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1. Introduction

Standard critical point theory is concerned with smooth functions
on finite dimensional manifolds. Its origins reach at least as far back
as [Mö]1, where Möbius used it to classify compact surfaces in Eu-
clidean space. Later, Birkhoff, Morse, Lusternik, and Schnirelmann
were interested in the existence of periodic geodesics on Riemannian
manifolds and studied this problem via critical point theory on loop
spaces, compare with [B2], [Mo], and [LS].

Recall that, for a Riemannian manifold M and a piecewise smooth
curve c : [a, b]→M , length and energy of c are defined by

L(c) =

∫ b

a

‖c′‖ and E(c) =
1

2

∫ b

a

‖c′‖2. (1)

Length is more geometric than energy. However, since the length of
a curve does not change under reparametrization, the analysis of the
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2 WERNER BALLMANN

length as a functional on spaces of curves is somewhat unpleasant. The
energy functional has better analytic properties, and that is the reason
why we study the energy functional.

To set the stage, let Ω = Ω([a, b],M) be the space of piecewise
smooth curves c : [a, b] → M , endowed with the compact-open topol-
ogy, and consider E as a functional on Ω. Although Ω is neither a
manifold nor complete and E is not even continuous, critical point the-
ory of E on Ω and subspaces of Ω can be developed rigorously, via
so-called finite dimensional approximations, as standard critical point
theory of smooth functions on finite dimensional manifolds, and that
is the topic of these notes.

There are a number of good sources on critical point theory of length
and energy on path spaces, and I have borrowed freely from them; com-
pare for example with [Bo], [Mi], [GKM], [CE], and the monographs
mentioned further up. There is also a less elementary approach via infi-
nite dimensional manifolds of path spaces, see [Pa] and [Kl]. However,
for most purposes, the elementary approach pursued in these notes
seems quite adequate.

I would like to thank Saskia Voß for her careful reading of the notes.
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2. Prerequisites

We assume that the reader is familiar with elementary Riemannian
geometry. For later reference, we recall a few basic concepts and results.

2.1. Length and energy. Let c : [a, b] → M be a piecewise smooth
curve. Then

L(c|[a, b])2 =
( ∫ b

a

‖c′‖
)2 ≤ |b− a| · ∫ ‖c′‖2 = 2|b− a|E(c), (2)

by the Cauchy-Schwarz inequality. Equality holds if and only if c has
constant speed, ‖c′(t)‖ = const.

2.2. Jacobi fields and conjugate points. Let c : [a, b] → M be a
geodesic. Then a vector field V along c is called a Jacobi field if it
satisfies the Jacobi equation

V ′′ +R(V, c′)c′ = 0.

Jacobi fields are exactly the variation fields of geodesic variations of c,
that is, of variations (cs) of c = c0 such that all the cs are geodesics,
compare with Definition 3.1. For t ∈ (a, b], we say that c(t) is a con-
jugate point of c(a) along c if there is a nonzero Jacobi field J along c
with J(a) = J(t) = 0. The multiplicity of c(t) as a conjugate point of
c(a) along c is equal to the dimension of the space of such Jacobi fields
(where the multiplicity of c(t) is equal to 0 if it is not a conjugate point
of c(a) along c).

It follows easily from the characterization of Jacobi fields as variation
fields of geodesic variations and the definition of the exponential map
exp that conjugate points correspond to critical points of the latter:

2.1. Proposition. Let p ∈M and v ∈ TpM be in the domain of defini-
tion of expp. Then dim ker expp∗v is equal to the multiplicity of exp(v)
as a conjugate point of p along the geodesic exp(tv), 0 ≤ t ≤ 1.

2.3. Injectivity radius. The following fact follows immediately from
the continuity of the injectivity radius function of M :

2.2. Theorem. Let U ⊆M be a relatively compact open subset. Then
there is a constant ε > 0 such that any two points p, q ∈ U with distance
d(p, q) < ε can be joined by a unique geodesic cpq : [0, 1]→M of length
< ε and cpq(t) depends smoothly on p, q, and t.
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3. First and second variation of energy

3.1. Definition. An (`-parameter) variation of a curve c ∈ Ω is a map
F : U × [a, b] → M , where U is an open neighborhood of 0 ∈ R`, such
that c0 = c, where cs := F (s, .), for all s ∈ U , and such that there is a
subdivision t0 < · · · < tk of [a, b] (where t0 = a and tk = b) such that
F restricted to U × [ti−1, ti] is smooth, for all 1 ≤ i ≤ k. A variation
F of c is called proper if cs(a) = c(a) and cs(b) = c(b), for all s ∈ U .
For a variation F of c, the vector fields (∂jF )(0, .) along c are called
the variation fields associated to F .

It follows that the map U → Ω, s 7→ cs, associated to a variation F is
continuous with respect to the compact-open topology on Ω. We think
of variations as smooth maps into Ω, although Ω is not a manifold.
Nevertheless, for any variation F of c, the composition E(s) := E(cs)
is a smooth map of s ∈ U . The derivative of this map at s = 0 is called
the first variation of energy at c with respect to F .

3.2. First variation of energy. Let F be a 1-parameter variation of
c ∈ Ω with associated subdivision t0 < · · · < tk of [a, b] as in Defini-
tion 3.1. Then the first variation of energy at c with respect to F is
given by

E ′(0) = −
∫ b

a

〈c′′, V 〉 dt+ 〈c′(t), V (t)〉
∣∣∣∣b
a

−
k−1∑
i=1

〈∆c′(ti), V (ti)〉, (3)

where V = (∂sF )(0, .) denotes the variation field associated to F and
where ∆c′(t) := c′(t+)− c′(t−).

