
COMPLETE INTEGRABILITY OF HAMILTONIAN

SYSTEMS AFTER ANTON THIMM

WERNER BALLMANN

1. Introduction

In these lecture notes, I explain the complete integrability of geodesic
flows and other Hamiltonian systems after the method developed by Anton
Thimm [7, 8]. I assume that the reader is familiar with basic Riemannian
geometry and is willing to delve into some symplectic geometry.

We say that the Hamiltonian system associated to a smooth function on
a symplectic manfold M of dimension 2n is completely integrable if it admits
n first integrals which are in involution and functionally independent on a
large subset of M . Here the notion of large depends on the situation. We
will settle for open subsets of full measure, although our examples give more.
(For unknown concepts, search the text.)

I would like to thank Saskia Voß for her careful reading of the notes.
The notes are in a preliminary state. Comments are welcome.
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2. Symplectic manifolds and actions

A bilinear form ω on a real vector space is called a symplectic form if
it is alternating and nondegenerate. A differential 2-form ω on a manifold
M is called a symplectic form if ω is closed and ωm is a symplectic form
on TmM for all m ∈ M . A manifold together with a symplectic form is
called a symplectic manifold. The model example is R2n together with the
symplectic form

(2.1) ω0 =
∑

dxi ∧ dyi.

As in this example, any symplectic manifoldM is of even dimension, dimM =
2n for some n ∈ N, and the n-th power ωn of its symplectic form ω is an ori-
entation form of M . In Exercise 2.24, we discuss some of the linear algebra
related to symplectic forms on finite dimensional real vector spaces.

Let M be a symplectic manifold with symplectic form ω. Then, for any
point m ∈ M , there are coordinates z about m such that ω = z∗ω0, by the
fundamental Theorem of Darboux. Such coordinates will be called symplec-
tic coordinates. The existence of such coordinates implies that all symplectic
manifolds of the same dimension are locally equivalent. Recall that the sit-
uation is different in the case of Riemannian manifolds, where curvature is
an invariant of the local structure.

2.1. Symplectic gradient and Poisson bracket. For a function h ∈
F(M) and vector field X ∈ V(M), h is called a Hamiltonian potential of
X and X the Hamiltonian vector field associated to h or the symplectic
gradient of h, if

(2.2) dh = iXω, that is, dh(Y ) = (iXω)(Y ) = ω(X,Y ),

for all vector fields Y on M . We denote the symplectic gradient of h by Xh.
In terms of symplectic coordinates, we have

(2.3) Xh =
∑(

∂h

∂yi

∂

∂xi
− ∂h

∂xi

∂

∂yi

)
.

The dynamical system associated to the Hamiltonian vector field Xh is called
the Hamiltonian system associated to h and h the Hamilton function of the
system. With respect to symplectic coordinates, the ordinary differential
equation defined by the Hamiltonian vector field Xh is given by the Hamil-
tonian equations associated to h as in classical mechanics.

By the nondegeneracy of ω, a function h ∈ F(M) determines a unique
Hamiltonian vector field Xh. On the other hand, not any vector field X on
M has a Hamiltonian potential. Furthermore, Hamiltonian potentials are
only unique up to locally constant functions.

In what follows, we will use Cartan’s formula,

(2.4) LX = iXd+ diX ,

frequently. For example, for a Hamiltonian vector field Xh with Hamiltonian
potential h, Cartan’s formula gives

(LXh
ω)(Y, Z) = iXh

dω(Y,Z) + d(iXh
ω)(Y, Z)

= d(iXh
ω)(Y,Z) = (ddh)(Y, Z) = 0.
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We conclude that the Lie derivative of ω in the direction of any Hamiltonian
vector field vanishes,

(2.5) LXh
ω = 0.

The Poisson bracket of functions h1, h2 ∈ F(M) is defined to be

(2.6) {h1, h2} = ω(Xh1 , Xh2) = dh1(Xh2).

By definition, {h1, h2}(m) only depends on dh1(m) and dh2(m). In terms
of symplectic coordinates, we have

(2.7) {h1, h2} =
∑(

∂h1
∂xi

∂h2
∂yi
− ∂h1
∂yi

∂h2
∂xi

)
.

The Poisson bracket turns F(M) into a Poisson algebra; that is, we have

{h1, h2} = −{h2, h1},(2.8)

{h1, h2h3} = {h1, h2}h3 + h2{h1, h3},(2.9)

{h1, {h2, h3}} = {{h1, h2}, h3}+ {h2, {h1, h3}},(2.10)

for all h1, h2, h3 ∈ F(M). The above identities follow easily from (2.6) and
(2.7); the proof is left as Exercise 2.25. We refer to (2.9) and (2.10) as Leibniz
rule and Jacobi identity, respectively. Up to locally constant functions, the
Jacobi identity also follows from the next result.

Proposition 2.11. For all h1, h2 ∈ F(M), we have X{h1,h2} = −[Xh1 , Xh2 ].

Proof. For X1 = Xh1 and X2 = Xh2 , we have

i[X1,X2]ω = iLX1
X2ω

= LX1iX2ω − iX2LX1ω

= LX1iX2ω

= iX1diX2ω + diX1iX2ω

= iX1ddh2 + diX1iX2ω

= diX1iX2ω = d(ω(X2, X1))

= −d{h1, h2},

where we use, from line to line, LX1X2 = [X1, X2], the product rule for the
Lie derivative, Equation 2.5, Cartan’s formula 2.4, the definition of symplec-
tic gradient, dd = 0, and the definition of the Poisson bracket. �

2.2. Cotangent bundles as exact symplectic manifolds. We consider
now the case of the cotangent bundle, π : M = T ∗N → N , of a manifold N .
The canonical one-form λ on T ∗N is given by

(2.12) λα(v) = α(π∗v).

Associated to coordinates x on an open domain U of N , we obtain canon-
ical coordinates (x, a) on T ∗N |U = T ∗U , where α =

∑
aidx

i|p ∈ T ∗pU
corresponds to (x(p), a). Then π corresponds to the projection onto x and
therefore

(2.13) λα =
∑

aidx
i|α.
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The negative ω of the differential of λ is given by

(2.14) ω = −dλ =
∑

dxi ∧ dai.

Thus ω is a symplectic form and turns T ∗N into an exact symplectic mani-
fold ; that is, the symplectic form ω is exact. Moreover, the natural coordi-
nates of T ∗N are symplectic coordinates with respect to ω. Note however
that lower and upper position of indices loose their meaning for T ∗N as a
symplectic manifold.

Frequently it is possible and advisable to consider the tangent instead of
the cotangent bundle. Let N be endowed with a semi-Riemannian metric,
as usual denoted by 〈., .〉. Since 〈., .〉p is non-degenerate at each p ∈ N ,

(2.15) L : TN → T ∗N, L(v)(w) := 〈v, w〉,

is an isomorphism, called the Legendre transform. Under the Legendre
transform, we have, for any isometry f of N ,

(2.16) L(f∗v)(w) = 〈f∗v, w〉 = 〈v, f−1∗ w〉 = (L(v) ◦ f−1∗ )(w),

and hence the action by f−1∗ on T ∗N in the previous section corresponds to
the action by f∗ on TN here. The one-form λ on T ∗N corresponds to

(2.17) λX0(v) = 〈X0, π∗v〉, v ∈ TX0TN,

where the projection TN → N is again denoted by π.
We will need some preparation to identify TTN conveniently; cf. Section

2.4 in [1]. Let ∇ be a connection on N . Then TTN = H⊕V, where H and
V denote the horizontal and vertical distributions of TTN associated to ∇:
If X = X(s) is a curve in TM through X(0) = X0 with v = Ẋ(0), then the
horizontal and vertical components of v are given by

(2.18) v = (vH, vV) = (ċ(0), X ′(0)),

where c = π◦X is the curve of foot points of X and X ′ denotes the covariant
derivative of the vector field X along the curve c with respect to ∇.

Assume from now on that ∇ is a metric connection on N . To compute
the differential dλ, we consider a map X = X(s, t) to TN with

(2.19) X(0, 0) = X0,
∂X

∂s
(0, 0) = u, and

∂X

∂t
(0, 0) = v,

where X0 ∈ TN and u, v ∈ TX0TN are given. At s = t = 0 (skipped in the
notation of the ensuing computation), we obtain

dλ(u, v) =
∂

∂s
λ
(∂X
∂t

)
− ∂

∂t
λ
(∂X
∂s

)
=

∂

∂s

〈
X,

∂c

∂t

〉
− ∂

∂t

〈
X,

∂c

∂s

〉
=
〈∇X
∂s

,
∂c

∂t

〉
+
〈
X,
∇
∂s

∂c

∂t

〉
−
〈∇X
∂t

,
∂c

∂s

〉
−
〈
X,
∇
∂t

∂c

∂s

〉
=
〈∇X
∂s

,
∂c

∂t

〉
−
〈∂c
∂s
,
∇X
∂t

〉
+
〈
X,T

(∂c
∂s
,
∂c

∂t

)〉
,

(2.20)

where T denotes the torsion tensor of ∇. We conclude that

(2.21) ω(u, v) = −dλ(u, v) = 〈uH, vV〉 − 〈uV , vH〉 − 〈X0, T (uH, vH)〉.
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This formula is well known in the case of the Levi-Civita connection ∇LC ,
where the T -term vanishes since ∇LC is torsion free.

