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Introduction

We assume throughout that M is a Riemannian manifold. For points p, q in
M , we ask for the critical points of the length functional L on the space Ωps

pq of
piecewise smooth curves from p to q. Since Ωps

pq is not a manifold and L is not
smooth, the notion of critical point and derivative of L require an explanation.
Following one of the possible definitions of a tangent vector at a point in a smooth
manifold, we consider smooth curves s 7→ cs ∈ Ωps

pq, −ε < s < ε, of piecewise
smooth curves in Ωps

pq so that the length L(s) := L(cs) depends smoothly on s.
Then ∂sL(0) represents the derivative of L at c = c0 in the direction represented
by the curve s 7→ cs in Ωps

pq.
The notion of smooth curves in Ωps

pq is made precise by the concept of proper
piecewise smooth variation and the corresponding derivative ∂sL(0) is obtained
in the First Variation Formula. As an application of the First Variation Formula
we obtain that the set of critical points of the length functional L on Ωps

pq consists
precisely of the geodesic segments from p tp q.

For a smooth function f on a smooth manifold, the second derivative of f is
well-defined in the critical points of f .1 Correspondingly we can define the second
derivative of the length functional for a geodesic segment c in Ωps

pq. The Second
Variation Formula determines this second derivative in terms of the geometry of
M along c.

Last update: 2003-05-25.
1In general, there is no reasonable way of defining the second derivative of f at a point,

except the point is critical.
1
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Conventions

The covariant derivative of a vector field X along a piecewise smooth curve c
is denoted by X ′. Correspondingly, the covariant derivative of c′ is denoted c′′.
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1. First and Second Variation of Arc Length

Let c : [a, b]→ M be a piecewise smooth curve. By definition, the length L(c)
of c is

(1.1) L(c) =

∫ b

a

‖c′(t)‖dt.

The length of c is invariant under reparameterization. More generally, if ϕ :
[α, β] → [a, b] is a piecewise smooth, (weakly) monotone and surjective map,
then L(c ◦ ϕ) = L(c).

A piecewise smooth n-parameter variation of c is a map H : U × [a, b] → M ,
where U is an open neighborhood of 0 in Rn, such that H(0, ·) = c and such
that there is a subdivision a = t0 < . . . < tk = b of [a, b] such that H is smooth
on the sets U × [ti−1, ti], 1 ≤ i ≤ k. We say that a variation H of c is proper if
H(s, a) = c(a) and H(s, b) = c(b) for all s ∈ U .

We consider variations as a formalization of the idea of smooth families of
curves. For a given variation H of c, we set cs = H(s, ·). If H is a 1-parameter
variation, then U is an open interval and the family (cs) is a smooth curve —
in the above sense — in the space of piecewise smooth curves. We may then
consider the variation field V = ∂sH(0, ·) as the tangent vector to this curve at
time s = 0. If H is proper, V (a) = 0 and V (b) = 0. Note that V is piecewise
smooth.

Lemma 1.1. Let c : [a, b]→M be piecewise smooth and V be a piecewise smooth
vector field along c. Then there is a piecewise smooth 1-parameter variation H
of c with variation field V and with H(s, t) = c(t) for all (s, t) with V (t) = 0. In
particular, H is proper if V (a) = 0 and V (b) = 0.

Remark 1.2. The variation H in the Lemma is not unique. This is similar to the
fact that a tangent vector in a manifold is not represented by a unique smooth
curve through the foot point of the vector but rather by an equivalence class of
such curves.

Proof of Lemma 1.1. Set H(s, t) := exp(s · V (t)). �

1.1. First Variation of Arc Length. Since the length of a curve is invariant
under reparameterization, we let c : [a, b]→M be a piecewise smooth curve with
constant speed v 6= 0, that is, ‖c′(t)‖ = v for all t ∈ [a, b].

First Variation Formula 1.3. Let H : U × [a, b]→M be a piecewise smooth
1-parameter variation of c. Let V be the variation field of H and set cs := H(s, ·),
L(s) := L(cs). Then L : U → R is smooth about 0 and

∂sL(0) =
1

v
·
{
〈V, c′〉

∣∣∣b
a

+
k−1∑
i=1

〈V (ti),∆c
′(ti)〉 −

∫ b

a

〈V, c′′〉 dt
}
,



4 Basic Differential Geometry

where the subdivision a = t0 < . . . < tk = b of [a, b] is chosen such that c is
smooth on the sets [ti−1, ti], and ∆c′(ti) := c′(ti − 0)− c′(ti + 0).