Proof. Using that the Levi-Civita connection is symmetric and metric,
we get

E ′ = ∂s

(
1

2

∫ b

a

〈∂tF, ∂tF 〉 dt
)

=
1

2

∫ b

a

∂s〈∂tF, ∂tF 〉 dt

=

∫ b

a

〈∂tF,Ds∂tF 〉 dt =

∫ b

a

〈∂tF,Dt∂sF 〉 dt

=

∫ b

a

∂t〈∂tF, ∂sF 〉 dt−
∫ b

a

〈Dt∂tF, ∂sF 〉 dt.

The first term on the right is equal to

k∑
i=1

〈(∂tF )(., t), (∂sF )(., t)〉
∣∣∣∣t=ti
t=ti−1

.
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Now (∂sF )(0, .) = V , (∂tF )(0, .) = c′, and (Dt∂tF )(0, .) = c′′, hence

E ′(0) = −
∫ b

a

〈c′′, V 〉 dt+
k∑
i=1

〈c′(t), V (t)〉
∣∣∣∣t=ti
t=ti−1

. �

We denote by V(c) the vector space of piecewise smooth vector fields
along c. We think of V(c) as the tangent space of Ω at c. This point
of view is justified by the following

3.3. Technical lemma. Let c ∈ Ω and V1, . . . , V` ∈ V(c). Choose times
a = t0 < · · · < tk = b, and let fi : U →M be smooth maps, where U is
an open neighborhood of 0 in R`, such that

fi(0) = c(ti) and (∂jfi)(0) = Vj(ti),

for all 0 ≤ i ≤ k and 1 ≤ j ≤ `. Then, by diminishing the size of U
if necessary, there is an `-parameter variation F : U × [a, b] → M of
c with variation fields (∂jF )(0, .) = Vj such that F (., ti) = fi, for all
0 ≤ i ≤ k and 1 ≤ j ≤ `.

Proof. By adding further times ti and maps fi if necessary, we may
assume that the restrictions c|[ti−1, ti] and Vj|[ti−1, ti] are smooth and
that the segments c([ti−1, ti]) are contained in coordinate domains Ui
of M . By diminishing the size of U if necessary, the images of fi−1
and fi are contained in the domains Ui about c([ti−1, ti]). Choosing
coordinates of M over Ui, we arrive at a simple extension problem for
smooth maps U × [ti−1, ti]→ Rm. �

Denote be V0(c) the space of V ∈ V(c) with V (a) = V (b) = 0.

3.4. Corollary. A vector field V ∈ V(c) is the variation field of a proper
variation of c if and only if V ∈ V0(c).

3.5. Regularity theorem. Let c ∈ Ω. Then the first variation of
energy at c vanishes, with respect to any proper variation of c, if and
only if c is a geodesic.

Proof. By (3), if c is a geodesic, then the first variation of energy at c
vanishes, with respect to any proper variation of c.

Assume now that the first variation of energy at c vanishes, with
respect to any proper variation of c. Choose a subdivision t0 < · · · < tk
of [a, b] such that the restrictions c|[ti−1, ti] are smooth. Suppose first
that c′′(t) 6= 0, for some t in some (ti−1, ti). Let V be a piecewise smooth
vector field along c with support in a neighborhood of t in (ti−1, ti) such
that 〈c′′, V 〉 ≥ 0 and 〈c′′(t), V (t)〉 > 0. By Lemma 3.3, there is a proper
variation F of c with variation field V . Then E ′(0) = 0 with respect
to F , by assumption. Now the second and third term on the right in
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(3) vanish since V vanishes at the corresponding points. On the other
hand, the contribution of the first term is nonzero, by the choice of V .
This is a contradiction. It follows that c′′(t) = 0 for all t in all (ti−1, ti).
Hence c is a geodesic on each of the intervals [ti−1, ti], by the continuity
of c′′ on these intervals.

It remains to show that ∆c′(ti) = 0, for all 1 ≤ i ≤ k − 1. To that
end, suppose that there is such an i with c′(ti−) 6= c′(ti+). Let V be a
piecewise smooth vector field along c with support in (ti−1, ti+1) such
that 〈∆c′(ti), V (ti)〉 6= 0. By Lemma 3.3, there is a proper variation F
of c with variation field V . Then again E ′(0) = 0 with respect to F , by
assumption. Now the first and second term on the right in (3) vanish
since c′′ = 0 and V (a) = V (b) = 0. In the sum on the right, only the
term with the given i survives and gives a nonzero contribution, by the
choice of V . This is again a contradiction, hence c is a geodesic. �

3.6. Second variation of energy. Let c ∈ Ω be a geodesic and F be
a 2-parameter variation of c. Then the second variation of energy at c
with respect to F is given by

(∂r∂sE)(0, 0) =

∫ b

a

{〈V ′,W ′〉 − 〈R(V, c′)c′,W 〉} dt

+ 〈c′(t), (Dr∂sF )(0, t)〉
∣∣∣∣b
a

,

(4)

where V := (∂rF )(0, .) and W := (∂sF )(0, .).

Proof. We have

(∂r∂sE) =

∫ b

a

∂r〈∂tF,Ds∂tF 〉 dt

=

∫ b

a

{
〈Dr∂tF,Ds∂tF 〉 dt+ 〈∂tF,DrDs∂tF 〉

}
dt

=

∫ b

a

{
〈Dt∂rF,Dt∂sF 〉 dt+ 〈∂tF,DrDt∂sF 〉

}
dt.

At r = s = 0, the first term under the integral on the right hand side
is equal to 〈V ′,W ′〉. As for the second term, we have

DrDt∂sF = DtDr∂sF +R(∂rF, ∂tF )∂sF.

