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Abstract. Murakami-Ohtsuki-Yamada introduced an evaluation of certain oriented pla-
nar trivalent graphs with colored edges. This evaluation plays a key role in the evaluation
of the colored HOMFLY polynomial of a link in 3-space and its Khovanov-Rozansky cat-
egorification. Our goal is is to give a generating series formula for the evaluation of MOY
graphs, which may be useful in categorification, and in the study of q-holonomicity of the
colored HOMFLY polynomial.
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1. Introduction

1.1. The colored HOMFLY polynomial and its recursion. The HOMFLY polynomial
of a framed oriented link L in 3-space is a powerful link invariant which takes values in the ring
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Z[q1/2, a1/2, (q1/2 − q−1/2)−1] and when specialized to a = qN , it recovers the slN invariant of
the link, colored by the fundamental representation. The HOMFLY polynomial has a colored
version WL,λ(q, a) which depends on a partition λ for each component of L [ML03, MM08].
Roughly, WL,λ(q, a) is the HOMFLY of a universal linear combination of cables of the link
L, where each component colored by a partition λ is a cabled as many times as the number
of boxes of λ [AM98]. When suitably normalized, the colored HOMFLY polynomial takes
values in the ring Z[q1/2, a1/2].

In [MOY98], Murakami-Ohtsuki-Yamada gave a formula for the colored HOMFLY poly-
nomial in terms of evaluations of some planar, trivalent, oriented colored graphs (in short,
MOY graphs). A key property of a MOY graph and its evaluation is that it takes values in
N[q1/2]. The non-negativity of the coefficients of those evaluations play an important role in
categorification program developed by Khovanov-Rozansky [KR08].

The colored HOMFLY polynomial appears in physics literature in relation to the large
N limit of U(N) Chern-Simons theory and its string dualities [LMV00]. Aganagic-Vafa
conjectured that the colored HOMFLY polynomial of a knot, colored by the symmetric
powers of the fundamental representation, satisfies a recursion relation with coefficients in
Z[q1/2, a1/2] [AVa]. The operator form of such a recursion is a polynomial in four variables
q, a, M and L where LM = qML and all other variables commute. A further refinement of
such an operator by adding a fifth variable t, related to the categorification of the colored
Khovanov-Rozansky Homology has been proposed by Gukov et al [DGR06]. Several flavors
of this so-called super-polynomial with fascinating properties have recently been conjectured
in the physics literature. For a survey article that summarizes recent developments, see [GS]
and [AVb].

On the mathematics side, it was observed by the first author that q-holonomicity of the
colored HOMFLY polynomial (thought of as a function of a partition with a fixed number
of rows) follows from q-holonomicity of the evaluations of the MOY graphs (thought of as
a function of their colors) [Garb]. This observation was our primary motivation to study
evaluations of MOY graphs using generating series, much in the spirit of spin networks and
their evaluations [GvdV13]. In a future publication, we will apply our results to deduce the
q-holonomicity of the MOY graph evaluations.

1.2. A generating series for the classical evaluation of MOY graphs. A MOY graph
Γ is a planar trivalent graph Γ with oriented edges, without sinks or sources. It may contain
multiple edges and loops, as well as components with no edges. A coloring γ of a MOY
graph Γ is a flow γ : E(Γ) → N, i.e., an assignment of a natural number to each edge such
that at each vertex, the sum of the numbers of the incoming edges equal to the sum of the
numbers of the outgoing edges. An example of a MOY graph and its coloring is shown in
Figure 1.

For a positive natural number N , Murakami-Ohtsuki-Yamada [MOY98] define the eval-
uation 〈Γ, γ〉N(q) ∈ N[q±1/2]. Consider the classical evaluation 〈Γ, γ〉N(1) ∈ N and its
generating series

F class
Γ,N (w) =

∑
γ

〈Γ, γ〉N(1)wγ ∈ N[w] ,
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Figure 1. A MOY graph and its coloring by arbitrary natural numbers a, b, c.

where w = (we)e∈E(Γ), and all variables commute. As usual, if γ : E(Γ) → N, we denote

wγ =
∏

γ∈E(Γ)w
γ(e)
e . The classical evaluation has been studied by Lobb-Zentner and Grant

[LZ, Gra] in relation to moduli space of slN representations of the complements of MOY
graphs.