Proof. By assumption we have c′(t) 6= 0 for all t ∈ [a, b]. Hence by diminishing
the size of U if necessary, we can assume c′s(t) 6= 0 for all s ∈ U and t ∈ [a, b].
Then ‖c′s(t)‖ is smooth on the sets U × [ti−1, ti] and hence L is smooth in s.
Moreover,

∂sL(0) = ∂s

{ k∑
i=1

∫ ti

ti−1

‖c′s(t)‖ dt
}∣∣∣

s=0

=
{ k∑

i=1

∫ ti

ti−1

∂s

(
‖c′s(t)‖

)
dt
}∣∣∣

s=0

=
k∑

i=1

∫ ti

ti−1

〈Ds∂tH(0, t), ∂tH(0, t)〉
‖c′0(t)‖

dt

=
1

v
·

k∑
i=1

∫ ti

ti−1

〈Dt∂sH(0, t), c′(t)〉 dt

=
1

v
·

k∑
i=1

∫ ti

ti−1

{
∂t〈V, c′〉 − 〈V,Dtc

′〉
}
dt

=
1

v
·
{ k∑

i=1

〈V, c′〉
∣∣∣ti
ti−1

−
∫ b

a

〈V,Dtc
′〉 dt

}
. �

We call ∂sL(0) the first variation of arc length with respect to the given varia-
tion. The first variation of arc length corresponds to the derivative of the length
functional in the direction of the “tangent vector” V of the variation. In fact,
∂sL(0) only depends on V , not on the particular choice of variation H defining
V . This is in accordance with derivatives of functions on smooth manifolds.

In many applications, c = c0 is a geodesic segment. Then c is smooth and
hence the term involving the (possible) breaks ∆c′(ti) vanishes. Furthermore, c′′

vanishes by definition, and therefore the integral on the right hand side vanishes
as well.

Corollary 1.4. Let c : [a, b]→M be a geodesic segment and H : U×[a, b]→M
a piecewise smooth 1-parameter variation of c. Let V be the variation field of H
and set cs := H(s, ·) and L(s) := L(cs). Then

∂sL(0) = − cosα · ‖V (a)‖ − cos β · ‖V (b)‖,

where α = ∠(c′(a), V (a)) and β = ∠(−c′(b), V (b)). �
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1.2. Geodesic Segments as Critical Points. In the First Variation Formula
1.3 it is not required that the variation be proper. If we restrict to proper varia-
tions, then it turns out that the curve c is a critical point of the length functional
if and only if c is a geodesic segment.

Theorem 1.5. A regular piecewise smooth curve c : [a, b] → M is a geodesic if
and only if c has constant (nonzero) speed and the first variation of arc length
vanishes for every proper variation of c.

Proof. If c is a geodesic, then c is smooth and of constant speed v. Now v 6= 0
since c is regular. By definition c′′ = 0, and hence the first variation of arc length
vanishes for every proper variation of c.

We assume now that c has constant speed v 6= 0 and that the first variation of
arc length vanishes for every proper variation of c. Let a = t0 < t1 < . . . < tk = b
be a subdivision of [a, b] such that c is smooth on [ti−1, ti], 1 ≤ i ≤ k. Fix
i ∈ {1, . . . , k} and let ϕ : R → R be a smooth function which is positive on
(ti−1, ti) and 0 otherwise. Let V = ϕ · c′′. Then V is a piecewise smooth vector
field along c with V (t) = 0 for t ∈ [a, ti−1 ∪ [ti, b]. In particular, there is a proper
variation (cs) of c with variation field V . By the first variation formula and our
assumption on c we have

0 = ∂sL(0) =

∫ ti

ti−1

ϕ · ‖Dtc
′‖2 dt.

Hence c′′(t) = 0 for all t ∈ [ti−1, ti]. Since i was arbitrary, we conclude that
c|[ti−1, ti] is a geodesic, 1 ≤ i ≤ k.

It remains to show c′(ti−0) = c′(ti+0) for each i ∈ {1, . . . , k−1}. To that end,
fix such an i and let E be the parallel field along c with E(ti) = c′(ti−0)−c′(ti+0).
Let ϕ : R → R be a smooth function which is positive on (ti−1, ti+1) and 0
otherwise and set V = ϕ · E. Let (cs) be a proper variation of c with variation
field V . Since the first variation of arc length of any proper variation of c vanishes
and c is a geodesic on [ti−1, ti] and [ti, ti+1], we get

0 = ∂sL(0) = 〈V (ti), c
′(ti − 0)− c′(ti + 0)〉 = ϕ(ti) · ‖c′(ti − 0)− c′(ti + 0)‖2.