On the other hand,

〈∂tF,DtDr∂sF 〉 = ∂t〈∂tF,Dr∂sF 〉 − 〈Dt∂tF,Dr∂sF 〉.
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Now at r = s = 0, we have ∂tF = c′ and Dt∂tF = c′′ = 0. Collecting
terms, we arrive at the asserted formula. �

For proper variations of a geodesic c : [a, b]→M , the last term on the
right of (4) vanishes. As a bilinear and symmetric form in V,W ∈ V(c),
the remaining part is called the index form of c,

I(V,W ) :=

∫ b

a

{〈V ′,W ′〉 − 〈R(V, c′)c′,W 〉} dt. (5)

3.7. Proposition. We have

I(V,W ) =−
∫ b

a

{〈V ′′ +R(V, c′)c′,W 〉} dt (6)

+ 〈V ′(t),W (t)〉
∣∣∣∣b
a

−
k−1∑
i=1

〈∆V ′(ti),W (ti)〉,

where the subdivision t0 < · · · < tk of [a, b] is chosen such that the
restrictions V |[ti−1, ti] and W |[ti−1, ti] are smooth and where

∆V ′(t) := V ′(t+)− V ′(t−). (7)

Proof. This follows easily from 〈V ′,W ′〉 = 〈V ′,W 〉′ − 〈V ′′,W 〉. �

As a first application of the second variation formula, we show that
geodesics are not minimizing if I has negative directions in V0(c).

3.8. Proposition. Let p and q be points in M and c ∈ Ω be a geodesic
from p to q. Let V ∈ V0(c) be a vector field along c with I(V, V ) < 0
and F be a proper variation of c with variation field V . Then

E(cs) < E(c) and L(cs) < L(c),

for all sufficiently small nonzero s. In particular, c is not a shortest
curve from p to q.

Proof. Let F : (−ε, ε) → M be a proper variation of c with variation
field V . Then E ′(0) = 0 and E ′′(0) = I(V, V ) < 0, by Theorem 3.5
and (4), hence E(cs) < E(c), for all sufficiently small nonzero s. By
(2), we also have

L2(cs) ≤ 2|b− a|E(cs) and L2(c) = 2|b− a|E(c). �

4. Boundary conditions and critical points

A boundary conditon on Ω is a closed submanifold B ⊆ M × M .
Given such a submanifold, we say that a curve c ∈ Ω is a B-curve if
its end points (c(a), c(b)) ∈ B and set

ΩB := {c ∈ Ω | c is a B-curve}. (8)
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We say that an `-parameter variation F of c ∈ ΩB is an (`-parameter)
B-variation if cs is a B-curve, for all s ∈ U .

4.1. Examples. 0) B = M×M is called the empty boundary condition.
1) Given any pair of points p, q ∈ M , we may consider B = {(p, q)}.
Then Ωpq := ΩB is the space of piecewise smooth curves c : [a, b]→M
from p to q. In the case p = q, we get the space Λp := Ωpp of piecewise
smooth loops c : [a, b]→M at p.
2) More generally, for closed submanifolds P,Q ⊆ M , we obtain the
space ΩPQ of piecewise smooth curves c : [a, b]→M from P to Q.
3) For B = {(p, p) | p ∈ M}, the diagonal in M ×M , we obtain the
free loop space of M , that is, the space Λ of piecewise smooth closed
curves c : [a, b]→M .

A piecewise smooth vector field V along c ∈ ΩB is called a B-vector
field if it is the variation field of a B-variation. The vector space of
B-vector fields is denoted by VB(c).

4.2. Lemma. Let V1, . . . , V` be piecewise smooth vector fields along a
curve c ∈ ΩB. Then there is an `-parameter B-variation F of c with
variation fields (∂jF )(0, .) = Vj if and only if (Vj(a), Vj(b)) is tangent
to B at (c(a), c(b)), for all 1 ≤ j ≤ `. In particular,

VB(c) = {V ∈ V(c) | (V (a), V (b)) ∈ T(c(a),c(b))B}.
Proof. Clearly, if F is a B-variation of c with associated variation fields
Vj = (∂jF )(0, .), then (Vj(a), Vj(b)) is tangent to B at (c(a), c(b)),
for all 1 ≤ j ≤ `. Conversely, suppose that V1, . . . , V` are piecewise
smooth vector fields along c such that (Vj(a), Vj(b)) is tangent to B at
(c(a), c(b)), for all 1 ≤ j ≤ `. Choose a smooth map f : U → B, where
U is an open neighborhood of 0 in R`, such that f(0) = (c(a), c(b))
and (∂jf)(0) = (Vj(a), Vj(b)), and denote first and second component
of f by f0 and f1. Let F be a variation of c associated to the vector
fields V1, . . . , V` and maps f0 and f1 as in Lemma 3.3, where t0 = a and
t1 = b. Since f maps into B, we conclude that F is a B-variation of c
with variation fields Vj. �

We view ΩB as a submanifold of Ω and VB(c) as tangent space of
ΩB at c, for any c ∈ ΩB.

4.3. Definition. We say that c ∈ ΩB is a critical point of the energy
functional on ΩB if the first variation of c vanishes, with respect to any
B-variation F of c.

4.4. Theorem. A curve c ∈ ΩB is a critical point of the energy func-
tional on ΩB if and only if c is a geodesic such that

(−c′(a), c′(b)) ⊥ T(c(a),c(b))B (9)
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with respect to the product metric on M ×M .

4.5. Definition. We say that a geodesic c ∈ ΩB is a B-geodesic if it is
a critical point of E on ΩB, that is, if it satisfies (9).

