
LECTURES ON THE BLASCHKE CONJECTURE

NOTES BY WERNER BALLMANN

1. Introductory remarks

These are lecture notes of a course on differential geometry, taught jointly
with Karsten Grove in the summer of 2014. The main topic is the generalized
Blaschke conjecture, the main source for the lecture is [4].

The notes do not cover everything that occured in class; in particular,
the part on the volumes of Blaschke manifolds is missing. In comparison to
[4], our notation and definitions differ slightly. We also added details where
we deemed it appropriate and changed the exposition and formulations in
some places. Comments on the notes are welcome.

I would like to thank Karsten Grove for joining me in the endeavour to
understand where we are in the Blaschke conjecture and for joining me in
teaching the students a part of differential geometry which uses a number
of important tools from different mathematical fields and offers a bounty of
appealing results on the way.
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2 NOTES BY WERNER BALLMANN

2. On the geometry of tangent and cotangent bundles

2.1. Connections and the splitting of TTM . Let M be a manifold with
a connection ∇. Let v ∈ TM and Z ∈ TvTM be a tangent vector of TM
with foot point v. Represent Z = V̇ (0), where V = V (s) is a curve in TM
through v = V (0). Then V is a vector field along its curve c = π ◦ V of foot
points. Define the connection map

(2.1) C : TTM → TM by C(Z) := V ′(0),

where V ′ denotes the covariant derivative of V along c. In Proposition 2.2
below we will see that C is well defined and linear on the fibres TvTM .

With respect to local coordinates x on M , we have associated local co-
ordinates (x, y) of TM for tangent vectors yi∂/∂xi(p), where x = x(p). In
terms of these, π is the projection onto the x-component. Moreover, tan-
gent vectors of TM correspond to quadruples (x, y, ξ, η), where the first two
components represent the foot point and the last two the principal part of
the tangent vector.

Proposition 2.2. With respect to coordinates (x, y) for TM as above,

π∗(x, y, ξ, η) = (x, ξ) and C(x, y, ξ, η) = (x, ηi + ξjykΓijk(x)).

Proof. With respect to coordinates of TM as above, a curve V in TM
is given by a curve (x, y) = (x(s), y(s)). The first component x = x(s)
corresponds to the curve of foot points of V , the covariant derivative V ′ of
V along the curve of foot points is given by

V ′ =
(
ẏi + ẋjykΓijk

) ∂
∂xi

,

and V̇ corresponds to (x, y, ẋ, ẏ). Hence

�(2.3) π∗ ◦ V̇ = (x, ẋ) and C ◦ V̇ = V ′ = (x, ẏi + ẋjykΓijk).

Corollary 2.4. 1) H := kerC and V := kerπ∗ are subbundles of TTM ,
called horizontal and vertical distribution, respectively, and TTM = H⊕V.
2) For each v ∈ TM , π∗ : Hv → TpM and C : Vv → TpM are isomorphisms,
where p is the foot point of v, p = π(v). �

Henceforth, we will write tangent vectors of TM as pairs, Z = (X,Y ),
where ZH = X = π∗(Z) is the horizontal and ZV = Y = C(Z) the vertical
component of Z. Horizontal components do not depend on the connection,
but vertical ones do. On the other hand, the vertical distribution does not
depend on the connection, V = kerπ∗, but the horizontal distribution does.

Corollary 2.5. For v ∈ TM with p = π(v), we have:
1) A parallel vector field V = V (s) along a curve c = c(s) through p with

ċ(0) = X and V (0) = v satisfies V̇ (0) = (X, 0)

2) The curve V = V (s) = v + sY in TpM satisfies V̇ (0) = (0, Y ). �

Corollary 2.6. For any piecewise smooth curve c : [a, b]→M , its horizontal
lifts to TM induce parallel translation hc : Tc(a)M → Tc(b)M along c. �

For each v ∈ TM , denote by γv : Iv → M the maximal geodesic with
initial velocity v, that is, 0 ∈ Iv, γ̇v(0) = v, and Iv is the maximal domain
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of definition of a geodesic with initial velocity v. We say that ∇ is complete
if Iv = R for all v ∈ TM .