A cycle of Γ is a 2-regular subgraph of Γ such that each component has a consistent
orientation. Let C(Γ) denote the set of cycles of Γ. The classical cycle polynomial is given
by

P class
Γ (w) =

∑
C∈C(Γ)

wC ∈ N[w] .

Our first result identifies the generating series F class
Γ,N with the N -th power of the classical

cycle polynomial.

Theorem 1.1. We have:

F class
Γ,N (w) =

(
P class

Γ (w)
)N

.

1.3. A generating series for the slN evaluation of MOY graphs. To extend Theorem
1.1 to MOY graph evaluations, we need to introduce the corresponding generating series
and the cycle polynomial. These are series in sets of q-commuting variables (z, Z) (for the
generating series) and x (for the cycle polynomial).

To each vertex v of a MOY graph Γ, we denote the three adjacent half-edges (i.e., flags) by
(v, l), (v,m) and (v, r) with the convention of Figure 2. We also assign six ordered variables
to v:

(1) zv,l < zv,m < zv,r < Zv,r < Zv,m < Zv,l

which commute except in the following instance

(2) zv,rzv,l = q−
1
4 zv,lzv,r, Zv,rZv,l = q−

1
4Zv,lZv,r
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Figure 2. A MOY graph and its coloring for arbitrary natural numbers a,b,c.

Fix a total ordering < of the set of vertices V (Γ) of Γ. Together with (1), this gives
a total ordering of the variables z, Z where if v < w then zv,s, Zv,s′ < zw,t, Zw,t′ for all
s, s′, t, t′,∈ {l,m, r}.

Likewise, we consider a set of q-commuting variables x = (xC)C∈C(Γ), one for each cycle of
Γ. The commutation relations for the cycle variables are expressed in terms of the following
intersection product (skew-symmetric form) on the set C(Γ).

〈C,C ′〉 =
1

2
(#{v ∈ V (Γ)|(v, l) ∈ C, (v, r) ∈ C ′} −#{v ∈ V (Γ)|(v, r) ∈ C, (v, l) ∈ C ′})

In terms of this product we define

xCxC′ = q〈C,C
′〉xC′xC .

There is a well-defined monomial homomorphism map

(3) µ(xC) = zCZC .

which satisfies µ(xCxC′) = µ(xC)µ(xC′).
The generating series of the MOY evaluations of Γ is defined by

FΓ,N(q, z, Z) =
∑
γ

〈Γ, γ〉N(q)zγZγ ∈ Z[q±
1
2 ]〈〈z, Z〉〉 ,

Here the monomials zγ, Zγ are understood to be in their standard ordering.
The cycle polynomial of Γ is defined in terms of the rotation number rot(C) of a cycle C.

If C is connected and oriented counter-clockwise then rot(C) = 1, if it is oriented clock-wise,
then rot(C) = −1. For a general cycle C, rot(C) is the sum of the rotation numbers of its
connected components. The cycle polynomial is then

(4) PΓ(q, a, x) =
∑

C∈C(Γ)

(a−
1
2 q

1
2 )rot(C)xC ∈ Z[q±

1
2 , a±

1
2 ]〈x〉 .

Finally, we need to introduce a q-version of the N -th power appearing in Theorem 1.1. In
analogy with the q-Pochhammer symbol, we define

(PΓ(q, a, x), q)N =
N−1∏
k=0

PΓ(q, a, qkrot(C)xC) ∈ Z[q±
1
2 , a±

1
2 ]〈x〉 .

We can now state our theorem.

Theorem 1.2. For every MOY graph Γ and natural number N we have:

FΓ,N(q, z, Z) = µ
(
(PΓ(q, qN , x), q)N

)
.
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Since µ ((PΓ(1, 1, x), 1)N) = (P class
Γ (zZ))N , Theorem 1.1 follows from Theorem 1.2 when

q = 1. By P class
Γ (zZ) we mean the classical cycle polynomial where we set we = zh1zh2Zh1Zh2

if edge e is the union of the half-edges h1, h2.

