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Abstract. Given a square matrix with elements in the group-ring of a group, one can
consider the sequence formed by the trace (in the sense of the group-ring) of its powers.
We prove that the corresponding generating series is an algebraic G-function (in the sense
of Siegel) when the group is free of finite rank. Consequently, it follows that the norm
of such elements is an exactly computable algebraic number, and their Green function is
algebraic. Our proof uses the notion of rational and algebraic power series in non-commuting
variables and is an easy application of a theorem of Haiman. Haiman’s theorem uses results
of linguistics regarding regular and context-free language. On the other hand, when the
group is free abelian of finite rank, then the corresponding generating series is a G-function.
We ask whether the latter holds for general hyperbolic groups.
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1. Introduction

1.1. Algebricity of the Green’s function for the free group. Given a groupG, consider
the group-algebra Q[G], and define a trace map:

(1) Tr : Q[G] −→ C, Tr(P ) = constant term of P

where the constant term is the coefficient of the identity element of G. Let MN(R) denote
the set of N by N matrices with entries in a ring R. We can extend the trace to the algebra
MN (Q[G]) by:

(2) Tr : MN (Q[G]) −→ C, Tr(P ) =

N∑

j=1

Tr(Pjj).

Definition 1.1. Given P ∈MN(Q[G]), consider the sequence (aP,n)

(3) aP,n = Tr(P n)

and the generating series

(4) RP (z) =
∞∑

n=0

aP,nz
n.

Let Fr denote the free group of rank r.

Theorem 1.1. The Green’s function RP (z) of every element P of MN (Q[Fr]) is algebraic.

Theorem 1.1 appears in the cross-roads of several areas of research:

(a) operator algebras
(b) free probability
(c) linguistics and context-free languages
(d) non-commutative combinatorics
(e) mathematical physics

In fact, Woess proves Theorem 1.1 when N = 1 using linguistics and context-free lan-
guages; see [Woe87, Woe00]. In [Sau03] Sauer also gives a proof using linguistics, with
emphasis the rationality of the Novikov-Shubin invariants. Voiculescu proves Theorem 1.1
using the R and S transforms of free probability; see [Voi95, Voi05b]. For additional results
using free probability, see [Aom84, CV96] and also [Lal93, Leh99, Leh01].

It is well-known that Theorem 1.1 provides an exact calculation of the norm of P ∈
MN (Q[Fr]) ⊂ MN(L(Fr)), where L(Fr) denotes the reduced C∗-algebra completion of the
group-algebra C[Fr]. For a detailed discussion, see the above references.

Our proof of Theorem 1.1 uses the notion of an algebraic function in non-commuting vari-
ables and a theorem of Haiman, which itself is based on a theorem of Chomsky-Schützenberger
on context-free languages. A by-product of our proof is the fact that the moment generating
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series is a matrix of algebraic power series in non-commuting variables (see Proposition 4.4),
which is a statement a priori stronger than Theorem 1.1.

An alternative proof of Theorem 1.1 uses methods from functional analysis, and most
notably the Schur complement method (see below). We will discuss in detail the first proof
and postpone the third proof to a later publication. Either proof explains the close relation
between the differential properties of the generating function RP (z) and the word problem
in G.

Our aim is to give a proof of algebraicity in the case of the free group, discuss holonomic-
ity in the case of the free abelian group and formulate a question regarding holonomicity
for hyperbolic groups. As it turns out, algebricity is well-studied in the above mentioned
literature whereas holonomicity is largely absent.

1.2. Related work. Our paper was completed in the summer of 2007, and posted on the
arxiv arXiv:0708.4234. In the fall of 2008, M. Kontsevich brought to the attention of
the second author a related earlier paper of Sauer [Sau03] from 2003 that gives a proof of
Theorem 1.1 with emphasis on the Novikov-Shubin invariants. Sauer’s and our work has
been cited by M. Kontsevich in the Arbeitstagung talk Bonn 2011, and (from what we
have heard) in other talks too. Theorem 1.1 keeps attracting attention in diverse areas of
mathematics. In the summer 2013, C. Kassel informed the second author of related article of
Kassel-Reutenauer [KR13] around the theme of Theorem 1.1. Kassel was unaware of Sauer’s
work and of our work. In view of the interest of Theorem 1.1 and its connections to several
branches of mathematics, we were encouraged to submit our article for publication.