The domain of definition G of the geodesic flow g = (gt) of ∇ is the open
set of pairs (t, v) ∈ R× TM , where t ∈ Iv, and g is given by

(2.7) g : G → TM, g(t, v) = gt(v) = γ̇v(t).

For any geodesic γ of ∇, γ̇ is parallel along γ. Hence the vector field on TM
associated to the geodesic flow is X = X(v) = (v, 0).

Let V = V (s) be a curve in TM through v and consider the associated
geodesic variation γs = γs(t) = γV (s)(t) of γ = γv with Jacobi field ∂γs/∂s.
Note that the Jacobi equation contains a torsion term since we do not assume
that ∇ is torsion free. For V̇ (0) = (X,Y ) ∈ TvTM and t ∈ Iv, we get

(2.8) gt∗(X,Y ) = (J(t), (∇sγ̇s)(0, t)) = (J, J ′ + T (J, γ̇))(t),

where J = J(t) = (∂γs/∂s)(0, t) and dot and prime indicate the derivative
and covariant derivative in the t-direction, respectively. In the torsion free
case, the main case further on, the T -term on the right hand vanishes.

2.2. The cotangent bundle as a symplectic manifold. We consider
now the cotangent bundle π̄ : T ∗M → M . The canonical or tautological
one-form λ on T ∗M is defined by

(2.9) λα(v) = α(π̄∗v).

With respect to local coordinates x of M , we have associated local coordi-
nates (x, a) = (x1, . . . , xm, a1, . . . , am) of T ∗M for one-forms aidx

i(p), where
x = x(p). In terms of these, π̄ is the projection onto the x-component. More-
over, tangent vectors of T ∗M correspond to quadruples (x, a, ξ, α), where the
first two compnents represent the foot point and the last two the principal
part of the tangent vector. We get

λ(x,a)(x, a, ξ, α) = (aidx
i)(ξj∂/∂xj) = aiξ

i.

We conclude that λ(x,a) = aidx
i, but now considered as a one-form on T ∗M .

The differential ω := −dλ turns T ∗M into an exact symplectic manifold ;
that is, the two-form ω is exact and non-degenerate. The latter is obvious
from the expression for ω with respect to local coordinates (x, a) of T ∗M as
above, ω = dxi ∧ dai.

If f : M → N is a local diffeomorphism, then f∗ : T ∗N → T ∗M is a local
diffeomorphism such that f∗∗λM = λN and f∗∗ωM = ωN . In particular, f∗

is a symplectic diffeomorphism of T ∗M , for any diffeomorphism f of M .
We recall the notion of Hamiltonian system from symplectic geometry:

Let N be a symplectic manifold with symplectic form ω. For a function
h ∈ F(N) and a vector field X on N , h is called a Hamiltonian potential of
X and X the Hamiltonian vector field associated to h, X = Xh, if

(2.10) dh = iXh
ω that is, dh(Y ) = (iXh

ω)(Y ) = ω(Xh, Y ),

for all vector fields Y on N . The dynamical system associated to the Hamil-
tonian vector field Xh is called the Hamiltonian system associated to h and
h the Hamiltonian of the system. Hamiltonian systems are symplectic; that
is, they preserve the symplectic form.
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By the non-degeneracy of ω, a function h ∈ F(N) determines a unique
Hamiltonian vector field Xh. On the other hand, not any vector field X on
N has a Hamiltonian potential. Furthermore, Hamiltonian potentials are
only unique up to locally constant functions.

2.3. The Legendre transform. Suppose now that M is endowed with
a semi-Riemannian metric, as usual denoted by 〈., .〉. Since 〈., .〉 is non-
degenerate at each point of M ,

(2.11) L : TM → T ∗M, L(v)(w) := 〈v, w〉,
is an isomorphism, called the Legendre transform. For any isometry f of M ,
we have

(2.12) L(f∗v)(w) = 〈f∗v, w〉 = 〈v, f−1
∗ w〉 = (L(v) ◦ f−1

∗ )(w),

and hence the action of f∗ on TM corresponds, under the Legendre trans-
form, to the action of (f−1)∗ = (f∗)−1 on T ∗M . The one-form λ on T ∗M
corresponds to the one-form on TM , also called λ, given by

(2.13) λv(Z) = 〈v, π∗Z〉, Z ∈ TvTM.

