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Abstract. The purpose of the paper is to introduce some conjectures regarding the analytic continuation
and the arithmetic properties of quantum invariants of knotted objects. More precisely, we package the
perturbative and nonperturbative invariants of knots and 3-manifolds into two power series of type P and
NP, convergent in a neighborhood of zero, and we postulate their arithmetic resurgence. By the latter
term, we mean analytic continuation as a multivalued analytic function in the complex numbers minus a
discrete set of points, with restricted singularities, local and global monodromy. We point out some key
features of arithmetic resurgence in connection to various problems of asymptotic expansions of exact and
perturbative Chern-Simons theory with compact or complex gauge group. Finally, we discuss theoretical
and experimental evidence for our conjecture.
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1. Introduction

1.1. Chern-Simons theory and analytic continuation. Chern-Simons Quantum Field Theory in 3-
dimensions (perturbative, or non-perturbative) produces a plethora of numerical invariants of knotted 3-
dimensional objects. We introduce a packaging of these invariants into two power series: one that encodes
non-perturbative invariants (model NP), and one that encodes perturbative invariants (model P). The paper
is concerned with the analytic continuation, the asymptotic behavior and and arithmetic properties of those
power series.

Let us begin with a conjecture concerning the structure of nonperturbative quantum invariants. Consider
the generating series

(1) Lnp
M,G(z) =

∞
∑

n=0

ZM,G,nzn

of the Witten-Reshetikhin-Turaev invariants ZM,G,n (see Section 2) of a closed, oriented, connected 3-manifold
M , using a compact Lie group G and a level n ∈ N. The power series (1) is known to be convergent inside
the unit disk |z| < 1 since unitarity implies that ZM,G,n grows at most polynomially with respect to n; see
[Ga1].

Conjecture 1. (Analytic Continuation) For every pair (M, G) as above, the series Lnp
M,G(z) has analytic

continuation as a multivalued function on C\ eΛM,G, where eΛM,G ⊂ C is a finite set that contains zero and
the exponentials of the negative of the critical values of the complexified Chern-Simons action.

A key observation is that eΛM,G may contain elements inside the unit disk |z| < 1 despite the fact that
the power series Lnp

M,G(z) is analytic for z such that |z| < 1. One may compare this behavior with the power

series
∑∞

n=1 zn/n2 that define the classical dilogarithm, whose analytic continuation is a multivalued analytic
function in C \ {0, 1}. Schematically, the analytic continuation of Lnp

M,G(z) may be depicted as follows:

The above conjecture has the following features:

(a) It can be formulated for pairs (K, G) where K denotes a knotted object, i.e., a knot K in 3-space or
a closed 3-manifold M and G denotes a compact Lie group.
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(b) It implies via elementary complex analysis two well-known Asymptotic Conjectures in Quantum
Topology; namely the Volume Conjecture (in the case of knots), and the Witten Conjecture (in the
case of 3-manifolds). The complex analysis argument uses the Cauchy formula to write ZM,G,n as
a contour integral of Lnp

M,B(z)/zn+1 and then deform the contour around the singularities of the

integrand nearest to the origin. For a detailed discussion, see [CG1, Sec.7].
(c) It states a precise relation between exact Chern-Simons theory and its perturbation expansion around

a trivial (or not) flat connection. Namely, perturbation theory is simply the expansion of the multi-
valued function Lnp

M,G(z) around one of its singularities.

(d) It explains the effect of complexifying a compact gauge group and to the partition function of
the corresponding gauge theory. Indeed, analytic continuation captures the critical values of the
complexified action; compare also with [GM, Vo].

(e) The Conjecture can be extended to state-sum invariants of sum-product type that generalize ZM,G,n

and do not necessarily come from topology.
(f) The Conjecture has been proven for power series of 1-dimensional sum-product type, which includes

the case of the 31 and 41 knots; see [ES] and [CG2].
(g) The Conjecture can, and has been, numerically tested. See Section 7.

1.2. Chern-Simons theory and Symmetry. Our next conjecture is a Symmetry Conjecture. Recall that
M denotes an oriented 3-manifold; we let τM denote the orientation reversed manifold.

Conjecture 2. (Symmetry) For every pair (M, G) with M an integer homology sphere, we have:

(2) LM,G(z) := Lnp
τM,G(z) − Lnp

M,G(1/z)

has singularities at z = 0, 1,∞.

Let us make some comments regarding the above paradoxical statement:

(a) the left (resp. right) hand side is given by a convergent power series for |z| < 1 (resp. |z| > 1). Thus,
the power series never make sense simultaneously, but their analytic continuations do.

(b) Zagier calls a similar statement in [Za1, Eqn.7] a strange identity since the the two sides never make
sense simultaneously. Our Symmetry Conjecture is closely related to a modular property, at least for
the series studied by Kontsevich-Zagier; see [Za1, Sec.6].

(c) In physics, Equation (2) is usually called a duality.
(d) In algebraic geometry and number theory, one may compare (2) with the following symmetry for the

polylogarithm:

(3) Lik(z) + (−1)kLik(1/z) = − (2πi)k

k!
Bk

(

log(z)

2πi

)

where Lik(z) =
∑∞

n=1 zn/nk is the k-th polylogarithm and Bk(z) is the k-th Bernoulli polynomial;
see [Oe, Sec.1.3].

(e) In analysis one may use the above symmetry to deduce the asymptotic behavior (and even more,
the asymptotic expansion) of Lnp

M,G(z) for large |z|. In particular, if LM,G(z) = 0, it follows that

(4) Lnp
M,G(z) = 1 + O

(

1

z

)

for large |z|.
(f) The above symmetry may be explained by the fact that CS changes sign under orientation reversal.

Since the level is nonnegative, the path integral formula for Lnp
M,G(z) formally implies the above

symmetry.
(g) If we use the normalized invariants

(5) L̂np
M,G(z) =

∞
∑

n=0

ẐM,G,nzn, ẐM,G,n =
ZM,G,n

ZS3,G,n
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and if M is an integer homology sphere, then it is possible that

(6) L̂np
τM,G(z) − L̂np

M,G(1/z) = 0.

(h) When LM,G(z) = 0, it follows that the asymptotic expansion of Lnp
M,G around its singularities uniquely

determines Lnp
M,G. Indeed, the difference between two determinations is an entire function which is

bounded by a constant by the Symmetry Conjecture. Thus, the difference is identically zero.
(i) If M = M is amphicheiral (for example, M is given by a connected sum M = N#τN where τ is the

orientation reversing involution), then Equation (6) predicts that L̂np
M,G(z) = L̂np

τM,G(1/z).