2. The case of the free abelian group

2.1. Holonomic, algebraic and G-functions. A priori, RP (z) is only a formal power
series. However, it is easy to see that (aP,n) is bounded exponentially by n, which implies that
RP (z) defines an analytic function in a neighborhood of z = 0. The paper is concerned with
differential/algebraic properties of the function RP (z). Algebraic and holonomic functions
are well-studied objects. Let us recall their definition here.

Definition 2.1. (a) A holonomic function f(z) is one that satisfies a linear differential
equation with polynomial coefficients. In other words, we have:

cd(z)f
(d)(z) + · · ·+ c0(z)f(z) = 0

where cj(z) ∈ Q[z] for all j = 0, . . . , d and f (j)(z) = dj/dzjf(z).
(b) An algebraic function f(z) is one that satisfies a polynomial equation:

Q(f(z), z) = 0

where Q(y, z) ∈ Q[y, z].

Lesser known to the combinatorics community are G-functions, which originated in the
work Siegel on arithmetic problems in elliptic integrals, and transcendence problems in num-
ber theory; see [Sie66]. G-functions originate naturally in

(a) algebraic geometry, related to the regularity properties of the Gauss-Manin connec-
tion, see for example [Del70, Kat70, Mal74],

(b) arithmetic, see for example [And00, Bom81, DGS94],
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(c) enumerative combinatorics, as was recently shown in [Gar09].

Definition 2.2. A G-function f(z) =
∑

∞

n=0 anz
n is one which satisfies the following condi-

tions:

(a) for every n ∈ N, we have an ∈ Q,
(b) there exist a constant Cf > 0 such that for every n ∈ N we have: |an| ≤ Cn

f (for every
conjugate of an) and the common denominator of a0, . . . , an is less than or equal to
Cn

f .
(c) f(z) is holonomic.

The next theorem summarizes the analytic continuation and the shape of the singularities
of algebraic functions and G-functions. Part (a) follows from the general theory of differential
equations (see eg. [Was87]), parts (b) and (d) follow from [CSTU02, Lem.2.2] (see also
[DGS94] and [DvdP92]) and (c) follows from a combination of Katz’s theorem, Chudnovsky’s
theorem and André’s theorem; see [And00, p.706] and also [CL02].

Theorem 2.1. (a) A holonomic function f(z) can be analytically continued as a multivalued
function in C \ Σf where Σf ⊂ Q is the finite set of singular points of f(z).
(b) Every algebraic function f(z) is a G-function.
(c) In a neighborhood of a singular point λ ∈ Σf , a G-function f(z) can be written as a
finite sum of germs of the form:

(5) (z − λ)αλ(log(z − λ))βλhλ(z − λ)

where αλ ∈ Q, βλ ∈ N, and hλ a holonomic G-function.
(d) In addition, βλ = 0 if f(z) is algebraic.

Remark 2.3. Local expansions of the form (5) are known in the literature as Nilsson series
(see [Nil65]), and minimal order linear differential equations that they satisfy are known to
be regular singular, with rational exponents {aλ} and quasi-unipotent monodromy. For a
discussion, see [Kat70, Mal74, Gar09] and references therein.

It is classical and easy to show that the existence of analytic continuation of a function
implies the existence of asymptotic expansion of its Taylor series; see for example [Jun31,
Com64] and also [CG11, Sec.7] and [Gar09].

Lemma 2.4. If f(z) =
∑

∞

n=0 anz
n is holonomic and analytic at z = 0, then the nth Taylor

coefficient an has an asymptotic expansion in the sense of Poincaré

(6) an ∼
∑

λ∈Σ

λ−nn−αλ−1(log n)βλ

∞∑

s=0

cλ,s

ns

where Σf is the set of singularities of f , αλ, βλ ∈ Q, and cλ,s ∈ C.