Assume from now on that M is also endowed with a metric connection ∇.
To compute dλ, we consider a map V = V (s, t) to TM with V (0, 0) = v,
(∂V/∂s)(0, 0) = Z1, and (∂V/∂t)(0, 0) = Z2. At s = t = 0 (suppressed in
the computation), we have

dλ(Z1, Z2) =
∂

∂s
λ
(∂V
∂t

)
− ∂

∂t
λ
(∂V
∂s

)
=

∂

∂s

〈
V,
∂c

∂t

〉
− ∂

∂t

〈
V,
∂c

∂s

〉
=
〈∇V
∂s

,
∂c

∂t

〉
+
〈
V,
∇
∂s

∂c

∂t

〉
−
〈∇V
∂t

,
∂c

∂s

〉
−
〈
V,
∇
∂t

∂c

∂s

〉
=
〈∇V
∂s

,
∂c

∂t

〉
−
〈∂c
∂s
,
∇V
∂t

〉
+
〈
V, T

(∂c
∂s
,
∂c

∂t

)〉
,

(2.14)

where T denotes the torsion tensor of ∇. We conclude that

(2.15) ω(Z1, Z2) = −dλ(Z1, Z2) = 〈X1, Y2〉 − 〈Y1, X2〉 − 〈v, T (X1, X2)〉,
whereX1 andX2 denote the horizontal and Y1 and Y2 the vertical component
of Z1 and Z2, respectively. This formula is well known in the case of the
Levi-Civita connection, where the T -term on the right vanishes since the
Levi-Civita connection is torsion free.

2.4. The Sasaki metrics on TM and SM . Let 〈., .〉 be a semi-Riemannian
metric and ∇ be a metric connection on M . Endow TM with the semi-
Riemannian metric such that H ⊥ V and such that π∗ : Hv → TpM and
C : Vv → TpM are orthogonal transformations, for all p ∈M and v ∈ TpM .

Proposition 2.16. With respect to the above metric, we have:
1) π : TM →M is a Riemannian submersion.
2) For any piecewise smooth curve c : [a, b]→ M , its horizontal lifts induce
an orthogonal transformation hc : Tc(a)M → Tc(b)M .
3) The fibers TpM , p ∈ M , of π are totally geodesic with respect to the
Levi-Civita connection on TM .
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Proof. Assertion 1) is immediate from the definition of the metric and As-
sertion 2) since ∇ is metric and hc is parallel translation along c, see Corol-
lary 2.6. Assertion 3) follows since the fibers of a Riemannian submersion
are totally geodesic with respect to the Levi-Civita connection if and only
if the maps hc are isometric (where defined). �

Exercise 2.17. Prove the above assertion about Riemannian submersions:
The second fundamental forms of the fibers Ep := π−1(p) of a Riemannian
submersion π : E → M vanish if and only if the maps hc : Dc → Ec(b) are
isometric, for all piecewise smooth curves c : [a, b] → M , where Dc ⊆ Ec(a)

denotes the domain of definition of hc.

Before we proceed with the discussion of the tangent bundle, we introduce
some notation concerning integration: For a semi-Riemannian manifold N ,
we denote the volume element of N by volN or simply by vol. Depending
on readability, we write

(2.18)

∫
A
f(p) dvolN (p) or

∫
A
f(p)dp or

∫
A
f,

respectively, for the integral of a function f over a measurable subset A of
N against the volume element of N .

Exercise 2.19 (Fubini). Let π : P → N be a Riemannian submersion of
semi-Riemannian manifolds and f : P → R be an integrable function. Then
the restriction of f to almost any fiber Pp, p ∈ N , of π is integrable and

(2.20)

∫
P
f(p) dvolP (p) =

∫
N

∫
Pp

f(q) dvolPp(q) dvolN (q).

