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Abstract. In this paper we develop an asymptotic analysis for formal and actual solutions of q-difference
equations, under a regularity assumption, namely the non-collision and non-vanishing of the eigenvalues. In
particular, evaluations of regular solutions of regular q-difference equations have an exponential growth rate
which can be computed from the q-difference equation.

The motivation for the paper comes from a problem in Quantum Topology, the Hyperbolic Volume
Conjecture, which states that a sequence on Laurent polynomials (the so-called colored Jones function of a
knot), appropriately evaluated, becomes a sequence of complex numbers that grows exponentially. Moreover,
the exponential growth rate is proportional to the volume of the knot complement.

The connection of the Hyperbolic Volume Conjecture with the paper comes from the fact that the colored
Jones function of a knot is a solution of a q-difference equation, as was proven by TTQ. Le and the author.
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1. Introduction

1.1. The goal. The goal of the paper is to intiate an approach to the Hyperbolic Volume Conjecture, via
asymptotics of solutions of difference equations with a small parameter. The Generalized Volume Conjecture
links (conjecturally) the (colored) Jones polynomial of a knot to hyperbolic geometry of its complement.

Since the colored Jones polynomial is a specific solution to a linear q-difference equation, it follows that
the generalized volume conjecture is the WKB limit of a specific solution of a linear difference equation with
a small parameter.

Motivated by this, we study WKB asymptotics of formal and actual solutions of difference equations with
a small parameter, under certain regularity asymptions.

1.2. The colored Jones function. A knot in 3-space is a smooth embedding of a circle, considered up to
isotopy. Two of the simplest knots, the Trefoil (31) and the Figure Eight (41) are shown here:

By the very definition, knots are flexible objects defined up to isotopy, which allows the embedding to
move in a smooth and arbitrary way as long as it does not cross itself. In algebraic topology, a common
way of studying knots (and more generally, spaces) is to associate computable numerical invariants (such as
Euler characteristic, or Homology). Invariants are useful in deciding whether two knots are not the same. It
is a much harder problem to construct computable invariants that separate knots.

The invariant that we will consider in this paper is the Jones polynomial of a knot; [J], which is a Laurent
polynomial with integer coefficients, associated to each knot. The quantum nature of the Jones polynomial
is apparent both in the original definition of Jones (using Temperley-Lieb algebras) and in the reformulation,
due to Witten, in terms of the expectation value of a Quantum Field Theory; see [J, Wt].

The combinatorics associated to a planar projection of a knot show that the Jones polynomial is a
computable invariant. However, it is hard to see from this point of view the relation between the Jones
polynomial and Geometry. In Quantum Field Theory, one often reproduces Geometry by moving carefully
chosen parameters of the theory to an appropriate limit.

In our case, we will introduce a new parameter, a natural number which roughly speaking corresponds
to taking a connected n-parallel of a knot. The resulting invariant is no longer a Laurent polynomial, but
rather a sequence of Laurent polynomials.

The colored Jones function of a knot K in 3-space is a sequence of Laurent polynomials

JK :
�
−→ � [q±].

The first term in the above sequence, JK(1) is the Jones polynomial of K; see [GL1].



ASYMPTOTICS OF q-DIFFERENCE EQUATIONS 3

1.3. The Hyperbolic Volume Conjecture. Although knots are flexible objects, Thurston had the idea
that their complements have a unique decomposition in pieces of unique “crystaline” shape. The shapes in
question are the 8 different geometries in dimension 3, and the idea in question was termed the “Geometriza-
tion Conjecture”. The most common of the 8 geometries is Hyperbolic Geometry, that is the existence of a
complete, finite volume, constant curvature −1 Riemannian metric on knot complements. Thurston proved
that unless the knot is torus or a satellite, then it carries a unique such metric; see [Th].

The Hyperbolic Volume Conjecture (HVC, in short) connects two very different views of knot: namely
Quantum Field Theory and Riemannian Geometry. The HVC states for every hyperbolic knot K

lim
n→∞

log |JK(n)(e
2πi
n )|

n
=

1

2π
vol(S3 −K).

where vol(S3 − K) is the volume of a complete hyperbolic metric in the knot complement S3 − K. The
conjecture was formulated in this form by Murakami-Murakami [MM] following an earlier version due to
Kashaev, [K]. More generally, Gukov (see [Gu]) formulated a Generalized Hyperbolic Volume Conjecture
that identifies the limit

lim
n→∞

log |JK(n)(e
2πiα

n )|

n

of a hyperbolic knot with known hyperbolic invariants (such as the volume of cone manifolds obtained by
hyperbolic Dehn filling), for α ∈ (0, 1] − � or α = 1. Actually, the GHVC is stated for complex numbers α.
For simplicity, we will study asympotics for real α ∈ [0, 1].

At present, it is not known whether the limit in the HVC exists, let alone that it can be computed.
Explicit finite multisum formulas for the colored Jones function of a knot exist; see for example [GL1]. From
these formulas alone, it is difficult to study the above limit. In a sense, the question is to understand the
sequence of Laurent polynomials that appears in the HVC. If the sequence is in some sense random, then it
is hard to expect that the limit exists, or that it can be computed.

Since the first term of this sequence is the Jones polynomial, and since we know little about the possible
values of the Jones polynomial, one would expect that there is even less to be said about the colored Jones
function.

1.4. q-difference equations. Luckily, the colored Jones function behaves in a better way than its first
term, namely the Jones polynomial. This can be quantified by recent work of TTQ Le and the first author,
who proved that the colored Jones function of a knot satisfies a q-difference equation.

In other words, for every knot K there exist rational functions b1(u, v), . . . , bd(u, v) ∈ � (u, v) (which of
course depend on K) such that for all n ∈

�
we have:

d∑

j=0

bj(q
n, q)JK(n+ j) = 0.

This opens the possibility of studying the q-difference equation rather than one of its solutions, namely
the colored Jones function. Although the q-difference equation is not unique, it was shown by the first
author in [Ga1] that one can choose a unique q-difference equation, which is a knot invariant. Moreover,
it was conjectured in [Ga1] that the characteristic polynomial of this q-difference equation determines the
characters of SL2( � ) representations of the knot complement, viewed from the boundary.

As was explained by the first author on several occasions, asymptotics of solutions of q-difference equations
would have consequences on the HVC.

In this introductory article we review the history of asymptotics of solutions of q-difference equations.

1.5. Asymptotics of differential equations with a parameter. Excellent references for differential
equations with a parameter are Olver’s and Wasau’s books; [O] and [Wa]. In 1837, Liouville and Green
independently studied systematically existence of formal (i.e., perturbative) and actual solutions for second
order differential equations with a parameter; see [Gr, L]. Second order equations are very important for
classical and quantum physics.
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In 1908 Birkhoff had the insight to introduce and study arbitrary order differential equation with a
parameter (see [B1]):

(1) y(n) + ρan−1(x, ρ)y
(n−1) + · · · + ρna0(x, ρ)y = 0

where y = y(x, ρ), y(n) means n-th derivative with respect to x (assumed to be restricted to a real interval),
and ρ is a large complex parameter, and where the coefficient aj(x, ρ) are complex C∞ functions with an
expansion

aj(x, ρ) =

∞∑

s=0

aj,s(x)ρ
−s

Birkhoff’s working assumption was that the eigenvalues λ1(x), . . . , λn(x) of the characteristic equation

λn + an−1,0(x)λ
n−1 + · · · + a0,0(x) = 0

were distinct but not necessarily nowhere vanishing.
In 1926, three theoretical physicists, Wentzel-Krammer-Brillouin studied the second order differential

equation (1) under the assumption that its eigenvalues do not collide, and developed connection formulas
linking solutions in the exponential region with those in the oscillatory region. Their method is often referred
to as the WKB method.

1.6. Asymptotics of difference equations. As a motivation for our results, let us recall some fundamental
results of Birkhoff and Trjitzinsky from 1930 on difference equations without a parameter; see [B2] and [BT].

A difference equation for a discrete function f :
�
→ � has the form:

(2)

d∑

j=0

aj(n)f(n+ j) = 0

where aj :
�
−→ � are discrete functions so that a0(n)ad(n) 6= 0 for all n ∈

�
. We will assume the existence

of asymptotic expansions of aj(n) around n→ ∞ for all j = 1, . . . , d:

aj(n) ∼n→∞ ndj/ω(aj,0 + aj,1n
−1/ω + aj,2n

−2/ω + . . . )

where ω ∈
�
. This certainly holds for ω = 1 if aj are rational functions of n, as is often the case in

combinatorial problems.
Due to the nowhere vanishing of ad · a0, it follows that the set of solutions of (2) is a vector space of

dimension d.
There are two main problems of difference equations:

• Existence of formal series solutions ψ̃1, . . . , ψ̃d to (2).

• Existence of a basis {ψ1, . . . , ψd} of solutions so that ψk(n) is asymptotic to ψ̃k(n) for large n.

In [B2], Birkhoff solved the existence of formal solutions in complete generality (that is, without any
assumptions on the eigenvalues of the characteristic equation). In a sequel paper [BT], Birkhoff-Trjitzinsky
solved the second problem in complete generality.

Among other things, the formal solutions of Birkhoff lead to the development of differential Galois theory,
see [vPS].