1.3. Chern-Simons theory and P versus NP. So far, we considered nonperturbative quantum invari-
ants. Let us now consider perturbative quantum invariants of pairs (K, G). They can be packaged into a
power series Lp

M,G(z) which is convergent at z = 0. For a detailed definition, see Section 2.
Our next conjecture describes an explicit relation between the perturbative and nonperturbative quantum

invariants.

Conjecture 3. (Exact Implies Perturbative) For every integer homology sphere M we have:

(7) L̂np
M,G(1 + z) = log(z)Lp

M,G(log(1 + z)) + h(z)

where h(z) is a holomorphic function of z at z = 0 and L̂np
M,G(1 + z) denotes the analytic continuation at

1 + z along any path that avoids the singularities.

As before, we can extend Conjecture 3 to pairs (K, SU(2)), where K is a knot in 3-space.

Remark 1.1. In Écalle’s terminology (see [Ec1] and also [Sa, Sec.2.3]), if ∆z denotes the alien derivative in
the direction z, Conjecture 3 states that:

∆1L̂np
M,G(z) = Lp

M,G(log(1 + z))(8)

∆1−z∆zL̂np
M,G(z) = 0, for z ∈ C \ {0, 1}.(9)

Equation (9) is reminiscent of the condition z∧(1−z) ∈ ∧2(C∗) that defines the Bloch group; see for example
[Ga4].

Remark 1.2. The series Lp
K,G(z) also satisfies a Symmetry Property:

(10) Lp
τK,G(z) = Lp

K,G(−z).

Unlike the case of Conjecture 2, this is an easy corollary of its very definition.

Remark 1.3. Chern-Simons theory with complex gauge group was studied extensively by Gukov in [Gu].
It is an interesting problem to compare forthcoming work of Gukov-Zagier on modularity properties of the
quantum invariants with our conjectures.

1.4. Chern-Simons theory and arithmetic resurgence. Based on some partial results of [ES] and [CG2]

and stimulating conversations with O. Costin, J. Écalle and D. Zagier, more is actually expected to be true.
Namely, we expect arithmetic restrictions on the singularities of the series Lnp

M,G(z) and of its monodromy,
local and global. These restrictions lead us naturally to the notion of arithmetic resurgence, and the Gevrey
series of mixed type. In the rest of the paper, we will formulate these expected algebraic/arithmetic aspects
of quantum invariants in a precise way and to expose the reader to the wonderful world of resurgence,
introduced by Écalle in the eighties for unrelated reasons; [Ec1].

The logical dependence of the sections is the following:

Section 2 Section 3

Section 5 Section 4 Section 6

Section 7

AAAD � AAAD �[[[[[[[℄ u ��������
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2. Chern-Simons theory and invariants of knotted objects

2.1. Model NP: Non-perturbative invariants of 3-manifolds. In this section M will denote a closed
3-manifold and G will denote a simple, compact, simply connected group G. For example, G = SU(2).

The Witten-Reshetikhin-Turaev invariant is a map:

(11) ZM,G : N −→ C.

For a definition of ZM,G,n see [RT, Tu2, Wi]. Formally, for n ∈ N, ZM,G,n is the expectation value of
a path integral with a topological Chern-Simons Lagrangian at level n; see [Wi]. Since the Chern-Simons
Lagrangian takes values in R/Z, it follows that the level n has to be an integer number, which without loss
we take it to be nonnegative. We can convert the sequence (ZM,G,n) into a generating series as follows:

Definition 2.1. For every M and G as above, we define:

(12) Lnp
M,G(z) =

∞
∑

n=0

ZM,G,nzn

Unitarity of the Chern-Simons theory implies that for every M, G the sequence (ZM,G,n) grows polyno-
mially with respect to n. In other words, it was shown in [Ga1] that there exists positive constant C and
m ∈ N (that depend on M and G) so that

|ZM,G,n| < Cnm

for all n ∈ N. Thus, Lnp
M,G(z) is analytic inside the unit disk |z| < 1.

2.2. Model P: Perturbative invariants of 3-manifolds. The path integral interpretation of ZM,G,n

formally leads to a perturbation theory along a distinguished critical point of the Chern-Simons action,
namely the trivial flat connection. This gives rise to a graph-valued power series invariant, which has been
defined by Le-Murakami-Ohtsuki in [LMO]. Additional definitions of this powerful invariant were given by
Kuperberg-Thurston; see [KT]. More precisely, LMO define a graph-valued invariant ZLMO

M ∈ A(∅) where
A(∅) is a completed vector space of Jacobi diagrams. A Jacobi diagram of degree n is a trivalent graph
with 2n oriented vertices, considered modulo the AS and IHX relations; see [B-N]. Jacobi diagrams are
diagrammatic analogues of tensors on a Lie algebra with an invariant inner product. Indeed, given a simple
Lie algebra g, there is a weight system map that replaces a Jacobi diagram of degree n by a rational number
times x−n:

Wg : A(∅) −→ Q[[1/x]]

see [B-N]. Recall the Borel transform:

(13) B : Q[[1/x]] −→ Q[[z]], B
(

∞
∑

n=0

an

xn

)

=

∞
∑

n=0

an+1

n!
zn

Definition 2.2. Let Lp
M,g(z) denote the Borel transform of Wg ◦ ZLMO

M .

In [GL2] it was proven that if M is a homology sphere and g is a simple Lie algebra, then the formal
power series Wg ◦ ZLMO

M is Gevrey-1. In other words, Lp
M,g(z) is an analytic function in a neighborhood of

z = 0.

2.3. The critical values of the Chern-Simons action and the dilogarithm. Our main Resurgence
Conjecture 4 formulated in Section 4 below links the singularities of the analytic continuation of the series
Lnp
K,G(z) and Lp

K,G(z) to some classical geometric invariants of 3-manifolds, namely the critical values of the

complexified Chern-Simons function. Let us recall those briefly, and refer the reader to [GZ, Wi, Ne, Ga4]
for a more detailed discussion.

Let us fix a closed 3-manifold M , and simple, compact simply connected group G, and a trivial bundle
M × G with the trivial connection d. Let A denote the set of G-connections on M × G. There is a Chern-
Simons map:
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(14) CS : A −→ R/Z(2)

where, as common in algebraic geometry, we denote

(15) Z(n) = (2πi)nZ.