1.4. A generating series for the HOMFLY evaluation of MOY graphs. In [Garb,
Lem.2.2] it was shown that given a MOY graph (Γ, γ) there exists 〈Γ, γ〉(q, a) ∈ Q(q1/2, a1/2)
such that for every positive natural number N , we have:

〈Γ, γ〉(q, qN) = 〈Γ, γ〉N(q) .

Consider the generating series

FΓ(q, a, z, Z) =
∑
γ

〈Γ, γ〉(q, a)zγZγ

and the rings

R = Z[[q
1
2 ]][a−

1
2 , a

1
2 ] R+ = Z[[q

1
2 ]][a+ 1

2 ] R− = Z[[q
1
2 ]][a−

1
2 ] .

We say that a MOY graph Γ is positive if the rotation number of every nonempty cycle is
positive. In that case, FΓ(q, a, z, Z) ∈ R〈〈z, Z〉〉.

Theorem 1.3. Assume that Γ is positive. Then we have:

FΓ(q, a, z, Z)µ
(
(PΓ(q, a−1, x), q)∞

)
= µ ((PΓ(q, a, x), q)∞)

(5)

FΓ(q, q2a, z, Z) = µ
(
PΓ(q−1, a, x)∞

)
FΓ(q, a, z, Z)µ

(
PΓ(q, a−1, x)∞

)
(6)

where

(PΓ(q, a, x), q)∞ ∈ R−〈〈x〉〉 µ ((PΓ(q, a, x), q)∞) ∈ R〈〈z, Z〉〉

Remark 1.4. Equation (5) is reminiscent to the 3D index of a tetrahedron introduced by
Dimofte-Gaiotto-Gukov [DGG] and further studied by [Gara, Eqn.B.1] and [GHRS].

Remark 1.5. Although non-positive MOY graphs exist (see for instance the example in
Section 5.2), the colored HOMFLY polynomial of a link L is a linear combination, with
q-proper hypergeometric coefficients, of the evaluation of positive MOY graphs. Indeed,
choose a braid β whose closure is L and the closure is chosen so that all strands rotate
counter-clockwise. Then, Equation on p.341 of [MOY98] replaces each crossing with a linear
combination of positive MOY graphs.

2. MOY graphs and their evaluation

In this section we recall the evaluation of a MOY graph given by [MOY98].



6 STAVROS GAROUFALIDIS AND ROLAND VAN DER VEEN

2.1. States. For a MOY graph Γ, let V (Γ), E(Γ), H(Γ) and C(Γ) denote its set of vertices,
edges, half-edges and cycles. For a fixed positive integer N , define the N element set

AN = {−N − 1

2
, . . . ,

N − 3

2
,
N − 1

2
}

A state is a function σ : C(Γ) → 2AN where 2X denotes the set of subsets of X, with the
additional requirement that if C and C ′ both contain the same edge then σ(C)∩ σ(C ′) = ∅.
For all states we require σ(∅) = ∅. A state σ gives rise to functions

σ : H(Γ)→ 2AN , σ : E(Γ)→ 2AN

defined by σ(h) =
⋃
C:h∈C σ(C) and σ(e) =

⋃
C:e∈C σ(C). σ induces a flow |σ| on the graph

Γ defined by |σ|(e) = |σ(e)| for e ∈ E(Γ). For a cycle C we define |σ|(C) = |σ(C)|. Finally,
given a state σ define

rot(σ) =
∑

C∈C(Γ)

rot(C)
∑

x∈σ(C)

x

2.2. Definition of the MOY evaluation. The MOY invariant of (Γ, γ), denoted by
〈Γ, γ〉N(q) is given by

〈Γ, γ〉N(q) =
∑

σ:|σ|=γ

qrot(σ)
∏

v∈V (Γ)

wt(v;σ) .

Here define the weight by wt(v;σ) = q
1
4

(R(v;σ)−L(v;σ)). In this formula

L(v;σ) =|{(a, b) ∈ σ(v, l)× σ(v, r)|a > b}|
R(v;σ) =|{(a, b) ∈ σ(v, l)× σ(v, r)|a < b}|

Note that in their original paper Murakami, Ohtsuki and Yamada worked with slightly
different definitions: their concept of a state was tied to edges instead of cycles, but the
two definitions are equivalent. Also their vertex weights were introduced as wt(v;σ) =

q
|σ(v,l)||σ(v,r)|−2L(v;σ)

4 which coincides with our definition above.

