pf + pqπi) ∈ P̂(C)PSL.(3.11) �3.3. Arbitrary �elds. In Zi
kert [30℄, extended Blo
h groups B̂E(F ) and B̂E(F )PSL are de�nedfor an arbitrary �eld F and a primitive extension E of F ∗ by Z. The de�nitions are as above usingthe sets(3.12) ÊF =

{
(e, f) ∈ E2

∣∣ π(e) + π(f) = 1
}

, (ÊF )odd =
{
(e, f) ∈ E2

∣∣ ±π(e) ± π(f) = 1
}

.If F is a number �eld, the extended Blo
h groups are up to 
anoni
al isomorphism independent ofthe 
hoi
e of extension, so we may omit the subs
ript E.Theorem 3.5 (Zi
kert [30, Theorem 1.1℄). Let F be a number �eld. There is a natural isomorphism(3.13) K ind
3 (F ) ∼= B̂(F )respe
ting Galois a
tions. �Corollary 3.6 (Zi
kert [30, Corollary 7.14℄). For ea
h embedding τ : F → C, the indu
ed map

τ : B̂(F ) → B̂(C) is inje
tive. �Corollary 3.7 (Galois des
ent; Zi
kert [30, Corollary 7.15℄). Let F2 : F1 be an extension of number�elds. An element in B̂(F2) is in B̂(F1) if and only if it is invariant under all automorphisms of F2over F1. �



14 STAVROS GAROUFALIDIS, DYLAN P. THURSTON, AND CHRISTIAN K. ZICKERT4. De
orations of representationsIn this se
tion we review the notion of de
orated representations introdu
ed in Zi
kert [31℄.Throughout the se
tion, G denotes an arbitrary group, not ne
essarily a Lie group. Let H besubgroup of G. An ordered simplex is a simplex with a �xed vertex ordering.De�nition 4.1. A 
losed 3-
y
le is a 
ell 
omplex K obtained from a �nite 
olle
tion of ordered
3-simpli
es ∆i by gluing together pairs of fa
es using order preserving simpli
ial atta
hing maps.We assume that all fa
es have been glued, and that the spa
e M(K), obtained by trun
ating the
∆i's before gluing, is an oriented 3-manifold with boundary. Let ǫi be a sign indi
ating whether ornot the orientation of ∆i given by the vertex ordering agrees with the orientation of M(K).Note that up to removing disjoint balls (whi
h does not e�e
t the fundamental group), themanifold M(K) only depends on the underlying topologi
al spa
e of K, and not on the 
hoi
e of
3-
y
le stru
ture. Also note that for any 
ompa
t, oriented 3-manifold M with (possibly empty)boundary, the spa
e M̂ obtained from M by 
ollapsing ea
h boundary 
omponent to a point has astru
ture of a 
losed 3-
y
le K su
h that M = M(K).Let K be a 
losed 3-
y
le, and let M = M(K). Let L denote the spa
e obtained from theuniversal 
over M̃ of M by 
ollapsing ea
h boundary 
omponent to a point. The 3-
y
le stru
tureof K indu
es a triangulation of L, and also a triangulation of M by trun
ated simpli
es. The
overing map extends to a map L → K, and the a
tion of π1(M) on M̃ by de
k transformationsextends to an a
tion on L, whi
h is determined by �xing, on
e and for all, a base point in Mtogether with one of its lifts. Note that the stabilizer of ea
h zero 
ell is a peripheral subgroup of
π1(M), i.e. a subgroup indu
ed by in
lusion of a boundary 
omponent.De�nition 4.2. Let H be a subgroup of G. A representation ρ : π1(M) → G is a (G,H)-representation if the image of ea
h peripheral subgroup lies in a 
onjugate of H.De�nition 4.3. Let ρ be a (G,H)-representation. A de
oration (on K) of ρ is a ρ-equivariant map(4.1) D : L(0) → G/H,where L(0) is the zero skeleton of L.Note that if D(e) = gH, we have g−1ρ(Stab(e))g ⊂ H, where Stab(e) is the stabilizer of e. Sin
e
D is ρ-equivariant, it follows that D determines subgroup of H for ea
h boundary 
omponent whi
his well de�ned up to 
onjugation in H.De�nition 4.4. Two de
orations of ρ are equivalent for ea
h boundary 
omponent of M the 
or-responding subgroups of H are 
onjugate (in H).Remark 4.5. If D is a de
oration of ρ, then gD is a de
oration of gρg−1. Sin
e we are onlyinterested in representations up to 
onjugation, we 
onsider su
h two de
orations to be equal.Proposition 4.6. Let E be a �at G-bundle over M whose holonomy representation is a (G,H)-representation ρ. There is a 1-1 
orresponden
e between de
orations of ρ up to equivalen
e, andredu
tions of E∂M to an H-bundle over ∂M .Proof. For ea
h boundary 
omponent Si of M , 
hoose a base point in Si and a path to the base pointof M . This determines a lift ei in L of the vertex of K 
orresponding to Si, and an identi�
ationof π1(Si) with Stab(ei) ⊂ π1(M). If F is a redu
tion of E∂M , the holonomy representations
ρi : π1(Si) → H of FSi

are 
onjugate to ρ, so there exist gi ∈ G su
h that g−1
i ρgi = ρi. Assigningthe 
oset giH to ei yields a de
oration, whi
h up to equivalen
e is independent of the 
hoi
e of gi's.
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oration assigns 
osets giH to ei su
h that g−1
i ρ(Stab(ei))gi ⊂ H. Hen
e,

gi de�nes an isomorphism of ESi
with an H-bundle, whi
h up to isomorphism only depends on theequivalen
e 
lass of the de
oration. �4.1. The diagonal a
tion. Let NG(H) denote the normalizer of H in G, and h the number ofboundary 
omponents of M . There is an a
tion of (NG(H)/H)h on the set of equivalen
e 
lasses ofde
orations given by right multipli
ation. More pre
isely, (x1, . . . , xh) a
ts by taking a de
oration

D to the de
oration D′ de�ned as follows: If D takes a lift v of the ith boundary 
omponent to
gH, then D′ takes v to gxiH. If H = N and G = SL(n, C), NG(H)/H is the group of diagonalmatri
es. We thus refer to the a
tion as the diagonal a
tion.Proposition 4.7. If a boundary-unipotent representation ρ is peripherally well behaved, the diag-onal a
tion on the set of equivalen
e 
lasses of de
orations of ρ is transitive.Proof. It is enough to prove this in the 
ase where there is only one boundary 
omponent. In this
ase, the image of the peripheral subgroup is either trivial or 
ontains an element with a maximalJordan blo
k. In the �rst 
ase, all de
orations are equivalent, and in the se
ond 
ase, the resultfollows from the fa
t that if a subgroup A of N 
ontains an element with a maximal Jordan form,the normalizer of A in SL(n, C) equals the normalizer of N . �4.2. The fundamental 
lass of a de
orated representation. A �at G-bundle over M deter-mines a 
lassifying map M → BGδ, where the δ indi
ates that G is regarded as a dis
rete group. Itthus follows from Proposition 4.6 that a de
orated representation ρ : π1(M) → G determines a map(4.2) Bρ : (M,∂M) → (BGδ, BHδ).In parti
ular, ρ gives rise to a fundamental 
lass(4.3) [ρ] = Bρ∗([M,∂M ]) ∈ H3(G,H),where, by de�nition, H∗(G,H) = H∗(BGδ , BHδ). Note that the fundamental 
lass is independentof the parti
ular 3-
y
le stru
ture on K.Re
all that M is triangulated by trun
ated simpli
es. By restri
tion, a (G,H) 
o
y
le on Mdetermines a (G,H)-
o
y
le on ea
h trun
ated simplex ∆i. Let B∗(G,H) denote the 
hain 
omplexgenerated in degree n by (G,H)-
o
y
les on a trun
ated n-simplex. As proved in Zi
kert [31,Se
tion 3℄, B∗(G,H) 
omputes the homology groups H3(G,H). Note that a (G,H)-
o
y
le on Mdetermines (up to 
onjugation) a de
orated (G,H)-representation.Proposition 4.8 (Zi
kert [31, Proposition 5.10℄). Let τ be a (G,H)-
o
y
le on M representing ade
orated (G,H)-representation ρ. The 
y
le(4.4) ∑

ǫiτ∆i
∈ B3(G,H),represents the fundamental 
lass of ρ. �5. Generi
 de
orations and Ptolemy 
oordinatesIn all of the following, G = SL(n, C), and N is the subgroup of upper triangular matri
es with

1's on the diagonal. A (G,N)-representation ρ : π1(M) → G is 
alled boundary-unipotent. For amatrix g ∈ G and a positive integer i ≤ n ∈ N, let {g}i be the ordered set 
onsisting of the �rst i
olumn ve
tors of g.



16 STAVROS GAROUFALIDIS, DYLAN P. THURSTON, AND CHRISTIAN K. ZICKERTDe�nition 5.1. A tuple (g0N, . . . , gkN) of N -
osets is generi
 if for ea
h tuple t = (t0, . . . , tk) ofnon-negative integers with sum n, we have(5.1) ct := det

(
k⋃

i=0

{gi}ti

)
6= 0,where the determinant is viewed as a fun
tion on ordered sets of n ve
tors in Cn. The numbers ctare 
alled Ptolemy 
oordinates.De�nition 5.2. A de
oration of a boundary-unipotent representation is generi
 if for ea
h simplex

∆ of L, the tuple of 
osets assigned to the verti
es of ∆ is generi
.For a set X, let C∗(X) be the a
y
li
 
hain 
omplex generated in degree k by tuples (x0, . . . , xk).If X is a G-set, the diagonal G-a
tion makes C∗(X) into a 
omplex of Z[G]-modules. Let Cgen
∗ (G/N)be the sub
omplex of C∗(G/N) generated by generi
 tuples.Proposition 5.3. The 
omplex Cgen

∗ (G/N)⊗Z[G]Z 
omputes the relative homology. If ρ : π1(M) →
G is a generi
ally de
orated representation, the fundamental 
lass of ρ is represented by(5.2) ∑

ǫi(g
i
0N, gi

1N, gi
2N, gi

3N) ∈ Cgen
3 (G/N),where (gi

0N, . . . , gi
3N) are the 
osets assigned to lifts ∆̃i of the ∆i's. �Proposition 5.3 is proved in Se
tion 9. The idea is that a generi
 tuple 
anoni
ally determines a

(G,N)-
o
y
le on a trun
ated simplex. Hen
e, Cgen
∗ (G/N)⊗Z[G] Z is isomorphi
 to a sub
omplex of

B3(G,N), and the representation (5.2) of the fundamental 
lass is then an immediate 
onsequen
eof (4.4).Proposition 5.4. After a single bary
entri
 subdivision of K, every de
oration of a boundary-unipotent representation ρ : π1(M) → G is equivalent to a generi
 one.Proof. After a bary
entri
 subdivision of K, every simplex ∆ of K has distin
t verti
es and at leastthree verti
es of ∆ are interior (link is a sphere). Fix lifts ei ∈ L of ea
h interior vertex of K.Sin
e the stabilizer of a lift of an interior vertex is trivial, assigning any 
oset giH to ei yields anequivalent de
oration. Sin
e the gi's 
an be 
hosen arbitrarily, the result follows. �5.1. The geometry of the Ptolemy 
oordinates. We 
anoni
ally identify ea
h ordered k-simplex with a standard simplex(5.3) ∆k
n =

{
(x0, . . . , xk) ∈ Rk+1

∣∣ 0 ≤ xi ≤ n,
k∑

i=0

xi = n
}
.Re
all that a tuple (g0N, . . . , gkN) has a Ptolemy 
oordinate for ea
h tuple of k +1 non-negativeintegers summing to n. In other words, there is a Ptolemy 
oordinate for ea
h integral point of ∆k

n.We denote the set of integral points in ∆k
n by ∆k

n(Z).De�nition 5.5. A Ptolemy assignment on ∆k
n is an assignment of a non-zero 
omplex number

ct to ea
h integral point t of ∆k
n su
h that the ct's are the Ptolemy 
oordinates of some tuple