Even though A is an affine infinite dimensional vector space acted on by an infinite dimensional gauge group,
the set XG(M) of gauge equivalence classes of the critical points of CS is a compact semialgebraic set that
consists of flat G-connections. Up to gauge equivalence, the latter are determined by their monodromy. In
other words, we may identify:

(16) XG(M) = Hom(π1(M), G)/G

This gives rise to a map:

(17) CS : XG(M) −→ R/Z(2), A 7→ CS(A) =

∫

M

tr(A ∧ dA +
2

3
A ∧ A ∧ A).

Stokes’s theorem implies that CS is a locally constant map. Since XG(M) is a compact set, CS takes finitely
many values in R/Z(2). Let us now complexify the action; see also [Vo]. This means that we replace the
compact Lie group G by its complexification GC, the moduli space XG(M) by XGC

(M), and the Chern-
Simons action CS by CSC:

(18) CSC : XGC
(M) −→ C/Z(2)

CSC is again a locally constant map, and takes finitely many values in C/Z(2). Thus, we may define the
following geometric invariants of 3-manifolds.

Definition 2.3. For M and G as above, we define

ΛM,G = ∪ρ∈XGC
(M)(−CSC(ρ) + Z(2)) ⊂ C, eΛM,G = {0} ∪ exp

(

1

2πi
ΛM,G

)

⊂ C.(19)

Remark 2.4. Under complex conjugation (but keeping the orientation of the ambient manifold fixed), we

have CSC(ρ̄) = CSC(ρ). It follows that ΛM,G (resp.eΛM,G) is invariant under λ ↔ λ̄ (resp. λ ↔ 1/λ̄). The
involution λ ↔ 1/λ̄ preserves the set of rays through zero.

On the other hand, under orientation reversal, we have ΛτM,G = −ΛM,G and eΛτM,G = τeΛM,G, where
τ(λ) = 1/λ for λ 6= 0 and τ(0) = 0. We thank C. Zickert for help in identifying those involutions.

Thus, a typical picture for ΛM,G and eΛM,G \ {0} is the following:

Out[41]=
-1.0 -0.5 0.5 1.0

-1.0

-0.5

0.5

1.0

where the horizontal spacing between two dots in any horizontal line is 4π2 = 39.4784176044 . . . .
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Complexification is a key idea, theoretically, as well as computationally. For example, XGC
(M) is an

algebraic variety whereas its real part XG(M) is only a compact set with little structure. The only systematic
way (known to us) to give exact formulas for the critical values of CS is to actually compute the critical
values of CSC and then decide which of these are critical values of CS. For G = SU(2), there are exact and
numerical computer implementations for the critical values of CSC: see snap [Sn] and [Ne, DZ].

Complexification also reveals the arithmetic structure of ΛM,G: its elements are periods of weight 2 (in
the sense of Kontsevich-Zagier [KZ]), of a rather special kind. Namely, the critical values of CSC are Q-linear
combinations of the Rogers dilogarithm function evaluated at algebraic numbers. The latter is defined by:

(20) L(z) = Li2(z) +
1

2
log(z) log(1 − z) − π2

6

for z ∈ (0, 1) and analytically continued as a multivalued analytic function in C \ {0, 1}. Here, Li2(z) =
∑∞

n=1 zn/n2 is the classical dilogarithm function. For G = SU(2), our identification of the complexified
Chern-Simons action with [NZ, Ne, GZ] is as follows:

(21) CSC(ρ) = iVol(ρ) + CS(ρ).

For higher rank groups, exact formulas for the critical values of CSC may also be given in terms of the
Rogers dilogarithm function at algebraic numbers. This will be explained in detail in a separate publication.
As an illustration of the above discussion let us give an example.

Example 2.5. If M is obtained by 1/2 surgery on the 41 knot, then eΛ \ {0} consists of 13 points plotted as
follows:

-1 -0.5 0.5 1

-1

-0.5

0.5

1

In this picture, a higher resolution reveals that the points nearest to the vertical axis consist of two distinct
but close pairs. We thank C. Zickert for providing us with an exact and numerical computation of the critical
values of the complexified Chern-Simons map.

Let us end this section with a problem:

Problem 1. Give an direct relation between the cubic polynomial action (14) and the Rogers dilogarithm
(20).

A transcendental relation between the Chern-Simons action and the Rogers dilogarithm was given in [Ga4,
Sec.6.2], using the third algebraic K-theory group K ind

3 (C).

2.4. Extension to knots in 3-space. So far, the discussion involved closed 3-manifolds. Let us now
consider knots K in the 3-sphere. For simplicity, we will assume that G = SU(2) (so GC = SL(2, C)) in this
section.

Let us fix a knot K in 3-sphere and a nonnegative integer n. Let us denote by ZK,SU(2),n the Kashaev
invariant of K (see [Ka]), which is also identified by [MM] with the value of the Jones polynomial colored
by the n-th dimensional irreducible representation of sl2 evaluated at q = e2πi/n (and normalized to be 1 at
the unknot). Thus, we may define:
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(22) Lnp
K,SU(2)(z) =

∞
∑

n=0

ZK,SU(2),nzn

We define the perturbative invariant Lp
K,SU(2)(z) as follows:

(a) Take the sequence JK,n(q) ∈ Z[q±] of the Jones polynomials of n, colored by the n-dimensional
irreducible representation of sl2, and normalized by Junknot,n(q) = 1. See for example, [Tu1, Tu2].

(b) It turns out that there exists a power series JK(u, q) ∈ Q(u)[[q − 1]] so that JK(qn, q) = JK,n(q) ∈
Q[[q − 1]] for all n ∈ N; see for example [Ga2, GL3].

(c) Consider the power series JK(1, e1/x) ∈ Q[[1/x]].
(d) Define Lp

K,SU(2)(z) = B(JK(1, e1/x)) ∈ Q[[z]].

In [GL3] (resp. [GL2]) it was shown that Lnp
K,SU(2)(z) (resp. Lp

K,SU(2)(z)) is analytic for z in a neighborhood

of 0. Regarding the critical values of the Chern-Simons action, we will consider only parabolic SL(2, C)
representations; i.e., those representations so that the trace of every peripheral element is ±2. As in the case
of closed 3-manifolds, we may identify the moduli space of parabolic flat SL(2, C)-connections on the knot
complement with Xpar

SL(2,C)(K):

(23) Xpar
SL(2,C)(K) = Hompar(π1(S

3 \ K), SL(2, C))/SL(2, C)

In addition, we have a map, described in detail in [GZ]:

(24) CSC : Xpar
SL(2,C)(M) −→ C/Z(2)

CSC is again a locally constant map, and takes finitely many values in C/Z(2), and allows us to define the
sets ΛK,SU(2) and eΛK,SU(2).

Let us end this section with an example of the simplest knot 31 and the simplest hyperbolic knot 41.