Suppose now that ∇ is the Levi-Civita connection associated to the given
semi-Riemannian metric on M . Then the metric on TM introduced further
up is called the Sasaki metric.

Proposition 2.21. With respect to the Sasaki metric, |ωm| = m! vol and the
geodesic flow (gt) is Hamiltonian with Hamiltonian function h(v) = ‖v‖2/2.

Proof. Let (e1, . . . , em) be an orthonormal basis of TpM . Let v ∈ TpM and
set Zi = (ei, 0) and Zm+i = (0, ei), 1 ≤ i ≤ m. Then (Z1, . . . , Z2m) is an
orthonormal basis of TvTM , and we have

(2.22) ω(Zj , Zk) =

{
0 if k 6= j ±m;

〈ej , ej〉 if k = j +m.

This shows the first claim. As for the second, note first that gradh is vertical.
It follows that gradh(v) = (0, v) and, hence, that Xh(v) = (v, 0), the vector
field of the geodesic flow. �

Exercise 2.23. It follows from Proposition 2.21 that the geodesic flow is
symplectic. Prove this explicitly, using (2.15). Show also that the geodesic
flow does not preserve λ.

Suppose from now on that 〈., .〉 is Riemannian, and denote by SM the
unit tangent bundle of M , SM = {v ∈ TM | ‖v‖ = 1}. The unit tangent
bundle is a submanifold of TM of codimension 1, and SM is invariant under
the geodesic flow. Throughout, the restrictions of λ and ω to SM will also
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be denoted by λ and ω, respectively.

Exercise 2.24. 1) For p ∈M and v ∈ SM ,

TvSM = {(X,Y ) ∈ TpM ⊕ TpM | Y ⊥ v}.
2) On SM , we have |λ ∧ ωm−1| = (m− 1)! vol.
3) The geodesic flow on SM preserves λ and ω.

Assume now that M is complete so that gt has domain SM .

Lemma 2.25. For any integrable function f on SM , we have∫
SM

f(gtv) dv =

∫
SM

f(v) dv.

Proof. By Exercise 2.24, the Jacobian of gt is identically equal to 1. Hence
the asserted equality follows from Exercise 2.34. �

Remark 2.26. A corresponding formula holds for TM in place of SM .

As an exercise, we recall a useful formula concerning the trace of self-
adjoint endomorphisms on Euclidean vector spces.

Exercise 2.27. If V is a Euclidean vector space and A : V → V is a self-
adjoint endomorphism, then

1

k
trA =

1

vol(Sk−1)

∫
S
〈Av, v〉dv,

where k = dimV and S ⊆ V denotes the unit sphere of V .

As a first application of our insights into the geometry of the unit tangent
bundle, we prove Theorem 5.1 from L. Green’s article [10]:

Theorem 2.28. Let M be a closed Riemannian manifold and assume that
the first conjugate point along any unit speed geodesic does not occur earlier
than a > 0. Then

a2

π2

∫
M

scal(p) dp ≤ m(m− 1) vol(M)

with equality if and only if M has constant sectional curvature π2/a2.

Proof. Consider a unit speed geodesic γ : [0, a]→M and let E = E(t) be a
parallel unit field along γ and perpendicular to γ. Since there is no conjugate
point of c(0) along γ, the second variation of energy applied to the vector
field V = V (t) = sin(πt/a)E(t) is non-negative, that is∫ a

0
sin2(πt/a)〈R(E(t), γ̇(t))γ̇(t), E(t)〉 dt ≤ π2

2a
.

Moreover, equality holds if and only if V is a Jacobi field, that is, if and only
if the sectional curvature K(E(t)∧ γ̇(t) ≡ π2/a2. Integrating this inequality
over all parallel orthonormal frame E along γ and perpendicular to γ as
above and using Exercise 2.27, we get∫ a

0
sin2(πt/a) Ric(γ̇(t)) dt ≤ (m− 1)

π2

2a
,
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where equality holds if and only if the sectional curvature of any tangential
plane containing any γ̇(t) is equal to π2/a2. Now we integrate both sides
over the unit tangent bundle. The term on the right integrates to

vol(M) vol(Sm−1)(m− 1)π2/2a.