(g0N, . . . , gkN) ∈ Cgen
k (G/N). A Ptolemy assignment on K is a Ptolemy assignment on ea
hsimplex ∆i of K su
h that the Ptolemy 
oordinates agree on identi�ed fa
es.Note that a generi
ally de
orated boundary-unipotent representation determines a Ptolemy as-signment on K. In Se
tion 9, we show that every Ptolemy assignment is indu
ed by a uniquede
orated representation.
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l (Z) is (l+k

k

).Proof. The map (a0, . . . , ak) 7→ {a0 +1, a0 +a1 +2, . . . , a0 + · · ·+ak−1 +k} gives a bije
tion between
T k(l) and subsets of {1, . . . , l + k} with k elements. �Let ei, 0 ≤ i ≤ k, be the ith standard basis ve
tor of Zk+1. For ea
h α ∈ ∆k

n−2(Z), the points
α + 2ei in ∆k

n span a simplex ∆k(α), whose integral points are the points αij := α + ei + ej , seeFigure 3. We refer to ∆k(α) as a subsimplex of ∆k
n. By Lemma 5.6, ∆3

n has (n+3
3

) integral pointsand (n+1
3

) subsimpli
es.
0

1

2

3

0

1

2

3

0

1

2

3

Figure 3. The integral points on ∆3

n for n = 2, 3 and 4. The indi
ated subsimpli
es
orrespond to α = (0, 1, 0, 0) and α = (0, 1, 1, 0).Proposition 5.7 (Fo
k-Gon
harov [14, Lemma 10.3℄). The Ptolemy 
oordinates of a generi
 tuple
(g0N, g1N, g2N, g3N) satisfy the Ptolemy relations(5.4) cα03

cα12
+ cα01

cα23
= cα02

cα13
, α ∈ ∆3

n−2(Z).Proof. Let α = (a0, a1, a2, a3) ∈ ∆3
n−2(Z). By performing row operations, we may assume that the�rst n − 2 rows of the n × (n − 2) matrix(5.5) (
{g0}a0

, {g1}a1
, {g2}a2

, {g3}a3

)are the standard basis ve
tors. Letting xi and yi denote the last two entries of (gi)ai+1, the Ptolemyrelation for α is then equivalent to the (Plü
ker) relation(5.6) det

(
x0 x3

y0 y3

)
det

(
x1 x2

y1 y2

)
+ det

(
x0 x1

y0 y1

)
det

(
x2 x3

y2 y3

)
= det

(
x0 x2

y0 y2

)
det

(
x1 x3

y1 y3

)
,whi
h is easily veri�ed. �Note that the Ptolemy 
oordinate assigned to the ith vertex of ∆k

n is det({gi}n) = det(gi) = 1.We shall thus often ignore the vertex points. Let ∆̇k
n(Z) denote the non-vertex integral points of

∆k
n. The following is proved in Se
tion 9.Proposition 5.8. For every assignment c : ∆̇3

n(Z) → C∗, t 7→ ct satisfying the Ptolemy rela-tions (5.4), there is a unique Ptolemy assignment on ∆3
n whose Ptolemy 
oordinates are ct. �Corollary 5.9. The set of Ptolemy assignments on K is an algebrai
 set Pn(K) 
alled the Ptolemyvariety. Its ideal is generated by the Ptolemy relations (5.4) (together with an extra equationmaking sure that all Ptolemy 
oordinates are non-zero). �Remark 5.10. It thus follows that De�nition 5.5 agrees with De�nition 1.1 when k = 3. When

k > 3 and n > 2 there are further relations among the Ptolemy 
oordinates. We shall not needthese here.
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tion and the redu
ed Ptolemy variety. If d0,. . . ,d3 are diagonal matri
eswith di = diag(di0, . . . di,n−1), it follows from (5.1) that if the Ptolemy 
oordinates of a tuple
(g0N, . . . , g3N) are ct, the Ptolemy 
oordinates c′t of the tuple (g0d0N, . . . , g3d3N) are given by(5.7) c′t = ct

t0∏

k=0

d0k

t1∏

k=0

d1k

t2∏

k=0

d2k

t3∏

k=0

d3k.We therefore have an a
tion of Hh on Pn(K), whi
h agrees with the a
tion in Se
tion 4.1. Thequotient Pn(K)red is 
alled the redu
ed Ptolemy variety.5.3. p SL(n, C)-Ptolemy 
oordinates. When n is even, a p SL(n, C)-Ptolemy assignment on ∆k
nmay be de�ned as in De�nition 5.5. Note, however, that the Ptolemy 
oordinates are now onlyde�ned up to a sign. Sin
e we are mostly interested in 3-
y
les, the following de�nition is moreuseful.De�nition 5.11. Let ∆ = ∆3

n, and let σ ∈ Z2(∆; Z/2Z) be a 
ellular 2-
o
y
le. A p SL(n, C)-Ptolemy assignment on ∆ with obstru
tion 
o
y
le σ is an assignment c : ∆̇3
n(Z) → C∗ satisfyingthe p SL(n, C)-Ptolemy relations(5.8) σ2σ3cα03

cα12
+ σ0σ3cα01

cα23
= cα02

cα13
.Here σi ∈ Z/2Z = 〈±1〉 is the value of σ on the fa
e opposite the ith vertex of ∆. A p SL(n, C)-Ptolemy assignment on K with obstru
tion 
o
y
le σ ∈ Z2(K; Z/2Z) is a p SL(n, C)-Ptolemy-assignment ci on ea
h simplex ∆i of K su
h that the Ptolemy 
oordinates agree on identi�ed fa
es,and su
h that the obstru
tion 
o
y
le of ci is σ∆i

.Note that for ea
h σ ∈ Z2(K; Z/2Z), the set of p SL(n, C)-Ptolemy-assignments on K form avariety P σ
n (K). We show in Se
tion 9 that this variety only depends on the 
ohomology 
lassof σ in H2(K; Z/2Z) = H2(M,∂M ; Z/2Z) and that the Ptolemy variety parametrizes generi
allyde
orated boundary-unipotent p SL(n, C)-representations whose obstru
tion 
lass to lifting to aboundary-unipotent SL(n, C)-representation is σ. The diagonal a
tion (5.7) is de�ned on P σ

n (K) aswell, and the quotient is denoted by P σ
n (K)red. Note that when σ is the trivial 
o
y
le taking all

2-
ells to 1, P σ(K) = P (K).5.4. Cross-ratios and �attenings. For x ∈ C\{0}, let x̃ = log(x), where log is some �xed (settheoreti
) se
tion of the exponential map.Given a Ptolemy assignment c on ∆3
n=2, we endow ∆3

n=2 with the shape of an ideal simplex with
ross-ratio z = c03c12
c02c13

and a �attening(5.9) λ(c) = (c̃03 + c̃12 − c̃02 − c̃13, c̃01 + c̃23 − c̃02 − c̃13) ∈ P̂(C).By Propositions 5.7 and 5.8, a Ptolemy assignment on ∆3
n indu
es a Ptolemy assignment cα onea
h subsimplex ∆3(α). We thus have a map(5.10) λ : Pn(K) → P̂(C), c 7→

∑

i

ǫi

∑

α∈∆3
n−2

(Z)

λ(ci
α).Similarly, we have a map P σ

n (K) → P̂(C)PSL de�ned by the same formula. We next prove thatthese maps have image in the respe
tive extended Blo
h groups.Remark 5.12. The shapes asso
iated to a Ptolemy assignment satisfy equations resembling Thurs-ton's gluing equations. This is studied in Garoufalidis-Goerner-Zi
kert [15℄.
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hain 
omplex of Ptolemy assignmentsLet Ptnk be the free abelian group on Ptolemy assignments on ∆k
n. The usual boundary mapindu
es a boundary map Ptnk → Ptnk−1 and the natural map Cgen

∗ (G/N) → Ptn∗ taking a tuple
(g0N, . . . , gkN) to its Ptolemy assignment is a 
hain map. The result below is proved in Se
tion 9.Proposition 6.1. A generi
 tuple is determined up to the diagonal G-a
tion by its Ptolemy 
oor-dinates. �Corollary 6.2. The natural map indu
es an isomorphism(6.1) Cgen

∗ (G/N) ⊗Z[G] Z ∼= Ptn∗ .In parti
ular, H∗(G,N) = H∗(Ptn∗ ). �Lemma 6.3. Let c ∈ Ptnk be a Ptolemy assignment, and let α ∈ ∆k
n−2(Z). The Ptolemy 
oordinates

cαij
, i 6= j are the Ptolemy 
oordinates of a unique Ptolemy assignment cα on the subsimplex ∆k(α).Proof. For 1 ≤ k ≤ 3, this follows from Proposition 5.8. For k > 3, the result follows by indu
tion,using the fa
t that 5 Ptolemy 
oordinates on ∆3

2 determines the last. �A Ptolemy assignment c on ∆k
n thus indu
es a Ptolemy assignment cα on ea
h subsimplex. Wethus have maps(6.2) Jn
k : Ptnk → Pt2k, c 7→

∑

α∈∆k
n−2(Z)

cα.For a Ptolemy assignment c ∈ Ptnk let ci ∈ Ptnk−1 be the indu
ed Ptolemy assignment on the ithfa
e of ∆k
n, i.e. we have ∂(c) =

∑k
i=0(−1)ici. Note that(6.3) (ci)(a0,...,ak−1) = c(a0,...,ai−1,0,ai,...ak−1)i

∈ Pt2k−1.For β ∈ ∆k
n−3(Z), let cβi = c(β+ei)i

∈ Pt2k−1, and de�ne ∂β(c) ∈ Pt2k−1 by(6.4) ∂β(c) =
k∑

i=0

(−1)icβi ∈ Pt2k−1.The geometry is explained in Figure 4.
0

1

2 0

1

2

3

Figure 4. The dotted lines in the left �gure indi
ate cβ0 , cβ1 and cβ2 for k = 2. Thetriangle in the right �gure indi
ates cβ0 for k = 3. Here, n = 3 and β = 0.



20 STAVROS GAROUFALIDIS, DYLAN P. THURSTON, AND CHRISTIAN K. ZICKERTProposition 6.4. Let c ∈ Ptnk . We have(6.5) ∂(Jn
k (c)) − Jn

k−1(∂(c)) =
∑

β∈∆k
n−3(Z)

∂β(c) ∈ Pt2k−1.Proof. By (6.3), we have
(6.6)

∂(Jn
k (c)) − Jn

k−1(∂(c)) =

k∑

i=0

(−1)i
∑

α∈∆k
n−2(Z)

cαi
−

k∑

i=0

(−1)i
∑

α∈∆k
n−2(Z)

ai=0

cαi

=
k∑

i=0

(−1)i
∑

α∈∆k
n−2(Z)

ai>0

cαi

=
∑

β∈∆k
n−3(Z)

k∑

i=0

(−1)ic(β+ei)i

=
∑

β∈∆k
n−3

(Z)

∂β(c)as desired. �6.1. The map to the extended Blo
h group. We wish to de�ne a map(6.7) λ : H3(SL(n, C), N) → B̂(C).Letting x̃ denote a logarithm of x, we 
onsider the maps
λ : Pt23 → Z[Ĉ], c 7→ (c̃03 + c̃12 − c̃02 − c̃13, c̃01 + c̃23 − c̃02 − c̃13)(6.8)

µ : Pt22 → ∧2(C), c 7→ −c̃01 ∧ c̃02 + c̃01 ∧ c̃12 − c̃02 ∧ c̃12 + c̃02 ∧ c̃02.(6.9)Remark 6.5. The term c̃02 ∧ c̃02 vanishes in ∧2(C), but over general �elds this term is needed.General �elds are dis
ussed in Se
tion 13.Lemma 6.6 (Zi
kert [30, Lemma 6.9℄). Let Z[F̂T] be the subgroup of Z[Ĉ] generated by the lifted�ve term relations. There is a 
ommutative diagram(6.10) Pt24
∂

//

λ◦∂
��

Pt23
∂

//

λ
��

Pt22

µ

��

Z[F̂T]
�

�

// Z[Ĉ]
bν

// ∧2(C).