2.2. The case of the free abelian group. In this section we will summarize what is
known about the generating functions RP (z) when G = Zr is the free abelian group or
rank r. The next theorem is shown in [Gar09], using Andreé main theorems from [And00].
An alternative proof uses the regular holonomicity of the Gauss-Manin connection and the
rationality of its exponents. This was kindly communicated to us by C. Sabbah (see also
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[DvdK98]). Holonomicity of RP (z) also follows from a fundamental result of Wilf-Zeilberger,
explained in [Gar09].

Theorem 2.2. [Gar09] For every P ∈MN(Q[Zr]), RP (z) is a G-function.

2.3. A complexity remark. Given P ∈ MN(Q[Fr]) (resp. P ∈ MN(Q[Fr])), one may
ask for the complexity of a minimal polynomial Q(y, z) ∈ Q[y, z] (resp. minimal degree
differential operatorD(z, ∂z) ∈ Q〈z, ∂z〉) so that Q(RP (z), z) = 0 (resp. D(z, ∂z)RP (z) = 0).
One expects that the y-degree of Q(y, z) and the ∂z-degree of D(z, ∂z) is exponential in the
complexity of P , where the latter can be defined to be the degree of P and the maximum of
the absolute values of the coefficients of the enrties of P . This prohibits explicit calculations
in general.

Acknowledgement. The author wishes to thank K. Dykema, R. Gilman, F. Flajolet, L.
Mosher, C. Sabbah and D. Zeilberger for stimulating conversations and F. Lehner and D.
Voiculescu for bringing to our attention relevant literature.

3. A theorem of Haiman and a proof of Theorem 1.1

In [Hai93] Haiman proves the following theorem.

Theorem 3.1. [Hai93] Let K be a field with a rank 1 discrete valuation v; Kv its completion
with respect to the metric induced by v. Let f(x1, . . . , xr, y1, . . . , yr) be a rational power se-
ries over K in non-commuting indeterminants. Any coefficient of f(x1, . . . , xr, x

−1
1 , . . . , x−1

r )
converging over Kv is algebraic over K.

Letting K = Q(z), and Kv = Q((z)) the ring of formal Laurent series in z, and considering
the element (1 − zP )−1, where P ∈ MN(Q[Fr]), gives an immediate proof of Theorem 1.1.

In the next section we will give a detailed description of Haiman’s argument which exhibits
a close relation to linguistics, as well as an obstruction to generalizing Theorem 1.1 to groups
other than the free group.

4. Algebraic and rational functions in noncommuting variables

4.1. Rational, algebraic and holonomic functions in one variable. In this section
all functions will be analytic in a neighborhood of z = 0. Let Qrat

0 (z), Q
alg
0 (z) and Qhol

0 (z)
denote respectively the set of rational, algebraic and holonomic functions, analytic at z = 0.
Let Q[[z]] denote the set of formal power series in z. Using the injective Taylor series map

around z = 0, we will consider Qrat
0 (z), Q

alg
0 (z) and Qhol

0 (z) as subsets of Q[[z]]:

(7) Qrat
0 (z) ⊂ Q

alg
0 (z) ⊂ Qhol

0 (z) ⊂ Q[[z]].

Q[[z]] has two multiplications:

• the usual multiplication of formal power series

(8) (

∞∑

n=0

anz
n) · (

∞∑

n=0

bnz
n) =

∞∑

n=0

(

n∑

k=0

akbn−k)z
n.
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• The Hadamard product:

(9) (

∞∑

n=0

anz
n) ⊛ (

∞∑

n=0

bnz
n) =

∞∑

n=0

anbnz
n.

With respect to the usual multiplication, Q[[z]] is an algebra and Qrat
0 (z), Q

alg
0 (z) and Qhol

0 (z)
are subalgebras. In case two power series are convergent in a neighborhood of zero, so is
their Hadamard product. Hadamard, Borel and Jungen studied the analytic continuation
and the singularities of the Hadamard product of two functions; see [Bor98, Jun31]. Their
method used an integral representation of the Hadamard product, and a deformation of the
contour of integration; see [Jun31, Fig.2,p.303]. Let us summarize these classical results.

Theorem 4.1. (a) If f and g are rational, so is f ⊛ g.
(b) If f is rational and g is algebraic, then f ⊛ g is algebraic.
(c) If f and g are holonomic (resp. regular holonomic with rational exponents), so is f ⊛ g.
(d) If f and g are algebraic, then f ⊛ g is not necessarily algebraic.