Hence c′(ti − 0) = c′(ti + 0), 1 ≤ i ≤ k − 1, and hence c is a geodesic. �

A geodesic segment c : [a, b] → M with ‖c′‖ 6= 0 is not a critical point of
the length functional on the space Ωps(M) of all piecewise smooth curves on M .
For example, for the smooth variation H(s, t) = c(a + (1 − s) · (t − a)) we have
L(cs) = (1−s) ·L(c) and hence ∂sL(0) = −L(c) 6= 0. The point is that boundary
conditions have to be imposed, in the case of Theorem 1.5 the boundary condition
is that the end points c(a) = p and c(b) = q be fixed by the variation. Other
boundary conditions are discussed below.



6 Basic Differential Geometry

1.3. Second Variation of Arc Length. From now on we assume that c :
[a, b] → M is a geodesic with speed v 6= 0. We have shown that c is a critical
point of the length functional: The first variation of arc length is zero for any
proper variation of c. We now discuss the second derivative of L.

Second Variation Formula 1.6. Let H : U × [a, b] → M be a piecewise
smooth 2-parameter variation of c. Set

cr,s := H(r, s, ·), V = ∂rH(0, 0, ·), W = ∂sH(0, 0, ·),

and let V̂ and Ŵ be the part of V and W perpendicular to c′. Then L(r, s) =
L(cr,s) is smooth in (r, s) and

∂ 2
r,sL(0, 0) =

1

v
·
{
〈Dr∂sH, c

′〉
∣∣∣b
a

+

∫ b

a

(
〈V̂ ′, Ŵ ′〉 − 〈R(V̂ , c′)c′, Ŵ 〉

)
dt
}

=
1

v
·
{
〈Dr∂sH, c

′〉
∣∣∣b
a

+ 〈V̂ ′, Ŵ 〉
∣∣∣b
a

+
k−1∑
i=1

〈∆V̂ ′(ti), Ŵ (ti)〉 −
∫ b

a

〈V̂ ′′ +R(V̂ , c′)c′, Ŵ 〉 dt
}
,

where the subdivision a = t0 < . . . < tk = b of [a, b] is chosen such that H is

smooth on the sets [ti−1, ti] and ∆V̂ ′(ti) := V̂ ′(ti − 0)− V̂ ′(ti + 0).

Proof. By diminishing the size of U if necessary, we can assume c′r,s(t) 6= 0 for all
(r, s, t) in U × [ti−1, ti], 1 ≤ i ≤ k. Then ‖c′r,s(t)‖ is smooth in (r, s, t) and we get

∂ 2
r,sL(0, 0) = ∂r

{∫ b

a

〈Dt∂sH, ∂tH〉
‖∂tH‖

dt
}∣∣∣

r=s=0

=
{∫ b

a

〈DrDt∂sH, ∂tH〉
‖∂tH‖

+

∫ b

a

〈Dt∂sH,Dt∂rH〉
‖∂tH‖

−
∫ b

a

〈Dt∂sH, ∂tH〉〈Dt∂rH, ∂tH〉
‖∂tH‖3

dt
}∣∣∣

r=s=0
.

Now for the second term II and third term III on the right hand side we have

II − III =
1

v
·
∫ b

a

〈V̂ ′, Ŵ ′〉 dt.

In the first term I, the denominator is v and hence

I =
1

v
·
{∫ b

a

〈DtDr∂sH, ∂tH〉 dt+

∫ b

a

〈R(∂rH, ∂tH)∂sH, ∂tH〉 dt
}∣∣∣

r=s=0
.

For the second term I2 on the right hand side we have

I2 = −1

v
·
∫ b

a

〈R(V, c′)c′,W 〉 dt = −1

v
·
∫ b

a

〈R(V̂ , c′)c′, Ŵ 〉 dt.
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Since c is a geodesic, Dt∂tH(0, 0, ·) = 0, hence the first term I1 on the right hand
side above is

I1 =
1

v
·
∫ b

a

∂t〈Dr∂sH, ∂tH〉 dt =
1

v
·

k∑
i=1

〈Dr∂sH, c
′〉
∣∣∣ti
ti−1

=
1

v
· 〈Dr∂sH, c

′〉
∣∣∣b
a
.