�It follows that λ indu
es a map λ : H3(SL(2, C), N) → B̂(C). This map equals the map de�nedin Zi
kert [31, Se
tion 7℄. The fa
t that λ is independent of the 
hoi
e of logarithm is proved inZi
kert [31, Remark 6.11℄, and also follows from Proposition 7.7 below.Lemma 6.7. For ea
h c ∈ Ptn4 and ea
h β ∈ ∆4
n−3(Z), we have(6.11) λ(∂β(c)) = 0 ∈ P̂(C).
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iated to cβi . We prove that the �attenings satisfythe �ve term relation by proving that the equations (3.4) are satis�ed. We have(6.12) e0 = c̃β+(1,1,0,0,1) + c̃β+(1,0,1,1,0) − c̃β+(1,1,0,1,0) − c̃β+(1,0,1,0,1)

e1 = c̃β+(1,1,0,0,1) + c̃β+(0,1,1,1,0) − c̃β+(1,1,0,1,0) − c̃β+(0,1,1,0,1)

e2 = c̃β+(1,0,1,0,1) + c̃β+(0,1,1,1,0) − c̃β+(1,0,1,1,0) − c̃β+(0,1,1,0,1)and it follows that e2 = e1 − e0 as desired. The other 4 equations are proved similarly. �Lemma 6.8. For ea
h c ∈ Ptn3 and ea
h β ∈ ∆3
n−3(Z), µ(∂β(c)) = 0 ∈ ∧2(C).Proof. We have(6.13) µ(cβ0) = −c̃β+(1,1,1,0) ∧ c̃β+(1,1,0,1) + c̃β+(1,1,1,0) ∧ c̃β+(1,0,1,1)

− c̃β+(1,1,0,1) ∧ c̃β+(1,0,1,1) + c̃β+(1,1,0,1) ∧ c̃β+(1,1,0,1).Using this together with the similar formulas for µ(cβi), we obtain that
∑

(−1)iµ(cβi) = 0 ∈ ∧2(C),proving the result. �Corollary 6.9. The map λ ◦ Jn
3 indu
es a map(6.14) λ : H3(SL(n, C), N) → B̂(C).Proof. Using Proposition 6.4, this follows from Lemma 6.7 and Lemma 6.8. �Remark 6.10. For n = 3, this map agrees with the map 
onsidered in Zi
kert [30℄.De�nition 6.11. The extended Blo
h group element of a de
orated (G,N)-representation ρ isde�ned by λ([ρ]), where [ρ] ∈ H3(SL(n, C), N) is the fundamental 
lass of ρ.Note that if the de
oration of ρ is generi
, and c is the 
orresponding Ptolemy assignment, theextended Blo
h group element is given by λ(c), where λ : Pn(K) → P̂(C) is given by (5.10).Proposition 6.12. The map λ : Pn(K) → P̂(C) has image in B̂(C).Proof. If c ∈ Pn(K) is a Ptolemy assignment on K, we have a 
y
le α =

∑
i ǫic

i ∈ Ptn3 , and oneeasily 
he
ks that λ(c) as de�ned in (5.10) equals λ([α]). This proves the result. �6.2. Stabilization. We now prove that the map λ : H3(SL(n, C), N) → B̂(C) respe
ts stabilization.We regard SL(n−1, C) as a subgroup of SL(n, C) via the standard in
lusion adding a 1 as the upperleft entry.Let π : M(n, C) → M(n−1, C) be the map sending a matrix to the submatrix obtained by remov-ing the �rst row and last 
olumn. The subgroup Dk(SL(n, C)/N) of Cgen
k (SL(n, C)/N) generatedby tuples (g0N, . . . , gkN) su
h that the upper left entry of ea
h gi is 1 and su
h that(6.15) (π(g0)N, . . . , π(gk)N) ∈ Cgen

k (SL(n − 1, C)/N)form an SL(n − 1, C)-
omplex. Consider the SL(n − 1, C)-invariant 
hain maps
π : D∗(SL(n, C)/N) → Ptn−1

∗(6.16)
i : D∗(SL(n, C)/N) → Ptn∗ ,(6.17)where the �rst map is indu
ed by π and the se
ond is indu
ed by the in
lusion D∗(SL(n, C)/N) →

Cgen
∗ (SL(n, C)/N . Let Dk = Dk(SL(n, C)/N) ⊗Z[SL(n−1,C)] Z.



22 STAVROS GAROUFALIDIS, DYLAN P. THURSTON, AND CHRISTIAN K. ZICKERTLemma 6.13. The maps λ ◦ π and λ ◦ i from D3 to P̂(C) agree on 
y
les.Proof. Let c ∈ Dk be indu
ed by a tuple (g0N, . . . , gkN) ∈ Dk(SL(n, C)/N), and let cI be the
olle
tion of Ptolemy 
oordinates asso
iated to (N, g0N, . . . , gkN). Sin
e some Ptolemy 
oordinatesmay be zero, cI is not ne
essarily a Ptolemy assignment. Note, however, that cI
α is a Ptolemyassignment for ea
h (a0, . . . , ak+1) ∈ ∆k+1

n−2(Z) with a0 = 0. Note also that cI
α ∈ Pt2k+1 only dependson c. Hen
e, there is a map(6.18) P : Dk → Pt2k+1, c 7→

∑

α∈∆k+1
n−2(Z)

a0=0

cI
α.We wish to prove the following:(6.19) ∂P (c) + P∂(c) = Jn

k (i(c)) − Jn−1
k (π(c)) +

∑

β∈∆k+1
n−3(Z)

b0=0

∂β(cI) ∈ Pt2k+1.Given this, the result follows immediately from Lemma 6.7.One easily veri�es that
cI
(1,b0,...,bk) = π(c)(b0,...,bk) ∈ Ptn−1

k , (b0, . . . , bk) ∈ ∆k
n−3(Z).(6.20)

cI
(0,a0,...,ak) = i(c)(a0 ,...,ak), (a0, . . . , ak) ∈ ∆k

n−2(Z).(6.21)Using this, one has
(6.22)

∂P (c) + P∂(c) =
∑

α∈∆k
n−2(Z)

i(c)α +
k+1∑

i=1

(−1)i
∑

α∈∆k+1
n−2(Z)

a0=0

cI
αi

+
k∑

i=0

(−1)i
∑

α∈∆k+1
n−2(Z)

a0=0,ai+1=0

cI
αi+1

=
∑

α∈∆k
n−2(Z)

i(c)α +
k+1∑

i=1

(−1)i
∑

α∈∆k+1
n−2(Z)

a0=0,ai>0

cI
αi

=
∑

α∈∆k
n−2

(Z)

i(c)α +
∑

β∈∆k+1
n−3(Z)

b0=0

k+1∑

i=1

(−1)icI
βi

=
∑

α∈∆k
n−2(Z)

i(c)α −
∑

β∈∆k+1
n−3(Z)

b0=0

cI
β0 +

∑

β∈∆k+1
n−3(Z)

b0=0

∂β(cI)

= Jn
k (i(c)) − Jn−1

k (π(c)) +
∑

β∈∆k+1
n−3(Z)

b0=0

∂β(cI).This proves (6.19), hen
e the result. �Proposition 6.14. The map λ : H3(SL(n, C), N) → B̂(C) respe
ts stabilization.Proof. First note that π indu
es an isomorphism D0(SL(n, C)/N) ∼= C0(SL(n − 1)/N). Using astandard 
one argument, one easily 
he
ks that D∗(SL(n, C)/N) is a free SL(n− 1, C)-resolution of
Ker(D0(SL(n, C)/N) → Z). Hen
e, D∗ 
omputes H∗(SL(n − 1, C), N), and the result follows fromLemma 6.13. �



THE COMPLEX VOLUME OF SL(n, C)-REPRESENTATIONS OF 3-MANIFOLDS 236.3. p SL(n, C)-Ptolemy assignments. When n is even, de�ne pPtn∗ to be the 
omplex of Ptolemy
oordinates of generi
 tuples in p SL(n, C)/N . The Ptolemy 
oordinates are de�ned as in (5.1), andtake values in C∗
/
〈±1〉. As in (6.1), we have an isomorphism Cgen

∗ (p SL(n, C)/N)p SL(n,C)
∼= pPtn∗ .For c ∈ C∗/〈±1〉 let c̃ ∈ C be the image of some �xed set theoreti
 se
tion of C

exp−−→ C∗ → C∗/〈±1〉,e.g. 1
2 log(x2) (the parti
ular 
hoi
e is inessential). The map(6.23) λ : pPt23 → Z[Ĉodd], c 7→ (c̃03 + c̃12 − c̃02 − c̃13, c̃01 + c̃23 − c̃02 − c̃13)indu
es a map H3(PSL(2, C), N) → B̂(C)PSL, whi
h agrees with the map 
onstru
ted in Zi
kert [31,Se
tion 3℄. By pre
omposing λ with the map pJn

3 : pPtn3 → pPt23 de�ned as in (6.2) we obtain amap(6.24) λ : H3(p SL(n, C), N) → B̂(C)PSL,whi
h 
ommutes with stabilization. This proves that a de
orated boundary-unipotent representationin p SL(n, C) determines an element in B̂(C)PSL. The proofs of the above assertions are word byword identi
al to their SL(n, C)-analogs.7. Invarian
e under the diagonal a
tionWe now show that the extended Blo
h group element of a de
orated representation is invariantunder the diagonal a
tion. We �rst prove that we 
an 
hoose logarithms of the Ptolemy 
oordinatesindependently, without a�e
ting the extended Blo
h group element.De�nition 7.1. Let c : ∆̇k
n(Z) → C∗ be a Ptolemy assignment. A lift of c is an assignment

c̃ : ∆̇k
n(Z) → C su
h that exp(c̃) = c.For any lift c̃ of a Ptolemy assignment c on ∆3

2, we have a �attening(7.1) λ(c̃) = (c̃03 + c̃12 − c̃02 − c̃13, c̃01 + c̃23 − c̃02 − c̃13) ∈ Ĉ.De�nition 7.2. The log-parameters of a �attening (e, f) ∈ Ĉ are de�ned by(7.2) wij =





e if ij = 01 or ij = 23

−f if ij = 12 or ij = 03

−e + f if ij = 02 or ij = 13.Lemma 7.3. Let c̃ : ∆̇3
2(Z) → C be a lifted Ptolemy assignment, and let wij be the log-parametersof λ(c̃). Fix i < j ∈ {0, . . . , 3} and let c̃′ be the lifted Ptolemy assignment obtained from c̃ byadding 2π

√
−1 to c̃ij . Then(7.3) λ(c̃′) − λ(c̃) = χ(wij + 2π

√
−1δij),where δij is 1 if ij = 02 or 13 and 0 otherwise.Proof. Denote the �attening λ(c̃) by (e, f). If ij = 03 or 12, it follows from (7.1) that λ(c̃′) = (e +

2π
√
−1, f). Similarly, λ(c̃′) = (e, f +2π

√
−1) if ij = 01 or 23, and λ(c̃′) = (e−2π

√
−1, f −2π

√
−1)if ij = 02 or 13. By Lemma 3.4,(7.4) (e + 2π

√
−1, f) − (e, f) =χ(−f)

(e, f + 2π
√
−1) − (e, f) =χ(e)

(e − 2π
√
−1, f − 2π

√
−1) =χ(−e + f + 2π

√
−1).This proves the result. �



24 STAVROS GAROUFALIDIS, DYLAN P. THURSTON, AND CHRISTIAN K. ZICKERTLet c̃ be a lift of a Ptolemy assignment c. For ea
h α ∈ ∆3
n−2(Z), c̃ indu
es a lift c̃α of cα.Consider the element(7.5) τ =

∑

α∈∆k
n−2(Z)

λ(c̃α) ∈ P̂(C).Fix a point t0 ∈ ∆̇k
n(Z). We wish to understand the e�e
t on τ of adding 2π

√
−1 to c̃t0 . This
hanges τ into an element τ ′ ∈ P̂(C). Let wij(α) denote the log-parameters of λ(c̃α). Note that t0either lies on an edge, on a fa
e, or in the interior of ∆3

n.Lemma 7.4. Suppose t0 is on the edge ij of ∆3
n. Then(7.6) τ ′ − τ = χ(wij(α) + 2π

√
−1δij),where α = t − ei − ej , (i.e. α is su
h that t0 is an edge point of ∆3(α)).Proof. This follows immediately from Lemma 7.3. �Lemma 7.5. Suppose t0 is on a fa
e opposite vertex i. Then τ ′ − τ = (−1)iχ(κ + 2π

√
−1), where

κ is given by(7.7) κ = c̃ηi(0,−1,1) − c̃ηi(0,1,−1) −
(
c̃ηi(−1,0,1) − c̃ηi(1,0,−1)

)
+ c̃ηi(−1,1,0) − c̃ηi(1,−1,0),where ηi inserts a zero as the ith vertex.Proof. For simpli
ity assume i = 0. The other 
ases are proved similarly. There are exa
tly three

α's for whi
h t0 is an edge point of ∆3(α). These are(7.8) α0 = t0 − (0, 0, 1, 1), α1 = t0 − (0, 1, 0, 1), α2 = t0 − (0, 1, 1, 0).Note that c̃t = (c̃α0
)23 = (c̃α1

)13 = (c̃α2
)12. Sin
e adding 2π

√
−1 to c̃t0 leaves c̃α un
hanged unless

α ∈ {α0, α1, α2}, Lemma 7.3 implies that(7.9) τ ′ − τ = χ(w23(α0)) + χ(w13(α1) + 2π
√
−1) + χ(w12(α2)).One easily 
he
ks that(7.10) w23(α0) = c̃(1,0,−1,0) + c̃(0,1,0,−1) − c̃(1,0,0,−1) − c̃(0,1,−1,0)

w13(α1) = c̃(1,0,0,−1) + c̃(0,−1,1,0) − c̃(1,−1,0,0) − c̃(0,0,1,−1)

w12(α2) = c̃(1,−1,0,0) + c̃(0,0,−1,1) − c̃(1,0,−1,0) − c̃(0,−1,0,1),from whi
h the result follows. �Lemma 7.6. If t0 is an interior point, τ ′ = τ .Proof. If t0 is an interior point, there are six α's for whi
h t0 is an edge point of ∆3(α). These are
α0, α1 and α2 as de�ned in (7.8) as well as(7.11) α3 = t0 − (1, 1, 0, 0), α4 = t0 − (1, 0, 1, 0), α5 = t0 − (1, 0, 0, 1).Again, by Lemma 7.3(7.12) τ ′ − τ = χ(w23(α0)) + χ(w13(α1) + 2π