For a proof, see Thm.7, Thm.8, Theorem E and the example of p.298 from [Jun31].

4.2. Rational and algebraic functions in noncommuting variables. In this section
we discuss a generalization of the previous section to non-commuting variables. Let X
be a finite set, and let X∗ denote the free monoid on X. In other words, X consists of
the set of all words in X, including the empty word e. Let Q〈X〉 (resp. Q〈〈X〉〉) denote
the algebra of polynomials (resp. formal power series) in non-commuting variables. In
[Sch62], Schützenberger defines the notion of a rational and an algebraic power series in non-
commuting variables. Let Qrat〈X〉 and Qalg〈X〉 denote the sets of rational (resp. algebraic)
power series. Then, we have an inclusion:

(10) Qrat〈X〉 ⊂ Qalg〈X〉 ⊂ Q〈〈X〉〉.

Q〈〈X〉〉 has two multiplications:

• the usual multiplication of formal power series in non-commuting variables:

(11) (
∑

w∈X∗

aww) · (
∑

w∈X∗

bww) =
∑

w∈X∗

(
∑

w′,w′′:w′w′′=w

aw′bw′′)w.

• The Hadamard product:

(12) (
∑

w∈X∗

aww) ⊛ (
∑

w∈X∗

bww) =
∑

w∈X∗

awbww.

With respect to the usual multiplication, Q〈〈X〉〉 is a non-commutative algebra and Qrat〈X〉
and Qalg〈X〉 are subalgebras. We have the following analogue of Theorem 4.1.

Theorem 4.2. [Sch62, Pro.2.2] (a) If f ∈ Qrat〈X〉 and g ∈ Qrat〈X〉, then f ⊛ g ∈ Qrat〈X〉.
(b) If f ∈ Qrat〈X〉 and g ∈ Qalg〈X〉, then f ⊛ g ∈ Qalg〈X〉.

Remark 4.1. The notion of rational and algebraic functions works for an arbitrary ring R
of characteristic zero, instead of Q. Theorem 4.2 is still valid.
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4.3. Proof of Theorem 1.1. Let Fr denote the free group of rank r with generating set
{u1, . . . , ur}, and

X = {x1, . . . , xr, x1, . . . , xr}.

Consider the monoid map:

(13) π : X∗ −→ Fr, π(xi) = ui, π(xi) = u−1
i .

The kernel Ker(π) of π is the set of those words in X which reduce to the identity under the
relations xixi = xixi = e. Let

(14) ∆ =
∑

w∈Ker(π)

w ∈ Q〈〈X〉〉.

The next proposition is attributed to Chomsky-Schützenberger by Haiman. For a proof, see
[Hai93, Sec.3].

Proposition 4.2. [NM63] ∆ is algebraic.

The map π has a right inverse (that satisfies π ◦ ι = IFr
):

(15) ι : Fr −→ X

defined by mapping a reduced word in ui to a corresponding word in X. For every f ∈ Q[Fr]
we have a key relation between trace and Hadamard product:

(16) Tr(f) = φ(ι(f) ⊛ ∆)

where φ is a Q-linear map defined by:

(17) φ : Q〈X〉 −→ Q, φ(w) = 1 for w ∈ X∗.

Now, fix P ∈ MN(Q[Fr]). Let ∆N denote the N by N matrix with entries equal to ∆,
and R = Q(z). Let

Pz = zι(P ) ∈MN(R〈X〉), P ∗

z =

∞∑

n=0

P n
z ∈ MN(R〈〈X〉〉).

Notice that P ∗
z is well-defined since Pz has no z-constant term.

Lemma 4.3. We have:

(18) P ∗

z ∈MN (Rrat〈X〉).

Proof. P ∗
z satisfies the matrix equation

(1 − Pz)P
∗

z = I

with entries in R〈X〉. �

Lemma 4.3, together with Propositions 4.2 and part (b) of 4.2 imply the following result,
which we can think as a noncommutative analogue of Theorem 1.1.
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Proposition 4.4. For every P ∈MN (Q[Fr]), we have:

(19)
∞∑

n=0

zn(ι(P ))n
⊛ ∆N ∈MN (Ralg〈X〉).