As for the term on the left, we have∫
SM

∫ a

0
sin2(πt/a) Ric(γ̇v(t)) dt dv =

∫ a

0
sin2(πt/a)

∫
SM

Ric(gtv) dvdt

=

∫ a

0
sin2(πt/a)

∫
SM

Ric(v) dvdt

=
a

2

∫
M

∫
SpM

Ric(v) dvdp

=
a

2m
vol(Sm−1)

∫
M

scal(p) dp,

where we use the definition of the geodesic flow gt, Lemma 2.25, Exer-
cise 2.19, and Exercise 2.27, respectively. �

Corollary 2.29. If M is a closed Riemannian manifold without conjugate
points, then

∫
M scal(p) dp ≤ 0. �

Remark 2.30 (Recommended reading). Two-dimensional tori without con-
jugate points are flat, by E. Hopf [13]. The arguments in [13] are short and
brilliant and also use integration on the unit tangent bundle.

Corollary 2.31. Let M be a closed Riemannian surface and assume that
the first conjugate point along any unit speed geodesic in M does not occur
earlier than a > 0. Then the area of M is at least 2a2χ(M)/π, and equality
holds if and only if the curvature of M is constant π2/a2.

Reminder 2.32. An oriented Riemannian surface is a Riemann surface in
a natural way. The converse is the content of the uniformization theorem.

We end this section with a useful formula concerning integration on SM .
For any map g : P → N between semi-Riemannian manifolds of the same
dimension, there is a function |g∗| : P → R+, called the Jacobian of g, such
that g∗ volN = |g∗| volP . We also write |g∗p| instead of |g∗|(p)|.

Exercise 2.33. For g : P → N as above, p ∈ P , and a basis (b1, . . . , bn) of
TpP , we have |g∗p| = |g∗pb1∧· · ·∧g∗pbn|/|b1∧· · ·∧bn|, where the vertical bars
indicate the volumes of the parallelepipeds spanned by the corresponding
tuples of vectors; e.g., |b1 ∧ · · · ∧ bn| = | det((〈bi, bj〉))|1/2.

Exercise 2.34 (Transformation rule). If g : P → N is a diffeomorphism,
then ∫

g(A)
f(q) dq =

∫
A

(f ◦ g)(p)| g∗p|dp,

for any measurable subset A ⊆ P and integrable function f on g(A).

Let Σ be a non-degenerate hypersurface in a semi-Riemannian manifold
N and X be a vector field on N with flow Φ = (Φt). Recall that divX, the
divergence of X, vanishes if and only if (Φt) preserves volume.
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Let U ⊆ R×Σ be the open subset of (t, x) which are in the domain of Φ
and consider the map

F : U → N, F (t, x) = Φt(x).

Endow Σ with the induced semi-Riemannian metric and R × Σ with the
product metric, where we view R as the standard Euclidean line.

Lemma 2.35. If divX vanishes, then |F∗| does not depend on t,

|F∗|(t, x) = |〈X⊥(x), X⊥(x)〉|1/2,
where X⊥ denotes the component of X perpendicular to Σ.

Proof. Let (t, x) in U . Then there is an open neighborhood U ′ of (t, x) in U
and an ε > 0 such that (s+t′, x′) ∈ U for all (t′, x′) ∈ U ′ and s ∈ (−ε, ε). For
(t′, x′) ∈ U ′, set Ψs(t

′, x′) = (s+ t′, x′) ∈ U . Then Ψ∗s volR×Σ = volR×Σ and
F ◦ Ψs = Φs ◦ F . Furthermore, since divX = 0, we have Φ∗s volN = volN .
We conclude that, on U ′,

|F∗| volR×Σ = F ∗ volN = F ∗Φ∗s volN = Ψ∗sF
∗ volN

= (|F∗| ◦Ψs)Ψ
∗
s volR×Σ = (|F∗| ◦Ψs) volR×Σ,

and therefore |F∗|(t+ s, x) = |F∗|(t, x). The first claim follows.
As for the second, the right hand side of the formula is equal to |F∗|(0, x)

since Σ is endowed with the induced semi-Riemannian metric and R × Σ
with the product metric; compare with Exercise 2.33. �

We apply Lemma 2.35 to the geodesic flow on the unit tangent bundle of
a Riemannian manifold. It is common to refer to the following formula as
Santaló’s formula; see [20, pp. 336–338] and also [4, p. 147].