2.3. Exercises and some definitions.

Exercise 2.22. Prove Cartan’s formula (2.4).

Exercise 2.23. Consider R2n with standard Euclidean product 〈., .〉, com-
plex structure J defined by J(x, y) = (−y, x), and symplectic form ω0 as in
(2.1). Show that

1) 〈Ju, Jv〉 = 〈u, v〉 and ω0(u, v) = 〈Ju, v〉 for all u, v ∈ R2n.
2) a linear map A : R2n → R2n preserves ω0, that is, A∗ω0 = ω0 if and

only if AtJA = J . Express this condition also in terms of matrices.

Exercise 2.24 (Linear algebra of symplectic forms). Let ω be a symplectic
form on a finite dimensional real vector space V .

1) Show that V has a basis (e1, . . . , en, f1, . . . , fn) such that

ω(ei, ej) = ω(fi, fj) = 0 and ω(ei, fj) = δij

for all 1 ≤ i, j ≤ n. Such a basis is called a symplectic basis of V . In
particular, the dimension of V is even, dimV = 2n.

2) A subspace U ⊆ V is called isotropic if ω|U = 0. Show that an isotropic
subspace U of V satisfies dimU ≤ dimV/2 and that V has a symplectic basis
(e1, . . . , en, f1, . . . , fn) such that e1, . . . , em span U for some 1 ≤ m ≤ n.

3) Show that V has a positive definite inner product 〈, 〉 and a complex
structure J such that 〈Ju, Jv〉 = 〈u, v〉 and ω(u, v) = 〈Ju, v〉 for all u, v ∈ V .
Compare this with Exercise 2.23 and show that with respect to 〈, 〉 and J ,
the bases in 1) and 2) can be chosen to be orthonormal such that Jei = fi.

4) A subspace U ⊆ V is called Lagrangian if it is isotropic of maximal
dimension, dimU = dimV/2. Represent the space of Lagrangian subspaces
of V as the homogeneous space O(2n)/U(n).

Exercise 2.25. Prove the formulas for the symplectic gradient and the
Poisson bracket in (2.3) and (2.7) and show that the Poisson bracket (2.6)
turns F(M) into a Poisson algebra.

Exercise 2.26. Let M be a symplectic manifold with symplectic form ω.
Let (x, y) = (x1, y1, . . . , xn, yn) be smooth functions on an open subset U of
M . Show that the following are equivalent:

1) For each m ∈ U there is a neighborhood V ⊆ U such that (x, y) are
symplectic coordinates of M on V .

2) For all 1 ≤ i, j ≤ n, we have {xi, xj} = {yi, yj} = 0 and {xi, yj} = δij .
3) For each m ∈ U there is a neighborhood V ⊆ U such that (x, y) are

coordinates of M on V . Moreover, for all 1 ≤ i ≤ n, the symplectic gradients
of xi and yi are −∂/∂yi and ∂/∂xi, respectively.
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3. Action-angle variables

In this section, we discuss action-angle variables after Res Jost’s note [5].
Let M be a symplectic manifold with symplectic form ω and of dimension
2n. We say that smooth functions f1, f2 : M → R are in involution or
Poisson commute if their Poisson bracket vanishes, {f1, f2} = 0. We say
that functions f1, . . . , fk ∈ F(M) are functionally independent at a point
m ∈M if the map f = (f1, . . . , fk) : M → Rk has rank k at m.

Lemma 3.1. Suppose that f1, . . . , fn are Poisson commuting smooth func-
tions, defined in a neighborhood of a point m ∈ M , which are functionally
independent at m. Then we have:
1) (Existence) About m, there are smooth functions g1, . . . , gn such that

(f1, . . . , fn, g1, . . . , gn)

are symplectic coordinates of M , i.e., such that ω =
∑
dfi ∧ dgi.

2) (Uniqueness) For any two such families g1, . . . , gn and g̃1, . . . , g̃n of func-
tions, there is a smooth function G = G(f1, . . . , fn) such that, about m,

g̃i − gi = ∂G/∂fi.

Proof. Choose symplectic coordinates (x, y) about m. Consider f1, . . . , fn
as functions of the coordinates and write ui = fi(x, y). After exchanging the
roles of appropriate xi and −yi, we can assume that the matrix of partial
derivatives Fx = (∂fi/∂xj) is invertible at m. Then we have xi = ϕi(u, y)
with smooth functions ϕi. Since ui = fi(x, y) = fi(ϕ(u, y), y), we obtain

(3.2) FxΦ + Fy = 0,

where Fy = (∂fi/∂yj) and Φ = (∂ϕi/∂yj). The vanishing {fi, fj} = 0 of the
Poisson brackets translates into

(3.3) FxF
t
y − FyF tx = 0.

Now (3.2) and (3.3) together imply that

0 = FxΦF tx + FyF
t
x = FxΦF tx + FxF

t
y.

By the invertibility of Fx (in a neighborhood of m), cancellation of Fx on
the right hand side is justified and transposition gives

(3.4) FxΦt + Fy = 0.

Again by the invertibilty of Fx, (3.2) and (3.4) imply that Φ is symmetric.
Hence the one-form ϕidyi is closed. Therefore it is exact, i.e., ϕi = ∂S/∂yi.
The function S = S(u, y) is a generating function in the sense of symplectic
geometry; it generates the symplectic transformation from the given sym-
plectic coordinates to the desired ones by

xi = ∂S/∂yi and gi = ∂S/∂ui.

In Exercise 3.10, we discuss that (f1, . . . , fn, g1, . . . , gn) are indeed symplectic
coordinates about m. This finishes the proof of 1). Now 2) is a general fact
about symplectic coordinates which is discussed in Exercise 3.11. �

The proof of the following version of the implicit funtion theorem is left
as Exercise 3.12.
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Lemma 3.5. Let f : M → N be a smooth map between manifolds and sup-
pose that q0 ∈ N is a regular value of f and that L = f−1(q0) is compact.
Then there are neighborhoods U of L in M and V of q0 in N and a diffeo-
morphism Ψ: V ×L→ U such that f(Ψ(q, p)) = q for all (q, p) ∈ V ×L. �

In what follows, let f1, . . . , fn ∈ F(M) and set f = (f1, . . . , fn). For
x ∈ Rn, let L(x) = {m ∈M | f(m) = x} be the level set of f of level x.

Theorem 3.6 (Action-angle variables (a, α)). Suppose that f1, . . . , fn are
in involution. Let x0 ∈ Rn and suppose that L(x0) is compact and connected
and that f1, . . . , fn are functionally independent at each point of L(x0). Then
there is a neighborhood U of L(x0) in M and a diffeomorphism

(a, α) : U → A× Tn,

where A ⊆ Rn is an open subset and Tn is the torus Rn/Zn, such that

ω =
∑

dai ∧ dαi

and such that the symplectic gradients of the fi correspond to vector fields
which are tangent to the tori {a} × Tn and constant along each such torus.

Proof. By Lemma 3.5, there are neighborhoods U of L(x0) and V of x0
and a diffeomorphism Ψ: V × L(x0) → U such that f(Ψ(x,m)) = x for all
(x,m) ∈ V × L(x0). In particular, the level sets LU (x), x ∈ V , of f in
U are diffeomorphic to L(x0), and hence they are compact and connected
submanifolds of M of dimension n.

Since the Poisson brackets {fi, fj} vanish, fj is constant along the flow
lines of the symplectic gradients Xi of the fi. Hence the Xi are tangent
to the level sets LU (x). Furthermore, by the compactness of the LU (x),
the flows Φi of the Xi are defined on all of R along U and hence define 1-
parameter groups of diffeomorphisms Φi : R×U → U . Now the Lie brackets
[Xi, Xj ] vanish, and hence the flows of the Xi commute. Therefore, they
induce an action Φ of the additive group Rn on U ,

Φ: U × Rn → U, Φ(m, t) = (Φt1
1 ◦ Φt2

2 ◦ · · · ◦ Φtn
n )(m).

Since the rank of f is n on all of U , the Xi(m) form a basis of TmLU (x)
for each x ∈ V and m ∈ LU (x). Hence the orbits of Φ are open subsets of
the LU (x), and hence, by the connectedness of the LU (x), they are equal to
the LU (x). Hence each LU (x) is the quotient of Rn by a discrete subgroup
Λ(x) ⊆ Rn. Since each LU (x) is compact, Λ(x) ∼= Zn.

Now we introduce symplectic coordinates (f1, . . . , fn, g1, . . . , gn) in a neigh-
borhood of a point m0 ∈ L(x0) as in Lemma 3.1. Then Xi = −∂/∂gi. The
symplectic gradients ∂/∂fi of the functions gi are tangent to the Lagrangian
submanifold Q = {g = g(m0)}; in particular, Q intersects the levels LU (x)
transversally. Hence, by passing to appropriate neighborhoods of m0 in Q
and x0 in V we can arrange that f : Q→ V is a diffeomorphism. Note that
here and below, when shrinking V , we shrink U accordingly, replacing the
old U by the new U = f−1(V ).

With Φ as above, we obtain a local diffeomorphism

ΦQ : Q× Rn → U, ΦQ(q, y) = Φ(q,−y).
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Since Xi = −∂/∂gi, we have gi(ΦQ(q, y)) = yi + gi(m0) for all sufficiently
small y. In particular, writing xi = fi ◦ΦQ, we have Φ∗Qω =

∑
dxi∧dyi in a

neighborhood of Q×{0}. Now the vector fields Xi are symplectic gradients,
hence their flows preserve ω, and therefore Φ preserves ω. Under ΦQ, the
Xi correspond to −∂/∂yi. Hence the translations with t ∈ Rn,

Q× Rn → Q× Rn, (q, y) 7→ (q, y + t),

preserve Φ∗Qω. It follows that Φ∗Qω =
∑
dxi ∧ dyi on all of Q× Rn.