Example 2.6. If K = 31 is the right hand trefoil knot 31, then

(25) eΛ = {eπi/12, 1, 0}

can be plotted as follows:

-1.0 -0.5 0.5 1.0

-1.0

-0.5

0.5

1.0

Example 2.7. If K = 41 is the simplest hyperbolic knot, then

(26) eΛ = {e−Vol(41)/(2π), 1, eVol(41)/(2π), 0}

can be plotted as follows:
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-1.0 -0.5 0.5 1.0

-1.0

-0.5

0.5

1.0

where

Vol(41) = −iLi2(e
2πi/6) + iLi2(e

−2πi/6) = 2.02988321281930725004240510855 . . .

is the Volume of 41; see [Th], and numerically,

e−Vol(41)/(2π) = 0.72392611187952434703122933736 . . .

eVol(41)/(2π) = 1.38135644451849779337146695685 . . .

3. Arithmetic resurgent functions

3.1. Resurgent functions. The arithmetic nature of ΛM,G is only the beginning. It turns out that

(a) the Ray-Singer torsion invariants associated to a GC-representation of π1(M) are also algebraic
numbers (this is proven and discussed in detail in [DG]),

(b) in case M is hyperbolic and G = SU(2) the geometric representation is defined over a number field;
see [MR],

(c) the perturbative expansions of the quantum invariants ZM,G,n around an GC-representation of π1(M)
are conjectured to be algebraic numbers; see for example [GM] and [CG1].

The need to formulate these algebricity properties in a uniform way, as well as some results in some key
cases, lead us to the notion of an arithmetic resurgent series, which is the focus of this section.

Along the way, we will also discuss the auxiliary notion of a Gevrey series of mixed type, perhaps of
interest on its own.

Resurgence was coined by Écalle in his study of analytic continuation of formal and actual solutions of

differential equations, linear or not; see [Ec1]. An earlier term used by Écalle was the notion of endless
analytic continuation. The concept of resurgence has influenced our thinking deeply. Unfortunately, it is not
easy to find an accepted definition of resurgence, or a reference for it in the literature. On the other hand,
there are several expositions of instances of resurgence, covering special cases of this rather general notion.
The curious reader may consult [Co1, Co2, Dl, Ml, Sa] for a detailed discussion in addition to the original
work [Ec1].

Given the gap in the literature, we will do our best to give a working (and exact) definition of resurgence,
which features some properties which are arithmetically important, and analytically rare. Let us begin by
recalling the monodromy of multivalued germs of interest in this paper. We refer the reader to [Ml] for further
details. The next definition is motivated by the types of singularities that appear in algebraic geometry; see
[Kz].

Definition 3.1. A multivalued analytic germ f(z) at z = 0 is called quasi-unipotent if its monodromy T
around 0 satisfies the condition:

(27) (T r − 1)s = 0

for some nonzero natural numbers r and s.
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It is easy to see that a quasi-unipotent germ f(z) can be written as a finite sum of germs of the form:

(28)
∑

α,β

cα,βzα(log(z))βhα,β(z)

where α ∈ Q, β ∈ N, and hα,β(z) ∈ C{z}0, where C{z}0 is the ring of power series convergent at z = 0
(identified with the ring of germs of functions analytic at z = 0). See for example, [Ml]. Series of the form
(28) are often known in the literature as series of the Nilsson class; see [Ni1, Ni2].

The rationality of the exponents {α} above is an important feature that always appears in algebraic
geometry and arithmetic and rarely appears in analysis. For a further discussion; see [Ga5].

Definition 3.2. We say that G(z) =
∑∞

n=0 anzn is an resurgent series (and write G(z) ∈ RES) if

(a) G(z) is convergent at z = 0.
(b) G(z) has analytic continuation as a multivalued function in C \ Λ, where Λ ⊂ C is a discrete subset

of C.
(c) The local monodromy is quasi-unipotent.

In what follows, we will make little distinction between a germ, its analytic continuation, and the corre-
sponding function. So, we will speak about the algebra of resurgent functions.

3.2. Gevrey series of mixed type. The following definition is motivated by the properties of some power
series that are associated to knotted 3-dimensional objects.

Definition 3.3. We say that series G(z) =
∑∞

n=0 anzn is a Gevrey series of mixed type (r, s) if

(a) r, s ∈ Q and the coefficients an lie in a number field K, and
(b) there exists a constant C > 0 so that for every n ∈ N the absolute value of every Galois conjugate

of an is less than or equal to Cnn!r, and
(c) the common denominator of a0/0!s, . . . , an/n!s is less than or equal to Cn.

Remark 3.4. If G(z) is Gevrey of mixed type (r, s) and r′ ≥ r, s′ ≤ s, then G(z) is also Gevrey of mixed
type (r′, s′).

Let CGM{z} (resp. CGM{z}r,s) denote the Q[z]-algebra of Gevrey series of mixed type (resp. mixed type
(r, s)).

Remark 3.5. The Gevrey series of mixed type (r, r) are precisely the important class of arithmetic Gevrey
series of type r, introduced and studied by André; see [An].

Remark 3.6. A G-function G(z) in the sense of Siegel is a Gevrey series of mixed type (0, 0) which is
holonomic, i.e., it satisfies a linear ODE with coefficients in Q[z]; see [An, Bo, DGS].

3.3. Arithmetic resurgent functions. Restricting the functions hα,β(z) in (28) to be Gevrey series of
type (0, s), we arrive at the notion of an arithmetic quasi-unipotent germ.

Definition 3.7. We say that a multivalued analytic germ f(z) at z = 0 is arithmetic quasi-unipotent if it
can be written as a finite sum of germs of the form (28) where hα,β(z) ∈ CGM{z}.

Combining this definition with the notion of a resurgent function, we arrive at the notion of an arithmetic
resurgent function. Let P ⊂ C denote the countable set of periods in the sense of Kontsevich-Zagier; see
[KZ].

Definition 3.8. We say that G(z) =
∑∞

n=0 anzn is an arithmetic resurgent series (and write G(z) ∈ ARES)
if

(a) G(z) is a resurgent series.
(b) The singularities Λ of G(z) is a discrete subset of P , where P denotes the set of periods as defined

by Kontsevich-Zagier; see [KZ].
(c) The local monodromy is arithmetic quasi-unipotent.
(d) The global monodromy is defined over Q̄.



CHERN-SIMONS THEORY, ANALYTIC CONTINUATION AND ARITHMETIC 11

3.4. The Taylor series of an arithmetic resurgent function. In a separate publication we will give
the proof of the following proposition which shows that the coefficients of the Taylor series at the origin of
an arithmetic resurgent function have asymptotic expansions themselves. The transseries conclusion of the
proposition below (without any claims on the mixed Gevrey type) follows from the resurgence hypothesis
on G(z) alone, and are studied systematically in the upcoming book of Costin [Co2], as well as in [Co3].

Proposition 3.9. If G(z) =
∑∞

n=0 anzn is arithmetic resurgent, then

an ∼
∑

λ

λ−nfλ

(

1

n

)

where the sum is over the finite set of singularities of G(z) nearest to the origin, and fλ(z) is a finite sum
of series of the form (28) where hα,β,λ(z) are Gevrey of mixed type (1, s) (for some s).