3. Proofs

In this section we present the proofs of theorems 1.2 and 1.3. As mentioned in the intro-
duction theorem 1.1 follows directly from Theorem 1.2 by setting q = 1.

3.1. Proof of Theorem 1.2. We start with the product µ
(
(PΓ(q, qN , x), q)N

)
on the right

hand side of the equation and show that after applying the µ map and ordering the variables
we get the generating function FΓ,N(q, z, Z).

First we rewrite the product in a more symmetric fashion as follows:

(PΓ(q, qN , x), q)N =
∏
j∈AN

 ∑
C∈C(Γ)

qjrot(C)xC


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Next we need to recognize that the monomials in the expansion of the latter product are
in bijection with the states σ. Denote by mσ the monomial corresponding to state σ. It is
defined as

mσ =
∏
j∈AN

∏
C|j∈σ(C)

xC .

Conversely any monomial in the expanded product looks like
∏

j∈AN xCj . This monomial

corresponds to the state σ defined by σ(C) = {j : Cj = C}. Summarizing we can say that
the j-th factor in the product corresponds to the choice of which cycle to label by j ∈ AN
in creating a state.

From the formula rot(σ) =
∑

j∈AN

∑
C:j∈σ(C) rot(C) it then follows that

(PΓ(q, qN , x), q)N =
∑
σ

qrot(σ)mσ .

Our next task is to apply the monomial map µ and bring the monomials µ(mσ) into the
canonical order < of the z, Z variables. We claim that the necessary q-commutations produce
exactly coefficient ∏

v∈V (Γ)

wt(v;σ) = q
1
4

P
v(R(v;σ)−L(v;σ))

The R(v;σ) terms come from applying Zv,lZv,r = q
1
4Zv,rZv,l and the L(v;σ) terms come

from applying zv,rzv,lq
− 1

4 zv,lzv,r. The claim now follows from the bijection between the states
σ and the monomials mσ because it shows that the following situations (a) and (b) are
equivalent:

(a) We have a pair of elements (jL, jR) ∈ σ(Cl)×σ(Cr) and a pair of cycles Cl, Cr ∈ C(Γ)
such that the half-edge (v, l) ∈ Cl and (v, r) ∈ Cr.

(b) The monomial mσ contains the factor xCl in the jl-th place and xCr in the jr-th place.
Moreover µCl includes zv,lZv,l and µCr includes zv,rZv,r.

More concretely, in the graph part (a) the pair (jl, jr) contributes 1 to L(v;σ) if jl > jr and
1 to R(v;σ) otherwise. In the monomial part (b) the case jl > jr means that zr comes before
zl in the product so to bring it into canonical order we need to commute the two and pick
up a term q−

1
4 . The case jl < jr means we need to commute the upper case variables only

and pick up a term q
1
4 . To summarize we have now shown that

µ(mσ) =
∏

v∈V (Γ)

wt(v;σ)z|σ|Z |σ|

where the latter monomials are in canonical order. Therefore

µ
(
(PΓ(q, qN , x), q)N

)
= µ

(∑
σ

qrot(σ)mσ

)
=
∑
σ

qrot(σ)
∏

v∈V (Γ)

wt(v;σ)z|σ|Z |σ|

=
∑
γ

∑
σ:|σ|=γ

qrot(σ)
∏

v∈V (Γ)

wt(v;σ)zγZγ = FΓ,N(q, z, Z)

which concludes the proof of Theorem 1.2. �
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4. Proof of theorem 1.3

For part (a) we set a = qN , multiply both sides of the equality in Theorem 1.2 from the
right by µ(PΓ(q, a, qNrotx), q)∞ to obtain

FΓ(q, a, z, Z)µ
(
(PΓ(q, a, qNrotx), q)∞

)
= µ ((PΓ(q, a, x), q)∞)

Since

PΓ(q, a, qNrotx) =
∑
c∈C

(a
1
2 q

1
2 )rot(c)xc = PΓ(q, a−1, x)

we see that

(PΓ(q, a, qNrotx), q)∞ = (PΓ(q, a−1, x), q)∞

We have now proven that for all N and a = qN :

FΓ(q, a, z, Z)µ
(
(PΓ(q, a−1, x), q)∞

)
= µ ((PΓ(q, a, x), q)∞)

Therefore the equality holds for all a. This completes the proof of the first equality in the
theorem.