This is the first of the asserted formulas. As for the second, we note that

∂t〈V̂ ′, Ŵ 〉 = 〈V̂ ′′, Ŵ 〉+ 〈V̂ ′, Ŵ ′〉. �

Note that the term 〈Dr∂sH, c
′〉
∣∣b
a

depends on the chosen variation, not only on
the ”tangent vectors” V and W to the variation. This is due to the fact that the
geodesic segment c : [a, b]→M is not a critical point of the length functional on
the space of all piecewise smooth curves on M . The index form of c is defined as

I(V,W ) : =
1

v
·
{∫ b

a

(
〈V̂ ′, Ŵ ′〉 − 〈R(V̂ , c′)c′, Ŵ 〉) dt

}
=

1

v
·
{ k−1∑

i=1

〈∆V̂ ′(ti), Ŵ (ti)〉 −
∫ b

a

〈V̂ ′′ +R(V̂ , c′)c′, Ŵ 〉 dt
}
,

where the notation is as in the Second Variation Formula 1.6. The index form
depends only on V and W , not on the variation defining V and W and is a
symmetric bilinear form on the space of piecewise smooth vector fields along c.

Theorem 1.7. Suppose c : [a, b] → M is a geodesic segment with speed ‖c′‖ =
v 6= 0. Then for any proper 2-parameter variation H of c

∂ 2
r,sL(0, 0) = I(V,W ).

That is, the index form is the second derivative of the length functional L at c in
the space of piecewise smooth curves joining p = c(a) and q = c(b).

2. Boundary Conditions

So far we discussed only one boundary condition, the fixed end point condi-
tion. There are other interesting boundary conditions. For example, for given
submanifolds Ma and Mb of M , we may consider the condition c(a) ∈ Ma and
c(b) ∈ Mb. The fixed end point case is the special case where Ma and Mb are
points. Another important example is the periodicity condition c(b) = c(a). In
general, a boundary condition is defined by a submanifold N of M ×M and the
boundary condition is (c(a), c(b)) ∈ N . In the first example mentioned above,
N = Ma ×Mb; in the second, N is the diagonal in M ×M .

We fix a boundary condition N ⊂ M ×M . We ask for critical points of the
length functional L on the space Ωps

N of piecewise smooth curves c : [a, b] → M
with (c(a), c(b)) ∈ N . To that end, we say that a variation (cs) of such a curve c
is an N -variation if cs ∈ Ωps

N for all s. We say that c ∈ Ωps
N is a critical point of

the length functional L on Ωps
N if the first variation of arc length vanishes for each
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N -variation of c. Note that proper variations are N -variations for any boundary
condition N . Hence by Theorem 1.5, critical points of the length functional L
on Ωps

N are geodesic segments. Now the following characterization is immediate
from the First Variation Formula.

Theorem 2.1. Suppose c ∈ Ωps
N is a geodesic segment with ‖c′‖ 6= 0. Then c is

a critical point of the length functional L on Ωps
N if and only if (c′(a),−c′(b)) is

perpendicular to N in (c(a), c(b)). �

In the first example N = Ma ×Mb, this just means that c′(a) is perpendicular
to Ma in c(a) and that c′(b) is perpendicular to Mb in c(b). In the special case
of fixed end points the latter conditions are empty. In the second example, the
periodic boundary condition, where N is the diagonal in M×M , this means that
c is a closed geodesic; that is c′(b) = c′(a).

Now we assume that c is a geodesic segment with ‖c′‖ 6= 0 and (c′(a),−c′(b))
perpendicular to N in (c(a), c(b)). By Theorem 2.1 this means that C is a critical
point of the length functional L on Ωps

N . We observe that for an N -variation of c,
the first term in the Second Variation Formula is precisely the second fundamental
form S of N in the point (p, q) := (c(a), c(b)) in the direction of the normal vector
(−c′(a), c′(b)). Using the notation in the Second Variation Formula 1.6, we get
the following result.

Theorem 2.2. Suppose c is a geodesic segment with speed ‖c′‖ = v 6= 0 and
(c′(a),−c′(b)) perpendicular to N in (c(a), c(b)). Then for any 2-parameter vari-
ation H of c we have

∂ 2
r,sL(0) =

1

v
·
{〈
S
(
(V (a), V (b)), (−c′(a), c′(b))

)〉
+

∫ b

a

(
〈V̂ ′, Ŵ ′〉 − 〈R(V̂ , c′)c′, Ŵ 〉

)
dt
}

=
1

v
·
{〈
S
(
(V (a), V (b)), (−c′(a), c′(b))

)〉
+ 〈V̂ ′, Ŵ 〉

∣∣∣b
a

+
k−1∑
i=1

〈∆V̂ ′(ti), Ŵ (ti)〉 −
∫ b

a

〈V̂ ′′ +R(V̂ , c′)c′, Ŵ 〉 dt
}
.