3.5. Arithmetic invariants of arithmetic resurgent functions. Obvious arithmetic invariants of an
arithmetic resurgent function G(z) are:

(a) The set of singularities Λ ⊂ P .
(b) The local quasi-unipotent monodromy, and its field of definition.
(c) The global monodromy, defined over Q̄.

3.6. G-functions are arithmetic resurgent. This section is logically independent of the rest of the paper
and can be skipped at first reading, although it provides some useful examples of arithmetic resurgent
functions. A main example of arithmetic resurgent functions comes from the following theorem of André.

Theorem 1. G-functions are arithmetic resurgent with singularities a finite set of algebraic numbers.

G-functions arise naturally in three contexts:

(a) From geometry, related to the regularity of the Gauss-Manin connection.
(b) From arithmetic.
(c) From enumerative combinatorics.

For a geometric construction of resurgent functions, let us recall the following result from [Kz]; see also
[De, Br]. Let S/C be a projective non-singular connected curve and S = S \ {p1, . . . , pr} the complement of
a finite set of points. Suppose that

π : X −→ S

is a proper and smooth morphism. For every i, the algebraic de Rham cohomology H i
dR(X/S) is an algebraic

differential equation on S, and the local system Hi(Xs, C) (for s ∈ S) is the local system of germs of solutions
of that equation. Let T denote the local monodromy around a point pi. Then, we have the following theorem.

Theorem 2. [Ka] The algebraic differential equation is regular singular and the local monodromy T is
quasi-unipotent.

The G-functions obtained by Theorems 2 and 1 are closely related. The main conjecture is that all G-
functions come from geometry. For a discussion of this topic, and for a precise formulation of the Bombieri-
Dwork Conjecture, see the survey papers of [Bo, Ka] and also [To, p.8].

Let us discuss a third source of resurgent functions, which was discovered recently by the author in [Ga5].

Definition 3.10. A hypergeometric term tn,k (in short, general term) in variables (n, k) where k = (k1, . . . , kr)
is an expression of the form:

(29) tn,k = Cn
0

r
∏

i=1

Cki

i

J
∏

j=1

Aj(n, k)!ǫj

where Ci ∈ Q for i = 0, . . . , r, ǫj = ±1 for j = 1, . . . , J , and Aj are integral linear forms in the variables
(n, k). We assume that for every n ∈ N, the set

(30) {k ∈ Zr |Aj(n, k) ≥ 0, j = 1, . . . , J}
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is finite. We will call a general term balanced if in addition it satisfies the balance condition:

(31)

J
∑

j=1

ǫjAj = 0.

Given a balanced term t, consider the corresponding sequence (at,n) defined by

(32) at,n =
∑

k

tn,k

where the summation index lies in the finite set (30), and the corresponding generating series:

(33) Gt(z) =

∞
∑

n=0

at,nzn ∈ Q[[z]].

We will call sequences of the form (at,n) balanced multisum sequences.

Theorem 3. [Ga3] For every balanced term t, the generating series Gt(z) is a G-function.

Let us point out that the proof of Theorem 3 in general offers no help of locating the singularities of the
function Gt(z). To fill this gap, the author developed an efficient ansatz for the location of the singularities
of Gt(z); see [Ga3].

4. An arithmetic resurgence conjecture

A knotted object K denotes either a closed 3-manifold M or a knot K in 3-space. A pair (K, G) denotes
either a closed 3-manifold M and a compact Lie group G, or a knot K = K in 3-space and G = SU(2). If
G = SU(2) and M or K is hyperbolic, let

(34) Λgeom
K,G = ∪ρ(−CSC(ρ) + Z(2))

denote the critical values of the Galois conjugates ρ of the geometric SL(2, C)-representation.
We now have all the ingredients to formulate our Arithmetic Resurgence Conjecture, which is a refinement

of the Analytic Continuation Conjecture 1.

Conjecture 4. (Arithmetic Resurgence) For every pair (K, G), Lnp
K,G(ez/(2πi)) and Lp

K,G(z) are arithmetic

resurgent with possible singularities in the set ΛK,G. If K is hyperbolic and G = SU(2), then the singularities
of the above functions include Λgeom

K,G .

Conjecture 4 implies the following corollaries.

Corollary 4.1. For every pair (K, G), the power series Lnp
K,G(z) has analytic continuation as a multivalued

function on the complement C \ eΛK,G of the finite set eΛK,G.

Corollary 4.2. If M is a closed hyperbolic 3-manifold, then the Witten-Reshetikhin-Turaev invariants de-
termine the Volume of M by:r

(35) e−Vol(M)/(2π) = min{|λ| | Lnp
M,SU(2)(z) is singular at z = λ 6= 0}.

This follows from the fact that Lnp
M,SU(2)(z) has a singularity at

e−(CSC(ρ)+Z(2))/(2πi) = e−Vol(ρ)/(2π)+iθρ

and Vol(ρ) ≤ Vol(ρM ) = Vol(M) where ρM is a discrete faithful representation.

Corollary 4.3. Witten’s conjecture (formulated in [Wi]) regarding the asymptotic expansion of the Witten-
Reshetikhin-Turaev invariants holds.
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Corollary 4.4. For every hyperbolic knot K in 3-space, the Kashaev invariants determine the Volume of
K by:

(36) e−Vol(K)/(2π) = min{|λ| | Lnp
K,SU(2)(z) is singular at z = λ 6= 0}.

Moreover, there is an asymptotic expansion of the Kashaev invariants in powers of 1/n using Proposition
3.9.

5. The Habiro ring, and P versus NP

In this section we we describe an arithmetic relation, due to Habiro, between the perturbative Lp
K,G(z) and

the non-perturbative Lnp
K,G(z) invariants of knotted objects. This section is independent of our conjecture.

However, Habiro’s results

(a) are a good complement of our conjecture,
(b) are important and interesting on their own right,
(c) point to a different arithmetic origin for the invariants of knotted objects. This point of view has

been studied by Gukov-Zagier [GZa].

In this section, a knotted object K denotes either a homology sphere M or a knot K. For simplicity,
we will assume that G = SU(2). A theorem of Habiro implies that Lnp

K,SU(2)(z) determines Lp
K,SU(2)(z) and

vice-versa; [Ha1, Ha2]. Let us explain more about Habiro’s key results. In [Ha2] Habiro introduces the ring

(37) Ẑ[q±] = lim
←n

Z[q±]/((q)n)

where (q)n is the quantum n-factorial defined by:

(38) (q)n =

n
∏

k=1

(1 − qk)

with (q)0 = 1. In a sense, one may think of elements of the Habiro ring as complex-valued analytic functions
with domain Ω, the set of complex roots of unity. This way of thinking is motivated by the following features
of the Habiro ring, shown in [Ha1, Ha2]:

(a) It is easy to see that every element f(q) ∈ Ẑ[q±] can be written (nonuniquely) in the form:

(39) f(q) =

∞
∑

n=0

fn(q)(q)n, fn(q) ∈ Z[q±], for n ∈ N.