Proposition 2.36. Let H be a hypersurface in a Riemannian manifold M
and Σ = SM |H . Let X be the vector field of the geodesic flow on SM and
consider U and F as above. Then

|F∗|(t, v) = sin θ(v),

where θ(v) ∈ [0, π/2] is the angle between v and TpH, p = π(v) ∈ H.

Proof. Identifiying TvSM = TpM ⊕ v⊥ as usual, we have TvΣ = TpH ⊕ v⊥.
Now X(v) = (v, 0), and hence the assertion follows from Lemma 2.35. �
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3. Wiedersehen manifolds

For v ∈ SM , denote by con(v) ∈ (0,∞] the first t > 0 that is conjugate
to 0 along γv. For p ∈M , set

ConT (p) = {con(v)v | v ∈ SpM, con(v) <∞} ⊆ TpM,

Con(p) = exp(ConT (p)) = {γv(con(v)) | v ∈ SpM} ⊆M.

the tangential first conjugate locus and first conjugate locus of p, respectively.
Recall that con: SM → (0,∞] is continuous; cf. also Exercise A.1. It follows
that ConT (p) is a closed subset of TpM .

Exercise 3.1. For all v ∈ SpM , we have con(−γ̇v(con(v))) = con(v). (Hint:
Recall the relation of conjugate points with the index form of geodesics.)

Following Blaschke, we say that a complete and connected Riemannian
surface M is a Wiedersehen surface if Con(p) consists of one single point, for
all p ∈M . The original Blaschke conjecture says that a Wiedersehen surface
has constant positive curvature, hence that it is a sphere or a projective plane
with a standard Riemannian metric.

Theorem 3.2 (Green). The Blaschke conjecture is true.

In the proof of Theorem 3.2, we follow the exposition of Green in [10].
The first part of the arguments does not involve that M is a surface. Until
and including Exercise 3.9, we assume that M is a Wiedersehen manifold,
that is, that M is a complete and connected Riemannian manifold such that
Con(p) consists of a single point, for all p ∈M . Then we may consider Con
as a map M → M ; as such, Con is continuous and involutive, Con2 = id,
since con is continuous and con(−γ̇v(con(v))) = con(v).

Lemma 3.3. For all p ∈M , con: SpM → (0,∞] is constant =: a(p) <∞.
In particular, the universal covering space of M is compact.

Proof. Let p ∈M . Since p does have a conjugate point, namely q = Con(p),
there is a v ∈ SpM with con(v) < ∞. Given any such v, there is an open
spherical ball B ⊆ SpM about v such that con(w) < ∞ for all w ∈ B, by
the continuity of con.

Choose an ε > 0 smaller than the injectivity radius of q = Con(p) and
let Sε(q) be the geodesic sphere of radius ε about q. Then the unit speed
geodesics γw, w ∈ B, intersect Sε(q) transversally, in fact, perpendiculary,
at time con(w)− ε. It follows that con−ε, hence also con, is smooth on B.

Let now v = v(s) be a curve in B and consider the corresponding geodesic
variation γ = γs(t) = γv(s)(t). Then we have γs(con(v(s))) = q, and hence

0 =
d

ds
γs(con(v(s)))

= J(s, con(v(s))) + γ̇s(con(v(s))) · d con(v(s))

ds
,

where J = ∂γ/∂s is the family of associated Jacobi fields. Since J(s, 0) = 0
and J ′(s, 0) = dv/ds, J(s, t) is perpendicular to γ̇s(t), for all s, t. Hence the
above calculation shows that d con(v(s))/ds vanishes. It follows that con is
constant on B and therefore, by the continuity of con, on SpM . �
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Lemma 3.4. The function con is constant =: a > 0 on SM . All geodesics
of M are periodic with 2a as a common period.