√
−1) + χ(w12(α2))+

χ(w01(α3)) + χ(w02(α4) + 2π
√
−1) + χ(w03(α5)).Using (7.10) as well as(7.13) w01(α3) = c̃(0,−1,0,1) + c̃(−1,0,1,0) − c̃(0,−1,1,0) − c̃(−1,0,0,1)

w02(α4) = c̃(0,1,−1,0) + c̃(−1,0,0,1) − c̃(0,0,−1,1) − c̃(−1,1,0,0)

w03(α5) = c̃(0,0,1,−1) + c̃(−1,1,0,0) − c̃(0,1,0,−1) − c̃(−1,0,1,0)
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an
el out. Hen
e, τ ′ = τ . �Proposition 7.7. Let c be a Ptolemy assignment on K. For any lift c̃ of c, the element(7.14) λ(c̃) =
∑

i

∑

α∈∆k
n−2(Z)

ǫiλ(c̃i
α) ∈ P̂(C)is independent of the 
hoi
e of lift. In parti
ular, if c is the Ptolemy assignment of a de
oratedrepresentation ρ, λ(c̃) is the extended Blo
h group element of ρ.Proof. Let c̃ and c̃′ be lifts of c. Let t0 ∈ ∆̇3

n(Z). We wish to prove that λ(c̃) = λ(c̃′). It is enoughto prove this when c̃′ is obtained from c̃ by adding 2π
√
−1 to c̃t. If t0 is an interior point, the resultfollows immediately from Lemma 7.6. If t0 is a fa
e point, t0 lies in exa
tly two simpli
es of K, andit follows from Lemma 7.5 that the two 
ontributions to the 
hange in λ(c̃) appear with oppositesigns (by (3.5), 2χ(2π

√
−1) = 0). Suppose t0 is an edge point. Let C be the 3-
y
le obtained bygluing together all the ∆3(α)'s having t0 as an edge point, using the fa
e pairings indu
ed from K.Let e be the (interior) 1-
ell of C 
ontaining t0. The argument in Zi
kert [31, Theorem 6.5℄ showsthat the total log-parameter around e is zero. It thus follows from Lemma 7.4 that adding 2π

√
−1to c̃t0 
hanges λ(c̃) by 2-torsion whi
h is trivial if and only if the number n of simpli
es in C forwhi
h t is a 02 edge or a 13 edge is even. Consider a 
urve λ in C en
ir
ling e. The vertex orderingindu
es an orientation on ea
h fa
e of ea
h simplex of C, su
h that when λ passes through twofa
es of a simplex in C, the two orientations agree unless e is a 02 edge or a 13 edge. Sin
e M isorientable, it follows that n is even. The se
ond statement follows by letting c̃ = log c. �Proposition 7.8. The extended Blo
h group element of a de
orated boundary-unipotent represen-tation is invariant under the diagonal a
tion.Proof. The argument is lo
al. Let c be a Ptolemy assignment on ∆3

n, and let c′ be obtained from cby the diagonal a
tion. By (5.7) c′ is given by di
j = diag(di

j0, . . . , d
i
j,n−1). By (5.7) we have(7.15) c′t = ct

t0∏

k=0

d0k

t1∏

k=0

d1k

t2∏

k=0

d2k

t3∏

k=0

d3kfor diagonal matri
es di = diag(di0, . . . , di,n−1). Letting log denote a logarithm, and c̃ a lift of c,de�ne a lift c̃′ of c′ by(7.16) c̃′t = c̃t +

t0∑

k=0

log(d0k) +

t1∑

k=0

log(d1k) +

t2∑

k=0

log(d2k) +

t3∑

k=0

log(d3k).Using this, one easily 
he
ks that λ(cα) = λ(c′α) for ea
h i and ea
h α ∈ ∆3
n−2(Z). Applying thislo
al argument to ea
h simplex, the result follows from Proposition 7.7. �Corollary 7.9. The extended Blo
h group element of a peripherally well behaved boundary-unipotent representation ρ is independent of the de
oration.Proof. By performing a bary
entri
 subdivision if ne
essary, we may assume that any de
oration isgeneri
. Sin
e ρ is peripherally well behaved, the diagonal a
tion is transitive on equivalen
e 
lassesof de
orations. Sin
e equivalent de
orations have the same fundamental 
lass, the result follows. �7.1. p SL(n, C)-de
orations. Let n be even. All results in this se
tion have natural analogs for

p SL(n, C). The proofs of these are obtained by repla
ing 2π
√
−1 by π

√
−1, and logarithms by liftsof C

exp−−→ C∗
/
〈±1〉.
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o
y
le formula for ĉLet i∗ : H3(SL(n, C)) → H3(SL(n, C), N) denote the natural map. We wish to prove that the
omposition(8.1) H3(SL(n, C))
i∗

// H3(SL(n, C), N)
λ

// B̂(C)
R

// C/4π2Zequals the Cheeger-Chern-Simons 
lass ĉ. Note that i∗ is indu
ed by the map (g0, . . . , g3) 7→
(g0N, . . . , g3N).We shall make use of the 
anoni
al isomorphisms(8.2) H3(SL(n, C)) ∼= H3(SL(3, C)) ∼= H3(SL(2, C)) ⊕ KM

3 (C).The �rst isomorphism is indu
ed by stabilization (see Suslin [26℄) and the se
ond isomorphism isthe ±-eigenspa
e de
omposition with respe
t to the transpose-inverse involution on SL(3, C) (seeSah [24℄).Lemma 8.1 (Suslin [26℄). Let H ⊂ SL(3, C) be the subgroup of diagonal matri
es. The KM
3 (C)summand of H3(SL(3, C)) is generated by the elements Bρ∗([T ]), where T = S1 × S1 × S1 is the

3-torus, and ρ : π1(T ) → H is a representation. �Lemma 8.2. Let T = S1×S1×S1 and let ρ : π1(T ) → H be a representation. The extended Blo
hgroup element [ρ] ∈ B̂(C) of ρ is trivial.Proof. We regard T as a 
ube C with opposite fa
es identi�ed, and triangulate C as the 
oneon the triangulation on ∂C indi
ated in Figure 5 with 
one point in the 
enter. We order theverti
es of ea
h simplex by 
odimension, i.e. the 0-vertex is the 
one point, the 1-vertex is a fa
epoint et
. Let ρ : π1(T ) → H be a representation, and pi
k a de
oration of ρ by 
osets in generalposition (the triangulation is su
h that this is always possible). Note that for every 3-simplex ∆of T , there is a unique opposite 3-simplex ∆opp, su
h that the fa
es opposite the 
one point areidenti�ed. We may assume that the 
one point is de
orated by the 
oset N . If a simplex ∆ isde
orated by the 
osets (N, g0N, g1N, g2N), the simplex ∆opp must be de
orated by the 
osets
(N, dg0N, dg1N, dg2N), where d is the image of the generator of π1(T ) pairing the fa
es of ∆ and
∆opp. It thus follows from (5.2) that the fundamental 
lass is represented by a sum of terms of theform(8.3) (N, dg0N, dg1N, dg2N) − (N, g0N, g1N, g2N) ∈ Cgen

3 (SL(n, C)/N).Let c and c′ be the Ptolemy assignments asso
iated to the tuples (N, g0N, g1N, g2N) and (N, dg0N,
dg1N, dg2N). Letting d = diag(d1, . . . , dn), we have c′t = ct

∏n
i=t0

di. Fix a lift c̃ of c, and 
onsiderthe lift(8.4) c̃′t = c̃t +

n∑

i=t0

log(di)of c′. One now 
he
ks that λ(c̃′α) = λ(c̃α) for all α ∈ ∆̇k
n(Z), so λ(c̃) − λ(c̃′) = 0. This proves theresult. �Theorem 8.3. The 
omposition R ◦ λ ◦ i∗ equals ĉ.Proof. Sin
e λ 
ommutes with stabilization, it follows from Goette-Zi
kert [17℄ that R ◦ λ ◦ i∗ = ĉon H3(SL(2, C)). Sin
e ĉ is zero on KM

3 (C) (this follows from Lemma 8.1 and [6, Theorem 8.22℄),the result follows from (8.2) and Lemma 8.2. �
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Figure 5. Triangulation of ∂C.Remark 8.4. By de�ning ĉ = R ◦ λ : H3(SL(n, C), N) → C/4π2Z, we have a natural extension ofthe Cheeger-Chern-Simons 
lass to bundles with boundary-unipotent holonomy, and we 
an de�nethe 
omplex volume as in De�nition 2.11.Remark 8.5. The fa
t that the 
omplex volume is independent of the 
hoi
e of de
oration 
an beseen as follows: We 
an regard ĉ as a map Pn(∆3) → C/4π2Z, and a simple 
omputation shows thatthe holomorphi
 1-form dĉ only involves 
oordinates on the boundary of ∆3. Hen
e, for a 
losed

3-
y
le K, ĉ : Pn(K) → C/4π2Z is lo
ally 
onstant. The result now follows from the fa
t that thespa
e of de
orations of a representation is path 
onne
ted.9. Re
overing a representation from its Ptolemy 
oordinatesWe now show that a Ptolemy assignment on K determines a generi
ally de
orated boundary-unipotent representation, whi
h is given expli
itly in terms of the Ptolemy 
oordinates. The idea isthat a Ptolemy assignment 
anoni
ally determines a (G,N)-
o
y
le on M .9.1. The generi
 (G,N)-
o
y
le of a tuple.De�nition 9.1. An n×n matrix A is 
ounter diagonal if the only non-zero entries of A are on thelower left to upper right diagonal, i.e. Aij = 0 unless j = n − i + 1. If Aij = 0 for j > n − i + 1(resp. j < n − i + 1), A is upper (resp. lower) 
ounter triangular.Given subsets I, J of {1, . . . , n}, let AI,J denote the submatrix of A whose rows and 
olumns areindexed by I and J , respe
tively. If |I| = |J |, let |A|I,J denote the minor det(AI,J). Let Ic denote
{1, . . . , n} \ I.Re
all that the adjugate Adj(A) of a matrix A is the matrix whose ijth entry is (−1)i+j |A|{j}c,{i}c .It is well known that Adj(A) = det(A)A−1. The following result by Ja
obi (see e.g. [1, Se
tion 42℄)expresses the minors of Adj(A) in terms of the minors of A.Lemma 9.2. Let I, J be subsets of {1, . . . , n} with |I| = |J | = r. We have(9.1) |Adj(A)|I,J = (−1)

P

(I,J) det(A)r−1|A|Jc,Ic,where ∑(I, J) is the sum of the indi
es o

urring in I and J . �De�nition 9.3. A matrix A ∈ GLn(C) is generi
 if |A|{k,...,n},{1,...,n−k+1} 6= 0 for all k ∈ {1, . . . , n}.Note that A is generi
 if and only if the Ptolemy 
oordinates of (N,AN) are non-zero. Thefollowing is a generalization of Zi
kert [31, Lemma 3.5℄.