Note however that the above form is not unique, since for example:

1 =

∞
∑

n=0

qn+1(q)n.

Nevertheless the form (39) can be used to generate easily elements of the Habiro ring.
(b) Elements of the Habiro ring can be evaluated at complex roots of unity. In other words, there is a

map:

(40) Ẑ[q±] −→ CΩ, f(q) −→ (f : Ω −→ C, ω 7→ f(ω)) .

In particular, we can associate a map:

(41) Ẑ[q±] −→ C[[z]], f(q) −→ Lnp
f (z) = 1 +

∞
∑

n=1

f(e2πi/n)zn.

(c) Elements of the Habiro ring have Taylor series expansions around q = 1 (and also around every
complex root of unity). In other words, we can define a map:

(42) Ẑ[q±] −→ Q[[z]], f(q) −→ Lp
f (z) = B(f(e1/x)).
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(d) As in the case of analytic functions, the maps (41) and (42) are 1-1. Thus, Lnp
f (z) determines Lp

f(z)

and vice-versa. However, we need all the coefficients of the power series Lnp
f (z) to determine a single

(eg. the third) coefficient of Lp
f (z).

(e) Given a homology sphere M , there exists an element fM,SU(2)(q) ∈ Ẑ[q±] such that its image under
the maps (41) and (42) coincide with the non-perturbative and perturbative invariants of M discussed
in Section 2.1 and 2.2. This was a main motivation for Habiro, and was extended to knots in 3-space
by Huynh-Le in [HL].

One may ask for an extension of Conjecture 4 for the series Lnp
f (z) and Lp

f(z) that come from the Habiro

ring. Unfortunately, the Habiro ring is uncountable (whereas all quantum invariants of knotted objects lie in
a countable subring) and it has little structure as such. Thus, it is unlikely that the series Lnp

f (z) associated

to a random sequence of Laurent polynomials (fn(q)) (as in (39)) will be resurgent. Concretely, we can pose
the following problem with overwhelming numerical evidence:

Problem 2. Show that Lnp
f (z) is not resurgent when

(43) f(q) =
∞
∑

n=0

q2n

(q)n.

In [GL4], Le and the author introduced a countable subring Ẑ[q±]
hol

that consists of elements of the form:

(44) f(q) =

∞
∑

n=0

fn(q)(q)n, fn(q) ∈ Z[q±], (fn(q)) is q-holonomic

where q-holonomic means that (fn(q)) satisfies a linear q-difference equation with coefficients in Q[q±, q±n];
see [WZ]. In [GL4] it was shown that the elements fM,SU(2)(q) and fK,SU(2)(q) of the Habiro ring actually

lie in the countable subring Ẑ[q±]
hol

.

Problem 3. Show that for every f ∈ Ẑ[q±]
hol

, the series Lnp
f (z) and Lnp

f (z) are arithmetic resurgent.

In the next section, we will discuss formulate a resurgence conjecture for some special elements of the
Habiro ring that do not always come from topology.

6. Series of Sum-Product type

Conjecture 4 and Problem 3 ask for proving that certain power series are arithmetic resurgent. However,
they do not explain the source of resurgence. Usually, resurgence is associated with a differential equation,
linear or not; see for example [Ec1] and also [Co1, Sa].

In this section we will give another construction of powers series Lnp(z) and Lp(z) which aims to explain
the origin of arithmetic resurgence. This section was motivated by conversations with O. Costin and J.

Écalle whom we thank for their generous sharing of their ideas.
Let us first introduce the notion of series of Sum-Product type.

Definition 6.1. Consider function F analytic in [0, 1] with F (0) = 0 and the corresponding sequence and
series of sum-product type:

an =

n
∑

k=1

k
∏

j=1

F

(

j

n

)

(45)

= F

(

1

n

)

+ F

(

1

n

)

F

(

2

n

)

+ · · · + F

(

1

n

)

F

(

2

n

)

. . . F
(n

n

)

and the corresponding series

(46) Lnp(z) =
∞
∑

n=1

anzn ∈ C[[z]].
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Since F (0) = 0, it follows that the formal power series

(47) ΣΠ(x) :=

∞
∑

n=1

n
∏

j=1

F

(

j

x

)

∈ C[[
1

x
]]

is also well-defined. Let Lp(z) denote the Borel transform:

(48) Lp(z) = B (ΣΠ(x)) ∈ C[[z]].

Let us now give a flavor of some results from [CG2] and [ES]. In the rest of the section, let us consider F
of the following trigonometric type:

(49) F (x) = φ(e2πix)

where

(50) φ(q) = ǫqc n(n+1)
2

∞
∏

r=1

(1 − qr)cr

where c ∈ Z, ǫ = ±1, cr ∈ N for all r, and cr = 0 for all but finitely many r. In [Ga4] we construct elements
of the extended Bloch group, given by solutions of the algebraic equations:

(51) φ(q) = 1 or φ(q) = 0.

The values of these elements under the Rogers dilogarithm defines a set Λ ⊂ C, and its exponentiated cousin
eΛ = exp(Λ/(2πi)) ∪ {0}.
Theorem 4. [CG2, ES] Lnp(z) and Lp(z) are arithmetic resurgent with singularities included in Λ.

Remark 6.2. Notice that Lnp(z) = Lnp
f (z) and Lp(z) = Lp

f (z) where

f(q) =

∞
∑

n=0

ǫnqcn
∞
∏

r=1

(qr)cr
n

is an element of the countable Habiro subring Ẑ[q±]
hol

, where

(qr)n =
n
∏

k=1

(1 − qkr).

Thus, Theorem 4 is a special case of Problem 2.

Remark 6.3. Equations (51) appear in the dilogarithm ladders of Lewin and others, whose aim is to produce
interesting elements of algebraic K-theory. For a detailed discussion, see [Le] and [Za2].

Remark 6.4. For the simplest knot 31 and the simplest hyperbolic knot 41, we have:

Lnp
31,SU(2)(z) = Lnp

f31
(z), Lnp

41,SU(2)(z) = Lnp
f41

(z)

(and likewise, equality for the Lp-series), where

f31(q) =

∞
∑

n=0

(q)n

f41(q) =
∞
∑

n=0

(−1)nq−
n(n+1)

2 (q)2n

are both covered by Theorem 4.