Proof of Theorem 4.4. If c ∈ ΩB is a critical point of E on ΩB, then c
is a geodesic, by Lemma 3.5, and then (9) follows from (3). The other
direction is clear. �

4.6. Examples. Critical points of E on ΩB are
0) constant geodesics if B = M ×M ;
1) geodesics c : [a, b]→M from p to q if B = {(p, q)};
2) geodesics c : [a, b]→M from P to Q which hit P and Q perpendic-
ularly at t = a and t = b, respectively, if B = P ×Q;
3) periodic geodesics, that is, geodesics c : [a, b]→ M with c(a) = c(b)
and c′(a) = c′(b), if B is the diagonal in M ×M .

Recall that the second derivative of a smooth function at a point of
a manifold, as a symmetric bilinear form on the tangent space at that
point, is only well defined if the point is a critical point of the function.
In our interpretation of critical points of the energy functional on ΩB,
this should mean that the second variation of energy is a symmetric
bilinear form on VB(c), for any B-geodesic c. To check this, let F be a
2-parameter B-variation of c with variation fields (∂rF )(0, .) := V and
(∂sF (0, .) := W . Then the last term in (4) turns into

〈c′(b), (Dr∂sF )(0, b)〉 − 〈c′(a), (Dr∂sF )(0, a)〉
= 〈(−c′(a), c′(b)), ((Dr∂sF )(a, t), (Dr∂sF )(b, t))〉
= 〈(−c′(a), c′(b)), II((V (a), V (b)), (W (a),W (b))〉,
=: IIn((V (a), V (b)), (W (a),W (b)),

(10)

where n := (−c′(a), c′(b)) and II denotes the second fundamental form
of B at (c(a), c(b)) with respect to the product metric on M × M .
Recall that n is normal to B, that is, n ⊥ T(c(a),c(b))B, cf. (9).

4.7. Proposition. In the above situation, we have

HB(V,W ) := (∂r∂sE)(0, 0)

= I(V,W ) + IIn((V (a), V (b)), (W (a),W (b))), (11)

where IIn denotes the second fundamental form of B at (c(a), c(b)) with
respect to the normal vector n = (−c′(a), c′(b)). �

We see that the second variation of the energy on ΩB at a B-geodesic
c, the Hessian HB = HB(V,W ) of E at c, is a symmetric bilinear form
on the space VB(c) of B-vector fields along c.
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5. Finite dimensional approximations

Our aim is to study critical point theory of the energy functional
E on the spaces ΩB. In standard critical point theory, a first require-
ment on the given function is that its sublevels are relatively compact.
For a given boundary condition B, we replace this requirement by the
following

5.1. Compactness Condition. Given a constant κ > 0, there is a
relatively compact open subset U = UB,κ such that

c ∈ ΩB and E(c) < κ =⇒ im c ⊆ U. (C)

5.2. Remarks. 1) If M is compact, any boundary condition B satisfies
Condition C. More generally, if B is compact, then Condition C is
satisfied. To see this, let Ba be the projection of B onto the first factor
in M ×M . Then any curve c ∈ ΩB has initial point c(a) ∈ Ba. Hence,
by (2), the image of c is contained in the open neighborhood U of

radius
√
|b− a|κ/2 about Ba if E(c) < κ. Since Ba is compact and M

is complete, U is relatively compact.
2) Condition C corresponds to the well known Palais-Smale condition
in the calculus of variations, compare with [Pa] and [Kl].
3) It is reasonable to discuss critical point theory of E on path com-
ponents of ΩB, that is, on B-homotopy classes of curves in ΩB. Then
it suffices to require (C) for curves c in the corresponding B-homotopy
class. This refinement of Condition C occurs in [Th], where Thor-
bergsson uses it to discuss the existence of periodic geodesics in free
homotopy classes of closed curves on non-compact manifolds.

Throughout this part, let B be a boundary condition satisfying Con-
dition C above. Let κ > 0, choose U = UB,κ according to Condition C,
and set

Ωκ
B = {c ∈ ΩB | E(c) < κ}. (12)

Condition C says that the images of curves in Ωκ
B are contained in U .

Since U is relatively compact, its injectivity radius is positive, compare
with Theorem 2.2

For any c ∈ Ωκ
B and a ≤ s < t ≤ b, we have L(c|[s, t])2 < 2|s − t|κ,

by (2), and hence

2|s− t|κ < ε2 =⇒ d(c(s), c(t)) < ε. (13)

Fix a subdivison t0 < t1 < · · · < tk of [a, b] such that

ti − ti−1 < ε2/2κ, for all 1 ≤ i ≤ k. (14)

Then, by (13),

d(c(s), c(t)) < ε, for all 1 ≤ i ≤ k and s, t ∈ [ti−1, ti]. (15)
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Let Ωκ
B(t0, . . . , tk) ⊆ Ωκ

B be the subspace of geodesic polygons, that is,
of curves c in Ωκ

B such that c|[ti−1, ti] is a geodesic, for all 1 ≤ i ≤ k.

5.3. Theorem. With respect to the compact-open topology, there is a
deformation retraction of Ωκ

B onto Ωκ
B(t0, . . . , tk). Moreover, the sub-

levels Ωλ
B(t0, . . . , tk) of E are relatively compact in Ωκ

B(t0, . . . , tk), for
all λ < κ.