For part (b) we start by writing down the statement of part (a):

(7) FΓ(q, a, z, Z)µ
(
(PΓ(q, a−1, x), q)∞

)
= µ ((PΓ(q, a, x), q)∞)

Replacing a by q2a yields

(8) FΓ(q, q2a, z, Z)µ
(
(PΓ(q, q−2a−1, x), q)∞

)
= µ

(
(PΓ(q, q2a, x), q)∞

)
This can be simplified since PΓ(q, q2a, x) = PΓ(q, a, q−rotx) and PΓ(q, q−2a−1, x) = PΓ(q, a−1, qrotx)
So

(9) (PΓ(q, q2a, x), q)∞ = PΓ(q−1, a, x)(PΓ(q, a, x), q)∞

And

(10) PΓ(q, a−1, x)(PΓ(q, q−2a−1, x), q)∞ = (PΓ(q, a−1, x), q)∞

Substituting equation (9) into equation (8) we get:

(11) FΓ(q, q2a, z, Z)µ
(
(PΓ(q, q−2a−1, x), q)∞

)
= µ

(
PΓ(q−1, a, x)

)
µ ((PΓ(q, a, x), q)∞)

Multiplying equation (7) from the left by µ (PΓ(q−1, a, x)) and substituting Equation (10)
gives:

(12) µ
(
PΓ(q−1, a, x)

)
FΓ(q, a, z, Z)µ

(
PΓ(q, a−1, x)

)
µ
(
(PΓ(q, q−2a−1, x), q)∞

)
= µ

(
PΓ(q−1, a, x)

)
µ ((PΓ(q, a, x), q)∞)

Combining Equations (11) and (12) gives:

(13) FΓ(q, q2a, z, Z)µ
(
(PΓ(q, q−2a−1, x), q)∞

)
= µ

(
PΓ(q−1, a, x)

)
FΓ(q, a, z, Z)µ

(
PΓ(q, a−1, x)(PΓ(q, q−2a−1, x), q)∞

)
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Finally multiplying by the inverse of µ(PΓ(q, q−2a−1, x), q)∞ from the right we find:

FΓ(q, q2a, z, Z) = µ
(
PΓ(q−1, a, x)

)
FΓ(q, a, z, Z)µ

(
PΓ(q, a−1, x)

)
This concludes the proof of Theorem 1.3. �

5. Examples

5.1. Unknot. For the unknot our theorems specialize to the binomial theorem and its q-
generalization.

Let the unknot O be oriented counter-clockwise. We have no vertices and one single edge.
This means we have exactly two cycles: the empty cycle and the cycle C that is the whole
unknot.

Therefore P class
O = 1 + wC and so Theorem 1.1 states that∑

γ

〈O, γ〉wγ = F class
O,N (w) = (P class

O (w))N = (1 + wC)N

which is consistent with the binomial theorem and the classical evaluation

〈O, γ〉N(1) =

(
N

γ

)
Next, according to [MOY98] the quantum evaluation is

〈O, γ〉N(q) =

[
N
γ

]
where we are using the symmetric quantum binomial defined as[

n
k

]
=

[n]!

[n− k]![k]!
[n]! =

n∏
j=1

q
j
2 − q− j2
q

1
2 − q− 1

2

Theorem 1.2 now becomes a q-analogue of the binomial Theorem. First note that the empty
set has rotation number 0 an the cycle C rotation number 1, whose cycle variable we call xC .
The empty set has cycle variable 1. Since there is only one single half-edge and no vertex we
will use the commuting variables z and Z for it, so µ(xC) = zZ. In this notation we have

PO = 1 + a−
1
2 q

1
2xC

Theorem 1.2 now states that the generating series of evaluations

FO,N(q, z, Z) =
∑
γ

〈O, γ〉(q)zγZγ =
∑
γ∈N

[
N
γ

]
(zZ)γ

equals the following Pochhammer product:

µ(PO(q, qN , x), q)N = µ
N−1∏
k=0

(1 + q
1−N

2
+kx) = (−q

1−N
2 zZ, q)N
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The unknot is a positive so Theorem 1.3 applies, where (PO(q, a, x), q)∞ = (−q 1
2a−

1
2x, q)∞

In addition, all variables commute so we may write the theorem as

FO(q, a, z, Z) = µ

(
(PO(q, a, x), q)∞

(PO(q, a−
1
2 , x), q)∞

)
=

(−q 1
2a−

1
2 zZ, q)∞

(−q 1
2a

1
2 zZ, q)∞

.