Now Φ is an Rn-action with compact orbits LU (x). Hence, by passing to
smaller neighborhoods of m0 in Q and x0 in V if necessary, there is an ε > 0
such that ΦQ is a diffeomorphism from Q × B(t, ε) onto its image, for all
t ∈ Rn, where B(t, r) denotes the ball of radius r about t in Rn. Since Φ
is an Rn-action, it follows that the open subsets Φ(Q × B(t, ε/2)) of U are
evenly covered by ΦQ. Hence ΦQ is a covering map. Since the LU (x) are
tori, the group Γ of covering transformations of ΦQ is isomorphic to Zn.

We use the diffeomorphism f : Q→ V to identify Q with V . Then

V × Rn ⊆ R2n and Φ∗Qω =
∑

dxi ∧ dyi = ω0

with ω0 as in (2.1). We fix a set γ1, . . . , γn of generators of the group Γ of
covering transformations of ΦQ. For 1 ≤ i ≤ n, we write the image γi(x, 0)
of (x, 0) under γi as (x, ei(x)). Then ei(x) = (ei1(x), . . . , ein(x)) ∈ Rn and

e1(x), . . . , en(x)

is a set of generators of the lattice ΛU (x) ⊆ Rn which depends smoothly on
x ∈ V . Since ΦQ is induced by an Rn-action, γi acts on V × Rn by

γi(x, y) = (x, y + ei(x)).

Since γi acts symplectically, we get Ei = Eti , where Ei denotes the matrix
(∂eij/∂xk) of partial derivatives of ei; see Exercise 3.13. Hence there exist
functions Si = Si(x) such that eij = ∂Si/∂xj . We normalize them by
requiring Si(x0) = 0. By passing to a smaller V if necessary, we obtain new
symplectic coordinates (a, α) on V × Rn by setting

ai = Si(x) and yi =
∑ ∂Sj

∂xi
(x)αj ;

see Exercise 3.14. Under the covering ΦQ, the αi count modulo 1. By
construction, we obtain a diffeomorphism (a, α) : U → A×Tn as desired. �

We say that a submanifold L ⊆M is Lagrangian if TmL is a Lagrangian
subspace of TmM for all m ∈ L; see Exercise 2.24.4. The tori a = const and
the submanifolds α = const in Theorem 3.6 are Lagrangian submanifolds.
The tori a = const are also called invariant tori since they are invariant
under the Hamiltonian systems associated to the fi and under Hamiltonian
systems associated to functions which Poisson commute with the fi; see
Corollary 3.8.

With respect to action-angle variables (a, α) as in Theorem 3.6, the sym-
plectic gradient Xh of a function h ∈ F(M) is given by

(3.7) Xh =
∑(

∂h

∂αj

∂

∂aj
− ∂h

∂aj

∂

∂αj

)
.
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Corollary 3.8. In the situation of Theorem 3.6, if h ∈ F(M) is in in-
volution with f1, . . . , fn, then the symplectic gradient Xh of h is tangent
to the invariant tori and constant along each of them. In particular, if
h1, h2 ∈ F(M) are in involution with f1, . . . , fn, then {h1, h2} = 0 on U .

Proof. Recall that {h, fi} = dh(Xi), where Xi denotes the symplectic gra-
dient of fi. Now the fi do not depend on α. Hence we have

0 = [h, fi] = −
∑
j

∂h

∂αj

∂fi
∂aj

,

by (3.7) applied to fi. Since the fi are functionally independent on U , we
conclude that the partial derivatives of h in the α-directions vanish. �

Corollary 3.9. Suppose that f1, . . . , fn ∈ F(M) are in involution and func-
tionally independent on an open and dense subset of M and that the level
sets of f = (f1, . . . , fn) are compact. Then the space of functions h ∈ F(M)
which are in involution with f1, . . . , fn is a commutative Poisson algebra.

Proof. By the theorem of Sard and since f has rank n on an open and dense
subset of M , the set of points p in M such that f(p) is a regular value of f
is dense in M . Hence the conclusion follows from Corollary 3.8. �

3.1. Exercises.

Exercise 3.10. Show that the functions g1, . . . , gn in the proof of Lemma 3.1
satisfy {gi, gj} = 0 and {fi, gj} = δij for all 1 ≤ i, j ≤ n. Show that the
symplectic gradients of the gi are linearly independent at the given point
m and conclude that (f1, g1, . . . , fn, gn) define symplectic coordinates in a
neighborhood of m.

Exercise 3.11. Suppose that (x, y) and (x̃, ỹ) are symplectic coordinates
about a point m in a symplectic manifold M such that x = x̃. Show that
there is a smooth function G = G(x) about x(m) such that ỹi−yi = ∂G/∂xi.

Exercise 3.12. Use the implicit function theorem to prove Lemma 3.5.
Hint: It may be helpful to note first that the normal bundle of L is trivial.

Exercise 3.13. Consider R2n with symplectic form ω0 as in (2.1). Show
that a transformation of the form (x, y) 7→ (x, y + e(x)) preserves ω0 if and
only if the matrix Ex = (∂ej/∂xk) of partial derivatives of e is symmetric.

Exercise 3.14. Show that the functions (a, α) in the proof of Theorem 3.6
define symplectic coordinates.
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4. Symplectic actions and moment maps

4.1. Coadjoint orbits as symplectic manifolds. Let G be a Lie group
with Lie algebra g. Then the adjoint action of G on g is (g,X) 7→ AdgX; the
coadjoint action of G on the dual space g∗ of g is given by (g, α) 7→ Ad−∗g α.

Here and below we use Ad−∗g as a shorthand for (Ad−1g )∗.
For X ∈ g, define a vector field X∗ on g∗ by

(4.1) X∗(α) =
d

dt

(
Ad−∗exp(tX) α

)∣∣∣∣
t=0

;

compare with (4.8). We have

(4.2) X∗(α) =
d

dt

(
(exp(−t adX))∗α

)∣∣∣∣
t=0

= − ad∗X α = −α ◦ adX .

The flow of X∗ is given by the one-parameter group (Ad−∗exp(tX)) of auto-

morphisms of g∗. In particular, X∗ is tangent to the orbits of the coadjoint
action. Moreover, the space of X∗ spans the tangent spaces of the orbits at
each point. Note also that [X∗, Y ∗] = −[X,Y ]∗; compare with (4.9).

Let A ⊆ g∗ be a coadjoint orbit, that is, an orbit of the coadjoint action
of G, and let α ∈ A. Define a two-form ωα on TαA by

(4.3) ωα(X∗(α), Y ∗(α)) = (α, [X,Y ]),

where we use the perfect pairing between g∗ and g on the right hand side.

Proposition 4.4. The differential two-form ω is well defined on the coad-
joint orbits of G and turns them into symplectic manifolds.

Proof. If X∗1 (α) = X∗2 (α), then ad∗X1
α = ad∗X2

α by (4.2) and hence

(α, [X1, Y ]) = (ad∗X1
(α), Y ) = (ad∗X2

(α), Y ) = (α, [X2, Y ])

for all Y ∈ g. It follows that ω is well defined on the coadjoint orbits.
Let A be a coadjoint orbit and α ∈ A. Suppose that X∗α lies in the null

space of ωα. Then (ad∗X(α), Y ) = (α, [X,Y ]) = 0 for all Y ∈ g; that is, we
have X∗(α) = − ad∗X(α) = 0. Hence ωα is nondegenerate on TαA.

It remains to show that ω is a closed differential form. This follows from
the Jacobi identity; the proof is left as an exercise. �

For ϕ ∈ F(g∗), denote by gradϕ the gradient of ϕ in the sense of the
perfect pairing between g∗ and g; that is, we have

(4.5) dϕ|α(β) = (β, gradϕ(α)) for all α, β ∈ g∗.

Proposition 4.6. For all ϕ,ψ ∈ F(g∗) and α ∈ g∗, we have

Xϕ(α) = X∗(α),(1)

{ϕ,ψ}(α) = ωα(X∗(α), Y ∗(α)) = (α, [X,Y ]).(2)

where X = gradϕ(α), Y = gradψ(α) and where we consider symplectic
gradients and Poisson brackets separately along the coadjoint orbits of G.

Proof. For any Z ∈ g, we have

ωα(Xϕ(α), Z∗(α)) = dϕ|α(Z∗(α)) = (Z∗(α), X) = −(ad∗Z α,X)

= −(α, adZ X) = (α, [X,Z]) = ωα(X∗(α), Z∗(α)),



12 WERNER BALLMANN

by (4.2). This implies (1), and (2) is an immediate consequence. �

4.2. Symplectic actions and moment maps. Let G ×M → M be a
smooth action by a Lie group G. For g ∈ G and m ∈ M , let lg : M → M
and rm : G→M be left and right translation by g and m, respectively,

(4.7) lg(m) = gm = rm(g).