Proof. Let p ∈ M and q = Con(p). Then p = Con(q), and hence any unit
speed geodesic γ : R → M starting at p comes back to p at time 2a(p).
Choose ε > 0 less than half the injectivity radius of M at p and so that
|2a(p)− 2a(p′)| is less than half the injectivity radius of M at p for all p′ of
distance < 2ε to p. For p′ = γ(ε), we have

q′ = Con(p′) = γ(ε+ a(p′)) and p′ = Con(q′) = γ(ε+ 2a(p′)).

Now γ(2a(p)) = p and |ε+ 2a(p′)− 2a(p)| is less than the injectivity radius
of M at p. Hence γ|[2a(p),ε+2a(p′)] is the unique minimal geodesic from p to
p′ and therefore is equal to γ|[0,ε], up to the parameter. Therefore γ closes
smoothly at p, a(p′) = a(p), and γ(ε) = γ(2a(p) + ε). We also conclude that
the function a = a(p) is locally constant along unit speed geodesics. Since
any point in M can be reached by a unit speed geodesic from p, we get that
a is constant and that any unit speed geodesic on M is periodic with 2a as
a period. �

Lemma 3.5. The map Con: M →M is an isometry.

Proof. For any unit speed geodesic γ : R→M , Con(γ(t)) = γ(t+ a). �

Exercise 3.6. Let f : M → N be a map between connected Riemannian
manifolds of the same dimension, and suppose that f preserves distances.
Show that f is a smooth local isometry. (Hint: Start with the case where
M and N are equal to Euclidean space Rm.)

Lemma 3.7. For p ∈M , consider the Euclidean sphere Sm(a/π) of radius
a/π as the quotient of the closed ball B̄(0p, a) of radius a in TpM , where the
boundary S(0p, a) is identified to a point. Then expp : B̄(0p, a)→M factors
through a smooth covering map F : Sm →M .

Proof. Consider 0p as the north pole N and the collapsed S(0p, a) as the
south pole S of Sm. By definition, exp has maximal rank on the open ball
B(0p, a). The only question is whether F is smooth and has maximal rank
at the south pole. This follows easily, however, since all geodesics from p
pass through Con(p) and intersect there with the same angle as in p, by
Lemma 3.5. In other words, for all v ∈ SpM and 0 ≤ t ≤ a, we have

expCon p(tCon∗p v) = Con(expp(tv)) = expp((t− a)v),

exactly as on Sm(a/π) with the antipodal map in place of Con. �

The above discussion is summed up in the following

Theorem 3.8. If M is a simply connected Wiedersehen manifold, then
1) M is diffeomeorphic to Sm;
2) the injectivity radius of M is equal to its diameter a := diamM ;
3) γ(a) = Con(p), for all p ∈M and unit speed geodesics γ through p;
4) all unit speed geodesics of M are periodic with period 2a;
5) Con is an involutive isometry of M with d(p,Con(p)) ≡ a. �
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Exercise 3.9. Show that the Wiedersehen property of a Riemannian man-
ifold M passes to Riemannian covering and subcovering spaces of M . Show
also that the isometry Con commutes with all isometries of M .

End of proof of Theorem 3.2. We may assume that M is simply conected,
by Exercise 3.9. Then M is diffeomorphic to the sphere, by Theorem 3.8.
By Corollary 2.31 it therefore suffices to show that the area of M is 4a2/π.
To that end we choose H ⊆ M to be one of the closed geodesics of M of
length 2a; see Theorem 3.8. Then Σ = SM |H is a hypersurface of SM .
For U and F as in Proposition 2.36 and up to the set of measure zero of
unit vectors tangent to H, SM is simply covered by the set of F (t, v) with
0 ≤ t < a and v ∈ Σ, by Theorem 3.8. Therefore

vol(SM) =

∫ a

0

∫
Σ

sin θ(v) dvdt = 2a2

∫ 2π

0
| sin θ| dθ = 8a2,

by Proposition 2.36. Hence area(M) = vol(SM)/2π = 4a2/π as desired. �

Exercise 3.10. Let M be a complete and connected Riemannian surface
such that the function con: SM → R is constant and finite. Show that M
is a Wiedersehensfläche. What about higher dimensions? Recall also that,
in all dimensions, there are closed manifolds with con ≡ ∞.