28 STAVROS GAROUFALIDIS, DYLAN P. THURSTON, AND CHRISTIAN K. ZICKERTProposition 9.4. Let A ∈ GLn(C) be generi
. There exist unique x ∈ N and y ∈ N su
h that
q = x−1Ay is 
ounter diagonal. The entries of x, y and q are given by

qn,1 = An,1, qn−j+1,j = (−1)j−1 |A|{n−j+1,...,n},{1,...,j}

|A|{n−j+2,...,n},{1,...,j−1}
for 1 < j ≤ n(9.2)

xij =
|A|{i,j+1,...,n},{1,...,n−j+1}

|A|{j,...,n},{1,...,n−j+1}
for j > i(9.3)

yij = (−1)i+j
|A|{n−j+2,...,n},{1,...,bi,...,j}

|A|{n−j+2,...,n},{1,...,j−1}
for j > i.(9.4)Proof. It is enough to prove existen
e and uniqueness of x and y in N su
h that Ay and x−1A areupper and lower 
ounter triangular, respe
tively. Suppose Ay is upper 
ounter triangular. Thenthe ve
tor y{1,...,j−1},{j} 
onsisting of the part above the 
ounter diagonal of the jth 
olumn ve
torof y must satisfy(9.5) A{n−j+2,...,n},{1,...,j−1}y{1,...,j−1},{j} + A{n−j+2,...,n},{j} = 0.The existen
e and uniqueness of y, as well as the given formula for the entries, now follow fromCramer's rule. Sin
e x−1A is lower 
ounter-triangular if and only if A−1x is upper 
ounter-triangular,existen
e and uniqueness of x follows. The expli
it formula for the entries follows from Ja
obi'sidentity (9.1) and the formula for the entries of y. To obtain the formula for the entries of q, notethat qn−j+1,j = (Ay)n−j+1,j. Hen
e, qn,1 = An,1, and for 1 < j ≤ n,

qn−j+1,j =

j−1∑

i=1

An−j+1,iyi,j + An−j+1,j

=

∑j
i=1(−1)i+jAn−j+1,i|A|{n−j+2,...,n},{1,...bi,...,j}

|A|{n−j+2,...,n},{1,...,j−1}

= (−1)j−1 |A|{n−j+1,...,n},{1,...,j}

|A|{n−j+2,...,n},{1,...,j−1}
,where the se
ond equality follows from (9.4). �For a generi
 matrix A, let xA, yA and qA be the unique matri
es provided by Proposition 9.4.Given 
osets giN , gjN , gkN , de�ne(9.6) qij = qg−1

i gj
, αi

jk = (xg−1
i gj

)−1xg−1
i gk

.De�nition 9.5. The generi
 
o
y
le of a generi
 tuple (g0N, . . . , gkN) is the (G,N)-
o
y
le ona trun
ated simplex ∆ de�ned by labeling the long edges by qij and the short edges by αi
jk (seeFigure 6).Proposition 9.6. The diagonal left G-a
tion on Cgen

k (G/N) is free when k ≥ 1, and the 
hain
omplex Cgen
∗≥1(G/N) ⊗Z[G] Z 
omputes relative homology.Proof. By Proposition 9.4, every generi
 tuple (g0N, . . . , gkN) may be uniquely written as(9.7) g0xg−1

0 g1
(N, q01N,α0

12q02N, . . . , α0
1kq0kN).This proves that the G-a
tion is free. Also note that for ea
h generi
 tuple (g0N, . . . , gkN), thereexists a 
oset gN su
h that (gN, g0N, . . . , gkN) is generi
. Hen
e, Cgen

∗≥1(G/N) is a
y
li
, and is thus afree resolution of Ker(C0(G/N) → Z). This proves the result (see e.g. Zi
kert [31, Theorem 2.1℄). �
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ally de
orated representation ρ thus determines a (G,N)-
o
y
le representing ρ. Let
B

gen
∗ (G,N) be the sub
omplex of B∗(G,N) generated by generi
 
o
y
les on a standard simplex.Corollary 9.7. We have a 
anoni
al isomorphism(9.8) B

gen
∗ (G,N) = Cgen

∗ (G/N) ⊗Z[G] Z,end the fundamental 
lass of a de
orated representation is represented as in (4.4).Proof. The �rst statement follows from Proposition 9.6 and the se
ond from Theorem 4.8. �
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α1

23
α1

03
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Figure 6. A (G, N)-
o
y
le on a trun
ated 3-simplex.9.2. Formulas for the long and short edges. We wish to prove that a generi
 (G,N)-
o
y
leis uniquely determined by the Ptolemy 
oordinates.Notation 9.8. Let k ∈ {1, . . . , n − 1}.(i) For a1, . . . , an ∈ C∗, let q(a1, . . . , an) be the 
ounter-diagonal matrix whose entries on the
ounter-diagonal (from lower left to upper right) are a1, . . . , an.(ii) For x ∈ C, let xk(x) be the elementary matrix whose (k, k + 1) entry is x.(iii) For b1, . . . , bk ∈ C, let πk(b1, . . . , bk) = x1(b1)x2(b2) · · · xk(bk).Proposition 9.9. The long edges of a generi
 (G,N)-
o
y
le are determined by the Ptolemy
oordinates as follows:(9.9) qij = q(a1, . . . , an), ak = (−1)k−1
c(n−k)ei+kej

c(n−k+1)ei+(k−1)ej

.Proof. Let (g0N, . . . , gkN) be a generi
 tuple, and let A = g−1
i gj . Then qij = qA. Sin
e(9.10) |A|{n−j+1,...,n},{1,j} = det({gi}n−k, {gj}k) = c(n−k)ei+kej

,the result follows from (9.2). �The 
orresponding formula for the short edges requires 
onsiderable more work, and is given inProposition 9.14 below.Lemma 9.10. Let A be generi
, and let L = x−1
A A. The entries Li,n−i+2 right below the 
ounterdiagonal are given by(9.11) Li,n−i+2 = (−1)n−i

|A|
{i,...,n},{1,...,n̂−i+1,n−i+2}

|A|{i+1,...,n},{1,...,n−i}
.
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eed as in the proof of Proposition 9.4. Let x = x−1
A . Sin
e L is lower 
ounter-triangular, we must have(9.12) x{i},{i+1,...,n}A{i+1,...,n},{1,...,n−i} + A{i},{1,...,n−i} = 0,so by Cramer's rule,(9.13) xij = (−1)i+j

|A|{i,...,bj,...,n},{1,...,n−i}

|A|{i+1,...,n},{1,...,n−i}
for j > i.We thus have

|A|{i+1,...,n},{1,...,n−i}Li,n−i+2 = Ai,n−i+2|A|{i+1,...,n},{1,...,n−i}

+
n∑

k=i+i

(−1)i+k|A|
{j,...,bk,...,n},{1,...,n−j}

Ak,n−i+2

=
n∑

k=j

(−1)i+k|A|
{j,...,bk,...,n},{1,...,n−i}

Ak,n−i+2

= (−1)n−i|A|
{i,...,n},{1,...,n̂−i+1,...,n−i+2}

,whi
h proves the result. �De�nition 9.11. Let A,B ∈ GL(n, C).(i) A and B are related by a type 0 move if all but the last 
olumn of A and B are equal.(ii) A and B are related by a type 1 move if all but the se
ond last 
olumn of A and B are equal.(iii) A and B are related by a type 2 move if for some j < n−1, B is obtained from A by swit
hing
olumns j and j + 1.Proposition 9.12. Let A and B be generi
, and let Ai and Bi denote the ith 
olumn of A, resp. B.(i) If A and B are related by a type 0 move, xB = xA.(ii) If A and B are related by a type 1 move, xB = xAx1(x), where(9.14) x = −det(A1, . . . , An−1, Bn−1) det(e1, e2, A1, . . . , An−2)

det(e1, A1, . . . , An−1) det(e1, A1, . . . , An−2, Bn−1)
.(iii) If A and B are related by a type 2 move swit
hing 
olumns j and j + 1, xB = xAxn−j(x),where(9.15) x = −det(e1, . . . , en−j−1, A1, . . . , Aj+1) det(e1, . . . , en−j+1, A1, . . . , Aj−1)

det(e1, . . . , en−j , A1, . . . , Aj) det(e1, . . . , en−j , A1, . . . , Aj−1, Bj)
.Proof. The �rst statement follows from the fa
t that xA is independent of the last 
olumn of A.Suppose A and B are related by a type 1 move. Using (9.3), one sees that (xA)ij = (xB)ij ex
eptwhen i = 1 and j = 2. It thus follows that xB = xAx1(x), where x = (xB)12 − (xA)12. Letting Cbe the matrix obtained from A by repla
ing the nth 
olumn by the (n− 1)th 
olumn of B, one has

|A|{1,3,...,n},{1,...,n−1} = Adj(C)n,2, |B|{1,3,...,n},{1,...,n−1} = Adj(C)n−1,2,

|A|{2,...,n},{1,...,n−1} = Adj(C)n,1, |B|{2,...,n},{1,...,n−1} = Adj(C)n−1,1,and it follows from (9.3) that(9.16) x = (xB)12 − (xA)12 =
Adj(C)n−1,2

Adj(C)n−1,1
− Adj(C)n,2

Adj(C)n,1
.
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xAdj(C)n,1 Adj(C)n−1,1 = Adj(C)n−1,2 Adj(C)n,1 − Adj(C)n−1,1 Adj(C)n,2

= −|Adj(C)|{n−1,n},{1,2}

= − det(C)|C|{3,...,n},{1,...,n−2}

= − det(A1, . . . , An−1, Bn−1) det(e1, e2, A1, . . . , An−2),where the third equality follows from Ja
obi's identity (9.1). Sin
e
Adj(C)n,1 Adj(C)n−1,1 = det(e1, A1, . . . , An−1) det(e1, A1, . . . , An−2, Bn−1),this proves the se
ond statement.Now suppose A and B are related by a type 2 move. Let Ej,j+1 be the elementary matrixobtained from the identity matrix by swit
hing the jth and (j + 1)th 
olumns. Then B = AEj,j+1.Sin
e L = x−1
A A is lower 
ounter triangular, xn−j(− Ln−j,j+1

Ln−j+1,j+1
)LEj,j+1 must also be lower 
ountertriangular. We thus have(9.17) xB = xAxn−j(−

Ln−j,j+1

Ln−j+1,j+1
)−1 = xAxn−j(

Ln−j,j+1

Ln−j+1,j+1
).By (9.11) and (9.2), we have(9.18) Ln−j+1,j+1 = (−1)j−1

|A|{n−j+1,...,n},{1,...,bj,j+1}

|A|{n−j+2,...,n},{1,...,j−1}

Ln−j,j+1 = (−1)j
|A|{n−j,...,n},{1,...,j+1}

|A|{n−j+1,...,n},{1,...,j}
.Hen
e,

Ln−j,j+1

Ln−j+1,j+1
= −

|A|{n−j,...,n},{1,...,j+1}|A|{n−j+2,...,n},{1,...,j−1}

|A|{n−j+1,...,n},{1,...,j}|A|{n−j+1,...,n},{1,...,bj,j+1}

= −det(e1, . . . , en−j−1, A1, . . . , Aj+1) det(e1, . . . , en−j+1, A1, . . . , Aj−1)

det(e1, . . . , en−j , A1, . . . , Aj) det(e1, . . . , en−j , A1, . . . , Aj−1, Bj)
,proving the third statement. �Note that any two matri
es A,B ∈ GL(n, C) are related by a sequen
e of moves of type 1, 2 and

0 as follows:(9.19) A
1−→[A1, . . . , An−2, B1, An]

2−→ [A1, . . . , An−3, B1, An−2, An]
2−→ . . .

2−→

[B1, A1, . . . , An−2, An]
1−→ [B1, A1, . . . , An−3, B2, An]

2−→ . . .
2−→

[B1, B2, A1, . . . , An−3, An]
1,2−−→ . . .

1,2−−→ [B1, . . . , Bn−1, An]
0−→ B.Consider the tilings of a fa
e ijk, i < j < k, of ∆2

n by diamonds shown in Figure 7. We refer tothe diamonds as being of type i, j and k, respe
tively.De�nition 9.13. The diamond 
oordinate dk
r,s of a diamond (r, s) of type k is the alternatingprodu
t of the Ptolemy 
oordinates assigned to its verti
es, see Figure 7.
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Figure 7. Diamonds of type i, j and k. The diamond 
oordinates are di
r,s = dk

r,s = −ab
cd

,and dj
r,s = ab

cd
, where a, b, c, and d are Ptolemy 
oordinates.Proposition 9.14. The short edges αi

jk, j < k, of a generi
 (G,N)-
o
y
le are determined by thePtolemy 
oordinates as follows (π∗ is de�ned in 9.8 (iii)):(9.20) αi
jk = πn−1(d

i
1,1, . . . , d

i
1,n−1)πn−2(d

i
2,1, . . . , d

i
2,n−2) · · · π1(d

i
n−1,1),where the di

j,k's are the type i diamond 
oordinates on the fa
e ijk.Proof. Let (g0N, . . . , glN) be a generi
 tuple, and let A = g−1
i gj and B = g−1

i gk. We assume that
i < j < k, the other 
ases being similar. Note that the Ptolemy 
oordinates on the ijk fa
e aregiven by(9.21) ctiei+tjek+tkek

= det(e1, . . . , eti , A1, . . . , Atj , B1, . . . , Btk).Performing the sequen
e of moves in (9.19), the result follows from Proposition 9.12. �Corollary 9.15. A generi
 tuple is determined up to the diagonal G-a
tion by its Ptolemy 
oordi-nates. �Example 9.16. Suppose Ptolemy assignments on ∆2
n, n ∈ {2, 3}, are given as in Figure 8. Us-ing (9.9) and (9.20), we obtain that the 
orresponding (G,N)-
o
y
le is given by(9.22) q01 = q(a,−1/a), q12 = q(b,−1/b), q02 = q(c,−1/c),

α0
12 = x1

(−b

ac

)
, α1

02 = x1

( c

ab

)
, α2

01 = x1

(−a

cb

)when n = 2, and(9.23) q01 = q(c,−a/c, 1/a), q12 − q(b,−e/b, 1/e), q02 = q(f,−g/f, 1/g),