For any X ∈ g, define a vector field X∗ on M by

(4.8) X∗(m) =
d

dt

(
exp(tX)m

)∣∣∣∣
t=0

;

compare with (4.1). The flow of X∗ is given by the one-parameter group
(`exp(tX)) of diffeomeorphisms of M . Note that g → V(M), X 7→ X∗, is an
anti-morphism of Lie algebras,

(4.9) [X∗, Y ∗] = −[X,Y ]∗.

We also have the following equivariance property:

(4.10) lg∗X
∗ := lg∗ ◦X∗ ◦ l−1g = (AdgX)∗.

We say that the action of G is symplectic if it preserves ω, that is, that we
have l∗gω = ω for all g ∈ G. Then

(4.11) LX∗ω = 0,

for all X ∈ g. We say that the action of G is Hamiltonian if it is symplectic
and if any vector field X∗ as above has a Hamiltonian potential, fX . Recall
that the latter means that dfX = iX∗ω respectively XfX = X∗.

Proposition 4.12. If the action of G is Hamiltonian, then

f[X,Y ] = {fX , fY }+ a locally constant function,(1)

fX ◦ lg = fAd−1
g X + a locally constant function,(2)

for all X,Y ∈ g and g ∈ G.

Proof. Since X∗ and Y ∗ are the symplectic gradients of fX and fY , we have

X{fX ,fY } = −[X∗, Y ∗] = [X,Y ]∗,

by Proposition 2.11 and (4.9). Hence df[X,Y ] = d{fX , fY }, which is equiva-
lent to (1). The proof of (2) is similar and involves (4.10). �

We now discuss the additional requirement that the locally constant func-
tions on the right hand side of (1) and (2) in Proposition 4.12 vanish. For
a further analysis of this, compare Section 26 in [4].

Definition 4.13. A moment map for a symplectic action G×M →M is a
map F : M → g∗ which satisfies the following three conditions:
(1) For all X ∈ g, fX = (F,X) is a Hamiltonian potential for X∗,

where (α,X) = α(X) denotes the canonical pairing between g∗ and g.
(2) For all X,Y ∈ g, we have f[X,Y ] = {fX , fY }.
(3) For all g ∈ G and X ∈ g, we have fX ◦ lg = fAd−1

g X .

Item 3 says that F is equivariant: For all g ∈ G, we have F ◦lg = Ad−∗g ◦F .
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Proposition 4.14. If F is a moment map for the action of G on M and
h ∈ F(M) is G-invariant, then F is a first integral of the Hamiltonian
system associated to h. That is, F is constant along the flow lines of Xh.

Proof. For any X ∈ g, we have dh(X∗) = 0 by the G-invariance of h. Hence

(4.15) dfX(Xh) = ω(X∗, Xh) = −ω(Xh, X
∗) = −dh(X∗) = 0,

where Xh is the Hamiltonian vector field associated to h. It follows that fX ,
and therefore also F , is constant along the flow lines of Xh. �

Corollary 4.16. Under the above assumptions, let ϕ ∈ F(g∗). Then the
composition f = ϕ◦F is a first integral of the Hamiltonian system associated
to h. In other words, {f, h} = 0. �

The functions fX = fX(m) = (F (m), X) further up are of the above kind.

Proposition 4.17. Let F be a moment map for the action of G on M . For
j = 1, 2, let ϕj ∈ F(g∗) and set fj := ϕj ◦ F ∈ F(M). Then we have

{f1, f2} = {ϕ1, ϕ2} ◦ F,

where we take the Poisson bracket on the right hand side orbitwise, that is,
with respect to the symplectic structure on the coadjoint orbits.

Proof. Let m ∈ M and set α = F (m). For j = 1, 2, let Xj = gradϕj(α) in
the sense of (4.5). Then we have

dfj |m = dϕj |α ◦ dF |m = (dF |m, gradϕj(α))

= (dF |m, Xj) = dfXj |m.

Therefore

{f1, f2}(m) = {fX1 , fX2}(m)

= f[X1,X2](m) = (α, [X1, X2]) = {ϕ1, ϕ2}(α),

by the second requirement of Definition 4.13 and Proposition 4.6.2. �

Corollary 4.16 together with Proposition 4.17 show that commuting func-
tions in F(g∗) give rise to commuting first integrals of Hamiltonian systems
associated to G-invariant Hamilton functions.

4.3. Moment maps for exact symplectic actions. Suppose that M is
an exact symplectic manifold and let G ×M → M be a smooth action by
a Lie group G. Assume that the action is exact symplectic, that is, that
`∗gλ = λ for all g ∈ G. For X ∈ g, let fX be the function on M defined by

(4.18) fX := iX∗λ = λ(X∗).

Proposition 4.19. The map F : M → g∗, defined by (F (m), X) := fX(m),
is a moment map in the sense of Definition 4.13.

Proof. By Cartan’s formula 2.4 and since LX∗λ = 0, we have

dfX = diX∗λ = −iX∗dλ = iX∗ω,
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and hence hX is a Hamiltonian potential of X∗. We also have

{fX , fY } = −dλ(X∗, Y ∗)

= −X∗λ(Y ∗) + Y ∗λ(X∗) + λ([X∗, Y ∗])

= −(diY ∗λ)(X∗) + (diX∗λ)(Y ∗) + λ([X∗, Y ∗])

= (iY ∗dλ)(X∗)− (iX∗dλ)(Y ∗) + λ([X∗, Y ∗])

= −2dλ(X∗, Y ∗)− λ([X,Y ]∗)

= 2{fX , fY } − f[X,Y ],

where we use Cartan’s formula 2.4 and that LX∗λ = LY ∗λ = 0. Finally, by
(4.10) and since the action of G on M preserves λ, we have

fX ◦ lg = λ(X∗ ◦ lg)
= λ(lg∗ ◦ (Ad−1g X)∗)

= λ((Ad−1g X)∗) = fAd−1
g X . �

Example 4.20. Let ` be a smooth action of a Lie group G on a manifold
N and consider the induced action on the cotangent bundle M = T ∗N ,

(4.21) lg(α) = α ◦ `−1g∗ .
Now λ is invariant under the differentials of diffeomorphisms of N and hence
under the action of G on T ∗N . Therefore the induced action of G on T ∗N
is exact symplectic. Thus we get a moment map F as in Proposition 4.19.

To get variantions of the formulae for the functions fX and their Poisson
brackets, we define vector fields X∗N on N according to the recipe for the
vector fields X∗ on M = T ∗N in (4.8): For X ∈ g and p ∈ N , let

(4.22) X∗N (p) =
d

dt

∣∣∣∣
t=0

`exp(tX)(p).

Note that π∗ ◦ X∗ = X∗N ◦ π and that (again) [X∗N , Y
∗
N ] = −[X,Y ]∗N . For

the function fX as in (4.18) and α ∈ T ∗pN , we obtain

(4.23) fX(α) = λ(X∗(α)) = α(π∗X
∗(α)) = α(X∗N (p)).

For the Poisson bracket of such functions, we get

(4.24) {fX , fY }(α) = f[X,Y ](α) = α([X,Y ]∗N (p)).

4.4. Exercises.

Exercise 4.25. Let G be a Lie group with Lie algebra g. Assume that g
carries a nondegenerate bilinear form which is invariant under the adjoint
action of G; i.e., 〈AdgX,Adg Y 〉 = 〈X,Y 〉 for all g ∈ G and X,Y ∈ g. Use
the isomorphism L : g→ g∗, L(X)(Y ) = 〈X,Y 〉, to identify g with g∗.

1) For ψ ∈ F(g) and X ∈ g, let gradψ(X) ∈ g be the gradient of ψ at X:

〈gradψ(X), Y 〉 = dψ|X(Y ) for all Y ∈ g.

For ϕ ∈ F(g∗), show that grad(ϕ ◦L) = (gradϕ) ◦L, where the gradient on
the right is defined as in (4.5).

2) Show that L intertwines the adjoint action of G on g with the coad-
joint action of G on g∗. Determine the symplectic structure on the adjoint
orbits of G which corresponds, under L, to the symplectic structure on the
coadjoint orbits of G.
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5. Normal homogeneous semi-Riemannian spaces.

In this section we discuss the setup for the examples for which we will
discuss geodesic flows. We change the notation and denote the Hamiltonian
vector field of a smooth function f by Vf .

5.1. Homogeneous spaces. Let G be a Lie group with Lie algebra g and
K ⊆ G be a closed subgroup with Lie algebra k ⊆ g. Consider the homoge-
neous space N = G/K together with the natural projection

(5.1) π̄ : G→ N, π̄(g) = gK ∈ N,

a principal bundle with structure group K. We also write [g] for π̄(g). The
natural action of G on N is given by

(5.2) `(g, [h]) = `g(p) = [gh].

For g ∈ G and p ∈ N , we also use the shorthand gp for `(g, p). To simplify
notation, we write π̄∗ instead of π̄∗e.

We let p0 = π̄(e) = [e] be the distinguished point of N and use π̄∗ : p →
Tp0N to identify p with Tp0N . We signify this by p ≡ Tp0N .

The bracket notation used for points of N and, in adapted ways, for other
objects assciated to N , is in conflict with the notation for the Lie bracket in
g; an instance of this can be seen in (5.9). We hope that the context clarifies
which bracket is in respective use.

We assume that the homogeneous space G/K is reductive: There is a
complement p of k in g,

(5.3) g = k⊕ p,

which is K-invariant, that is, such that

(5.4) Adk p = p for all k ∈ K.

We fix such a K-invariant complement p. For X ∈ g, we write

(5.5) X = Xk +Xp ∈ k + p

and call Xk and Xp the k- and p-component of X, respectively.