Proof. Define a deformation retraction F : [0, 1]×Ωκ
B → Ωκ

B of Ωκ
B onto

Ωκ
B(t0, . . . , tk) by replacing the pieces of c ∈ Ωκ

B between c(ti−1) and
c(sti + (1− s)ti−1) by the unique geodesic of length < ε with these end
points, appropriately parametrized, leaving the rest of c untouched,
for all 0 ≤ s ≤ 1 and 1 ≤ i ≤ k. That is, for such s and i and
ti−1 ≤ t ≤ sti + (1− s)ti−1, we set

F (s, c)(t) = cc(ti−1)c(sti+(1−s)ti−1)

( t− ti−1
s(ti − ti−1)

)
and F (s, c)(t) = c(t) otherwise. Then F (0, c) = c and F (1, c) is the
geodesic polygon which connects the points c(t0), c(t1), . . . , c(tk) con-
secutively by the unique geodesic segments of length < ε.

Since U is relatively compact, it follows easily that sublevels of E,
for λ < κ, are relatively compact. �

For any c ∈ Ωκ
B(t0, . . . , tk), the points pi := c(ti) ∈ U determine c,

by (15). Furthermore,

E(c) =
∑
1≤i≤k

d2(c(ti−1), c(ti))

ti − ti−1
=
∑
1≤i≤k

d2(pi−1, pi)

ti − ti−1
. (16)

Thus Ωκ
B(t0, . . . , tk) is canonically homoeomorphic to

N := Mκ
B(t0, . . . , tk)

:= {c = (p0, p1, . . . , pk) ∈Mk+1 | (p0, pk) ∈ B and E(c) < κ}, (17)

where E(c) is given by the right hand sum in (16). Note that N is
an open subset of B × Mk−1 and that the energy functional E is a
smooth function on N . Thus we have arrived at the aimed for finite
dimensional approximation N of ΩB, given the upper bound κ on E.

We want to show that, up to homotopy equivalence, the topology of
ΩB is caught by the spaces Ωκ

B(t0, . . . , tk).

5.4. Theorem. For all κ > 0 and subdivisions t0 < · · · < tk of [a, b],
consider the inclusions i : Ωκ

B(t0, . . . , tk) → ΩB. Let K be a compact
metric space. Then we have:
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(1) If f : K → ΩB is a continuous map, then there exists a contin-
uous map g : K → Ωκ

B(t0, . . . , tk) such that i ◦ g is homotopic
to f , for all sufficiently large κ > 0 and all sufficiently fine
subdivisions t0 < · · · < tk of [a, b] as above.

(2) Let f0, f1 : K → ΩB and g0, g1 : K → Ωκ
B(t0, . . . , tk) be continu-

ous maps such i ◦ g0 is homotopic to f0 and i ◦ g1 is homotopic
to f1. Then, if f0 is homotopic to f1, then g0 and g1 are homo-
topic in Ωλ

B(s0, . . . , s`), for all sufficiently large λ ≥ κ and all
sufficiently fine subdivisions s0 < · · · < s` of [a, b].

Proof. Recall that f : K → ΩB is continuous if and only if

F : K × [a, b]→M, F (x, t) := f(x)(t), (18)

is continuous. Since K× [a, b] is compact, there is a lower bound ε > 0
on the injectivity radius of M in the image of F as in Theorem 2.2. By
the continuity of F and the compactness of K × [a, b], there is a δ > 0
such that d(F (x, s), F (y, t)) < ε if d(x, y)+|s−t| < δ. As in the proof of
Theorem 5.3, we can now deform f into a map g : K → Ωκ

B(t0, . . . , tk),
for all sufficiently large κ > 0 and all sufficiently fine subdivisions of
[a, b]. This proves (1), and the proof of (2) is similar. �

We discuss now two nontrivial applications of what we discussed
so far, assuming a basic fact from algebraic topology: For a compact
manifold M of dimension m and a point p ∈ M , there is a non-trivial
homotopy group πk(M, p), for some k ≥ 1.

The main idea in the proof of Theorems 5.5 and 5.6 is described in
[B1] in the case M = S2 and in [B2] for M = Sm. However, higher
homotopy groups had not been defined yet when [B1] and [B2] were
written so that the convincing arguments of Birkhoff remain somewhat
informal. Later, Lusternik and Fet observed the extension to general
compact manifolds, using the fact about homotopy groups of compact
manifolds mentioned above.

5.5. Theorem. Let M be a compact Riemannian manifold and p be a
point in M . Then there is a nontrivial geodesic loop c : [0, 1] → M at
p, that is, c is not constant and c(0) = c(1) = p.

Proof. There is a first 1 ≤ k ≤ m such that πk(M, p) is nontrivial. Thus
there is a continuous map F : [0, 1]k → M which sends the boundary
∂[0, 1]k of [0, 1]k to p such that F not homotopic to a constant map in
the space F of all continuous maps [0, 1]k → M which send ∂[0, 1]k to
p. It is easy to see that F is homotopic, in F , to a smooth map, and
therefore we may assume that F is smooth.
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The correspondence from (18) defines an isomorphism πk(M, p) =
πk−1(Λp, p), where (here) Λp = Ωpp denotes the space of continuous
loops at p (and p the constant loop at p), endowed with the compact-
open topology. It follows that f : [0, 1]k−1 → Λp is not homotopically
trivial in the space G of continuous maps [0, 1]k−1 → Λp which send the
boundary ∂[0, 1]k−1 to the constant loop p.