α1
02 = x1

(fa

cd

)
x2

( d

ab

)
x1

(gb

de

)
,

α0
12 = x1

(−bc

ad

)
x2

(−d

cf

)
x1

(−ef

dg

)
, α2

01 = x1

(−cg

fd

)
x2

(−d

ge

)
x1

(−ae

db

)when n = 3.
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Figure 8. Ptolemy assignments and the 
orresponding 
o
y
le for n = 2 and n = 3.9.3. From Ptolemy assignments to de
orations. Corollary 9.15 shows that here is at most onegeneri
 (G,N)-
o
y
le with a given 
olle
tion of Ptolemy 
oordinates. We now prove that when
k ≤ 3 there is exa
tly one.Lemma 9.17. Let ai,j and bi,j be non-zero 
omplex numbers. The equality(9.24) πn−1(a1,1, . . . , a1,n−1) · · · π1(an−1,1) = πn−1(b1,1, . . . , b1,n−1) · · · π1(bn−1,1)holds if and only if ai,j = bi,j for all i, j.Proof. For any ci,j, the nth 
olumn of πn−1(c1,1, . . . , c1,n−1) · · · π1(cn−1,1) is equal to the nth 
olumnof πn−1(c1,1, . . . , c1,n−1), whi
h equals

(

n−1∏

i=1

c1,i,

n−1∏

i=2

c1,i, . . . , c1,n−1).This proves that a1,j = b1,j for all j. The result now follows by indu
tion. �Proposition 9.18. For any assignment c : ∆̇2
n(Z) → C∗, there is a unique Ptolemy assignment

c ∈ Ptn2 whose Ptolemy 
oordinates are ct.Proof. We prove that the Ptolemy 
oordinates c′t of (N, q01N,α0
12q02N) equal ct, where q01, q02 and

α0
12 are given in terms of the ct's by (9.9) and (9.20). First note that ct = c′t if either t1 or t2 is 0,i.e. if t is on one of the edges of ∆2

n 
ontaining the 0th vertex. Ea
h of the other integral points tis the upper right vertex of a unique diamond (r, s) of type 0. Let τk be the upper right vertex ofthe kth diamond Dk in the sequen
e(9.25) (1, n − 1), (1, n − 2), . . . (1, 1), (2, n − 2), . . . , (2, 1), . . . , (n − 1, 1).By Lemma 9.17, d0′
r,s = d0

r,s for all diamonds (r, s) of type 0. It thus follows that if ct = c′t for allbut one of the verti
es of a diamond D, then ct = c′t for all verti
es of D. In parti
ular c′τ1 = cτ1 .Suppose by indu
tion that c′τi
= cτi

for all i < k. Then c′t = ct, for all verti
es of Dk ex
ept τk.Hen
e, we also have c′τk
= cτk

, 
ompleting the indu
tion. �Proposition 9.19. For any assignment c : ∆̇3
n(Z) → C∗ satisfying the Ptolemy relations, there is aunique Ptolemy assignment c ∈ Ptn3 whose Ptolemy 
oordinates are ct.Proof. Let c′t be the Ptolemy 
oordinates of the tuple (N, q01N,α0

12q02N,α0
13q03N) de�ned from the

ct's by (9.9) and (9.20). We wish to prove that c′t = ct for all t. Note that if, for some subsimplex
∆3(α), c′αij

= cαij
for all but one of the 6 αij 's, then c′αij

= cαij
holds for all αij . This is a dire
t
onsequen
e of the Ptolemy relations. By Proposition 9.18, c′t = ct, when either t2 or t3 is zero.Hen
e, for ea
h α = (a0, a1, a2, a3) with a2 = a3 = 0, c′αij

= cαij
ex
ept possibly when (i, j) = (2, 3).
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= cα23

as well. Now suppose by indu
tion that c′αij
= cαij

for all α with
a2 + a3 < k. Then c′αij

= cαij
holds ex
ept possibly when (i, j) = (2, 3). Again, c′α23

= cα23
mustalso hold, 
ompleting the indu
tion. �A (G,N)-
o
y
le on M obviously determines a de
orated representation (up to 
onjugation).The main results of this se
tion 
an thus be summarized by the diagram below.(9.26) {Points in Pn(K)

}
oo //

{Generi
 (G,N)-
o
y
leson M

}
oo //

{Generi
ally de
orated
(G,N)-representations}Remark 9.20. We stress that the Ptolemy variety parametrizes de
orated representations and notde
orated representations up to equivalen
e. In parti
ular, the dimension of Pn(K) depends on thetriangulation, and may be very large if K has many interior verti
es.9.4. Obstru
tion 
o
y
les and the p SL(n, C)-Ptolemy varieties. Suppose n is even. Theproje
tion G → pG maps N isomorphi
ally onto its image (also denoted by N), and by elementaryobstru
tion theory (see e.g. Steenrod [25℄), the obstru
tion to lifting a (pG,N)-representation ρ toa (G,N)-representation is a 
lass in(9.27) H2(M,∂M ; Z/2Z) = H2(K; Z/2Z).We 
an represent it by an expli
it 
o
y
le in Z2(K; Z/2Z) as follows: Pi
k any (p SL(n, C), N)-
o
y
le τ̄ on M representing ρ and a lift τ of τ̄ to a (G,N)-
o
hain. Ea
h 2-
ell of K 
orrespondsto a hexagonal 2-
ell of M , and the 2-
o
y
le σ ∈ Z2(K; Z/2Z) taking a 2-
ell to the produ
t of the

τ -labelings along the 
orresponding hexagonal 2-
ell of M represents the obstru
tion 
lass.Proposition 9.21. Suppose the interior of M is a 1-
usped hyperboli
 3-manifold with �nitevolume. The obstru
tion 
lass in H2(K; Z/2Z) to lifting the geometri
 representation is non-trivial.Proof. By a result of Calegari [5, Corollary 2.4℄, any lift of the geometri
 representation takes alongitude to an element in SL(2, C) with tra
e −2. This shows that no lift is boundary-unipotent,so the obstru
tion 
lass must be non-trivial. �Proposition 9.4 also holds in p SL(n, C), and we thus have a 1-1 
orresponden
e between generi-
ally de
orated representations and (pG,N)-
o
y
les on M .De�nition 9.22. Let σ ∈ Z2(K; Z/2Z). A lifted (pG,N) 
o
y
le on M with obstru
tion 
o
y
le
σ is a generi
 (G,N)-assignment on M lifting a (pG,N)-
o
y
le on M su
h that the 2-
o
y
le on
K obtained by taking produ
ts along hexagonal fa
es of M equals σ.A 1-
o
hain η ∈ C1(K; Z/2Z) a
ts on a lifted (pG,N)-
o
y
le τ by multiplying a long edge
e by η(e). Note that if τ has obstru
tion 
o
y
le σ, ητ has obstru
tion 
o
y
le δ(η)σ, where δis the standard 
oboundary operator. Re
all that there is a 1-1 
orresponden
e between generi

(G,N)-
o
y
les on M and points in the Ptolemy-variety. We shall prove a similar result for pG.We wish to de�ne a 
oboundary a
tion on pG-Ptolemy assignments (see De�nition 5.11). Let cbe a pG-Ptolemy assignment on ∆, and let ηij ∈ C1(∆; Z/2Z) be the 
o
hain taking the edge ij to
−1 and all other edges to 1. De�ne(9.28) ηijc : ∆̇3

n(Z) → C∗, (ηijc)t = (−1)titjctand extend in the natural way to de�ne ηc for a pG-Ptolemy assignment c on K and η ∈ C1(K; Z/2Z).A priori ηc is only an assignment of 
omplex numbers to the integral points of the simpli
es of K.However, we have:
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tion 
o
y
le σ, ηc is a pG-Ptolemyassignment on K with obstru
tion 
o
y
le δ(η)σ.Proof. It is enough to prove this for a simplex ∆ and for η = ηij. Let c′ = ηijc. We assume forsimpli
ity that ij = 01; the other 
ases are proved similarly. For any α = (a0, a1, a2, a3) ∈ ∆k
n−2(Z),we then have(9.29) c′α03

c′α12
+ c′α01

c′α23
− c′α02

c′α13
= (−1)a0+a1(cα03

cα12
− cα01

cα23
− cα02

cα13
)Let τ = δ(η01). Sin
e δ(η01)2 = δ(η01)3 = −1 and δ(η01)0 = 1, (9.29) implies that(9.30) τ2τ3c

′
α03

c′α12
+ τ0τ3c

′
α03

c′α01
c′α23

= c′α02
c′α13

,as desired. �De�nition 9.24. The diamond 
oordinates of a p SL(n, C)-Ptolemy assignment with obstru
tion
o
y
le σ are de�ned as in De�nition 9.13, but multiplied by the sign (provided by σ) of the fa
e.Note that for η ∈ C1(K; Z/2/Z), the diamond 
oordinates of c and ηc are identi
al.Proposition 9.25. For any σ ∈ Z2(K; Z/2Z), there is a 1-1 
orresponden
e between p SL(n, C)-Ptolemy assignments on K with obstru
tion 
o
y
le σ, and lifted (p SL(n, C), N)-
o
y
les on Mwith obstru
tion 
o
y
le σ. The 
orresponden
e preserves the 
oboundary a
tions.Proof. It is enough to prove this for a simplex ∆. For a pG-Ptolemy assignment c on ∆ withobstru
tion 
o
y
le σ ∈ Z2(∆; Z/2Z), de�ne a 
o
hain τ on ∆ by the formulas (9.9) and (9.20)using the σ-modi�ed diamond 
oordinates (De�nition 9.24). Let η ∈ C1(∆; Z/2Z) be su
h that
δη = σ, where δ is the standard 
oboundary map. By Lemma 9.23 ηc satis�es the SL(n, C) Ptolemyrelations (5.4), and hen
e 
orresponds to an (SL(n, C), N)-
o
y
le τ ′. Sin
e the diamond 
oordinatesof c and ηc are the same, the short edges of τ ′ agree with those of τ and the long edges di�er fromthose of τ by η. This proves that τ is a lifted (pG,N)-
o
y
le with obstru
tion 
o
y
le σ. Theindu
tive arguments of Propositions 9.18 and 9.19 show that this is a 1-1 
orresponden
e. The fa
tthat the a
tions by 
oboundaries 
orrespond is immediate from the 
onstru
tion. �Corollary 9.26. Let σ ∈ Z2(K; Z/2Z). There is an algebrai
 variety P σ

n (K) of generi
ally de
o-rated boundary-unipotent representations ρ : π1(M) → p SL(n, C) whose obstru
tion 
lass to liftingto SL(n, C) is represented by σ. Up to 
anoni
al isomorphism, the variety P σ
n (K) only depends onthe 
ohomology 
lass of σ.Proof. This follows immediately from Proposition 9.25. �Note that the 
anoni
al isomorphisms in Corollary 9.26 respe
t the extended Blo
h group element.This follows from the pG variant of Proposition 7.7. The analogue of (9.26) is(9.31)

{Points in P σ
n (K)

}
oo //

{Lifted (pG,N)-
o
y
les on Mwith obstru
tion 
o
y
le σ

}
k:1

// //





Generi
ally de
orated
(pG,N)-representationswith obstru
tion 
o
y
le σ



 ,where k is the number of lifts, i.e. k = |Z1(K; Z/2Z)|.9.5. Proof of Theorems 1.3, 1.12, and 1.7. Let R : Pn(K) → RG,N (M) be the 
omposition ofthe map in (9.26) with the forgetful map ignoring the de
oration. The fa
t that λ has image in

B̂(C) follows from Proposition 6.12, and 
ommutativity of (1.11) follows from Remark 8.4. The fa
tthat R is surje
tive if K is su�
iently �ne follows from Proposition 5.4. This 
on
ludes the proof