Proposition 5.6. 1) Under p ≡ Tp0N , the isotropy representation of K on
Tp0N corresponds to the adjoint representation of K on p.

2) The map G × p → TN , (g,X) 7→ `g∗π̄∗X, is surjective. Moreover,
pairs (g,X) and (h, Y ) have the same image if and only if k := g−1h is
contained in K and Y = Ad−1k X. In other words, TN is isomorphic to
the vector bundle associated to the adjoint representation of K on p.

3) Via evaluation in p0 and p ≡ Tp0N , G-invariant tensor fields on N
correspond one to one to K-invariant tensors on p. �

Following Proposition 5.6.2, we write tangent vectors of N as pairs [g,X],
where g ∈ G and X ∈ p, with the understanding that [g,X] represents the
tangent vector `g∗π̄∗X ∈ TN . For all k ∈ K, we have [gk,X] = [g,AdkX].
Moreover, the differential of `g is given by `g∗([h,X]) = [gh,X].

For g ∈ G, the vertical and horizontal space at g are defined to be

(5.7) Vg = Lg∗k = ker π̄g∗ and Hg = Lg∗p,
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respectively, where Lg denotes left translation by g in G. For each g ∈ G,
we have TgG = Vg ⊕ Hg. We call the families V and H of vertical and
horizontal spaces the vertical and horizontal distribution of G, respectively.
A piecewise smooth curve g : I → G is called horizontal if ġ(t) ∈ Hg(t) for
all t ∈ I. Note that curves of the form g(t) = g0 exp(tX) with X ∈ p are
horizontal.

Proposition 5.8. The distributions V and H are right invariant under K,

Rk∗Vg = Vgk and Rk∗Hg = Hgk
for all k ∈ K and g ∈ G. In particular, H defines a K-connection for the
principal bundle π̄ : G→ N . �

The horizontal distribution H defines a G-invariant connection on each
vector bundle associated to the principal bundle π̄ : G → N . In particular,
it induces a G-invariant connection ∇ on TN , the vector bundle associated
to the adjoint representation of K on p as explained above. If V : I → TN
is a smooth vector field along a smooth curve c : I → N and if we write
V (t) = [g(t), X(t)] with smooth maps g : I → G and X : I → p, then the
covariant derivative of V with respect to ∇ is given by

(5.9) ∇tV = [g, Ẋ + adκ(ġ)X] = [g, Ẋ + [κ(ġ), X]],

where κ denotes the connection form associated to the above K-connection
of G→ N ; that is, κ is the one-form on G with values in k which associates
to a tangent vector v ∈ TgG the k-component of the left invariant vector
field V with V (g) = v. In other words,

(5.10) κ(v) = (L−1g∗ v)k,

where we identify the space of left invariant vector fields on G with TeG.
The covariant derivative of V = [g,X] as above reduces to

(5.11) ∇tV = [g, Ẋ] if g : I → G is horizontal.

Proposition 5.12. With respect to the above connection ∇, we have:
1) For each X ∈ p, γX = γX(t) = `exp(tX)(p0) is the geodesic through p0

with initial velocity [e,X];
2) The one-parameter group (`exp(tX))t∈R of diffeomorphisms of N induces

parallel translation along γX ;
3) G-invariant tensor fields on N are parallel with respect to ∇. �

For a piecewise smooth vector field V = [g,X] along a piecewise smooth

curve c = π̄ ◦ g in N , the horizontal and vertical part of V̇ in the sense of
(2.18) are given by

(5.13) [g, (L−1g∗ ġ)p] and [g, Ẋ + adκ(ġ), X] = [g, Ẋ + [(L−1g∗ ġ)k, X]],

respectively. Thus we arrive at the natural identification

(5.14) TTN ∼= G×K (p× p× p),

where the right hand side consists of all quadruples [g,X, Y, Z], where g ∈ G
and X,Y, Z ∈ p, with the relation [gk,X, Y, Z] = [g,AdkX,Adk Y,Adk Z]
for all k ∈ K. Here [g,X] is the footpoint in TN , [g, Y ] the horizontal com-
ponent, and [g, Z] the vertical component of the tangent vector [g,X, Y, Z]
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of TTN . We also call Y and Z the horizontal and vertical component of
[g,X, Y, Z], respectively, although they depend on the choice of g.

Proposition 5.15. Under p ≡ Tp0N , torsion and curvature tensor of ∇
are given by

T (X,Y ) = −[X,Y ]p and R(X,Y )Z = −[[X,Y ]k, Z],

where X,Y, Z ∈ p. Moreover, T and R are parallel with respect to ∇. �

We assume from now on that N = G/K is a normal homogeneous semi-
Riemannian space; that is, we require that N is reductive as above and
that there is a non-degenerate AdG-invariant bilinear form 〈., .〉 on g such
that p = k⊥ with respect to 〈., .〉. This implies that k and p are nondegen-
erate subspaces of g in the sense that the restriction of 〈., .〉 to k and p is
nondegenerate. By the AdG-invariance of 〈., .〉, we have

(5.16) 〈[X,Y ], Z〉 = 〈X, [Y,Z]〉

for all X,Y, Z ∈ g. We endow N with the G-invariant semi-Riemannian
metric, also denoted 〈., .〉, which corresponds to 〈., .〉 on p under p ≡ Tp0N ;
see Proposition 5.6.3.

The G-invariant connection ∇ from Section 5.1 is metric with respect to
〈., .〉; compare with (5.11). By (5.16), the trilinear form

(5.17) τ = τ(X,Y, Z) = 〈X,T (Y,Z)〉 = −〈X, [Y,Z]〉

on p is alternating. It follows that the difference ∇LC−∇ is skewsymmetric,
where ∇LC denotes the Levi-Civita connection on N . Therefore we obtain

(5.18) ∇LCX Y = ∇XY −
1

2
T (X,Y ) = ∇XY +

1

2
[X,Y ]p.

In particular, ∇ and ∇LC have the same geodesics. However, ∇ has the
advantage of computational simplicity.

Remark 5.19. In the case of symmetric spaces, we have [p, p] ⊆ k. Hence
the torsion tensor field T of ∇ vanishes in this case, and hence ∇ = ∇LC .

5.2. Hamiltonians on TN. We consider a normal homogeneous space
N = G/K as in Section 5.1 above and use the Legendre transform to iden-
tify TN with T ∗N . We also use 〈., .〉 to identify g with g∗. Then the orbits
of the adjoint action of G in g correspond to the coadjoint orbits in g∗ and
inherit the corresponding symplectic structure.

Proposition 5.20. For v1 = [g,X, Y1, Z1], v2 = [g,X, Y2, Z2] ∈ T[g,X]TN ,
we have

ω[g,X](v1, v2) = 〈Y1, Z2〉 − 〈Z1, Y2〉+ 〈X, [Y1, Y2]〉.

Proof. This is immediate from (2.21), the second equality in Proposition 5.15,
and since k is perpendicular to p,

〈X, [Y1, Y2]〉 = 〈X, [Y1, Y2]p〉 = −〈X,T (Y1, Y2)〉. �

Via f([g,X]) = ϕ(X), G-invariant functions f on TN correspond to K-
invariant functions ϕ on p, that is, functions ϕ on p which are invariant
under all Adk, k ∈ K.
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Proposition 5.21. For a K-invariant function ϕ : p→ R, the G-invariant
extension f : TN → R has associated Hamiltonian vector field

Vf = Vf ([g,X]) = [g,X, gradϕ(X), [X, gradϕ(X)]p].

For K-invariant functions ϕ1, ϕ2 : p → R, the Poisson bracket of their G-
invariant extensions f1, f2 : TN → R is given by

{f1, f2} = {f1, f2}([g,X]) = −〈X, [gradϕ1(X), gradϕ2(X)]〉.

Proof. Recall that `g∗([h,X]) = [gh,X] for all g, h ∈ G and X ∈ p. Hence

df[g,X]([g,X, Y, Z]) =
d

dt
f([g exp(tY ), X + tZ)])

∣∣
t=0

=
d

dt
ϕ(X + tZ)

∣∣
t=0

= 〈gradϕ(X), Z〉.

By definition, the left hand side is equal to ω(Vf ([g,X]), [g,X, Y, Z]), and
hence Vf ([g,X]) = [g,X, gradϕ(X), [X, gradϕ(X)]p] by (5.16) and Proposi-
tion 5.20. We also conclude that

{f1, f2}([g,X]) = 〈gradϕ1(X), [X, gradϕ2(X)])

= −〈X, [gradϕ1(X), gradϕ2(X)]〉. �

Proposition 5.22. For X ∈ g, we have

X∗N ([g]) = [g, (Ad−1g X)p] and fX([g, Y ]) = 〈Adg Y,X〉.

Proof. We compute

X∗N ([g]) =
d

dt
`exp(tX)(π̄(g))

∣∣
t=0

= `g∗π̄∗Ad−1g X = [g, (Ad−1g X)p],

which proves the first equality. As for the second, we have, by (4.23),

fX([g, Y ]) = 〈Y, (Ad−1g X)p〉 = 〈Y,Ad−1g X〉 = 〈Adg Y,X〉. �

Proposition 5.23. The moment map F : TN → g and its derivative are
given by

F ([g,X]) = AdgX and dF[g,X]([g,X, Y, Z]) = Adg(Z − [X,Y ]).