Decades later, the results of Birkhoff and Trjitzinsky on difference equations have found applications to
enumerative combinatorics and numerical analysis; see for example Wimp and Zeilberger in [Wi, WZ] and
references therein. It is not surprising that difference equations are used in numerical analysis, since difference
equations are numerical schemes of approximating differential equations. In enumerative combinatorics and
complexity theory, difference equations appear in recursive computation. For example, the number f(n) of
involutions of {1, 2, . . . , n} (that is, permutations which are a product of 1 and 2-cycles) is given by

f(n+ 2) = f(n+ 1) + (n+ 1)f(n)

with f(1) = 1, f(2) = 2. Using the results of Birkhoff-Trjitzinsky and the fact that f(n) is monotone, it
follows that

f(n) ∼n→∞ Knn/2e−n/2+n
1/2
(
1 +

c1
n1/2

+
c2
n

+
c3
n3/2

+ . . .
)
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for nonzero constants ci and some K > 0. Actually, the ck can be computed recursively from the difference
equation; see [WZ, p.169].

1.7. Asymptotics of difference equations with a parameter. By some historical accident, asymptotics
of solutions of difference equations with a parameter was not discussed a century ago. The first paper that
discusses second order difference equation with a parameter appears to be due to Deift-McLaughlin (see
[DM]) which was generalized by Costin-Costin to arbitrary order difference equations, [CC].

The purpose in this paper is to show that for regular q-difference equations, a regular solution has a
well-defined and computable exponential growth rate in terms of a relative entropy of the characteristic
polynomial of the q-difference equation; see Theorem 1 below.

This subject is classical and has been reinvented over the past hundred years by several groups, often
unaware of each others results. In a sense, the problem of formal solutions of q-difference equations is a
problem in differential Galois theory; [vPS], and a problem in numerical analysis; see for example [CC].

Our results are hardly new and are contained or can be obtained by minor modifications from results of
Costin-Costin or from work of Birkhoff and collaborators, [B1, BT, CC].

Since the presentation in the above papers varies by time and taste, we have decided to give a self-contained
account of the theory with complete proofs. Hopefully, this will benefit the researchers in Quantum Topology
and in Analysis.

1.8. Statement of the results. In this paper, we will describe asymptotics of solutions of q-difference
equations.

A q-difference equation for a sequence (f(1), f(2), f(3), . . . ) of smooth functions of q has the form:

(3)

d∑

j=0

bj(q
k, q)f(k + j, q) = 0

where bj(v, u) are smooth functions and f(k, q) = f(k)(q).
Before we proceed further, let us remark that q is a variable in (3) and not a complex number of absolute

value less (or more) than 1. In the usual analytic theory of q-difference equations, q is a complex number
inside or outside the unit disk.

Moreover, in the GHVC, we need to compute the nth term f(n, q) in the above q-difference equation, and
then evaluate it at qn = e2πiα/n, for α fixed. In other words, in the GHVC, qn is a complex number that
varies with n in such a way that it stays in the unit circle and approaches 1 as n→ ∞.

With this in mind, ε-difference equations (defined below) are obtained from q-difference equations by the
substitution q = e2πiε where ε is a small nonnegative real number, that plays the role of Planck’s constant.

The characteristic polynomial of the q-difference equation (3) is

P (v, λ) =
d∑

j=0

bj(v, 1)λj

Definition 1.1. We will say that (3) is regular if

DscλP (v, λ) · b0(v, 1) · bd(v, 1) 6= 0

for all v ∈ S1, where DscλP (v, λ) is the discriminant of P (v, λ), which is a polynomial in the coefficients of
P (v, λ).

Let λ1(v), . . . , λd(v) denote the roots of the characteristic polynomial, which we call the eigenvalues of
(3). It turns out that (3) is regular iff the eigenvalues λ1(v), . . . , λd(v) never collide and never vanish, for
every v ∈ S1. Moreover, it follows by the implicit function theorem that the roots are smooth functions of
v ∈ S1.

Since we are interested in asymptotics of solutions of q-difference equations which, as we shall see, are
governed by the magnitude of the eigenvalues, we need to partition the circle according to the magnitudes
of the eigenvalues.
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Let S1 = ∪p∈PIp denote a partition of S1 into a finite union of closed arcs (with nonoverlapping interiors),
such that the magnitude of the eigenvalues does not change in each arc. In other words, for each p ∈ P ,
there is a permutation σp of the set {1, . . . , d} such that

|λσp(1)(v)| ≥ |λσp(2)(v)| ≥ · · · ≥ |λσp(d)(v)| for all v ∈ Ip.

The following definition introduces a locally fundamental set of solutions of q-difference equations.

Definition 1.2. Fix a partition of I as above. A set {ψ1, . . . , ψd} is a locally fundamental set of solutions
of (3) iff for every solution ψ for every p ∈ P and for every m = 1, . . . , d there exist smooth functions cpm
such that

(4) ψ(k, q) = cp1(q)ψσp(1)(k, q) + · · · + cpd(q)ψσp(d)(k, q) for all (k, q) : qk ∈ Ip.

Theorem 1. Assume that (3) is regular. Then, there exists a locally fundamental set of solutions {ψ1, . . . , ψd}
such that

• For every m = 1, . . . , d and (k, q) such that qk ∈ Ip we have

ψm

(
k, e

2πiα
n

)
= exp

(
n

α
Φm

(
kα

n
,
α

n

))
.

• for some smooth functions Φm with uniform (with respect to x ∈ I = [0, 1]) asymptotic expansion

Φm(x, ε) ∼ε→0

∞∑

s=0

φm,s(x)ε
s

where φm,s ∈ C∞(I) for all s
• and leading term

(5) φm,0(x) =

∫ x

0

log(λm(e2πit))dt

where we have chosen a branch for the logarithm of λm.

Remark 1.3. For every j = 1, . . . , d the smooth functions φj,s for positive s are uniquely determined from
the coefficients bj(u, v) of (3) by a hierarchy of first-order differential equations along with specified initial
conditions. On the other hand, the smooth functions Φm are not uniquely determined, since they are obtained
by a smooth interpolation. Thus, the locally fundamental set of solutions is not uniquely determined from
the q-difference equation, although its asymptotic behavior is.

It follows from Theorem 1 that each locally fundamental solution ψm(n, q) of the q-difference equation
(3) satisfies the GHVC in the sense that for every α ∈ [0, 1] we have:

lim
n→∞

log |ψm(n, e
2πiα

n )|

n
=

∫ 1

0

log |λm(e2πiαt)|dt

Fix a solution ψ of (3). Theorem 1 expresses ψ as a linear combination of ψm’s in each arc Ip. For every
p ∈ P , let

(6) Sp = {m ∈ {1, . . . , d}| cpm 6= 0}.

Later (in Section 6.3) we will define the notion of a regular solution to a q-difference equation.
As a prototypical example, consider an q-difference equation that satisfies |λ1(v)| > |λj(v)| for all j 6= 1

and all v ∈ S1. Then, any solution that satisfies c1(0) 6= 0 (or more generally, c1 has a nonvanishing derivative
at 0) is regular.

Remark 1.4. It is possible that Sp 6= Sp+1. In other words, the restriction of a fixed solution ψ to different
intervals Ip may be a linear combination of different ψjs. This is an important phenomenon, referred by the
name of Stokes phenomenon; see [Wa].

Our next definition captures the growth rate of regular solutions to regular q-difference equations.
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Definition 1.5. Fix a collection S = {Sp| p ∈ P} of subsets of {1, . . . , d}. The S-entropy

σS : [0, 1] → �
of the q-difference equation (3) is defined by

σS(α) =

∫ 1

0

logχS(e2πiαt)dt.

where χS : [0, 1] → � is defined by

χS(v) = max
j∈Sp

|λσp(j)(v)| if v ∈ Ip.

The entropy of (3) is the set of functions

{σS : [0, 1] → � | S ⊂ {1, . . . , d}}.

Notice that the entropy of a q-difference equation is not a real number, but rather a finite collection of
functions.

The main result is the following

Theorem 2. If f is an S-regular solution of the regular q-difference equation (3), then for every α ∈ [0, 1]
we have:

lim
n→∞

log |f(n)(e
2πiα

n )|

n
= σS(α)

Finally, let us define the J-entropy of a knot. In [Ga1] the first author showed that to every knot K one
can associate a canonical q-difference equation of degree d, and a specific solution of it, namely the colored
Jones function of K.

The q-difference equation itself is an invariant of a knot, which (by definition) is determined by the colored
Jones function of the knot. Thus, any invariant of the q-difference equation is also an invariant of a knot,
which is determined by the colored Jones function of the knot.

Definition 1.6. The J-entropy of a knot is the entropy of its associated q-difference equation. We denote
the J-entropy of a knot K by

{σJS,K : [0, 1] → � | S ⊂ {1, . . . , d}}.

1.9. What’s next? The paper was written in the spring of 2004. Since then, a number of papers that
discuss the asymptotics of the colored Jones function have appeared; see [Ga2, Ga3, GL2, GL3].