Consider the abelianization ring homomorphism:

(20) ψ : R〈〈X〉〉 −→ R[[X]]

where R[[X]] is the formal power series ring in commuting variables. Haiman proves the
following:

Proposition 4.5. [Hai93, Prop.3.3] If f ∈ Ralg〈X〉, then ψ(f) is algebraic over R(X).

It follows that ψ(P ∗
z ⊛ ∆N) ∈ MN(Ralg(X)). Consider now the subalgebra Rconv[[X]] of

R[[X]] that contains all elements of the form

∑

w∈X∗

aww

where aw ∈ zl(w)Q[[z]], where l(w) denotes the length of w. Then, we can define an algebra
map:

(21) φz : Rconv[[X]] −→ Q[[z]], φz(w) = 1 for x ∈ X.

Haiman shows that if f ∈ Ralg(X) ∩ Rconv[[X]], then φz(f) ∈ Qalg. To state our final
conclusion, we define for 1 ≤ i, j ≤ N , the sequence (aij

P,n) by

aij
P,n = Tr((P n)ij)

and the matrix of generating series AP (z) ∈MN (Q[[z]]) by:

(AP (z))ij =

∞∑

n=0

aij
P,nz

n.

Lemma 4.6. We have:

(22) (φz ◦ ψ)(P ∗

z ⊛ ∆N) = AP (z).

Thus, AP (z) ∈MN (Qalg
0 (z)).

Proof. Equation (22) follows from Equation (16). The conclusion follows from the above
discussion. �

Thus, the entries of AP (z) are algebraic functions, convergent at z = 0. Since by definition
we have:

RP (z) =
N∑

i=1

(AP (z))ii

it follows that RP (z) ∈ Q
alg
0 (z). This completes the proof of Theorem 1.1. �
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5. Some Linguistics

5.1. Regular and context-free languages. Haiman’s proof uses the key Proposition 4.2
from linguistics. Let us recall some concepts from this field. See for example [BR88, Lin97,
Yan98] and references therein. Given a finite setX (the alphabet), a language L is a collection
of words in X. In other words, L ⊂ X∗. The generating series FL of a language is:

FL =
∑

w∈L

w ∈ Q〈〈X〉〉.

It follows that for two languages L1 and L2 we have:

FL1∩L2
= FL1

⊛ FL2
.

A language L is called rational (resp. context-free) iff FL ∈ Qrat(X) (resp. FL ∈ Qalg(X)).
In this context, Theorem 4.2 takes the following form:

Theorem 5.1. [NM63] (a) If L1 and L2 are rational languages, so is L1 ∩ L2.
(b) If L1 is rational and L2 is (unambiguous) context-free, then L1 ∩ L2 is (unambiguous)
context-free.

It was pointed out to us independently by D. Zeilberger and F. Flajolet that the above
theorem essentially proves Theorem 1.1.

5.2. Some questions. Let us end this short paper with some questions. Despite the simi-
larity in their statements and the multitude of proofs, Theorems 1.1 and 2.2 have different
assumptions, different proofs and different conclusions.

Consider a generating set X for a group G such that every element of G can be written
as a word in X with nonnegative exponents. Given X and G, let LX denote the set of all
words in X that map to the identity in G. Deciding membership in LX is the word problem
in G.

Definition 5.1. A group G has context-free word problem if it has a generating set X such
that the language LX is context-free.

The proof of Theorem 1.1 applies to groups with a context-free word problem. Muller-
Schupp classified those groups. In [MS83] Muller-Schupp prove that G has context-free word
problem iff G has a free finite-index subgroup.

On the other hand, if G is the fundamental group of a hyperbolic manifold of dimension
not equal to 2, then G does not have a free finite-index subgroup.

Thus, the linguistics proof of Theorem 1.1 does not apply to the case of hyperbolic groups
in dimension three. Neither does it apply to the case of Zr since the latter does not have
context-free word problem.

Question 5.2. If P is a hyperbolic group and P ∈ MN (Q[G]), is it true that RP (z) is a
G-function?