Proof. The formula for the moment map is immediate from the second equal-
ity in Proposition 5.22. Furthermore,

dF[g,X]([g,X, Y, Z]) =
d

dt
F ([g exp(tY ), X + tZ])

∣∣
t=0

=
d

dt
Adg Adexp(tY )(X + tZ)

∣∣
t=0

= Adg(Z − [X,Y ]). �

We know from Section 4 that any smooth function of the form f = ϕ ◦F
on TN is an integral for any G-invariant Hamiltonian system on TN .

Proposition 5.24. Let ϕ : g → R be a smooth function and f = ϕ ◦ F .
Then the Hamiltonian vector field Vf associated to f is given by

Vf ([g,X]) = [g,X, (Ad−1g gradϕ(AdgX))p, [(Ad−1g gradϕ(AdgX))k, X]].
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For smooth functions ϕ1, ϕ2 : g→ R, the Poisson bracket of f1 = ϕ1 ◦F and
f2 = ϕ2 ◦F is given by {f1, f2} = {ϕ1, ϕ2} ◦F , where we use the symplectic
structure on the orbits of the adjoint action of G,

{ϕ1, ϕ2}(X) = 〈X, [gradϕ1(X), gradϕ2(X)]〉.

Proof. By the chain rule and Proposition 5.23,

df[g,X]([g,X, Y, Z]) = dϕF ([g,X])(dF[g,X]([g,X, Y, Z]))

= 〈gradϕ(F ([g,X])), dF[g,X]([g,X, Y, Z])〉
= 〈gradϕ(AdgX),Adg(Z − [X,Y ])〉.

Now using Proposition 5.20 and the claimed expression, the first claim fol-
lows by comparing components, recalling that [k, p] ⊆ p. The second claim
is a special case of Proposition 4.17, and the formula for the Poisson bracket
of ϕ1 with ϕ2 follows from Proposition 4.6. �

Corollary 5.25. For f = ϕ ◦F as above and [g0, X0] ∈ TN , let g = g(t) be
the solution of the ordinary differential equation

ġ = Rg∗(gradϕ(AdgX0)), g(0) = g0.

Then [g,X0] is the trajectory of Vf with initial value [g0, X0].

Proof. By Proposition 5.24, the trajectories [g,X] of Vf are solutions of

(L−1g∗ ġ)p = (Ad−1g gradϕ(AdgX))p

Ẋ + [(L−1g∗ ġ)k, X] = [(Ad−1g gradϕ(AdgX))k, X].

Hence, if g solves
ġ = Rg∗ gradϕ(AdgX0)

with g(0) = g0, then g solves the first of the above differential equations
with X = X0. Since then also [(L−1g∗ ġ)k, X0] = [(Ad−1g gradh(AdgX))k, X0],

the second differential equation turns into the consistent Ẋ = 0. �

Remarks 5.26. Let ϕ : g→ R be G-invariant. (See also Lemma 6.1.)
1) The restriction of ϕ to p is K-invariant. The corresponding G-invariant
extension f to TN is given by f = ϕ ◦ F since

f([g,X]) = ϕ(X) = ϕ(AdgX) = ϕ(F ([g,X])).

2) By the G-invariance of ϕ, we have gradϕ(AdgX) = Adg gradϕ(X) for
all X ∈ g. Hence the differential equation in Corollary 5.25 turns into the
simpler differential equation ġ = Lg∗ gradϕ(X0) with solution

g = g(t) = g0 exp(t gradϕ(X0)) = exp(t gradϕ(Adg0 X0))g0.

5.3. Exercises.

Exercise 5.27. Let N = G/K be a reductive space with associated pro-
jection π̄ : G → N and vertical and horizontal distributions V and H as in
Section 5.1. Show that, for any piecewise smooth curve c : I → N , t0 ∈ I
and g0 ∈ G with π̄(g0) = c(t0), there is a unique horizontal lift g : I → G
with g(t0) = g0.

Exercise 5.28. Curves in G of the form g = g(t) = g0 exp(tX) with X ∈ g
are horizontal if and only if X ∈ p.
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Exercise 5.29. If V : I → TN is a smooth vector field along a smooth
curve c : I → N , then there are smooth maps g : I → G and X : I → p such
that c = π̄ ◦ g and V (t) = [g(t), X(t)]. Conversely, for any two smooth maps
g : I → G and X : I → p, V = [g,X] is a smooth vector field along c = π̄ ◦ g.

Exercise 5.30. For any smooth vector field V : I → TN along a smooth
curve c : I → N and lift g : I → G of c, there is a unique map X : I → p
such that V (t) = [g(t), X(t)], and V is smooth.

Exercise 5.31. Show that the covariant derivative ∇tV in (5.9) is well
defined; that is, it is independent of the choice of the maps g and X such
that V = [g,X]. Show also that ∇ defines a G-invariant connection on N .

Exercise 5.32. Discuss that, for [g,X, Y, Z] ∈ TTN ,
1) γ = γ(t) = π̄(g exp(tX)) is the geodesic with γ̇(0) = [g,X];
2) the vector field V = V (t) = [g exp(tY ), X] is parallel along γ;
3) the vector field W = W (t) = [g exp(tY ), X + tZ] along γ has initial

velocity Ẇ (0) = [g,X, Y, Z].
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6. Complete integrability after Anton Thimm

We discuss complete integrabilty of Hamiltonian systems after Thimm
[7, 8]. Our aim is to obtain conditions which ensure that the geodesic flow
of a Riemannian manifold is completely integrable. Thimm’s method shows
in fact the integrability of more general Hamiltonian systems, given that his
conditions are satisfied.

Lemma 6.1. Let G be a Lie group with a G-invariant nondegenerate in-
ner product 〈., .〉 on g, and let ϕ : g → R be a smooth function. Then
[X, gradϕ(X)] = 0 for all X ∈ g if ϕ is G-invariant. Conversely, if G is
connected and [X, gradϕ(X)] = 0 for all X ∈ g, then ϕ is G-invariant. �

Proof. For all X,Y ∈ g, we have

d

dt
ϕ(Adexp(tY )X)

∣∣
t=0

= dϕ|X([Y,X])

= 〈gradϕ(X), [Y,X]〉 = 〈[X, gradϕ(X)], Y 〉.

Since 〈., .〉 is non-degenerate, we conclude that the differential of ϕ in the
direction of the adjoint orbits of G vanishes if and only if [X, gradϕ(X)] = 0
for all X ∈ g. �

We return now to the setup –and the notation– as in the previous sections
and consider a semi-Riemannian normal homogeneous space M = G/K.

We say that a subspace V ⊆ g is non-degenerate if the restriction of 〈., .〉
to V is non-degenerate and that a Lie subgroup G′ ⊆ G is non-degenerate
if g′ ⊆ g is non-degenerate.

Proposition 6.2. Let G′ be a nondegenerate Lie subgroup of G and π′ : g→
g′ be the orthogonal projection. If ψ : g′ → R is an AdG′-invariant function,
then 1) f = ψ ◦ π′ ◦ F is G′-invariant and
2) the Vf -trajectory through [g0, X0] is given by

[g,X0] = [exp(tX1)g0, X0] with X1 = gradψ(π′Adg0 X0).

Proof. 1) For all g′ ∈ G′, we have π′ ◦Adg′ = Adg′ ◦π′.
2) The curve g has derivative ġ = Rg0∗Lgt∗X1, where gt = exp(tX1). On

the other hand, since ψ is AdG′-invariant and grad(ψ◦π′)(X) = gradψ(π′X)
for all X ∈ g, we have

Rg0∗Lgt∗(grad(ψ(π′Adg0 X0)) = Rg0∗Rgt∗(grad(ψ(π′Adgt Adg0 X0)).

Now the claim follows from Corollary 5.25. �

Proposition 6.3. Let G1 and G2 be nondegenerate Lie subgroups of G with
corresponding orthogonal projections π1 : g → g1 and π2 : g → g2. Suppose
that ψ1 : g1 → R and ψ2 : g2 → R are invariant under AdG1 and AdG2,
respectively. Then the Poisson bracket {ψ1 ◦ π1, ψ2 ◦ π2} is given by

{ψ1 ◦ π1, ψ2 ◦ π2}(X) = 〈X ′, [gradψ1(π1X), gradψ2(π2X)]〉,

for any linear combination X ′ = X + α1π1X + α2π2X.

Proof. Since ψ1 and ψ2 are invariant under AdG1 and AdG2 , the claim follows
immediately from (5.16) and Lemma 6.1. �
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We are interested in conditions which guarantee the vanishing of the Pois-
son brackets {ψ1 ◦ π1, ψ2 ◦ π2}.

Corollary 6.4. Under the above assumptions, if [g1, g2] ⊆ g2, for example,
if g1 ⊆ g2 or [g1, g2] = {0}, then

{ψ1 ◦ π1, ψ2 ◦ π2} = 0.

Proof. Choose X ′ = X − π2X, the component of X perpendicular to g2,
and apply Proposition 6.3 �

The strategy is now to find appropriate chains G1 ⊆ G2 ⊆ G3 ⊆ · · · of
nondegenerate subgroups and associated families of invariant functions to
obtain families of functions on g which have vanishing Poisson brackets. As
for the independence of these functions f = ϕ◦F , we aim to show that there
is an X ∈ g such that the corresponding

(6.5) ((gradϕ(X))p, [(gradϕ(X))k, X]) ∈ p× p

are linearly independent. By Proposition 5.24, this is equivalent to the linear
independence of the Hamiltonian vector fields Hf at {e,X}. By analyticity
of the system, this then implies the linear independence of the Hamiltonian
vector fields at all points of an open and dense subset in TM of full measure.