36 STAVROS GAROUFALIDIS, DYLAN P. THURSTON, AND CHRISTIAN K. ZICKERTof Theorem 1.3. The �rst part of Theorem 1.12 is proved similarly, and the last part follows fromTheorem 11.7 below. The �rst statement of Theorem 1.7 follows from the de�nition of R. These
ond statement follows from the fa
t that if ρ is boundary non-degenerate the only freedom in
hoosing a de
oration is the diagonal a
tion. Finally, the third statement is proved in Corollary 7.9.10. ExamplesIn the examples below, all 
omputations of Ptolemy varieties are exa
t, whereas the 
omputationsof 
omplex volume are numeri
al with at least 50 digits pre
ision.Example 10.1 (The 52 knot 
omplement). Consider the 3-
y
le K obtained from the simpli
es inFigure 9 by identifying the fa
es via the unique simpli
ial atta
hing maps preserving the arrows.The spa
e obtained from K by removing the 0-
ell is homeomorphi
 to the 
omplement of the 52knot, as 
an be veri�ed by SnapPy [9℄.
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Figure 9. A 3-
y
le stru
ture on the 52 knot 
omplement, and Ptolemy 
oordinates for n = 3.Labeling the Ptolemy 
oordinates as in Figure 9, the Ptolemy variety for n = 3 is given by theequations(10.1) a0x3 + b0x1 = b0x2, a0y3 + a0x0 = c0y2, a0x2 + b0y2 = a0x1

x2c0 + b1x0 = x3a0, y2b0 + a1x3 = y3b0, x1a0 + b1y3 = x2c0

x1c1 + x3c0 = b1x0, x0b1 + y3c0 = c1x3, y2a1 + x2b0 = a1y3

a1x0 + x2c1 = x1a1, a1x3 + y2c1 = x0b1, a1y3 + x1b1 = y2c1together with an extra equation (involving an additional variable t)(10.2) a0a1b0b1c0c1x0x1x2x3y2y3t = 1,making sure that all Ptolemy 
oordinates are non-zero. By (5.7) a diagonal matrix diag(x, y, z)a
ts by multiplying a Ptolemy 
oordinate on an edge by x2y and a Ptolemy 
oordinate on a fa
eby x3. Sin
e we are not interested in the parti
ular de
oration, we may thus assume e.g. that
a0 = y3 = 1. Using Magma [3℄, one �nds that the Ptolemy variety, after setting a0 = y3 = 1, hasthree zero-dimensional 
omponents with 3, 4 and 6 points respe
tively. One of these is given by(10.3) a0 = a1 = y3 = 1, x1 = −1, c0 = c1 = x2

0 + 2x0 + 1

y2 = x2
0 + 2 = −x2, x3 = −x2

0 − x0 − 1

x3
0 + x2

0 + 2x0 + 1 = 0Thus, this 
omponent gives rise to 3 representations, one for ea
h solution to x3
0 + x2

0 + 2x0 + 1 = 0.Using the fa
t that R(λ(c)) = iVolC(ρ), the 
omplex volumes of these 
an be 
omputed to be(10.4) 0.0 − 4.453818209 . . . i ∈ C/4π2iZ, ±11.31248835 . . . + 12.09651350 . . . i ∈ C/4π2iZ
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orresponding to the values x0 = −0.5698 . . . and x0 = −0.2150 ∓ 1.3071 . . . i, respe
tively.In Zi
kert [31, Se
tion 6℄, the 
omplex volumes of the Galois 
onjugates of the geometri
 repre-sentation are 
omputed to be(10.5) 0.0 − 1.113454552 . . . i ∈ C/π2iZ, ±2.828122088 . . . + 3.024128376 . . . i ∈ C/π2iZ.Noti
e that (10.4) is (approximately) 4 times (10.5). It thus follows from Theorem 1.10 thatthe representations given by (10.3) are φ3 
omposed with the geometri
 
omponent of PSL(2, C)-representations and that the fa
tor of 4 is exa
t.Another 
omponent is given by
(10.6) a0 = a1 = y3 = 1, x1 = −1, b1 = −x0

b0 = 1/4x3
0 − 1/4x2

0 + 3/4x0 − 1/2

c0 = c1 = 1/4x3
0 − 1/4x2

0 − 1/4x0 + 1/2

y2 = −x2 = 1/4x3
0 + 3/4x2

0 + 7/4x0 + 3/2

x3 = −x2
0 − x0 − 1

x4
0 + x3

0 + x2
0 − 4x0 − 4 = 0.In this 
ase there are two distin
t 
omplex volumes given by:(10.7) 0.0 + 2.631894506 . . . i =

4

15
π2i ∈ C/4π2iZ, 0.0 + 10.527578027 . . . i =

16

15
π2i ∈ C/4π2iZ.The third 
omponent has somewhat larger 
oe�
ients, but after introdu
ing a variable u with

u6 + 5u4 + 8u2 − 2u + 1 = 0, the de�ning equations simplify to
(10.8)

a0 = y3 = 1, a1 = 1/4u5 + 1/4u4 + 5/4u3 + 1/2u2 + 2u − 3/4

b0 = b1 = −1/4u4 − 3/4u2 − 1/4u − 3/4,

c1 = −1/4u5 − 3/4u3 − 1/4u2 − 3/4u,

c0 = 1/2u5 + 9/4u3 + 1/4u2 + 7/2u − 1/4,

y2 = −8/17u5 − 1/34u4 − 79/34u3 − 3/17u2 − 105/34u + 26/17,

x3 = 1/17u5 − 1/17u4 + 6/17u3 − 6/17u2 + 14/17u − 16/17,

x2 = 9/34u5 + 4/17u4 + 37/34u3 + 31/34u2 + 75/34u + 13/17,

x1 = 8/17u5 + 1/34u4 + 79/34u3 + 3/17u2 + 139/34u − 9/17,

x0 = 15/34u5 + 1/17u4 + 73/34u3 + 29/34u2 + 125/34u − 1/17,

u6 + 5u4 + 8u2 − 2u + 1 = 0.In this 
ase, there are 3 distin
t 
omplex volumes:(10.9) 0.0 + 1.241598704 . . . i, ±6.332666642 . . . + 1.024134714 . . . iA

ording to Conje
ture 1.21, 6.33 · · · + 1.02 . . . i should (up to rational multiples of π2i) be anintegral linear 
ombination of 
omplex volumes of hyperboli
 manifolds. Using e.g. Snap [18℄, one
he
ks that the 
omplex volume of the manifold m034 is given by(10.10) 3.166333321 . . . + 2.157001424 . . . i,and we have(10.11) 6.332666642 . . . + 1.024134714 . . . i = 2VolC(m034) − 1

3
π2i ∈ C/4π2iZ.
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omplement). Let K be the 3-
y
le in Figure 10. Then M =
M(K) is the �gure 8 knot 
omplement, and H2(K; Z/2Z) = H2(M,∂M ; Z/2Z) = Z/2Z.
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Figure 10. A 3-
y
le stru
ture on the �gure 8 knot 
omplement and Ptolemy 
oordinatesfor n = 2. The signs indi
ate the non-trivial se
ond Z/2Z 
ohomology 
lass.For the trivial obstru
tion 
lass, the Ptolemy variety for n = 2 is given by(10.12) yx + y2 = x2, xy + x2 = y2,and is thus empty sin
e x and y are non-zero. In fa
t, the only boundary-unipotent representations in
SL(2, C) are redu
ible, so this is not surprising. The non-trivial obstru
tion 
lass 
an be representedby the 
o
y
le indi
ated in Figure 10, and the Ptolemy variety is given by(10.13) yx − y2 = x2, xy − x2 = y2.As in Example 10.1, we may assume y = 1. Hen
e, the Ptolemy variety dete
ts two (
omplex
onjugate) representations 
orresponding to the solutions to x2 − x + 1 = 0. The extended Blo
hgroup elements are(10.14) − (−x̃,−2x̃) + (x̃, 2x̃) ∈ B̂(C)PSL,with 
omplex volume(10.15) ± 2.029883212 . . . + 0.0i.We thus re
over the well known 
omplex volume of the �gure 8 knot 
omplement.For n = 3, similar 
al
ulations as those in Example 10.1 show that the Ptolemy variety dete
ts
3 zero-dimensional 
omponents, but the only one with non-zero volume is the one indu
ed bythe geometri
 representation. For n = 4, lots of new 
omplex volumes emerge. For the trivialobstru
tion 
lass, the non-zero 
omplex volumes are(10.16) ± 7.327724753 . . . + 0.0i = 2VolC(52

1) + π2i/4,where the manifold 52
1 is the whitehead link 
omplement. For the non-trivial obstru
tion 
lass, the
omplex volumes are(10.17) ±20.29883212 . . . + 0.0i = 10VolC(41) ∈ C/π2iZ

±4.260549384 . . . ± 0.136128165 . . . i

±3.230859569 . . . + 0.0i

±8.355502146 . . . + 2.428571615 . . . i = VolC(−93
15) + 2π2i/3

±3.276320849 . . . + 9.908433886 . . . i.



THE COMPLEX VOLUME OF SL(n, C)-REPRESENTATIONS OF 3-MANIFOLDS 39Example 10.3 (S1 × S2). Figure 11 shows a triangulation of M = S1 × S2 taken from the Regina
ensus [4℄. Sin
e π1(S
1 × S2) = Z, all representations in PSL(2, C) lift to SL(2, C), so we expe
tthe Ptolemy variety for the non-trivial 
lass in H2(M ; Z/2Z) to be zero. This 
lass is representedby the 
o
y
le shown in Figure 11, and the Ptolemy variety is given by(10.18) − zx + x2 = y2, x2 + zx = y2,whi
h indeed has no solutions in C∗. For the trivial 
ohomology 
lass, all signs are positive, andthe two equations are equivalent. The extended Blo
h group element is(10.19) (z̃ + x̃ − 2ỹ, 2x̃ − 2ỹ) − (z̃ + x̃ − 2ỹ, 2x̃ − 2ỹ) = 0 ∈ B̂(C).In fa
t, the extended Blo
h group element of a Ptolemy assignment is trivial for all n, as one easilyveri�es (the subsimpli
es 
an
el out in pairs).We wish to �nd out whi
h representations are dete
ted by P2(K). A 
hoi
e of fundamentaldomain F for K in L determines a presentation of π1(M) with a generator for ea
h fa
e pairing of

F and a relation for ea
h 1-
ell of K (to see this 
onsider the standard presentation for the dualtriangulation of K). Letting F be the fundamental domain of S1 × S2 given by gluing the bottomfa
es of the two simpli
es together, one easily 
he
ks that the generator of π1(M) = Z is given bythe self gluing of the �rst simplex taking the fa
e opposite the third vertex to the fa
e opposite thezeroth. For α ∈ SL(2, C), the representation given by taking the generator to α has a de
oration asin Figure 11. For A =
(

a b
c d

), let c(A) = c, and note that det(e1, Ae1) = c(A). Letting x, y and zdenote the Ptolemy 
oordinates, we have(10.20) x = c(α), y = c(α2) = xTr(α), z = c(α3) = x(Tr(α)2 − 1),and it follows that the Ptolemy variety dete
ts all representations ex
ept those where Tr(α) = ±1.
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Figure 11. A triangulation of S1 × S2. Both simpli
es have self gluings.Remark 10.4. When n = 2, examples of Conje
ture 1.21 are abundant. E.g. for the 10155 knot
omplement (10 simpli
es), the volumes of the representations dete
ted by the Ptolemy variety are(numeri
ally)(10.21) Vol(m032(6, 1)), 2Vol(41), 3Vol(10155) − 4Vol(v3461), Vol(10155).Remark 10.5. For the hyperboli
 
ensus manifolds, most of the 
omponents of the redu
ed Ptolemyvarieties tend to be zero-dimensional. By a result of Menal-Ferrer and Porti [20℄, the 
ompo-sition of the geometri
 representation with φn is isolated among boundary-unipotent p SL(n, C)-representations. Higher dimensional 
omponents also o

ur (rarely for n = 2, quite often for n > 2),but as mentioned earlier, the 
omplex volume is 
onstant on 
omponents.Remark 10.6. If the fa
e pairings do not respe
t the vertex orderings, one 
an still de�ne a Ptolemyvariety by introdu
ing more signs. See Garoufalidis�Goerner�Zi
kert [15℄ for details.