Since M is compact, Condition C is satisfied. Furthermore, since
F is smooth, there is a κ > 0 such that E(f(x)) < κ, for all x ∈
[0, 1]k−1. Hence, chosing a sufficiently fine subdivision t0 < · · · < tk of
[0, 1], the deformation retraction in the proof of Theorem 5.3 applies
and deforms f into a map f1 with values in the finite dimensional
manifold Λκ

p(t0, . . . , tk). Note that this deformation leaves constant
curves invariant. Hence it defines a homotopy of f to f1 inside G. If
there would be no nontrivial geodesic loop c : [0, 1] → M at p with
E(c) < κ, then the constant loop p would be the only critical point of
E on Λκ

p(t0, . . . , tk). But then the gradient flow of E on Λκ
p(t0, . . . , tk)

would deform f1 into a neighborhood of the constant loop p, where we
note again that the gradient flow leaves the latter invariant. Then f1,
and hence also f , would be homotopic, in G, to the constant map with
value p, a contradiction. �

The above proof of Theorem 5.5 also applies in the more general
case of complete and non-contractible Riemannian manifolds, except
that the first non-trivial homotopy group πk(M, p) might occur only
for some k > m.

5.6. Theorem (Lusternik and Fet [LF]). For any compact Riemannian
manifold M , there is a nontrivial periodic geodesic c : [0, 1]→M .

Proof. Without loss of generality, we may assume that M is connected.
We denote by Λ the space of continuous closed curves c : [0, 1]→M , en-
dowed with the compact-open topology. Then the projection P : Λ→
M , P (c) = c(0), is a Serre fibration with fibers the loop spaces Ωq,
q ∈M . Hence there is a long exact sequence of homotopy groups,

· · · → πk+1(M, p)→ πk(Ωp, p)→ πk(Λ, p)→ πk(M, p)→ · · ·

This sequence splits since the canonical embedding I : M → Λ, which
identifies each point q ∈M with the corresponding constant loop at q,
is a right inverse of P . It follows that πk−1(Λ,M) ∼= πk(M, p), where
the isomorphism is induced by the correspondence from (18). Mutato
mutandis, the rest of the argument is now the same as that in the proof
of Theorem 5.5. �
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6. Morse index theorem and ramifications

Let c ∈ Ω be a geodesic with end points p = c(a) and q = c(b). The
Morse index theorem determines index and nullity of c as a critical
point of the energy on Ωpq in terms of conjugate points along c. The
Hessian of E at c, denoted by H0, is equal to the restriction of the
index form I to V0(c).

6.1. Proposition. A vector field V ∈ V(c) belongs to the annihilator
of V0(c) with respect to I if and only if V is a Jacobi field along c.

Proof. If V is a Jacobi field along c, then V belongs to the annihilator
of V0(c) with respect to I, by (6).

Conversely, assume that V ∈ V(c) belongs to the annihilator of V0(c).
Choose a subdivision t0 < · · · < tk of [a, b] such that the restrictions
V |[ti−1, ti] are smooth. Suppose first that there is some t in some
(ti−1, ti) such that V ′′(t) + R(V (t), c′(t))c′(t) 6= 0. Choose a smooth
function ϕ : R → R with support in (ti−1, ti) such that ϕ ≥ 0 and
ϕ(t) = 1. Then W := ϕ · (V ′′ + R(V, c′)c′) ∈ V0(c) and I0(V,W ) < 0,
a contradiction, since V belongs to the annihilator of V0(c). It follows
that the restrictions V |[ti−1, ti] are Jacobi fields. It remains to check
that V ′(ti−) = V ′(ti+), for all 1 ≤ i ≤ k − 1. This follows easily from
a corresponding choice of W . �

For a symmetric bilinear form H on a vector space V , null space and
nullity of H are defined as

kerH := {v ∈ V | H(v, w) = 0 for all w ∈ V },
nullH := dim kerH.

(19)

Following this terminology, the null space N0(c) and nullity null0(c) of
c as a critical point of E on Ωpq are defined with respect to the Hessian
H0 of E at c,

N0(c) := kerH0 and null0(c) := dimN0(c). (20)

For t ∈ (a, b], denote by µ(t) the multiplicity µ(t) of c(t) as a conjugate
point of c(a) along c.

6.2. Corollary. The nullity of c as a critical point of E on Ωpq is equal
to the multiplicity of c(b) as a conjugate point of c(a) along c,

null0(c) = µ(b) ≤ dimM − 1.

6.3. Proposition. We have

µ(t) = 0, for all t ∈ (a, b] ⇐⇒ H0 > 0.
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6.4. Remark. Further on, we will only use the implication left to right
and only under the stronger assumption that c is minimal beyond c(b).
On the other hand, the proof below only copies the usual proof of the
fact that geodesics are minimal on some initial leg.

Proof of Proposition 6.3. Suppose first that µ(t) = 0, for all t ∈ (a, b].
W.l.o.g., assume that a = 0 and b = 1. Then q = exp v with v = c′(0).

Let R be the open subset of TpM where the rank of exp is maximal,
that is, where exp is a local diffeomorphism. Use exp to pull back
the Riemannian metric of M to R. Now a neighborhood of the line
segment tv, 0 ≤ t ≤ 1, belongs to R, and hence the radial unit vector
field in R can be used as usual to show that any proper variation of
the line segment tv, 0 ≤ t ≤ 1, has length at least ‖v‖ with respect
to the pulled back metric. Since exp is a local diffeomorphism along
the line segment, we can lift any proper variation of c to a proper
variation of the line segment. It follows that, for any proper variation
of c, we have L(cs) ≥ L(c), for all s sufficiently small. Hence H0 ≥ 0,
by Proposition 3.8.

Suppose now that V ∈ V0(c) satisfies H0(V, V ) = 0, and let W ∈
V0(c). Then we have

0 ≤ H0(V − sW, V − sW ) = −2sH0(V,W ) + s2H0(W,W ).