6.1. Real Grassmannians. Let N = Gp,q(R) be the real Grassmannian of
p-planes in Rp+q, where p, q ≥ 1. Let Ip,q be the orthogonal transformation
of Rp+q = Rp × Rq with Ip,q(u, v) = (u,−v). Then conjugation with Ip,q
is an involution σ of G = O(p + q) with fixed point set K = O(p) × O(q)
such that Gp,q(R) is the associated symmetric space G/K. We may also
choose G = SO(p+ q) with K = S(O(p)×O(q)) to represent Gp,q(R) as the
associated symmetric space. We use

(6.6) 〈X,Y 〉 = tr(XtY )

as G-invariant positive definite inner product on g = so(p+ q).
As a normalization, assume that p ≤ q and consider the chain

R1 × R1 ⊆ R1 × R2 ⊆ R2 × R2 ⊆ · · · ⊆ Rp−1 × Rp ⊆ Rp × Rp

⊆ Rp × Rp+1 ⊆ · · · ⊆ Rp × Rq−1 ⊆ Rp × Rq,
(6.7)

where we view Rk×Rl as the subspace of vectors (u, v) ∈ Rp×Rq such that
the respective last p− k and q− l coordinates of u and v vanish. We obtain
a chain of p+ q − 1 associated non-degenerate and σ-invariant subgroups,

O(1 + 1) ⊆ O(1 + 2) ⊆ O(2 + 2) ⊆ · · · ⊆ O(p− 1 + p) ⊆ O(p+ p)

⊆ O(p+ p+ 1) ⊆ · · · ⊆ O(p+ q − 1) ⊆ O(p+ q).
(6.8)

The fixed point set of σ in each occuring O(k + l) is O(k)×O(l). Thus we
obtain totally geodesically and isometrically embedded submanifolds

Gk,l(R) = O(k + l)/O(k)×O(l) ⊆ Gp,q(R).

The Lie algebra of O(k + l), where we view O(k + l) ⊆ O(p + q) as above,
consists of all matrices A ∈ so(p+ q) such that the rows and columns with
respective numbers k + 1, . . . , p and p+ l + 1, . . . , p+ q vanish.

There are two types of inclusions in the above chain of subspaces,

Rk−1 × Rk ⊆ Rk × Rk and Rk × Rl ⊆ Rk × Rl+1,
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respectivley, with k ≤ l in the latter case. There are the corresponding
inclusions

G1 = O(k − 1 + k) ⊆ G2 = O(k + k),

G1 = O(k + l) ⊆ G2 = O(k + l + 1).

In both cases, we denote the fixed point set of σ in G1 and G2 by K1 and K2,
respectively, and obtain corresponding decompositions of the Lie algebras,
g1 = k1 ⊕ p1 and g2 = k2 ⊕ p2. In both cases, we have the special feature
that

(6.9) dim p2 = dim p1 + r2,

where r2 is the rank of the symmetric space N2 = G2/K2, that is, the
dimension of a maximal Abelian subspaces of p2.

Lemma 6.10. In the above situation, for any regular vector X1 ∈ p1, there
is a regular vector X2 ∈ p2 with π1X2 = X1, where π1 : so(p + q) → g1
denotes the orthogonal projection, such that the maximal Abelian subspace
a2 of p2 containing X2 satisfies p1 ⊕ a2 = p2.

Proof. We prove Lemma 6.10 in the first case; the proof in the second case
is analogous. In the first case, p1 and p2 consist of all matrices of the form0 0 −xt

0 0 −at
x a 0


with x ∈ Rk×(k−1) and a ∈ Rk, where a = 0 for p1 and where we delete
the vanishing columns and rows which arise from the inclusion into Rp ×
Rq. We will identify any such matrix with the corresponding pair (x, a) in

Rk×(k−1) × Rk. There is a k ∈ K1 such that AdkX1 is contained in the
distinguished maximal Abelian subspace d1 ⊆ p1 which consists of matrices
(x, 0) such that xij = 0 for all i 6= j. Therefore we may assume without loss
of generality that

X1 = (x, 0) ∈ d1.

To find an X2 as asserted, we use the Ansatz X2 = (x, a). Then the com-
mutator of X2 with Y = (y, 0) ∈ p1 is given by

[X2, Y ] =

ytx− xty yta 0
−aty 0 0

0 0 yxt − xyt

 .

The upper left and lower right entries correspond to the commutator [X1, Y ].
Now X1 is regular in p1. Hence [X1, Y ] = 0 implies that Y ∈ d1 and
then aty = (a1y11, . . . , ak−1yk−1,k−1). Hence, if we choose the coordinates
a1, . . . , ak−1 of a to be nonzero, then the commutator of X2 = (x, a) with
Y = (y, 0) does not vanish for y 6= 0, and then the maximal Abelian subspace
a2 in p2 containing X2 satisfies a2 ∩ p1 = {0}. Thus a2 is a complement of
p1 in p2, by (6.9). �

Now we enumerate the chains of groups O(k+ l) and O(k)×O(l) further
up consecutively by Gi and Ki and denote their Lie algebras by gi and ki,
for 1 ≤ i ≤ p+q−1. We have the corresponding decompositions gi = ki⊕pi.
Starting with a nonzero X1 ∈ a1 = p1 ∼= R, we obtain from Lemma 6.10
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a chain of regular vectors Xi ∈ pi such that πiXj = Xi for all i ≤ j and
such that the maximal Abelian subspace ai of pi containing Xi satisfies
pi = pi−1 ⊕ ai. In particular, we obtain a direct sum decomposition

(6.11) pp+q−1 = a1 ⊕ · · · ⊕ ap+q−1.

The proof of the following Lemma 6.12 is Exercise 6.24.

Lemma 6.12. Let G = O(k+ l) and K = O(k)×O(l) with k ≤ l and write
so(k + l) = k⊕ p as above. Then the polynomials

ψj : so(k + l)→ R, ψj(X) = trX2j ,

where 1 ≤ j ≤ k, are G-invariant with gradient −2jX2j−1. Moreover, at
any point X in any maximal Abelian subspace a ⊆ p, their gradients are
tangent to a and are linearly independent if X is regular. �

Now Corollary 6.4 together with (6.11) and Lemma 6.12 implies that there
are pq smooth functions fji = ψj ◦πi◦F on TGp,q(R) which are in involution
and whose symplectic gradients are linearly independent (and horizontal) at
[e,Xp+q−1]; cf. Proposition 5.24. Since the ψj ◦ πi are polynomials, the fji
are real analytic. We conclude that their symplectic gradients are inde-
pendent on an open and dense subset of TGp,q(R) of full measure. With
Corollary 4.16 we arrive at

Theorem 6.13. For any SO(p+q)-invariant smooth function on TGp,q(R),
the associated Hamiltonian system on TGp,q(R) is completely integrable with
the above functions fji as a complete and involutive family of real analytic
first integrals. �

Remark 6.14. The proof of Theorem 6.13 shows that the polynomials
ψj ◦πi also give rise to a complete and involutive family of real analytic first
integrals for Hamiltonian systems associated to SO(p+q)-invariant functions
on the tangent bundle of the Grassmannian

Gok,l(R) = SO(p+ q)/ SO(p)× SO(q)

of oriented p-planes in Rp+q and, analogously, for Hamiltonian systems as-
sociated to SO(p, q)-invariant functions on the tangent bundle of the dual
Grassmannian of negative p-planes in Rp,q,

G−p,q(R) = SO(p, q)/SO(p)× SO(q).

Recall that Go1,q(R) and G−1,q are the round sphere and the real hyperbolic

space of dimension q, respectively. (See also Exercise 6.25.)

6.2. Complex Grassmannians. Up to (6.18), the ensuing discussion is
completely parallel to the one for the real Grassmannians; up to Lemma 6.21,
the changes are easy modifications.

Let N = Gp,q(C) be the complex Grassmannian of p-planes in Cp+q,
where p, q ≥ 1. Let Ip,q be the orthogonal transformation of Cp+q = Cp×Cq
with Ip,q(u, v) = (u,−v). Then conjugation with Ip,q is an involution σ of
G = U(p + q) with fixed point set K = U(p) × U(q) such that Gp,q(C) is
the associated symmetric space G/K. We may also choose G = SU(p + q)
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with K = S(U(p)×U(q)) to represent Gp,q(C) as the associated symmetric
space. We use

(6.15) 〈X,Y 〉 = tr(X∗Y )

as G-invariant positive definite inner product on g = u(p + q), where the
star indicates transposition together with complex conjugation.

As a normalization, assume that p ≤ q and consider the chain

C1 × C1 ⊆ C1 × C2 ⊆ C2 × C2 ⊆ · · · ⊆ Cp−1 × Cp ⊆ Cp × Cp

⊆ Cp × Cp+1 ⊆ · · · ⊆ Cp × Cq−1 ⊆ Cp × Cq,
(6.16)

where we view Ck×Cl as the subspace of vectors (u, v) ∈ Cp×Cq such that
the respective last p− k and q− l coordinates of u and v vanish. We obtain
a chain of p+ q − 1 associated non-degenerate and σ-invariant subgroups,

U(1 + 1) ⊆ U(1 + 2) ⊆ U(2 + 2) ⊆ · · · ⊆ U(p− 1 + p) ⊆ U(p+ p)

⊆ U(p+ p+ 1) ⊆ · · · ⊆ U(p+ q − 1) ⊆ U(p+ q).
(6.17)

The fixed point set of σ in each occuring U(k + l) is U(k)× U(l). Thus we
obtain totally geodesically and isometrically embedded submanifolds

Gk,l(C) = U(k + l)/U(k)×U(l) ⊆ Gp,q(C).