40 STAVROS GAROUFALIDIS, DYLAN P. THURSTON, AND CHRISTIAN K. ZICKERTRemark 10.7. The fa
t that the redu
ed Ptolemy varieties Pn(K)red are given by setting some ofthe variables (
hosen appropriately) equal to 1 is proved in [16℄.11. The irredu
ible representations of SL(2, C)Let φn : SL(2, C) → SL(n, C) denote the 
anoni
al irredu
ible representation. It is indu
ed bythe Lie algebra homomorphism sl(2, C) → sl(n, C) given by(11.1)
[ 0 1
0 0 ] 7→ diag+(n−1, . . . , 1), [ 0 0

1 0 ] 7→ diag−(1, . . . , n−1),
[

1 0
0 −1

]
7→ diag(n−1, n−3, . . . ,−n+1),where diag+(v) and diag−(v) denote matri
es whose �rst upper (resp. lower) diagonal is v and allother entries are zero. One has

φn

([
0 −a−1

a 0

])
= q(an−1,−an−3, . . . , (−1)n−1a−(n−1))(11.2)

φn ([ 1 x
0 1 ]) = πn−1(x, . . . , x)πn−2(x, . . . , x) · · · π1(x).(11.3)Proposition 11.1. Let c be a Ptolemy assignment on ∆3

2, and let τ denote the 
orresponding
o
y
le. The Ptolemy assignment 
orresponding to φn(τ) is given by(11.4) φn(c) : ∆̇3
n(Z) → C∗, t 7→ φn(c)t =

∏

i<j

c
titj
ij .

y
x3y3z

x4y4z2 x2y4z2

x3yz3

x2y2z4

xy3z3

z4 z6 z6 z4z

x

x4

x6

x6

x4 y4

y6

y6

y4

φn

0

1

2 0

1

2Figure 12. φn a
ting on Ptolemy assignments.Proof. Let α = (a0, . . . , a3) ∈ ∆3
n−2(Z). Letting kα =

∏
i<j c

aiaj

ij , and lα =
∏

i<j c
ai+aj

ij , we have(11.5)
φn(c)α03

φn(c)α12
= k2

αlαc03c12, φn(c)α01
φn(c)α23

= k2
αlαc01c23, φn(c)α02

φn(c)α13
= k2

αlαc02c13.Hen
e, the appropriate Ptolemy relations are satis�ed. The long and short edges of the 
o
y
le
orresponding to φn(c) are given by (9.9) and (9.20), and we must prove that these agree withthose of φn(τ). For the long edges, this follows immediately from (11.2). For the short edges, aneasy 
omputation shows that all the diamond 
oordinates of a fa
e are equal, and equal to the
orresponding diamond 
oordinate of c. For example, the type 1 diamond 
oordinate on fa
e 3whose left vertex is t = (t0, t1, t2, 0) is given by(11.6) φn(c)t+(0,−1,1,0)φn(c)t+(−1,1,0,0)

φn(c)tφn(c)t+(−1,0,1,0)
=

c
t0(t1−1)
01 c

t0(t2+1)
02 c

(t1−1)(t2+1)
12 c

(t0−1)(t1+1)
01 c

(t0−1)t2
02 c

(t1+1)t2
12

ct0t1
01 ct0t2

02 ct1t2
12 c

(t0−1)t1
01 c

(t0−1)(t2+1)
02 c

t1(t2+1)
12

=
c02

c01c12
,whi
h is a diamond 
oordinate for c. By (11.3) the short edges thus agree with those of φn(τ),proving the result. �



THE COMPLEX VOLUME OF SL(n, C)-REPRESENTATIONS OF 3-MANIFOLDS 41Corollary 11.2. If a representation ρ : π1(M) → PSL(2, C) is dete
ted by P σ
2 (K) then φ2k+1 ◦ ρis dete
ted by P2k+1(K) and φ2k ◦ ρ is dete
ted by P σ

2k(K). �Theorem 11.3. Let ρ be a boundary-unipotent representation in SL(2, C) or PSL(2, C). The ex-tended Blo
h group element of φn ◦ ρ is (n+1
3

) times that of ρ. In fa
t, the shapes of all subsimpli
esare equal.Proof. By re�ning the triangulation if ne
essary, we may represent ρ by a Ptolemy assignment c on
K. Then φ = φn(c) is a Ptolemy assignment representing φn ◦ ρ, and the extended Blo
h groupelement of φn ◦ ρ is given by(11.7) [φn(ρ)] =

∑

i

ǫi

∑

α∈∆3
n−2(Z)

(φ̃i
α03

+ φ̃i
α12

− φ̃i
α02

− φ̃i
α13

, φ̃i
α01

+ φ̃i
α23

− φ̃i
α02

− φ̃i
α13

).By Proposition 7.7, we may 
hoose the logarithms independently as long as we use the same loga-rithm for identi�ed points. De�ning φ̃i
t =

∑
j<k tjtk c̃

i
jk, we see that(11.8) (φ̃i

α03
+φ̃i

α12
−φ̃i

α02
−φ̃i

α13
, φ̃i

α01
+φ̃i

α23
−φ̃i

α02
−φ̃i

α13
) = (c̃03+c̃12−c̃02−c̃13, c̃01+c̃23−c̃02−c̃13),whi
h means that the �attenings assigned to ea
h subsimplex of ∆i

n are equal. By Lemma 5.6,
|∆3

n−2(Z)| =
(n+1

3

), and the result follows. �11.1. Essential edges.De�nition 11.4. An edge of K is essential if the lifts to L have distin
t end points.Note that an edge may be essential even though it is homotopi
ally trivial in K. Let L(0) denotethe zero skeleton of L.Lemma 11.5. Let ρ be a representation in SL(2, C) or PSL(2, C). A de
oration of ρ determines a
ρ-equivariant map(11.9) D : L(0) → ∂H

3
= C ∪ {∞}, ei 7→ gi∞.Every su
h map 
omes from a de
oration, and the de
oration is generi
 if and only if the verti
esof ea
h simplex of L map to distin
t points in C ∪ {∞}.Proof. Equivarian
e of (11.9) follows from the de�nition of a de
oration. A ρ-equivariant map

D : L(0) → C ∪ {∞} is uniquely determined by its image of lifts ẽi ∈ L of the zero 
ells ei of K.Pi
king gi su
h that gi∞ = D(ẽi), we de�ne a de
oration by assigning the 
oset giN to ẽi. The laststatement follows from the fa
t that det(g1e1, g2e1) = 0 if and only if g1∞ = g2∞. �In the following we assume that the interior of M is a 
usped hyperboli
 3-manifold H3/Γ with�nite volume.Proposition 11.6. If all edges of K are essential, the geometri
 representation has a generi
de
oration.Proof. We identify π1(M) with Γ ⊂ PSL(2, C). Ea
h 
usp of M determines a Γ-orbit of points in
∂H3, and these orbits are distin
t (if two orbits interse
ted, they would be identi
al, thus 
orre-sponding to the same 
usp). Ea
h vertex of L 
orresponds to either a 
usp of M or an interior pointof M . A

ordingly, we have L(0) = L

(0)
cusp ∪ L

(0)int . The stabilizer of a point in L
(0)
cusp is a paraboli
subgroup of PSL(2, C), and thus �xes a unique point in C∪{∞}. We thus have an equivariant map

D : L
(0)
cusp → C ∪ {∞} taking a vertex v to the �xed point in ∂H3 of Stab(v) ⊂ PSL(2, C). Let e1and e2 be points in L

(0)
cusp 
onne
ted by an edge. Sin
e all edges of K are essential, e1 6= e2. Sin
e



42 STAVROS GAROUFALIDIS, DYLAN P. THURSTON, AND CHRISTIAN K. ZICKERTthe Γ-orbits of di�erent 
usps are distin
t, it follows that D(e1) 6= D(e2) if e1 and e2 
orrespond todi�erent 
usps. If e1 and e2 
orrespond to the same 
usp, there exists an element in Γ taking e1 to
e2. Sin
e only peripheral elements (i.e. 
usp stabilizers) have �xed points in C∪{∞}, it follows that
D(e1) 6= D(e2). We extend D to L(0) by 
hoosing any equivariant map L

(0)int → C∪{∞}. Sin
e su
hmap is uniquely determined by �nitely many values (whi
h may be 
hosen freely), we 
an pi
k theextension so that the verti
es of ea
h simplex map to distin
t points. This proves the result. �Theorem 11.7. Suppose all edges of K are essential. The representation φn ◦ ρgeo is dete
ted by
Pn(K) if n is odd, and by P

σgeo
n (K) if n is even.Proof. By Proposition 11.6, P

σgeo

2 (K) dete
ts ρgeo. The result now follows from Corollary 11.2. �Remark 11.8. The 
ensus triangulations all have essential edges.12. Gluing equations and Ptolemy assignmentsIn this se
tion we dis
uss the relation between Ptolemy assignments and solutions to the gluingequations. The latter were invented by Thurston [28℄ to expli
itly 
ompute the hyperboli
 stru
ture(and its deformations) of a triangulated hyperboli
 manifold, and used e�e
tively in [23, 18, 9℄.The gluing equations make sense for any 3-
y
le. They are de�ned by assigning a 
ross-ratio
zi ∈ C\{0, 1} to ea
h simplex ∆i of K. Given these, we assign 
ross-ratio parameters to the edgesof ∆i as in Figure 13.

0

1

2

3

z zz′

z′

z′′

z′′Figure 13. Assigning 
ross-ratio parameters to the edges of ∆i. By de�nition, z′ = 1

1−zand z′′ = 1 − 1

z
.There is a gluing equation for ea
h edge E in K and ea
h generator γ of the fundamental groupof ea
h boundary 
omponent of M . These are given by(12.1) ∏

e 7→E

z(e)ǫi(e) = 1,
∏

γ passes e

z(e)ǫi(e) = 1.Here z(e) denotes the 
ross-ratio parameter assigned to e, and ǫi(e) = ǫi if e is an edge of ∆i. Itfollows that the set of assignments ∆i 7→ zi ∈ C\{0, 1} satisfying the gluing equations (12.1) is analgebrai
 set V (K).Lemma 12.1. For every point {zi} ∈ V (K) there is a map D : L(0) → C ∪ {∞} su
h that if
∆̃i is a lift of ∆i with verti
es e1, . . . , e3 in L, the 
ross-ratio of the ideal simplex with verti
es
D(e1), . . . ,D(e3) is zi. It is unique up to multipli
ation by an element in PSL(2, C). Moreover,there is a unique (up to 
onjugation) boundary-unipotent representation π1(M) → PSL(2, C) su
hthat D is ρ-equivariant.
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k a fundamental domain F for K in L. Pi
k a simplex ∆ in F and de�ne D by mappingthe �rst 3 verti
es of ∆ to 0, ∞ and 1. The map D is now uniquely determined by the 
ross-ratios.The fundamental group of M has a presentation with a generator for ea
h fa
e pairing of F . These
ond statement thus follows from the fa
t that PSL(2, C) is 3-transitive. We leave the details tothe reader. �Given a Ptolemy assignment on K, we assign the 
ross-ratio zi =
ci
03ci

12

ci
02ci

13

to ∆i. Note that thePtolemy relations imply that the 
ross-ratio parameters are given by(12.2) zi =
ci
03c

i
12

ci
02c

i
13

, z′i =
ci
02c

i
13

ci
01c

i
23

, z′′i = −ci
01c

i
23

ci
03c

i
12

.Theorem 12.2. There is a surje
tive regular map(12.3) ∐

σ∈H2(K;Z/2Z)

P σ
2 (K) → V (K), c 7→ {zi =

ci
03c

i
12

ci
02c

i
13

}.The �bers are disjoint 
opies of (C∗)h, where h is the number of zero-
ells of K.Proof. By a simple 
an
ellation argument (as in the proof of Zi
kert [31, Theorem 6.5℄), the gluingequations would be satis�ed if the formula (12.2) for z′′i did not have the minus sign. The minussign appears whenever the edge is 02 or 13. As explained in the proof of Proposition 7.7, any
urve passes these an even number of times. It thus follows that the 
ross-ratios satisfy the gluingequations. Surje
tivity follows from Lemma 11.5, and the fa
t that �bers are (C∗)h follows fromthe fa
t that g1∞ = g2∞ if and only if g1N = g2dN for a unique diagonal matrix d. �Remark 12.3. Gluing equation varieties for n > 2 are studied in Garoufalidis-Goerner-Zi
kert [15℄.13. Other fieldsThe Ptolemy varieties Pn(K) and P σ
n (K) may be de�ned over an arbitrary �eld F , and asin Se
tion 9, a Ptolemy assignment determines a boundary-unipotent representation in SL(n,F ),respe
tively, p SL(n,F ). If E is a primitive extension of F ∗ by Z, there are maps(13.1) Pn(K)F → B̂E(F ), P σ

n (K)F → B̂E(F )PSLde�ned as in (5.10) using a set theoreti
 se
tion of E → F ∗ instead of a logarithm. If F is in�nite,the 
hain 
omplex of Ptolemy assignments 
omputes relative homology (see Proposition 9.6) andwe have maps(13.2) H3(SL(n,F )) → B̂E(F ), H3(p SL(n,F )) → B̂E(F )PSL.It thus follows that every boundary-unipotent representation has an extended Blo
h group element
[ρ]. If F is a number �eld, the extended Blo
h groups are independent of the extension E.Theorem 13.1. Let F be a number �eld, and let ρ : π1(M) → SL(n,F ) be a boundary-unipotentrepresentation. If ρ is irredu
ible, [ρ] lies in B̂(Tr(ρ)).Proof. Let σ be an automorphism of F over Tr(ρ) and let τ : F → C be an embedding. Then ρ and
σ ◦ ρ have the same tra
es, so τ ◦ρ and τ ◦σ◦ρ are 
onjugate in SL(n, C), and thus have the sameextended Blo
h group element in B̂(C). By Corollary 3.6, it follows that [ρ] = [σ◦ρ] ∈ B̂(F ). Hen
e,
[ρ] is invariant under all automorphisms of F over Tr(ρ), so [ρ] ∈ B̂(Tr(ρ)) by Galois des
ent. �
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