Figure 3. The tetrahedron graph where we have indicated the names of the vertices and half

edges. The three non-empty cycles are indicated in red, green and blue.

5.2. Tetrahedron. The tetrahedron graph Γ shown in Figure 3 has four cycles, ∅ and three
non-empty cycles Cr Cg and Cb with classical cycle variables wr wg and wb. If 〈Γ, a, b, c〉N(q)
is the evaluation of the tetrahedron graph γ labeled with natural numbers a, b, c as indicated
in Figure 1 then Theorem 1.1 states:∑

a,b,c∈N

〈Γ, a, b, c〉(1)wbrw
c
gw

a
b = (1 + wr + wg + wb)

N

in accordance to the following direct evaluation, see [MOY98] and the multinomial theorem.

〈Γ, a, b, c〉N(1) =

(
N

a, b, c,N − a− b− c

)
The q-analogue of this formula is:

〈Γ, a, b, c〉N(q) =

[
N

a, b, c,N − a− b− c

]
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To see how Theorem 1.2 fits these numbers in a generating function, first note that the
rotation numbers of the cycles are rot(Cr) = rot(Cb) = 1 and rot(Cg) = −1. The corre-
sponding cycle variables xr, xg and xb can be expressed by the µ map as follows (with the
the variables in the canonical order):

µ(x∅) = 1

µ(xr) = z0,lz0,mz1,mz1,rz2,lz2,mz3,rz3,mZ3,MZ3,RZ2,MZ2,LZ1,RZ1,MZ0,MZ0,L

µ(xg) = z0,lz0,mz1,lz1,mz3,lz3,mZ3,MZ3,LZ1,MZ1,LZ0,MZ0,L

µ(xb) = z0,mz0,rz1,mz1,rz2,mz2,rZ2,RZ2,MZ1,RZ1,MZ0,RZ0,M

The intersection numbers of the cycles are: 〈xr, xg〉 = 1 〈xr, xb〉 = −1 〈xg, xb〉 = −1. From
this it follows that xrxg = qxgxr, xrxb = q−1xbxr and xgxb = q−1xbxg. This may also be
checked to follow from applying the µ map and the commutation relations for the half-edge
variables.

Next

PΓ(q, a, x) = 1 + a−
1
2 q

1
2xr + a

1
2 q−

1
2xg + a−

1
2 q

1
2xb

The generating function is equal to FΓ,N(q, z, Z) =∑
a,b,c

〈Γ, a, b, c〉N(q)za+b
0,l z

a+b+c
0,m zc0,rz

a
1,lz

a+b+c
1,m zb+c1,r z

b
2,lz

b+c
2,mz

c
2,rz

a
3,lz

a+b
3,m z

b
3,r×

Zb
3,rZ

a+b
3,mZ

a
3,lZ

c
2,rZ

b+c
2,mZ

b
2,lZ

b+c
1,r Z

a+b+c
1,m Za

1,lZ
c
0,rZ

a+b+c
0,m Za+b

0,l

By Theorem 1.2 this equals

µ(PΓ(q, qN , x), q)N = µ

N−1
2∏

j=−N−1
2

(1 + qjxr + q−jxg + qjxb)

The tetrahedron graph Γ in our example is not positive, rot(Cg) = −1, so Theorem 1.3
does not apply. However the green cycle may be turned into a positive cycle by moving its
ends to the left.

For several reasons this example may still be too simple in that there are no relations
between the cycles. For more complicated graphs, monomials can usually be written as
a product of cycles in multiple ways. Also a simple closed form evaluation in terms of
q-binomials is generally not to be expected.

Acknowledgment. The first author wishes to thank Christoph Koutschan for enlightening
conversations.
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