1.10. Acknowledgement. The results of this paper were announced in the JAMI 2003 meeting in Johns
Hopkins. The first author wishes to thank J. Morava for the invitation, and P. Deligne who suggested the
asymptotic behavior of solutions of q-difference equations. The first author wishes to thank D. Boyd for
sharing and explaining his unpublished work and also A. Riese, T. Morley, and D. Zeilberger.

2. ε-difference equations

2.1. ε-difference equations. In this section, we will translate asymptotics of solutions of q-difference equa-
tion in terms of asymptotics of solutions of ε-difference equations. The latter are defined as follows.

Fix a positive number ε0, a compact interval I of � and a natural number d. We will consider functions
φ : ∆ε0,I → � with domain

(7) ∆ε0,I := {(kε, ε)| k ∈
�
, ε ∈ (0, ε0], kε ∈ I}.

Consider the ε-difference equation for a function φ : ∆ε0,I → �

(8)
d∑

j=0

aj(kε, ε)φ((k + j)ε, ε) = 0

where aj ∈ C∞(I × [0, ε0]).
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We will assume that for all j = 0, . . . , d, aj(x, ε) has a uniformly (with respect to x) asymptotic expansion

(9) aj(x, ε) ∼ε→0

∞∑

s=0

aj,s(x)ε
s

where aj,s ∈ C∞(I).
As we mentioned before, ε-difference equations are obtained from q-difference equations by the substitution

q = e2πiε where ε is a small nonnegative real number, that plays the role of Planck’s constant.
The characteristic polynomial of (8) is

P (x, λ) =

d∑

j=0

aj(x, 0)λj

Definition 2.1. We will say that (8) regular if

DscλP (x, λ) · a0(x, 0) · ad(x, 0) 6= 0

for all x ∈ I .

Let λ1(x), . . . , λd(x) denote the roots of the characteristic polynomial, which we call the eigenvalues of
(8).

It turns out that (8) is regular iff the eigenvalues λ1(x), . . . , λd(x) never collide and never vanish, for every
x ∈ I . Moreover, it follows by the implicit function theorem that the roots are smooth functions of x ∈ I .

Since we are interested in asymptotics of solutions of ε-difference equations which, as we shall see, are
governed by the magnitude of the eigenvalues, we need to partition the interval I according to the magnitudes
of the eigenvalues.

Let I = ∪p∈PIp denote a partition of I into a finite union of closed intervals (with nonoverlapping
interiors), such that the magnitude of the eigenvalues does not change in each interval. In other words, for
each p ∈ P , there is a permutation σp of the set {1, . . . , d} such that

|λσp(1)(x)| ≥ |λσp(2)(x)| ≥ · · · ≥ |λσp(d)(x)| for all x ∈ Ip.

The following definition introduces a locally fundamental set of solutions of ε-difference equations.

Definition 2.2. Fix a partition of I as above. A set {ψ1, . . . , ψd} is a locally fundamental set of solutions
of (8) iff for every solution ψ : ∆ε,I → � , for every p ∈ P and for every m = 1, . . . , d there exist smooth
functions cpm ∈ C∞[0, ε] such that

ψ(kε, ε) = cp1(ε)ψσp(1)(kε, ε) + · · · + cpd(ε)ψσp(d)(kε, ε) for all (kε, ε) ∈ ∆ε,I .

Here, the notation cpm does not indicate the pth power of cm.

The next theorem summarizes the results of Costin-Costin.

Theorem 3. ([CC]) Assume that (8) is regular. Then, there exists a positive ε′ ≤ ε0 and a locally funda-
mental set of solutions {ψ1, . . . , ψd} of (8) such that

• For every m = 1, . . . , d and (kε, ε) ∈ ∆e′,I we have

ψm(kε, ε) = exp
(
ε−1Φm(kε, ε)

)
.

• for some smooth functions Φm ∈ C∞(I × [0, ε′]) with uniform (with respect to x ∈ I) asymptotic
expansion

(10) Φm(x, ε) ∼ε→0

∞∑

s=0

φm,s(x)ε
s

where φm,s ∈ C∞(I) for all s
• and leading term

(11) exp(φ′m,0(x)) = λm(x).
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Fix a solution ψ of (8). Theorem 3 expresses ψ as a linear combination of the ψj ’s in each interval Ip.
For every p ∈ P , let

(12) Sp = {m ∈ {1, . . . , d}| cpm 6= 0}.

Later (in Section 6.2) we will define the notion of a regular solution to an ε-difference equation.
As a prototypical example, consider an ε-difference equation that satisfies |λ1(x)| > |λj(x)| for all j 6= 1

and all x ∈ I = [a, b]. Then, any solution that satisfies c1(a) 6= 0 (or more generally, c1 has a nonvanishing
derivative at a) is regular.

Our next definition captures the growth rate of regular solutions to regular ε-difference equations.

Definition 2.3. Fix a collection S = {Sp| p ∈ P} of subsets of {1, . . . , d}. The S-entropy

σS : I → �

of the ε-difference equation (8) is defined by

σS(x) =

∫ x

0

logχS(t)dt.

where χS : I → � is defined by

χS(x) = max
j∈Sp

|λσp(j)(x)| if x ∈ Ip.

Theorem 4. If ψ is an S-regular solution to a regular ε-difference equation, and x ∈ I, we have:

lim
ε→0+

ε log |ψ(x, ε)| = σS(x)

The next remarks concern the uniqueness of a set of locally fundamental solutions to (8).

Remark 2.4. For every m = 1, . . . , d the smooth functions φm,s for positive s are uniquely determined by (3)
and the initial condition φm,s(0) = 0. Indeed, applying Taylor series (with respect to ε) in (8) and collecting
terms, we get for example:

φ′m,1(x) = −
1/2φ′′m,0(x)

∑d
j=0 aj(x, 0)j2λjm(x) +

∑d
j=0 ∂εaj(x, 0)λjm(x)

∑d
j=0 aj(x, 0)jλjm(x)

= −

(
1

2
λ′
Pλλ
Pλ

+
Pε
Pλλ

) ∣∣
λ=λm(x)

where fx(x, λ) = ∂/∂xf(x, λ) and fλ(x, λ) = ∂/∂λf(x, λ).
Similarly, for s ≥ 1 we have:

φ′m,s(x) = −
Hs(x)∑d

j=0 aj(x, 0)jλjm(x)

where Hs(x) is a function of derivatives of aj(x, 0) and φm,t for t < s. Notice that the denominator vanishes
nowhere since the roots do not collide and do not vanish for every x ∈ I .

Remark 2.5. If the coefficients aj(x, ε) of the regular ε-difference equation (8) are analytic functions, then
the functions φm,s of Theorem 3 are also analytic, for every m and s. This follows by induction from
the differential hierarchy which these functions satisfy, and from the fact that the eigenvalues are analytic
functions. Even though φm,s is analytic for every m and s, the series

∞∑

s=0

φm,s(x)ε
s

is in general divergent, and the functions Φm,s of Theorem 3 are not analytic.



10 STAVROS GAROUFALIDIS AND JEFFREY S. GERONIMO

Remark 2.6. Even though the functions φm,s are uniquely determined by the ε-difference equation, the
smooth functions Fm (and thus the locally fundamental set of solutions ψm) are not uniquely determined
by the ε-difference equation. The problem is that smooth interpolation is not unique. Recently developed
ideas of exponentially small corrections might construct a unique set of locally fundamental solutions when
the coefficients of (8) are analytic functions. We will elaborate on this in a separate occasion.

2.2. Converting q-difference equations to ε-difference equations. The translation of q-difference
equations to ε-difference equations is as follows. If f satisfies the q-difference equation

d∑

j=0

bj(q
k, q)f(k + j, q) = 0

then set

q = e2πiε, bj(e
2πix, e2πiε) = aj(x, ε)

and consider the ε-difference equation for a function φ (with domain ∆ε0,I for some ε0 > 0 and I = [0, 2π]):

d∑

j=0

aj(kε, ε)φ((k + j)ε, ε) = 0

The following lemma, although elementary, is the key to translating q-difference equations to ε-difference
equations.

Lemma 2.7. For every (kε, ε) ∈ I × [0, ε0] we have:

(13) φ(kε, ε) = f(k, e2πiε).

Consequently, for every α ∈ (0, 1], we have:

(14) lim
k→∞

1

k
log |f(k, e2πiα/k)| = α−1 lim

ε→0
ε log |φ(α, ε)|.

Thus, Theorem 3 implies Theorem 1.

Proof. Observe that aj(kε, ε) = bj(e
2πikε, e2πiε), thus (k, ε) → φ(kε, ε) satisfies the equation

d∑

j=0

bj(e
2πikε, e2πiε)φ((k + j)ε, ε) = 0

and so does (k, ε) → f(k, e2πiε). Since solutions with matching initial conditions are unique, (13) follows.
Equation (14) follows from equation (13) by the substitution ε = α/k:

1

k
log |f(k, e2πiα/k)| =

1

k
log |φ(kε, α/k)| = α−1ε log |φ(α, ε)|.

�

3. Some linear algebra

In this section we will review some linear algebra. It is obvious that the complex roots of a monic
polynomial uniquely determine it. It is also known [GLR] that the eigenvalues of a companion matrix
uniquely determine it, in case they are distinct.