Remark 6.5. The resurgence conclusion of Theorem 4 is valid for very general entire functions F , with some
mild hypothesis. For a detailed discussion, see [ES] and [CG2].
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7. Evidence

7.1. Some results. Let us summarize what is known about Conjecture 4. Conjecture 4 is known

(a) for all 3-manifolds M of the form Σ × S1 where Σ is a closed surface and all compact groups G.
Indeed, this follows from the fact that ZM,G,n is a polynomial in n. Thus, Lnp

M,G(z) is a rational

function of z with denominator a power of 1 − z. On the other hand, eΛM,G = {0, 1}.
(b) for Lp

M,SU(2) where M is the Poincare homology sphere, or small Seifert fibered 3-manifolds, see

[CG1]. In this lucky case, one uses explicit formulas for the coefficients of Lp
M,SU(2)(z) given Zagier

(see [Za1]) which allow one show resurgence relatively easily.
(c) for the simplest knot 31 (and also for (2, p) torus knots); and for the simplest hyperbolic knot 41;

see [CG1] and [CG2]. See Remark 6.4.

Our sample calculations below show the importance of the fractional polylogarithms and their analytic
continuation, studied in detail in [CG3].

7.2. Conjecture 4 for S3. Let us confirm Conjecture 4 for S3. For simplicity, we will choose G = SU(2).
The case of other Lie groups is similar. The Witten-Reshetikhin-Turaev invariant is given by [Wi, Eqn.2.26]:

(52) ZS3,SU(2),n =

√

2

n + 2
sin

(

π

n + 2

)

.

Expanding the above as a convergent power series in 1/n:

ZS3,SU(2),n =
√

2

∞
∑

k=0

π2k+1(−1)k

(2k + 1)!

1

(n + 2)2k+3/2

and using the fractional polylogarithm Lα(z) defined for α ∈ C and |z| < 1 by the convergent series:

(53) Liα(z) =

∞
∑

n=1

zn

nα

it follows that

(54) Lnp
S3,SU(2)(z) =

√
2

z2

∞
∑

k=0

π2k+1(−1)k

(2k + 1)!

(

Li2k+3/2(z) − ζ(2k + 3/2)
)

.

Since Liα(z) has analytic continuation as a multivalued function in C \ {0, 1} (see [CG3]), it follows that
Lnp

S3,SU(2)(z) has analytic continuation on C \ {0, 1}. We can further compute the monodromy around z = 0

and z = 1 using [CG3].

7.3. Conjecture 4 for S1 × Σg. Let us confirm Conjecture 4 for 3-manifolds of the form S1 × Σg. For
simplicity, we will choose G = SU(2). The case of other Lie groups is similar. The Witten-Reshetikhin-Turaev
invariant is given by the famous Verlinde formula [Wi, Sz]:

(55) ZS1×Σg,SU(2),n =

n+1
∑

j=1

(

n + 2

2 sin2 πj
n+2

)g−1

Altough not a priori obvious, it it true that the right hand side of the above expression is a polynomial in n
of degree 3g − 3. In fact, we have [Sz, Sec.3]:

(56) ZS1×Σg,SU(2),n = −(2n + 2)g−1Res

(

(n + 2) cot((n + 2)x)

(2 sin x)2g−2
, x = 0

)

when g ≥ 2. For example, we have,
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ZS1×Σ0,SU(2),n = 1

ZS1×Σ1,SU(2),n = n + 1

ZS1×Σ2,SU(2),n =
n3

6
+ n2 +

11n

6
+ 1

It follows that Lnp
S1×Σg,SU(2)(z) is a rational function with denominator a power of z − 1. For example, we

have:

Lnp
S1×Σ0,SU(2)(z) =

1

1 − z

Lnp
S1×Σ1,SU(2)(z) =

1

(1 − z)2

Lnp
S1×Σ2,SU(2)(z) =

1

(1 − z)4

Since XG(S1 ×Σg) is connected for all g and G, it follows that eΛS1×Σg,G = {0, 1} confirming Conjecture 4.

7.4. Conjecture 4 for 31. Let us give some details about how the work of [Za1] and [CG1] verify Conjecture
4 for the simplest 31 knot. An independent verification of the Conjecture, valid for series of sum-product
type, can be obtained by [ES].

Equation (36) of [Za1] and [CG1] imply that we can write:

Z31,SU(2),n = ζ−n+3
24 n3/2 + 1 +

∫ ∞

0

e−npG(p)dp

where ζc = e2πic and G(z) is a multivalued analytic function (analytic at z = 0):

(57) G(z) =
3π

2
√

2

∞
∑

n=1

χ(n)n

(−z + n2π2/6)5/2

where χ(·) denotes the unique primitive character of conductor 12:

(58) χ(n) =











1 if n ≡ 1, 11 mod 12

−1 if n ≡ 5, 7 mod 12

0 otherwise

Together with Proposition 3.9, this implies that the singularities of Lnp
31,SU(2)(z) are {0, 1, eπi/12}. More-

over, the local expansion of Lnp
31,SU(2)(z) around z = eπi/12 is given by:

Lnp
31,SU(2)(z) =

∞
∑

n=1

ζ−n+3
24 n3/2zn + h(z)

= ζ8 Li−3/2(ζ−24z) + h(z)

where h(z) is a function holomorphic at z = 0. Since Li−3/2(z) is multivalued analytic at C \ {0, 1} (see
[CG3]), this confirms Conjecture 4 for 31. Using a Mittag-Leffler type decomposition for the fractional
polylogarithm from [CG3, Eqn.13], we can also verify the Symmetry Conjecture for 31.

7.5. Numerical evidence for the nearest singularity. Conjecture 4 gives an exact formula for the
singularity of Lp

K,SU(2)(z) which is nearest to the origin. Notice that this singularity does not in general

coincide with the critical value of CSC corresponding to the discrete faithful representation. This was indeed
observed numerically for several twist knots. Let Kp denote the twist knot with negative clasp and p full
twists, where p ∈ Z:
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...

full twists
p

In particular, we have:

(59) K1 = 31, K2 = 52, K3 = 72, K4 = 92, K−1 = 41, K−2 = 61, K−3 = 81, K−4 = 101.

The invariant trace field of Kp is of type [1, p − 1] for p > 1 and [0, |p|] for p < 0. It follows that ΛKp,SU(2)

is a subset of a union of 2(p − 1) (resp. 2|p|) horizontal lines, symmetric with respect to the z-axis, and a
superposition of 2 (resp. 1) copies of the z-axis for p > 1 (resp. p < 0). This set can be computed exactly
and numerically using the methods of [GZ].