It follows that H0(V,W ) = 0 and hence that V ∈ N0(c). Hence V is a
Jacobi field along c with V (0) = V (1) = 0, by Proposition 6.1. Since 1
is not conjugate to 0 along c, we conclude that V = 0. It follows that
H0 is strictly positive.

Conversely, suppose that c(t), t ∈ (a, b], is conjugate to c(a) along
c, and let J be a nonzero Jacobi field along c with J(a) = J(t) = 0.
Define V ∈ V0(c) to be equal to J on [a, t] and to be zero on [t, b]. Then
V 6= 0 and H0(V, V ) = 0, hence H0 is not strictly positive. �

6.5. Corollary. Suppose that µ(t) = 0, for all t ∈ (a, b]. Let V ∈ V(c),
and let W ∈ V(c) be the unique Jacobi field along c with W (a) = V (a)
and W (b) = V (b). Then

I(W,W ) < I(V, V ) unless W = V .

Proof. Suppose that W 6= V . Since W − V ∈ V0(c) and H0 = I|V0(c),
Proposition 6.3 applies and shows that

0 < I(V −W,V −W )

= I(V, V )− 2I(W,V ) + I(W,W )

= I(V, V )− 2〈W ′, V 〉
∣∣b
a

+ 〈W ′, V 〉
∣∣b
a



16 WERNER BALLMANN

= I(V, V )− 〈W ′, V 〉
∣∣b
a

= I(V, V )− I(W,W ),

where we use (6), that W is a Jacobi field, and that V and W coincide
at the end points of [a, b]. �

Choose a subdivision t0 < t1 < · · · < tk of [a, b] such that no point
in (ti−1, ti] is conjugate to ti−1 along c|[ti−1, ti], for all 1 ≤ i ≤ k. Set

U0(c) = {V ∈ V0(c) | V (ti) = 0, for all 0 ≤ i ≤ k}. (21)

P0(c) = {V ∈ V0(c) |
V |[ti−1, ti] is a Jacobi field, for all 1 ≤ i ≤ k}. (22)

6.6. Proposition. We have

(1) V0(c) = U0(c)⊕ P0(c) as an H0-orthogonal sum;
(2) H0 > 0 on U0(c).
(3) dimP0(c) = (k − 1) dimM .

Proof. The index form splits into the sum of the index forms of the
restrictions c|[ti−1, ti]. By Propositions 6.1 and 6.3 applied to these
restrictions, P0(c) is the annihilator of U0(c) with respect to I = H0

and H0 > 0 on U0(c), hence (1) and (2).
Since no point in (ti−1, ti] is conjugate to ti−1 along c|[ti−1, ti], any

pair of tangent vectors vi−1 and vi of M at c(ti−1) and c(ti), respectively,
determines a unique Jacobi field J along c|[ti−1, ti] such that J(ti−1) =
vi−1 and J(ti) = vi. Thus evaluation at t1, . . . , tk−1,

P0(c)→ Tc(t1)M ⊕ · · · ⊕ Tc(tk−1)M, V 7→ (V (t1), . . . , V (tk−1)), (23)

is an isomorphism, hence (3). �

For a symmetric bilinear form H on a vector space V , the index of
H is defined to be the maximal dimension of a subspace of V on which
H is strictly negative. Following this terminology, the index ind0(c)
of c as a critical point of E on Ωpq is defined to be the index of the
Hessian H0 of E at c.

From Proposition 6.1 we already know that the null space N0(c) of
H0 is contained in J0(c). Now Proposition 6.6 implies that index and
nullity of c are realized on P0(c):

6.7. Corollary. We have

ind0(c) = ind(H0|P0(c)) and null0(c) = null(H0|P0(c)).

6.8. Morse index theorem. There are only finitely many conjugate
points c(t), t ∈ (a, b], of c(a) along c and

ind0(c) =
∑
t∈(a,b)

µ(t) and null0(c) = µ(b).
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Proof. For a < t ≤ b, let ct := c|[a, t] and consider i(t) = ind0(ct). If c
does not have conjugate points along [a, t], then i(t) = 0, by Proposi-
tion 6.3, hence

i(t) = 0, for all t > a sufficiently close to a. (24)

Obviously, i is monotonically increasing,

if s ≤ t, then i(s) ≤ i(t). (25)

Let now t ∈ (a, b] and choose a subdivision t0 < t1 < · · · < tk of [a, b]
as further up, that is, such that no point in (ti−1, ti] is conjugate to ti−1
along c|[ti−1, ti], for all 1 ≤ i ≤ k, and such that t ∈ (ti−1, ti), for some
1 ≤ i ≤ k. Following (23), we get an isomorphism

Et : P0(ct)→ Tc(t1)M ⊕ · · · ⊕ Tc(ti−1)M, (26)

Et(V ) := (V (t1), . . . , V (ti−1)).

Note that the target space does not depend on t as long as t ∈ (ti−1, ti).
Thus the index form on J0(ct) corresponds to a symmetric endomor-
phism It on a fixed Euclidean vector space, for all ti−1 < t < ti. The
index of ct corresponds to the number of negative eigenvalues of It.
Clearly, It depends continuously on t ∈ (ti−1, ti) and hence

i(s) = i(t), for all t ∈ (a, b] and all s < t close to t. (27)

For all s sufficiently close to t ∈ (ti−1, ti), the number of positive eigen-
values of Is is at least the number of positive eigenvalues of It, hence

i(s) ≤ i(t) + µ(t), for all t ∈ (a, b) and all s > t close to t. (28)