Consider a companion d by d matrix

A =




0 1 0 . . . 0
0 0 1 . . . 0
0 0 0 . . . 0
0 0 0 . . . . . .
. . . . . . . . . . . . 1
−a0 −a1 −a2 . . . −ad−1
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The characteristic polynomial of A is

λd +

d−1∑

j=0

ajλ
j

with roots λ1, . . . , λd. Let M = (λi−1
j )i,j be the Vandermonde matrix, and D = diag(λ1, . . . , λd) be the

diagonal matrix with diagonal entries λ1, . . . , λd.

Lemma 3.1. If a companion matrix has distinct eigenvalues, then with the above notation we have:

A = MDM−1

Proof. Observe that vj = (1, λj , . . . , λ
d−1
j )T is an eigenvector of A with eigenvalue λj . Thus, M = (v1, . . . , vd)

and AM = MD. The result follows. �

Now, consider a companion matrix A(u) whose entries in the bottom row are smooth functions in a
variable u, with roots λ1(u), . . . , λd(u) which we assume are distinct for all u.

The next lemma is a key estimate for the norm of long products of slowly varying matrices. In the
language of physics, A(u) is the transfer matrix and A(n) . . . A(2)A(1) is the transition matrix.

Lemma 3.2. Assume that the eigenvalues λ1(u), . . . , λd(u) of A(u) are distinct for all u and

max
j

sup
u

|λj(u)| ≤ 1 + Cε.

Then for m ≤ n, nε ∈ I, we have

‖A(n)A(n− 1) . . . A(m)‖ ≤ C ′

Proof. By Lemma 3.1, we have:

A(u) = M(u)D(u)M(u)−1

If m ≤ n, it follows that

A(n)A(n− 1) . . . A(m) = M(n)D(n)M(n)−1M(n− 1)D(n− 1)M(n− 1)−1 . . .M(m)D(m)M(m)−1,

which implies that

‖A(n)A(n− 1) . . . A(m)‖ ≤ ‖M(n)‖M(m)−1‖ · ‖D(n)‖ . . . ‖D(m)‖

‖M(n)−1M(n− 1)‖ . . . ‖M(m+ 1)−1M(m)‖.

Now, we have

‖D(k)‖ ≤ 1 + Cε for k = m, . . . , n

‖M(k)M(k − 1)−1‖ ≤ 1 + C ′ε by Lemma 3.3.

If I = [a, b], using the fact that nε,mε ∈ I , we obtain:

‖A(n)A(n− 1) . . . A(m)‖ ≤ (1 + Cε)n−m(1 + C ′ε)n−m

≤ (1 + C ′′ε)2(n−m)

≤ (1 + C ′′ε)2
b−a

ε

≤ e2C
′′(b−a).

�

Lemma 3.3. If M = (xi−1
j )i,j and N = (yi−1

j )i,j are Vandermonde matrices, such that M is nonsingular,
then

(M−1N)i,j =
∏

l6=i

yj − xl
xi − xl

.
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4. Existence of formal solutions

In this section we will prove that (8) has a unique set of formal solutions. Let us define those first.

Definition 4.1. A formal series ψ̃(x, ε) is one of the form

(15) ψ̃(x, ε) = exp

(
ε−1

∞∑

s=0

φs(x)ε
s

)

where φs ∈ C∞(I) are smooth functions for all s.

Note that ε log ψ̃(x, ε) lies in the ring C∞(I)[[ε]] of formal power series with coefficients smooth functions
on I .

Note further that if ψ̃(x, ε) is a formal series, so is ψ̃(x + jε, ε) for every j ∈ � , where the latter may be

defined using the Taylor series of φs(x+ jε) =
∑∞

t=0
1
t!φ

(t)
s (x)jtεt:

ψ̃(x + jε, ε) = exp

(
ε−1

∞∑

s=0

(
s∑

t=0

1

t!
φ

(t)
s−t(x)

)
εs

)

= ψ̃(x, ε) exp

(
φ′0(x)j +

(
φ′1(x)j +

φ′′0 (x)

2!
j2
)
ε+

(
φ′2(x)j +

φ′′1 (x)

2!
j2 +

φ′′′0 (x)

3!
j3
)
ε2 + . . .

)

It follows that if ψ̃(x, ε) is a formal series, then the ratio ψ̃(x+ ε, ε)/ψ̃(x, ε) lies in the ring C∞(I)[[ε]].
Using the language of difference Galois theory (see [vPS, p.4]) this implies that

Lemma 4.2. C∞(I)[[ε]] is a finite difference ring, under the map x→ x+ ε.

Definition 4.3. We say that a formal series ψ̃ of (15) is a formal series solution to (8) iff

(16)
1

ψ̃(x, ε)

d∑

j=0

aj(x, ε)ψ̃(x+ jε, ε) = 0 ∈ C∞(I)[[ε]].

It is easy to see that if ψ̃ is a formal solution to (8), then the leading term φ0 satisfies the equation

(17) exp(φ′0(x)) = λ(x)

where λ(x) is an eigenvalue of (8).

Proposition 4.4. Assume that (8) is regular. Then, (8) has d unique formal series solutions ψ̃1, . . . , ψ̃d
with leading terms corresponding to the eigenvalues of (8).

Proof. First we need to show that (16) is indeed an equation in the power series ring C∞(I)[[ε]], i.e., that
the terms involving negative powers of ε cancel.

Suppose that ψ̃ is given by (15). It follows from the calculation preceding Lemma 4.2 that for every s ∈
�
,

we have:

(18) coeff

(
εs,

ψ̃(x+ jε, ε)

ψ̃(x, ε)

)
=

{
exp(jφ′0(x)) if s = 0

j exp(jφ′0(x))φ
′
s(x) + termss if s > 0

where coeff(εs, g(ε)) denotes the coefficient of εs in a power series g(ε), and where termss is a polynomial in
the derivatives of φt for t < s.

Expand the terms of Equation (16) into power series in ε using the above equation and (9), and collect
terms of powers of ε. It follows that (16) is equivalent to a hierarchy of first order differential equations:

d∑

j=0

aj(x, 0) exp(jφ′0(x)) = 0

d∑

j=0

aj(x, 0)j exp(jφ′0(x))φ
′
s(x) + Termss = 0
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where for positive s, Termss is a polynomial in the derivatives of φt and aj(x, 0) for t < s.
Now fix an m ∈ {1, . . . , d}, and choose φm,0 such that exp(φ′m,0(x)) = λm(x), where λ1(x), . . . , λd(x) are

the eigenvalues of (8). Since (8) is regular, it follows that the roots λ1(x), . . . , λd(x) of the characteristic
polynomial P (x, λ) never collide, and never vanish for x ∈ I . Thus,

0 6=

(
λ
d

dλ
P (x, λ)

)

λ=λm(x)

=

d∑

j=0

jaj(x, 0)λjm(x)

for all x ∈ I . Thus, after we choose φm,0, it follows that we can find functions φm,s for s ≥ 0 that satisfy
the above hierarchy. Moreover, for every m, the sequence of functions φm,s is uniquely determined by the
above hierarchy and the initial conditions φm,s(0) = 0. �

4.1. An alternative formal series. In this section we present an alternative, and slightly more general
form, of formal series. In case of regular ε-difference equations this alternative form will not be needed.
However, when eigenvalues collide or vanish, one must use this alternative form of formal series. Thus, in
the present paper we will not use this alternative form of formal series, and the reader may skip this section.

Definition 4.5. An alternative formal series ψ̃(x, ε) is one of the form

(19) ψ̃(x, ε) = exp
(
ε−1φ(x)

) ∞∑

s=0

φs(x)ε
s

where φ, φs ∈ C∞(I) are smooth functions for all s, and φ0(x) 6= 0 for all x ∈ I .

In the remainder of this subsection, we will refer to alternative formal series simply by formal series.
Note that if ψ̃(x, ε) is a formal series, so is ψ̃(x + jε, ε) for any j ∈ � , where the latter may be defined

using the Taylor series of φs(x+ jε) and φ(x + jε) around x. It follows that

ψ̃(x + jε, ε) = exp
(
ε−1φ(x)

)
(φ0(x) + (φ(1)(x)φ0(x) + φ

(1)
0 (x) + φ1(x))ε + . . . ).

Moreover, if ψ̃(x, e) is a formal series, then the ratio ψ̃(x + ε, ε)/ψ̃(x, ε) lies in the ring C∞(I)[[ε]]. This
follows from (20) and the following computation, valid for every j ∈

�
:

ψ̃(x+ jε, ε) = exp(ε−1φ(x + jε))(φ0(x+ jε) + φ1(x+ jε)ε+O(ε2))

= exp

(
ε−1φ(x) + φ(1)(x)j +

φ(2)(x)

2
j2ε+O(ε2)

)(
φ0(x) + (φ

(1)
0 (x)j + φ1(x))ε +O(ε2)

)

= ψ̃(x, ε) exp(φ(1)(x)j)

(
1 +

(
φ(2)(x)

2
j2 +

φ
(1)
0 (x)

φ0(x)

)
ε+O(ε2)

)

In analogy with Lemma 4.2, this implies that

Lemma 4.6. C∞(I)[[ε]] is a finite difference ring, under the map x→ x+ ε.