The Lie algebra of U(k + l), where we view U(k + l) ⊆ U(p + q) as above,
consists of all matrices A ∈ u(p + q) such that the rows and columns with
respective numbers k + 1, . . . , p and p+ l + 1, . . . , p+ q vanish.

There are two types of inclusions in the above chain of subspaces,

Ck−1 × Ck ⊆ Ck × Ck and Ck × Cl ⊆ Ck × Cl+1,

respectivley, with k ≤ l in the latter case. There are the corresponding
inclusions

G1 = U(k − 1 + k) ⊆ G2 = U(k + k),

G1 = U(k + l) ⊆ G2 = U(k + l + 1).

In both cases, we denote the fixed point set of σ in G1 and G2 by K1

and K2, respectively, and obtain correspnding decompositions of the Lie
algebras, g1 = k1 ⊕ p1 and g2 = k2 ⊕ p2. In both cases, we have

(6.18) dim p2 = dim p1 + 2r2,

where r2 is the rank of the symmetric space N2 = G2/K2, that is, the
dimension of a maximal Abelian subspaces of p2.

Lemma 6.19. In the above situation, for any regular vector X1 ∈ p1, there
is a regular vector X2 ∈ p2 with π1X2 = X1, where π1 : u(p+q)→ g1 denotes
the orthogonal projection, such that the maximal (real) Abelian subspace a2
of p2 containing X2 satisfies p1 ⊕ Ca2 = p2.

Proof. We prove Lemma 6.19 in the first case; the proof in the second case
is analogous. In the first case, p1 and p2 consist of all matrices of the form0 0 −x∗

0 0 −a∗
x a 0
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with x ∈ Ck×(k−1) and a ∈ Ck, where a = 0 for p1 and where we delete
the vanishing columns and rows which arise from the inclusion into Cp ×
Cq. We will identify any such matrix with the corresponding pair (x, a) in

Ck×(k−1) × Ck. There is a k ∈ K1 such that AdkX1 is contained in the
distinguished maximal Abelian subspace d1 ⊆ p1 which consists of matrices
(x, 0) such that xij = 0 for all i 6= j and such that xii ∈ R. Hence we can
assume without loss of generality that X1 = (x, 0) ∈ d1.

To find an X2 as asserted, we use the Ansatz X2 = (x, a). Then the
commutator of X2 with Y = (y, 0) ∈ p1 is given by

[X2, Y ] =

y∗x− x∗y y∗a 0
−a∗y 0 0

0 0 yx∗ − xy∗

 .

The upper left and lower right entries correspond to the commutator [X1, Y ].
Now X1 is regular in p1. Hence [X1, Y ] = 0 implies that Y ∈ d1 and
then a∗y = (ā1y11, . . . , āk−1yk−1,k−1). Hence, if we choose the coordinates
a1, . . . , ak−1 of a to be nonzero, then the maximal Abelian subspace a2 in
p2 containing X2 satisfies Ca2 ∩ p1 = {0}. Thus Ca2 is a complement of p1
in p2, by (6.18). �

Now we enumerate the chains of groups U(k+ l) and U(k)×U(l) further
up consecutively by Gi and Ki and denote their Lie algebras by gi and ki,
for 1 ≤ i ≤ p+q−1. We have the corresponding decompositions gi = ki⊕pi.
Starting with a nonzero X1 ∈ p1 = Ca1 ∼= C, we obtain from Lemma 6.10
a chain of regular vectors Xi ∈ pi such that πiXj = Xi for all i ≤ j and
such that the maximal Abelian subspace ai of pi containing Xi satisfies
pi = pi−1 ⊕ Cai. In particular, we obtain a direct sum decomposition

(6.20) pp+q−1 = Ca1 ⊕ · · · ⊕ Cap+q−1.

The proof of the following Lemma 6.12 is Exercise 6.24.

Lemma 6.21. Let G = U(k+ l) and K = U(k)×U(l) with k ≤ l and write
u(k + l) = k⊕ p as above. Then the polynomials

ψj : u(k + l)→ R, ψj(X) = tr((
√
−1X)j),

where 1 ≤ j ≤ 2k, are G-invariant with gradient −j
√
−1(
√
−1X)j−1. Their

gradients at any point X in any maximal Abelian subspace a ⊆ p are tangent
to a if j is even and to k if j is odd. Moreover, the gradients are linearly
independent at any regular X. �

Corollary 6.4 together with (6.20) and Lemma 6.21 implies that there are
pq smooth functions f2j,i = ψ2j ◦πi ◦F on TGp,q(C) which are in involution
and whose symplectic gradients are linearly independent and horizontal at
[e,Xp+q−1]; cf. Proposition 5.24. We will call them functions of the first kind ;
they correspond to the functions in the case of the real Grassmannians.

Now the dimension of Gpq(C) is 2pq and hence we have only half of the
number of functions we need for complete integrability. For the other half,
we will consider the odd powers ψ2j+1. They will give rise to functions of
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the second kind with vertical symplectic gradients. We write

Xp+q−1 =


0 0 −x∗ −z∗
0 0 −y∗ −u∗
x y 0 0
z u 0 0

 ,

where x ∈ Ck×(k−1) in the first case and x ∈ Cl×k in the second, where y,
z, and u are matrices with complex entries of appropriate sizes, and where
Xi is obtained by setting y, z, and u equal to 0. The horizontal part of the
symplectic gradient of ψ2j+1 ◦πi ◦F at [e,Xp+q−1] vanishes and the vertical
part is given by

(−1)j
√
−1




(x∗x)j 0 0 0
0 0 0 0
0 0 (xx∗)j 0
0 0 0 0

 ,


0 0 −x∗ −z∗
0 0 −y∗ −u∗
x y 0 0
z u 0 0




= (−1)j
√
−1


0 0 0 −(x∗x)jz∗

0 0 y∗(xx∗)j 0
0 (xx∗)jy 0 0

−z(x∗x)j 0 0 0

 .

Now suppose that we are in the first case. Then perturbing Xp+q−1 slightly
if necessary, more precisely, perturbing x and y slightly if necessary, we get
that xx∗ is a Hermitian (k×k) matrix with one vanishing and k−1 pairwise
different positive eigenvalues and that the k vectors (xx∗)jy1, 0 ≤ j ≤ k−1,
are linearly independent, where y1 denotes the first column of y and where
we note that (xx∗)0 = id has rank k. Thus the first case gives rise to
k further functions with vertical symplectic gradients at [e,Xp+q−1] which
lie in the kernel of πi and such that their images under πi+1 are linearly
independent. In the second case we also get k such functions. All in all,
we get pq functions of the second kind, starting with the function we get
from {1}×U(1) ⊆ U(1)×U(1) and ending with the p functions we get from
U(p + q − 1) ⊆ U(p + q). Moreover, their symplectic gradients are vertical
and linearly independent at [e,Xp+q−1], and they are in involution among
themselves and with the pq functions of the first kind.

Since the ψj ◦ πi are polynomials, the 2pq functions fji = ψj ◦ πi ◦ F are
real analytic. We conclude that their symplectic gradients are independent
on an open and dense subset of TGp,q(C) of full measure. Together with
Corollary 4.16 we arrive at

Theorem 6.22. For any SU(p+q)-invariant smooth function on TGp,q(C),
the associated Hamiltonian system on TGp,q(C) is completely integrable with
the above 2pq functions as a complete and involutive family of real analytic
first integrals. �

Remarks 6.23. 1) The proof of Theorem 6.22 shows that the polynomials
ψj ◦πi also give rise to a complete and involutive family of real analytic first
integrals for Hamiltonian systems associated to SU(p, q)-invariant functions
on the tangent bundle of the dual Grassmannian of negative p-planes in Cp,q,

G−p,q(C) = SU(p, q)/S(U(p)×U(q)).
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Recall that G1,q and G−1,q are the complex projective and the complex hy-
perbolic space of complex dimension q, respectively.

2) Note the shift in the retrieval of functions of the first and second
kind. For functions of the first kind, they arise from invariant polynomials
on u(1 + 1), . . . , u(p + q), for functions of the second kind from invariant
polynomials on u(0 + 1), . . . , u(p + q − 1). In fact, since the projective line
G1,1(C) ∼= S2 has real dimension two, we already need two functions on that
level. We retrieve one of the first kind from u(1 + 1) and one of the second
kind from u(0+1). Note also that functions of the second kind from u(p+q)
would be constant since their symplectic gradients would vanish identically.

6.3. Exercises.

Exercise 6.24. Prove Lemma 6.12 and Lemma 6.21. Hint: For the claims
about maximal Abelian subspaces of p, argue that it suffices to prove them
for one such subspace and discuss your prefered one. For the claim about
the linear independence, a Vandermonde determinant will come into play.

Exercise 6.25. Determine the sectional curvature of the sphere Go1,q(R)

and the real hyperbolic space G−1,q(R) as in Remark 6.14 with respect to the

inner product (6.6).
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