In the first example N = Ma × Mb, the second fundamental form S of N in
(c(a), c(b)) is the sum of the second fundamental forms Sa of Ma in c(a) and Sb

of Mb in c(b). Hence〈
S
(
(V (a), V (b)), (−c′(a), c′(b))

)〉
=
〈
Sb

(
V (b), c′(b)

)〉
−
〈
Sa

(
V (a), c′(a)

)〉
.

In the second example, the periodic boundary condition, we observe that the
diagonal is totally geodesic in M ×M . Hence in this case, the first term in the
Second Variation Formula vanishes for all N -variations.
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3. Energy Versus Arc Length

The length of a piecewise smooth curve c : [a, b]→M is invariant under repa-
rameterization. In considerations of a more analytic nature this is a disadvantage
and it is better to use the energy of c,

(3.1) E(c) =
1

2

∫ b

a

‖c′(t)‖2 dt .

One advantage is clear right from the definition: Whereas the norm‖ · ‖ as a
function on the vector space TpM , p ∈ M , is not smooth in the zero-vector
0p ∈ TpM , the square ‖·‖2 of the norm is. A disadvantage of the energy functional
is its less geometric nature.

The energy is not invariant under reparameterization, this is the heart of the
matter here. In fact, by the Cauchy-Schwarz Inequality we have

(3.2) L2(c) ≤ 2(b− a) · E(c)

with equality if and only if c has constant speed, ‖c′(t)‖ = v = const.
As in the case of arc length, there are formulas for the first and second variation

of energy. These formulas are very similar to, but somewhat simpler than the
ones for the first and second variation of arc length.

First Variation of Energy 3.1. Let c : [a, b] → M be piecewise smooth and
H : U × [a, b]→ M a piecewise smooth 1-parameter variation of c. Let V be the
variation field of H and set cs := H(s, ·), E(s) := E(cs). Then E : U → R is
smooth and

∂sE(0) = 〈V, c′〉
∣∣∣b
a

+
k−1∑
i=1

〈V (ti),∆c
′(ti)〉 −

∫ b

a

〈V,Dtc
′〉 dt,

where the subdivision a = t0 < . . . < tk = b of [a, b] is such that c is smooth on
the sets [ti−1, ti] and ∆c′(ti) := c′(ti − 0)− c′(ti + 0). �

We leave the proof of this formula and of the next assertions as an exercise.
They consist of simplifications of the proofs of the corresponding statements
for the length functional. Note that it is not necessary to assume that c has
constant and nonzero speed. As a result, we have the following more elegant
characterization of geodesics.

Theorem 3.2. A piecewise smooth curve c : [a, b]→M is a geodesic if and only
if the first variation of energy vanishes for any proper variation of c. �
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Second Variation of Energy 3.3. Let H : U × [a, b] → M be a piecewise
smooth 2-parameter variation of c. Set

cr,s = H(r, s, ·), V = ∂rH(0, 0, ·), W = ∂sH(0, 0, ·).
Then E(r, s) = E(cr,s) is smooth in (r, s) and

∂ 2
r,sE(0, 0) = 〈Dr∂sH, c

′〉
∣∣∣b
a

+

∫ b

a

(
〈V ′,W ′〉 − 〈R(V, c′)c′,W 〉

)
dt

= 〈Dr∂sH, c
′〉
∣∣∣b
a

+ 〈V ′,W 〉
∣∣∣b
a

+
k−1∑
i=1

〈∆V ′(ti),W (ti)〉 −
∫ b

a

〈V ′′ +R(V, c′)c′,W 〉 dt,

where the subdivision a = t0 < . . . < tk = b of [a, b] is such that H is smooth on
the sets [ti−1, ti] and ∆V ′(ti) := V ′(ti − 0)− V ′(ti + 0). �

3.1. Semi-Riemannian metrics. In the case of Semi-Riemannian manifolds,
the energy functional can be considered on the space of all piecewise smooth
curves, the length functional can be considered on the space of piecewise smooth
curves with constant positive speed, 〈c′, c′〉 = const > 0. The formulas for the
first and second variation of energy and length remain the same.

Acknowledgment

I would like to thank Alexander Lytchak for proof-reading.

Mathematisches Institut, Universität Bonn, Beringstrasse 1, D-53115 Bonn,