Definition 4.7. We say that a formal series ψ̃ of (19) is a formal series solution to (8) iff

(20)
1

ψ̃(x, ε)

d∑

j=0

aj(x, ε)ψ̃(x+ jε, ε) = 0 ∈ C∞(I)[[ε]].

It is easy to see that if ψ̃ is a formal solution to (8), then the leading term φ satisfies the equation

(21) exp(φ′(x)) = λ(x)

where λ(x) is an eigenvalue of (8).
In analogy with Proposition 4.4, we have the following:

Proposition 4.8. Assume that (8) is regular. Then, (8) has d unique formal series solutions ψ̃1, . . . , ψ̃d
with leading terms corresponding to the eigenvalues of (8).
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5. Proof of Theorem 3

In this section we prove Theorem 3. The strategy is to

(a) prove that there exists a solution ψ1 with the stated properties where λ1(x) is an eigenvalue with
maximum magnitude.

(b) use this solution ψ1 to reduce Theorem 3 to the case of a ε-difference equation of degree one less
than the original one.

(c) prove that the constructed set of solutions is a locally fundamental set.

Without loss of generality, we will assume that the eigenvalues of (8) satisfy the inequality:

|λ1(x)| ≥ |λ2(x)| ≥ · · · ≥ |λd(x)|

for all x ∈ I . Otherwise, we can partition I into subintervals where this is true.

5.1. Existence of a solution corresponding to the eigenvalue of maximum magnitude. Consider
first a formal solution ψ̃1 of (8) given in Proposition 4.4, which satisfies (15) and (17). Consider the smooth
functions φ1,s ∈ C∞(I) of (17).

The proof of the following lemma (due to Borel in case φ1,s are constant functions, for all s) can be found
in [GG, Lemma 2.5]:

Lemma 5.1. There exists a smooth function Φ̂1 ∈ C∞(I × [0, ε0]) such that we have (uniformly in x ∈ I):

Φ̂1(x, ε) ∼ε→0

∞∑

j=0

φ1,s(x)ε
s.

Now, consider the unique solution ψ1 of (8) with initial conditions

ψ1(kε, ε) = exp(ε−1Φ̂1(kε, ε)) for k = 0, . . . , d− 1

and for small enough ε, where without loss of generality, we assume that I = [0, b].

Of course, for large k it may not be true that ψ1(kε, ε) = exp(ε−1Φ̂1(kε, ε)). The next proposition estimates
the error, uniformly with respect to k:

Proposition 5.2. There exists an ε′ > 0 and constants Cs such that for all (kε, ε) ∈ ∆ε′,I and all s ∈
�
,

we have (uniformly in k):

(22)

∣∣∣∣∣
ψ1(kε, ε)

exp(ε−1Φ̂1(kε, ε))
− 1

∣∣∣∣∣ < Csε
s

Proof. Let us make a change of variables:

(23) θ =
ψ1

ψ̂1

,

where
ψ̂1(x, ε) = exp

(
ε−1Φ̂1(x, ε)

)
.

We will show that for a fixed s0, and for every s there exists a constant Cs such that for all (kε, ε) ∈ ∆ε0,I

we have:

(24) |θ(kε, ε) − 1| < Csε
s+1−s0 ,

Since ψ1 satisfies (8), it follows that θ satisfies

(25)
d∑

j=0

bj(kε, ε)θ((k + j)ε, ε) = 0

where

bj(x, ε) = aj(x, ε)
ψ̂1(x + jε, ε)

ψ̂1(x, ε)
.

It is easy to see that
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• bj(x, ε) ∈ C∞(I × [0, ε0]), has uniform (with respect to x) ε-asymptotic expansion as in (9),

• bj,s(x, 0) = aj(x, 0)λj1(x),

• and since ψ̃ is a formal series solution to (8) and Φ̂1 is given by Lemma 5.1, if follows that for every
s we have:

(26)
d∑

j=0

bj(x, ε) = O(εs)

The characteristic polynomial of (25) has roots µm(x) := λm(x)/λ1(x) for j = 1, . . . , d. If (8) is regular,
so is (25). Notice that λ1(x) vanishes nowhere since (25) is regular.

We now show (24). Let us write the difference equation (25) in matrix form

(27) Θ((k + 1)ε, ε) = A(kε, ε)Θ(kε, ε)

where

Θ(x, ε) =




θ(x, ε)
θ(x+ ε, ε)
θ(x+ 2ε, ε)

. . .

. . .
θ(x + (d− 1)ε, ε)




A(x, ε) =




0 1 0 . . . 0
0 0 1 . . . 0
0 0 0 . . . 0
0 0 0 . . . . . .
. . . . . . . . . . . . 1

−c0(x, ε) −c1(x, ε) −c2(x, ε) . . . −cd−1(x, ε)




and cj(x, ε) = bj(x, ε)/bd(x, ε). Iterating, we obtain that

Θ(kε, ε) = A(kε, ε)A((k − 1)ε, ε) . . . A(ε, ε)Θ(0, ε)

for all k ≥ 1, where Θ(0, ε) = � , a column vector with all entries equal to 1.
Equation (26) gives:

(28) A(kε, ε) � = � + εs �
k(ε)

where ‖ �
k(ε)‖ < C uniformly in k and ε. Feeding in the above equation, we obtain:

(29) Θ(kε, ε) = � + εs �
k(ε) + εs

k−1∑

j=1

A(kε, ε)A((k − 1)ε, ε) . . . A((j + 1)ε, ε) �
j(ε).

Now, let us look at the roots µ1(x, ε), . . . , µd(x, ε) of

d∑

j=0

bj(x, ε)µ
j = 0.

Since maxj supx∈I |µj(x, 0)| = 1, it follows that

max
j

sup
x∈I

|µj(x, ε)| ≤ 1 + Cε.

Since kε lies in I , a compact set, Lemma 3.2 and Equation (29) imply that

(30) ‖Θk(ε) − � ‖ ≤ kC ′
sε
s+1 ≤ Csε

s−s0+1

for all kε ∈ I , where s0 = 1. This completes the proof of (24).
Equations (24) and (22) differ in the presence of s0. It is easy to see that if f is a function such that for

a fixed s0 and any s ∈
�

we have:

|f(ε) −

s+s0∑

t=0

Ctε
t| < Dsε

s+1,

then

|f(ε) −

s∑

t=0

Ctε
t| < (Ds + |Cs+1| + . . . |Cs+s0 |)ε

s+1.

This observation shows that (24) implies (22) and concludes the proof of the Proposition. �
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Proposition 5.3. (a) There exists a smooth function Φ1 ∈ C∞(I × [0, ε′]) such that

(a) For all (kε, ε) ∈ ∆ε′,I , we have:

ψ1(kε, ε) = exp
(
ε−1Φ1(kε, ε)

)
,

(b) Φ1 has an asymptotic expansion (uniform with respect to x):

Φ1(x, ε) ∼ε→0 exp

(
ε−1

∞∑

s=0

φ1,s(x)ε
s

)

where φ1,s are as in Lemma 5.1. As a result, we have an asymptotic expansion (uniform with respect
to k):

ψ1(kε, ε) ∼ε→0 exp

(
ε−1

∞∑

s=0

φ1,s(kε)ε
s

)
.

Proof. Consider the change of variables θ as in (23).
Due to our choice of initial conditions it follows that for every fixed k = 0, . . . , d − 1, the function

ε→ θ(kε, ε) is smooth. Using this and the smoothness of the coefficients of (8), it follows that for every fixed
k, the function ε→ θ(kε, ε) is smooth.

So far, the function θ is defined on ∆seg
ε′,I :

(0,ε)

...

x=0

ε
ε
ε

εx=

x
x=4
x=3
x=2

ε

which is a union of line segments in a rectangle I × [0, ε′], and satisfies (22).
The complement of these line segments in [0, ε′] consists of an infinite union of open triangles, together

with the horizontal segment I × 0. We can smoothly interpolate θ inside these open triangles so that it is
defined on I × (0, ε′] and

(31) |θ(x, ε) − 1| < Csε
s

for all (x, ε) ∈ I × (0, ε′] and all s ∈
�
.

Let us extend θ to I × [0, ε′] by defining θ(x, 0) = 1 for all x ∈ I .
We claim that θ is smooth on I × [0, ε′]. We need only to check this at the points (x, 0) for x ∈ I .

This follows easily from (31). For example, to check continuity at (x, 0), consider a sequence (xn, εn) such
that limn→∞(xn, εn) = (x, 0). Then, (31) for s = 1 implies that |θ(xn, εn) − 1| < Csεn ∼n→∞ 0, thus θ is
continuous at (x, 0). Using (31) for s+ 1 it follows that ∂s/∂εsθ(x, ε)|ε=0 = 0 for all s > 0, and we find that
θ has an ε-asymptotic expansion (uniform with respect to x):

θ(x, ε) ∼ε→0 1

Restricting further ε′ if needed, we may assume that |θ(x, ε)| > 0 for all (x, ε) ∈ I × [0, ε′]; in other words
log θ(x, ε) makes sense for all (x, ε) ∈ I × [0, ε′].