The question may be relevant to low dimensional topology, when one tries to compute the
ℓ2-torsion of a hyperbolic manifold using Luecke’s theorem; [Lüc94]. In that case, the matrix
P comes from Fox (free differential) calculus of a presentation of the fundamental group G
of the hyperbolic manifold. See also [DL09].



10 STAVROS GAROUFALIDIS AND JEAN BELLISSARD

Question 5.3. Given P ∈ MN (Q[Fr]), consider the abelianization P ab ∈ MN(Q[Zr]), and
the G-functions RP (z) and RP ab(z). How are the singularities of RP (z) and RP ab(z) related?

Question 5.4. What is a holonomic function in non-commuting variables?

6. A functional analysis interpretation of Theorem 1.1

The present paper is focusing on results and techniques inspired by algebra, non-commutative
algebraic combinatorics. However it is worth mentioning that Theorem 1.1 has applica-
tions to problems coming from functional analysis, spectral theory, and the spectrum of
Schrödinger operators. For instance, the Schrödinger equation describing the electron mo-
tion in a d-dimensional periodic crystal, can be well approximated by the difference equation
on a lattice of same dimension. The corresponding operator can be seen as an element of the
group ring of Zd. The function RP (z) defined previously is noting but the diagonal element of
the resolvent and is used to compute the spectral measure, through the Charles de la Vallée
Poussin theorem. There are instances for which, this operator is better approximated by the
free group analog. For instance the retracable path approximation was used by Brinkman and
Rice [BR71] in 1971 to treat the effect of spin-orbit coupling in the Hall effect, while it was
used in [BFZ94] to compute the electronic Density of States when the electron is submitted
to a random magnetic field. The same operator, seen as an element of the free group ring,
is used to describe various infinite dimension approximations. The seminal work of Georges
and Kotliar [GK92] used this free group approximation to give the first model known with
a Mott-Hubbard transition.

Another domain in which the Theorem 1.1 may apply is the Voiculescu Theory of Free
Probability [Voi05b, Voi05a]. The so-called R-transform used to treat the convolution of free
random variables, is also based upon the Schur complement formula. In particular the free
central limit theorem asserts that a sum of identically distributed free random variable obey
the semicircle law, is a special case of the present result.

Besides the two proofs of Theorem 1.1 discussed in this paper, the algebraic character of
RP (z) can also be deduced from the used of the Schur complement method [Sch18]. This
is what makes the free group approximation so attractive to theoretical physicists. This
method, also known under the name of Feshbach method [Fes58, Hernd, Fes67] is used in
many domains of Physics, Quantum Chemistry, Solid State Physics, Nuclear Physics, to
reduce the Hilbert space to a finite dimensional one and make the problem amenable to
numerical calculations. However, very few Mathematical Physicists have paid attention
to the fact that algebraicity or holonomy can give rise to results concerning the explicit
computation of the spectral radius, or more generally, to the band edges, of the Hamiltonian
they consider. This later problem is known to be notably hard with other methods.

For the benefit of the reader, we include some history of that method. The Schur com-
plement method [Sch18] is widely used in numerical analysis under this name, while Math-
ematical Physicists prefer the reference to Feshbach [Fes58]. In Quantum Chemistry, the
common reference is Feshbach-Fano [Fan35] or Feshbach-Löwdin [L62]. This method is used
in various algorithms in Quantum Chemistry (ab initio calculations), in Solid State Physics
(the muffin tin approximation, LMTO) as well as in Nuclear Physics. The formula used
above is found in the original paper of Schur [Sch18, p.217].
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The formula has been proposed also by an astronomer Tadeusz Banachiewicz in 1937,
even though closely related results were obtained in 1923 by Hans Boltz and in 1933 by
Ralf Rohan [PS05]. Applied to the Green function of a selfadjoint operator with finite rank
perturbation, it becomes the Krĕın formula [Kre46].

Let us end this section with a small dictionary that compares our notions with those in
physics.

H ∈MN (Q[Fr]) Hamiltonian
1/(z −H) resolvant
1/zRH(1/z) trace of the resolvant
Tr(Hn) nth moment of H
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Astérisque (1995), no. 232, 243–275, Recent advances in operator algebras (Orléans, 1992).
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