Let s > t and onsider the subdivisons a = t0 < · · · < ti−1 < t of [a, t]
and a = t0 < · · · < ti−1 < s of [a, s]. Suppose that V ∈ P0(ct) and Ṽ ∈
P0(cs) correspond to the same tuple of vectors under the isomorphisms
Et and Es as in (26). Then V |[a, ti−1] = Ṽ |[a, ti−1]. Furthermore, we
may think of V as a vector field along c|[a, s] by setting V = 0 on [t, s].
Hence, since there are no conjugate points of c(ti−1) along [ti−1, ti],
Corollary 6.5 applies and shows that I(Ṽ , Ṽ ) ≤ I(V, V ), where the
inequality is strict if V (ti−1) 6= 0. This latter is the case for nonzero
Jacobi fields V along ct with V (0) = V (t) = 0, that is, for nonzero
elements in N0(ct). Hence

i(s) ≥ i(t) + µ(t), for all a < t < s ≤ b. (29)

Now the claim about conjugate points and the index of c are immediate
consequences of (24) – (29) (minus (26)). The claim about the nullity
of c repeats the statement of Corollary 6.2. �
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Now we come to the ramifications. Let B ⊆M ×M be a boundary
condition, and consider the Hessian HB of E at c as in (11),

HB(V,W ) = I(V,W ) + IIn((V (a), V (b)), (W (a),W (b))).

Choose a subdivision t0 < t1 < · · · < tk of [a, b] such that no point in
(ti−1, ti] is conjugate to ti−1 along c|[ti−1, ti], for all 1 ≤ i ≤ k. Define
U0(c) as in (21) and set

PB(c) = {V ∈ VB(c) |
V |[ti−1, ti] is a Jacobi field, for all 1 ≤ i ≤ k}. (30)

6.9. Proposition. We have

(1) VB(c) = U0(c)⊕ PB(c) as an HB-orthogonal sum;
(2) HB > 0 on U0(c).
(3) dimPB(c) = dimB + (k − 1) dimM . �

Thus index indB(c) := indHB and nullity nullB(c) := nullHB of c
as a critical point of E on ΩB are achieved on the finite dimensional
space PB(c). Now P0(c) is contained in PB(c) and HB|P0(c) = H0,
and therefore we would like to invest our results about H0 for the
determination of index and nullity of c.

6.10. Proposition. Let H be a symmetric bilinear form on a real vector
space V of finite dimension. Then, for any subspace U ⊆ V ,

null(H) = null(H|U⊥)− def U, (31)

ind(H) = ind(H|U) + ind(H|U⊥) + def U, (32)

where U⊥ denotes the annihilator with respect to H and

def U := dim(U ∩ U⊥)− dim(U ∩ kerH).

Proof. We have kerH ⊆ U⊥ and U⊥⊥ = U + kerH, hence

ker(H|U⊥) = U⊥ ∩ U⊥⊥ = U ∩ U⊥ + kerH,

and hence (31). As for (32), let U0 be a complement of U ∩ U⊥ in
U and U1 be a complement of U⊥ ∩ U⊥⊥ in U⊥. Then U0 and U1

are maximal subspaces of U and U⊥, respectively, on which H is non-
degenerate. Hence U0 +U1 is a maximal subspace of U +U⊥ on which
H is non-degenerate. In particular, we have

V = U0 + U1 + (U0 + U1)
⊥

as a direct andH-orthogonal sum. LetW0 be a complement of U∩kerH
in U ∩ U⊥ and W1 be a complement of U ∩ U⊥ + kerH in (U0 + U1)

⊥.
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Then W0+W1 is a subspace of (U0+U1)
⊥ on which H is non-degenerate

and

(U0 + U1)
⊥ = kerH +W0 +W1

as a direct sum. Since dimW0 = def U = dimW1 and since H vanishes
on W0, it follows that

indH|(W0 +W1) =
1

2
dim(W0 +W1) = def U. �

Now P0(c) ⊆ PB(c), and the HB-orthogonal complement of P0(c) in
PB(c) is equal to

JB(c) = {V ∈ PB(c) | V is a smooth Jacobi field}, (33)

see (6) and (11). In particular,

P0(c) ∩ JB(c) = J0(c), (34)

the space of Jacobi fields J along c with J(a) = J(b) = 0 of dimension
null0(c). Furthermore,

P0(c) ∩ ker(HB|PB(c))

= {V ∈ J0(c) | (−V ′(a), V ′(b)) is perpendicular to B}, (35)

see again (6) and (11).

6.11. Corollary. We have

nullB(c) = null(HB|JB(c))− null0(c) + ν, (36)

indB(c) = ind(HB|JB(c)) + ind0(c) + null0(c)− ν, (37)

where ν = dim(P0(c) ∩ ker(HB|PB(c))).

Now the challenge is the discussion of JB(c) and HB on JB(c).

6.12. Example. As an example, consider the case where B is the diago-
nal in M×M . Then ΩB = Λ, the free loop space of M , and B-geodesics
are periodic geodesics. For any such geodesic c : [a, b]→M ,

(1) JB(c) is the space of Jacobi fields V along c with V (a) = V (b);
(2) ker(HB|PB(c)) is the space of periodic Jacobi fields along c, that

is, Jacobi fields V along c with V (a) = V (b) and V ′(a) = V ′(b);
(3) P0(c) ∩ ker(HB|PB(c)) is the space of periodic Jacobi fields V

along c such that V (a) = V (b) = 0.

Since the diagonal is totally geodesic in M ×M , the second term in
(11) vanishes. Furthermore, for V,W ∈ JB(c) we have

HB(V,W ) = 〈V ′(b)− V ′(a),W (a)〉. (38)
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This formula connects HB with the so-called Poincaré map of c; see
[BTZ] for this, for a detailed study of index and nullity of periodic
geodesics and their iterates, and for further references.
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