Now, we can finish the proof of Proposition 5.3.
Let us define

Φ1(x, ε) = Φ̂1(x, ε) + ε log θ(x, ε)

Then, (23) implies (a). Since θ(x, ε) is asymptotic to 1 (uniformly on x), it follows that Φ1(x, ε) is asymptotic

to Φ̂1(x, ε). Using the asymptotic of Φ̂1 given by Lemma 5.1, (b) follows. �
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5.2. A reduction to an ε-difference equation of smaller degree. We will now prove Theorem 3 by
induction on the degree d of the ε-difference equation. For d = 1, it follows from Proposition 5.3. The
inductive step is the next Proposition.

Proposition 5.4. Assume that Theorem 3 holds for regular ε-difference equations of degree less than d.
Then it holds for regular ε-difference equations of degree d.

Proof. Consider a ε-difference equation (8) of degree d. We will use the solution ψ1 of it constructed in
Proposition 5.3 to reduce it to an equivalent equation of degree d − 1, and an inhomogeneous ε-difference
equation of degree 1.

Consider the dependent change of variables

(32) θ =
φ

ψ1

This is well-defined since ψ1 is nowhere zero. Then, φ satisfies (8) iff θ satisfies

(33)

d∑

j=0

bj(kε, ε)θ((k + j)ε, ε) = 0

where

bj(x, ε) = aj(x, ε)
ψ1(x + jε, ε)

ψ1(x, ε)
.

The characteristic polynomials of (8) and (33) are related by

P(33)(λ) = λ1(x)
dP(8)(λ/λ1(x)).

As in the proof of Proposition 5.3, it is easy to see that (33) is a regular ε-difference equation. Moreover, it
is easy to see that Theorem 3 holds for (8) iff it holds for (33). Indeed, check that the change of variables
given by (32) preserves the asymptotics of the solutions of (8) and (33).

Thus, it suffices to work with (33). In that case, θ = 1 is a solution of (33), since ψ is a solution of (8).
It follows that

(34)

d∑

j=0

bj(x, ε) = 0.

(Compare this with (26)). Let us define

(35) ζ(kε, ε) = θ((k + 1)ε, ε) − θ(kε, ε).

Then, we get that ζ is a solution of the ε-difference equation

(36)

d−1∑

j=0

cj(kε, ε)ζ((k + j)ε, ε) = 0

where

cs(x, ε) =

d∑

j=s+1

bj(x, ε).

The characteristic equations of (33) and (36) are related by

d∑

j=0

bj(x, 0)λj = (λ− 1)

d−1∑

j=0

cj(x, 0)λj

Since c0(x, ε) =
∑d

j=1 bj(x, ε) = −b0(x, ε) (by (34)) and cd(x, ε) = bd(x, ε), the same arguments of Proposition

5.3 imply that (36) is regular, assuming that (33) is regular.
By the induction hypothesis, it follows that (36) satisfies Theorem 3.
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For the remainder of this section, fix a solution ζ of (36) which satisfies the properties of Theorem 3.
In other words, ζ satisfies (33) and ζ(kε, ε) = exp(ε−1Z(kε, ε)) where Z is a smooth function with uniform
(with respect to x) asymptotics:

Z(x, ε) ∼ε→0

∞∑

s=0

Zs(x)ε
s.

Lemma 5.5. There exists a formal solution

θ̃(x, ε) = exp(ε−1Θ(x, ε))

of (36) such that

Θ(x, ε) =

∞∑

s=0

Θs(x)ε
s.

Proof. We need to solve the formal power series Equation

exp

(
ε−1

∞∑

s=0

Θs(x + ε)εs

)
− exp

(
ε−1

∞∑

s=0

Θs(x)ε
s

)
= exp

(
ε−1

∞∑

s=0

Zs(x)ε
s

)

for Θ in terms of Z. Using the Taylor expansion Θ0(x + ε) = Θ0(x) + Θ′
0(x)ε + O(ε2) it is easy to see that

the above equation equals to

exp
(
ε−1Θ0(x) +O(1)

)
− exp

(
ε−1Θ0(x) +O(1)

)
= exp

(
ε−1Z0(x) +O(1)

)

from which follows that Θ0 = Z0. Dividing the equation by exp(ε−1Θ0) we get an equation in formal power
series with nonnegative powers of ε. Moreover, the coefficient of εs in that power series (for s ≥ 0) equals to

(exp(Θ′
0(x)) − 1) exp(Θs+1(x))Hs(x)

where Hs(x) is a function of Θj and Zj for j = 1, . . . , s. Since exp(Θ′
0(x)) = exp(Z ′

0(x)) is an eigenvalue of
(36), it is never equal to 1.

This and induction prove the lemma. �

Lemma 5.6. (a) There exists a solution to the equation

(37) ζ(kε, ε) = θ((k + 1)ε, ε)− θ(kε, ε)

for θ in terms of ζ with appropriate initial condition.
(b) For all (kε, ε) ∈ ∆′

ε′,I we have:

ζ(kε, ε) ∼ε→0 exp(Z(kε, ε))

where
exp(Z(x, ε)) = exp(Θ(x+ ε, ε)) − exp(Θ(x, ε))

Proof. Fix ε > 0 and let I = [a, b]. Consider a natural number k such that kε ∈ I and (k + 1)ε ∈ I . This is
equivalent to k1 ≤ k ≤ k2 where k1 and k2 are natural numbers that depend on ε and I , although we do not
indicate this in our notation.

Then equation (37) implies that

ζ(k1ε, ε) = θ((k1 + 1)ε, ε) − θ(k1ε, ε)

ζ((k1 + 1)ε, ε) = θ((k1 + 2)ε, ε) − θ((k1 + 1)ε, ε)

. . . = . . .

ζ((k2 − 1)ε, ε) = θ(k2ε, ε) − θ((k2 − 1)ε, ε)

Summing up, we obtain that

θ(k2ε, ε) = θ(k1ε, ε) +

k2−1∑

j=k1

ζ(jε, ε).

Choose initial conditions so that θ(k1ε, ε) = exp(Z(k1ε, ε)). This completes part (a).
Part (b) follows by a telescoping calculation. �
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To finish the proof of Proposition 5.4, it suffices to show that the solution ζ of Lemma 5.6 is asymptotic
to the formal solution θ̃ of Lemma 5.5.

Since

ζ(kε, ε) ∼ε→0 exp(Z(kε, ε))

and

exp(Z(kε, ε)) = exp(Θ((k + 1)ε, ε)) − exp(Θ(kε, ε))

it follows by the definition of θ given in Lemma 5.6 and by a telescopic sum, that:

θ(kε, ε) = θ(k1ε, ε) +

k−1∑

j=k1

ζ(jε, ε)

∼ε→0 θ(k1ε, ε) +

k−1∑

j=1

(exp(Θ((j + 1)ε, ε)) − exp(Θ(jε, ε)))

= θ(k1ε, ε) + exp(Θ(kε, ε)) − exp(Θ(kε, ε))

= exp(Θ(kε, ε))

This concludes the proof of Proposition 5.4. �

5.3. The solutions form a locally fundamental set. Let us summarize what we have obtained so far.
Consider a partition I = ∪p∈P Ip of I = [x0, xP ] given by Ip = [xp, xp+1] for p = 1, . . . , P −1, and consider

a permutation σp of {1, . . . , d} such that

|λσp(1)(x)| ≥ |λσp(2)(x)| ≥ · · · ≥ |λσp(d)(x)| for all x ∈ Ip.

We have constructed solutions smooth functions Φm for m = 1, . . . , d with asymptotic expansion given by
(10) and (11).

Let us define

(38) ψm(x, ε) = exp
(
ε−1Φm(x, ε)

)
,

where Φm are smooth functions with asymptotic expansions as in Equations (10) and (11).
Moreover, we have shown that for every interval Ip (as in the discussion prior to Theorem 3),

{ψ1(kε, ε), . . . , ψd(kε, ε)}

is a set of solutions of (8) when kε ∈ Ip.
Fix a solution ψ(kε, ε) of (8) and an interval Ip. The following lemma certainly implies that {ψ1, . . . , ψd}

is a locally fundamental set of solutions of (8). This concludes the proof of Theorem 3. �

In addition, the next lemma motivates the definition of a regular solution, given in the following section.