The corresponding element of the Habiro ring is given by:

(60) fKp,SU(2)(q) =

∞
∑

n=0

CKp,n(q)(q)n(q−1)n

where CKp,n(q) ∈ Z[q±] denote the n-cyclotomic polynomial of Kp. The latter may be computed inductively
with respect to n for each fixed p, see [GS].

Using this formula, one can compute 500 coefficients of Lp
Kp,SU(2)(z) = B(fKp,SU(2)(e

1/x)), and then

numerically compute the singularity of the series Lp
Kp,SU(2)(z) nearest to the origin. The numerical method

used was the following:

• Fix a truncated power series

L(z) =

N
∑

n=0

anzn

where N is a sufficiently large integer (eg N = 500).
• Using the root test, one can compute approximately the radius of convergence r0 of the series L(z)
• Plot |L(r exp(2πit)| for r near the inverse of the radius of convergence. The plot reveals a blow-up

at certain values t0 of t.
• This suggests singularities at r0e

2πit0 , and an asymptotic expansion of an with a term of the form:

r−n
0 e−2πit0nnα

(

c0 + c1
1

n
+ . . .

)

In general, we have a finite sum (over t0) of terms of the above form.
• One can numerically compute the constants α and c0 by fitting data. A fitting method (also used by

Zagier in [Za1, p.953]) can improve the rate of convergence to O(1/nd) for any d. We used d = 100.

This was done for the twist knots of Equation (59). If s(Kp) denote the inverse of the radius of convergence
of the series Lp

Kp,SU(2)(z) then we obtain numerically that:

s(K1) =
π2

6
= 1.644 . . . s(K2) = 1.119 . . . s(K3) = 0.882 . . . s(K4) = 0.745 . . . s(K5) = 0.745 . . .

These numbers agree with the absolute value of eCSC(ρ)/(2πi) for ρ some Galois conjugate of the discrete
faithful representation. We thank N. Dunfield, S. Shumakovitch and C. Zickert for their help in the numerical
computations.

Additional numerical evidence for K1 and K−1 (and for many series of 1-dimensional sum-product type)
was obtained by [ES].
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Appendix A. A formal relation among Lnp(z) and Lp(z) for series of sum-product type

In this section we will give a formal proof of the relation among Lnp(z) and Lp(z) for series of sum-product
type. We will use the notation from Section 6.

Suppose that F (x) < 1 for all x ∈ (0, 1]. Then, it is easy to see that Lnp(z) is convergent inside the unit
disk |z| < 1. The next theorem describes an explicit relation between Lnp(z) and Lp(z).

Theorem 5. We have:

(61) Lnp(1 + z) = log(z)Lp(log(1 + z)) + h(z)

where h(z) is analytic at z = 0.

Proof. We will give only the formal calculation, leaving the analytic details to the reader. Below, h(z) will
denote a germ of an analytic function at z = 0. For n ∈ N, let cn denote the coefficient of 1/xn in ΣΠ(x)
given in (47). Let us fix N ∈ N and consider n large enough. Then, we have:

an =
N
∑

k=1

k
∏

j=1

F

(

j

n

)

+ O

(

1

nN+1

)

=

N
∑

k=1

ck

nk
+ O

(

1

nN+1

)

.

Thus,

Lnp(z) =

∞
∑

n=1

anzn

=
∞
∑

n=1

(

N
∑

k=1

ck

nk
+ O

(

1

nN+1

)

)

zn.

Ignore the O(·) terms, and interchange summation and integration. We obtain that

∞
∑

n=1

N
∑

k=1

ck

nk
zn =

N
∑

k=1

ck

∞
∑

n=1

zn

nk

=

N
∑

k=1

ckLik(z),

where

Lik(z) =

∞
∑

n=1

zn

nk

is the k-polylogarithm. The latter is a multivalued analytic function on C \ {0, 1} with an asymptotic
expansion at z = 1 of the form:

Lik(z) = log(z − 1)
log(z)k−1

(k − 1)!
+ h(z)
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where h(z) is an analytic function at z = 0; see for example, [Oe, Eqn.6]. Thus,

∞
∑

n=1

N
∑

k=1

ck

nk
zn = log(z − 1)

N
∑

k=1

ck
logk−1(z)

(k − 1)!
+ h(z).

Letting N → ∞, and replacing z by z + 1 it follows that:

Lnp(1 + z) = log(z)

∞
∑

k=1

ck
logk−1(1 + z)

(k − 1)!
+ h(z)

= log(z)Lp(log(1 + z)) + h(z).

This concludes the formal calculation. �

Appendix B. A path integral formula for Lnp(z)

In this section we will give a path integral formula for Lnp
M,G(z) using as input the famous Chern-Simons

path integral studied in the seminal paper of Witten; see [Wi]. With the notation of [Wi] and with our
normalization we have:

ZM,G,n =

∫

A

e
n

2πi
CS(A)DA

where A is the affine space A of G-connections on the trivial bundle M × G over M . Since CS takes values
in C/Z(2), we require that the level n (which plays the role of the inverse Planck’s constant) be integer.
Without loss of generality, we assume that n ∈ N. Formally separating the n = 0 contribution in (12) and
interchanging summation and integration in (12), it follows that

Lnp
M,G(z) = 1 +

∫

A

∞
∑

n=1

e
n

2πi
CS(A)zndA

= 1 + z

∫

A

1

e−
n

2πi
CS(A) − z

DA.

The above formula is an infinite dimensional analogue of a Riemann-Hilbert problem, and was obtained
during a conversation with Kontsevich in the fall of 2006. For a detailed discussion on the Riemann-Hilbert
problem, see [Df]. Finite dimensional analogues of the Riemann-Hilbert problem are discussed in [CG2].
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211–338.
[Wi] E.Witten, Quantum field theory and the Jones polynomial, Commun. Math. Physics. 121 (1989) 360–376.
[WZ] H. Wilf and D. Zeilberger, An algorithmic proof theory for hypergeometric (ordinary and q) multisum/integral iden-

tities, Inventiones Math. 108 (1992) 575–633.
[Za1] D. Zagier, Vassiliev invariants and a strange identity related to the Dedekind eta-function, Topology 40 (2001)

945–960.
[Za2] , The dilogarithm function, in Frontiers in number theory, physics, and geometry. II Springer (2007) 3–65.
[Ze] D. Zeilberger, A holonomic systems approach to special functions identities, J. Comput. Appl. Math. 32 (1990)

321–368.
[Zi] C. Zickert, The Chern-Simons invariant of a representation, preprint 2007 arXiv:0710.2049.

School of Mathematics, Georgia Institute of Technology, Atlanta, GA 30332-0160, USA, http://www.math.gatech

.edu/∼stavros

E-mail address: stavros@math.gatech.edu