Lemma 5.7. (a) Fix ψ and Ip as above. Then, there exist smooth functions cpm such that

(39) ψ(kε, ε) = cp1(ε)ψσp(1)(kε, ε) + · · · + cpd(ε)ψσp(d)(kε, ε)

for all kε ∈ Ip.
(b) Moreover, for every p and m = 1, . . . , d we have

(40) cpm(ε) =
ψσp−1(m)(x

ε
pε− ε, ε)

ψσp(m)(xεpε, ε)
γpm(ε)

for some smooth functions γpm, with the understanding that ψσ−1(m) = 1. Here [x] is the largest integer
smaller than x, and

xεp =
[xp
ε

]
+ 1.
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Proof. Without loss of generality, let us assume that σp(j) = j for j = 1, . . . , d. Equation (39) is a linear
equation in cpm, with solutions

cpm(ε) =
detWm(xεp, ε)

detW (xεp, ε)

where Ip = [xp, xp+1],

W (x, ε) =




ψ1(x, ε) . . . ψm(x, ε) . . . ψd(x, ε)
ψ1(x+ ε, ε) . . . ψm(x+ ε, ε) . . . ψd(x+ ε, ε)

. . . . . . . . . . . . . . .
ψ1(x+ (d− 1)ε, ε) . . . ψm(x+ (d− 1)ε, ε) . . . ψd(x+ (d− 1)ε, ε)




and

Wm(x, ε) =




ψ1(x, ε) . . . ψ(x, ε) . . . ψd(x, ε)
ψ1(x+ ε, ε) . . . ψ(x+ ε, ε) . . . ψd(x + ε, ε)

. . . . . . . . . . . . . . .
ψ1(x+ (d− 1)ε, ε) . . . ψ(x+ (d− 1)ε, ε) . . . ψd(x+ (d− 1)ε, ε)




where the ψ’s are in the mth column of Wm.
We will show that for small enough ε, W (x, ε) is nonsingular.
Using Equations (38), (10) and (11), it follows that

1

ψ1(x, ε) . . . ψd(x, ε)
det(W (x, ε)) = det(exp(jφ′m(x))) +O(ε)

= det(λm(x)j) +O(ε)

= ±
∏

i6=j

(λi(x) − λj(x)) +O(ε)

uniformly in x, where λm are the eigenvalues of (8). Since (8) is regular, its eigenvalues never collide.
Similarly, using Equation (38), we have:

1

ψ1(xεpε, ε) . . . ψ̂m(xεpε, ε) . . . ψd(x
ε
pε, ε)

det(Wm(xεpε, ε)) = detBm,0(x
ε
pε, ε) +O(ε)

where

Bm,j(x, ε) =




λ1(x)
−j . . . ψ(x, ε) . . . λd(x)

−j

λ1(x)
1−j . . . ψ(x+ ε, ε) . . . λd(x)

1−j

. . . . . . . . . . . . . . .
λ1(x)

d−1−j . . . ψ(x + (d− 1)ε, ε) . . . λd(x)
d−1−j




where the ψ’s are in the mth column of Bm,j . Thus,

(41) cpm(ε) =
1

ψm(xεpε, ε)

det(Bm,0(x
ε
pε, ε))∏

j 6=m λj(x
ε
pε) − λm(xεpε)

+O(ε).

The idea now is to move the recursion relation backwards d times. Using the solution ψ(kε, ε) for kε ∈ Ip−1

will allow us to compute the smooth functions cpm.
In detail, consider the matrix Bm,0(x

ε
pε, ε) and move the recursion relation backwards once. Using Equa-

tion (27) and the fact that the the jth column of Bm,j(x
ε
p, ε) for j 6= m is an eigenvector of A(xεpε, ε) (up to

O(ε)) with eigenvalue λj(x
ε
pε), it follows that

Bm,0(x
ε
pε, ε) = A(xεpε, ε)Bm,1(x

ε
pε− ε, ε) +O(ε).

Iterating d− 1 more times, it follows that

Bm,0(x
ε
pε, ε) = A(xεpε, ε) . . . A(xεpε− (d− 1)ε, ε)Bm,d(x

ε
pε− dε, ε) +O(ε).
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Since xεpε− dε ∈ Ip−1, it follows (as in the computation of Wm(x, ε) above) that:

det(Bm(xεpε− dε, ε)) = ψσp−1(m)(x
ε
pε− ε, ε)

det




λ1(x
ε
pε− ε)1−d . . .

ψσp−1(m)(x
ε
pε−dε,ε)

ψσp−1(m)(xε
pε−ε,ε)

. . . λd(x
ε
pε− ε)1−d

λ1(x
ε
pε− ε)2−d . . .

ψσp−1(m)(x
ε
pε+(1−d)ε,ε)

ψσp−1(m)(xε
pε−ε,ε)

. . . λd(x
ε
pε− ε)2−d

. . . . . . . . . . . . . . .

λ1(x
ε
pε− ε)d−d . . .

ψσp−1(m)(x
ε
pε−ε,ε)

ψσp−1(m)(xε
pε−ε,ε)

. . . λd(x
ε
pε− ε)d−d




= ψσp−1(m)(x
ε
pε− ε, ε)

∏

i6=j,j 6=m

(λ−1
i (xεpε− ε) − λ−1

j (xεpε− ε))

∏

i6=m

(λ−1
i (xεpε− ε) − λ−1

σp−1(m)(x
ε
pε− ε)) +O(ε).

This, together with Equation (41) proves (40). �

6. Regular solutions and their asymptotics

In this section we discuss regular solutions of q and ε-difference equations and their asymptotics.

6.1. Regular solutions to ε-difference equations. According to Lemma 5.7, a solution ψ to (8) deter-
mines a collection S = {Sp| p ∈ P} of subsets of {1, . . . , d}, where

Sp = {m ∈ {1, . . . , d}|γpm 6= 0}.

Definition 6.1. Fix a collection S = {Sp| p ∈ P} of subsets of {1, . . . , d}. We say that a solution ψ of a
regular equation (8) is S-regular iff for every p ∈ P we have:

• γpm = 0 if m 6∈ Sp.
• γpm are not flat at 0 for all m ∈ Sp. That is, some derivative of γpm at ε = 0 does not vanish.
• For every p ∈ P there exists an element η(p) ∈ Sp such that

|λη(p)(x)| > |λj(x)| for all j ∈ Sp − {η(p)}, x ∈ Interior(Ip).

In other words, in the interior of the interval Ip, and among the eigenvalues λj(x) for j ∈ Sp, there
is a unique eigenvalue of strictly maximum magnitude.

We will say that a solution to (3) is regular if it is S-regular for some S.

6.2. Asymptotics of regular solutions of ε-difference equations.

Proof. (of Theorem 4) Let ψ be an S-regular solution to (8). Let us assume that S = {1, . . . , d}, and
|λ1(x)| > |λm(x)| for m = 2, . . . , d and all x in the interior Interior(I) of the closed interval I = [0, b]. Fix
an x ∈ I .

Then, we have:
ψ(x, ε) = c1(ε)ψ1(x, ε) + · · · + cd(ε)ψd(x, ε).

for x = kε, where c1(ε) = c1ε
n1 +O(εn1+1), and c1 6= 0.

Then, we have:

(42) ψ(x, ε) = c1(ε)ψ1(x, ε)

(
1 +

d∑

m=2

cj(ε)

c1(ε)

ψm(x, ε)

ψ1(x, ε)

)
.

Recall from Theorem 3 that

ψm(x, ε) = exp(ε−1Φm(x, ε))

Φm(x, ε) = Φm,0(x) + O(ε)

Φ′
m,0(x) = logλm(x).
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Thus,
Re(Φm,0)

′(x) = Re(log λm(x)) = log |λm(x)|.

Combined with |λm(x)| < |λ1(x)| for m ≥ 2, and Φm,0(0) = 0 = Φ1,0(0), it follows that

Re(Φm,0)(x) < Re(Φ1,0)(x)

for all x ∈ I and

Re(Φ1,0)(x) =

∫ x

0

log |λ1(t)|dt.

Therefore,

lim
ε→0+

(
1 +

d∑

m=2

cj(ε)

c1(ε)

ψm(x, ε)

ψ1(x, ε)

)
= 1.

and
lim
ε→0+

ε log |c1(ε)| = 0.

Thus, Equation (42) implies that

lim
ε→0+

ε log |ψ(x, ε)| = lim
ε→0+

ε log |ψ1(x, ε)|

= lim
ε→0+

ε log | exp(ε−1Φm(x, ε))|

= lim
ε→0+

ε log | exp(ε−1Φm(x, 0) +O(1))|

= Re(Φ1,0(x))

=

∫ x

0

log |λ1(t)|dt

The result follows.
In the general case, we partition the interval Ip as in the discussion prior to Theorem 3 and repeat the

above proof using Equation (43). The result follows. �

6.3. Asymptotics of regular solutions of q-difference equations. First, we need to define what is a
regular solution to a q-difference equation.

Consider a solution ψ of a q-difference equation and a partition of S1 as in Section 1.8. Then, at each
interval Ip, we can write the solution as a linear combination of fundamental solutions, as in Equation (4).
Let Sp be the indexing set of the fundamental solutions that we use in each interval Ip; see (6).

Suppose that the partition of S1 is given by Ip = [e2πixp , e2πixp+1 ] for p = 0, . . . , P − 1, with q0 = 1, qP =
e2πi.

Then, with q = e2πiε it turns out that for every p and m = 1, . . . , d we have

(43) cpm(q) =
ψσp−1(m)(x

ε
pε− ε, ε)

ψσp(m)(xεpε, ε)
γpm(q)

for some smooth functions γpm, with the understanding that ψσ−1(m) = 1.

Definition 6.2. Fix a collection S = {Sp| p ∈ P} of subsets of {1, . . . , d}. We say that a solution ψ of a
regular equation (3) is S-regular iff for every p ∈ P we have:

• γpm = 0 if m 6∈ Sp.
• γpm are not flat at 0 for all m ∈ Sp. That is, some derivative of γpm at ε = 0 does not vanish.
• For every p ∈ P there exists an element η(p) ∈ Sp such that

|λγ(p)(v)| > |λj(v)| for all j ∈ Sp − {γ(p)}, v ∈ Interior(Ip).

In other words, in the interior of the interval Ip, and among the eigenvalues λj(v) for j ∈ Sp, there
is a unique eigenvalue of strictly maximum magnitude.

We will say that a solution to (3) is regular if it is S-regular for some S.

Proof. (of Theorem 2) It follows from Equation (14) of Lemma 2.7 and Theorem 4. �
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7. Applications to Quantum Topology

7.1. The A-polynomial of a knot and its noncommutative version. In this section we discuss general
features of q-difference equations for the colored Jones function of a knot.

The coefficients of the q-difference equations are rational functions of q and qn = Q. In order to simplify
the typesetting, we will give the q-difference equation

d∑

j=0

bj(q
n, q)f(n+ j) = 0

in operator form

(44) Pf = 0

where

P =
d∑

j=0

bj(Q, q)E
j

and where the operators E, Q and q, act on a discrete function f :
�
→ � [q±] by

(qf)(n) = qf(n) (Qf)(n) = qnf(n) (Ef)(n) = f(n+ 1).

Note that q commutes with Q and E, and that EQ = qQE.
It follows by definition that the characteristic polynomial chP (v, λ) of (44) is obtained from P by setting

q = 1, replacing (E,Q) by (λ, v). In other words, we have:

chP (v, λ) =

d∑

j=0

bj(v, 1)λj .

In [Ga1], the first author showed that the colored Jones function JK of a knot K satisfies an essentially
unique smallest degree q-difference equation PKJK = 0 where the coefficients aj(u, v) of PK are rational
functions of u and v with rational coefficients.

In [Ga1], the operator PK was called the non-commutative A-polynomial of K.
In [Ga1], it was conjectured that:

Conjecture 1. (AJ Conjecture) Up to a multiplication by a polynomial in v, we have

chPK(λ, v) = AK(L,M)|(L,M2)=(λ,v)

where AK is the A-polynomial of K, defined by [CCGLS].

The A-polynomial of K parametrizes the moduli space of characters of SL2( � ) representations of π1(S
3 −

K), restricted to the boundary torus ∂M . The A-polynomial of a knot is an important ingredient to the
Geometrization of the knot complement and its Dehn fillings.

The A-polynomial AK of a knot K in S3 satisfies symmetries, which we will list here, and refer to [CCGLS]
and [CL] for proofs.

(S1) It has integer coefficients and even powers of M , that is AK(L,M) ∈ � [L,M2].
(S2) It is reciprocal, that is, AK(L−1,M−1) = ±LkM lA(L,M).
(S3) It is tempered, that is the edge polynomials of its Newton polygon are cyclotomic.
(S4) It specializes to

AK(L, 1) = ±(L− 1)n+(L+ 1)n−

for some integers n±.
(S5) L− 1 is always a factor of AK , that corresponds to U(1) representations.

If the colored Jones function of a knot was an S-regular solution to a regular q-difference equation, and
if the AJ Conjecture were true, then it follows that for every α ∈ [0, 1] we have:

(45) lim
n→∞

log |JK(n)(e
2πiα

n )|

n
= σJS,K(α) = σAS,K(α)



24 STAVROS GAROUFALIDIS AND JEFFREY S. GERONIMO

where σAS,K is the A-entropy of a knot, defined as follows.

Definition 7.1. For a knot K in S3, let Lj(t) for j = 1, . . . , d denote the roots of the equation

AK(Lj(t), e
it/2) = 0

for t ∈ [0, 2π], where d is the L-degree of AK . Fix a partition ∪p∈PIp of [0, 2π] by closed intervals with
nonoverlapping interiors and a permutation σp of the set {1, . . . , d} such that

|Lσp(1)(t)| ≥ |Lσp(2)(t)| ≥ · · · ≥ |Lσp(d)(t)| for all t ∈ Ip.

For every collection S = {Sp| p ∈ P} of subsets of {1, . . . , d}, we can define the S-entropy

σAS,K : [0, 1] → �

by

σAS,K(α) =
1

2π

∫ 2π

0

logχS(αt)dt,

where χS : [0, 1] → � is defined by

χS(t) = max
j∈Sp

|Lσp(j)(t)| if t ∈ Ip.

It is natural to ask how the A-entropy of a hyperbolic knot (evaluated at α = 1) compares to the
Hyperbolic Volume. The answer to this question is essentially contained in work of D. Boyd, [Bo], which we
quote without proof here. We urge the reader to look in [Bo] for beautiful and suggestive calculations.

Boyd introduced and studied another invariant of a knot, the Mahler measure

mK =

∫

S1×S1

log |AK(x, y)|dxdy

Using Jensen’s formula, and the symmetry (S3), it follows that

2πmK =

d∑

j=0

∫ 2π

0

log+ |Lj(t)|dt

where log+(a) = log max{1, a}.
Using (S2), it follows that 1/Lj(t) is an eigenvalue for every eigenvalue Lj(t).
More generally, among the roots Lj(t) there is a distinguished one, L1, corresponding to the discrete

faithful representation when t = 2π. Let Ld(t) = 1 denote the eigenvalue corresponding to the U(1)
representations. Boyd informs us that for 2-bridge knots K (in particular, for the 31 and 41 knots), it is true
that

σA{1,d},K(1) = volK .

It follows by (S4) that the eigenvalues collide at t = 0. Moreover, Boyd informs us that for 2-bridge knots
there exists a t0 ∈ (0, π) such that |Lj(t)| = 1 for all j and all t : t0 < t < π.

Thus, if we want to apply Theorem 1 to the GHVC, we need to deal with irregular q-difference equations.
We will discuss this topic in detail in a later publication.

Meanwhile, let us discuss some examples, taken from [Ga1].

7.2. Examples: The 31 and 41 knots. In this section we discuss in detail q-difference equation of the the
colored Jones function of the two simplest knots, namely the trefoil 31 and the figure eight 41. The former
is not hyperbolic, and the latter is.

In [Ga1], the first author computed that the colored Jones function J31 (resp. J41) satisfies the second
(resp. third) order q-difference equation

P31J31 = 0 resp. P41J41 = 0

where the noncommutative A-polynomials P31 and P41 are given by:
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P31 =
q3Q2(q2 − q2Q)

q3 − q4Q2

+
(q − q2Q)(q + q2Q)(q4 − q5Q+ q6Q2 − q7Q2 − q7Q3 + q8Q4)

q2Q(q − q4Q2)(q3 − q4Q2)
E

+
−1 + q2Q

Q(q − q4Q2)
E2

P41 =
q5Q(−q3 + q3Q)

(q2 + q3Q)(−q5 + q6Q2)

−
(q2 − q3Q)(q8 − 2q9Q+ q10Q− q9Q2 + q10Q2 − q11Q2 + q10Q3 − 2q11Q3 + q12Q4)

q5Q(q + q3Q)(q5 − q6Q2)
E

+
(−q + q3Q)(q4 + q5Q− 2q6Q− q7Q2 + q8Q2 − q9Q2 − 2q10Q3 + q11Q3 + q12Q4)

q4Q(q2 + q3Q)(−q + q6Q2)
E2

+
q4Q(−1 + q3Q)

(q + q3Q)(q − q6Q2)
E3

If we wish, we may clear denominators in P31 and P41 . It follows that the characteristic polynomials are
given by:

chP31(L,M) = −
(L− 1)(L+M3)

M(1 +M)

chP41(L,M) =
(L− 1)(L− LM −M2 − 2LM2 − L2M2 − LM3 + LM4)

M(1 +M)2

Inspection shows that P31 and P41 are not regular. Nevertheless, let us try to compute the S-entropy.
For the case of 31, we have |Lj(t)| = 1 for j = 1, 2, 3 and in this case

σAS,31
(1) = vol31 = 0

for all S.
For 41 knot, we have 3 eigenvalues L1(t), L2(t) = 1/L1(t) and L3(t) = 1. Assuming appropriate choices

for the branches of the eigenvalues, the plot of log |L1(t)| and log |L2(t)| = − log |L1(t)| for t ∈ [0, 2π] is given
by:

1 2 3 4 5 6

-1

-0.5

0.5

1

1 2 3 4 5 6

-1

-0.5

0.5

1

It follows that

σA{1,3},41
(1) = vol(41) = 2.029883 σA{1,2,3},41

(1) = 2vol41 = 4.05977.

Since the HVC is true for the 41 knot, it suggests that the colored Jones function lies in a strictly smaller
subspace of the vector space of solutions to the q-difference equation PKJK = 0. Using work of Murakami
[Mu], one can figure out exactly the selection principle; that is which locally fundamental solutions contribute
to the colored Jones function.
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Note that the associated q-difference equation of the 41 knot has the following features: of collision,
resonance and vanishing:

• The eigenvalues collide at t = 0 (since L1(0) = L1(0) = −1), at t = π/3 (since L1(π/3) = L1(π/3) =
−1) and by symmetry at t = 2π/3 and t = 2π.

• There is resonance on the interval [π/3, 2π/3] where all three eigenvalues have equal magnitude.
• There is vanishing of the coefficients at t = π/2 (since the denominator M + 1 of the coefficients is

singular at t = π/2).

Moreover, there is an additional difficult problem of selection principle.
We plan to study these problems in later publications.
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