In a first and maybe erroneous version of the proof of Lemma 3.3, I used
a somewhat carelessly formulated version of the following exercise. Since
the statement of the exercise is useful, I decided to include it at the end of
this section, although it is not required in our discussion anymore.

Exercise 3.11. Let C = {tw | w ∈ SpM and 0 < t < con(w)} ⊆ TpM . Let
c : [0, 1]→ TpM be a piecewise smooth curve with c(0) = 0 and c((0, 1)) ⊆ C.
Then

L(exp ◦c) ≥ ‖c(1)‖.
Moreover, equality holds if and only if c = c(t) = φ(t)c(1), for all 0 ≤ t ≤ 1,
where φ is a monotonic surjection of [0, 1].
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4. Zoll surfaces

Zoll surfaces are (Riemannian) metrics of revolution on the sphere S2,
such that all their geodesics are closed of the same length and without self-
intersections. We discuss now the existence of Zoll surfaces, following the
presentation in [4, Chapter 4]. Another reference–with a presentation close
to Zoll’s original one in [24]–is Section 8 of [3, Chapter IV].

Using polar coordinates at the north pole N of S2, we view the sphere S2

as a strip [0, a] × R, where the second parameter θ counts modulo 2π and
where the boundary lines s = 0 and s = a are collapsed to north and south
pole N and S of the sphere, respectively:

(4.1) (s, θ)←→ (sin(πs/a) cos θ, sin(πs/a) sin θ, cos(πs/a)).

We consider metrics on the open strip (0, a)× R of the form

(4.2) g = µ2(s) ds2 + λ2(s) dθ2,

where λ, µ : (0, a) → R are positive smooth functions. By substituting the
s-parameter appropriately, we may also assume that µ = 1, and then g has
the simpler form

(4.3) g = ds2 + λ2(s) dθ2.

The class of functions λ and µ, such that g extends to a smooth metric on
S2, will be identified in Exercise 4.5 below. To that end, the following char-
acterization of the regularity of functions on R2 in terms of polar coordinates
is useful.

Proposition 4.4. Let f = f(s, θ) be a function on R2. Then there is a
smooth function g = g(x, y) on R2 with f(s, θ) = g(s cos θ, s sin θ) if and
only if f is smooth and
1) f(−s, θ) = f(s, θ + π) for all (s, θ) ∈ (−ε, ε)× R;
2) for all integers j ≥ 0, sj(∂jf/∂sj)(0, θ) is a homogeneous polynomial of

degree j in x = s cos θ and y = s sin θ.

Proposition 4.4 appears as Théorème IV in [9], p. 206, where it follows
from a more general result, and Proposition 2.7 in [14], p. 208, where it
comes with a direct and elementary proof.

Exercise 4.5. Let g be a metric of the form (4.2) with λ, µ > 0 on (0, a),
and view S2 as a quotient of [0, a]×R as in (4.1). Show that g extends to a
smooth metric on S2 \{S} if and only if µ and ν = λ(s)/s extend to positive
and even smooth functions on (−a, a) such that µ(0) = ν(0). Formulate also
a corresponding criterion for S2 \ {N} and discuss under which conditions
(s, θ) are (polar) normal coordinates about N and S.

Remark 4.6. A function f : (−ε, ε)→ R is smooth if and only if there is a
smooth function g : (−ε, ε)→ R such that f(s)− f(0) = sg(s).

Consider metrics on (0, a) × R of the form (4.2). Then shifts θ 7→ θ + α
of the angle parameter θ are isometries, and hence ∂/∂θ is a Killing field.
The following assertion is immediate from Exercise A.2.1

Proposition 4.7 (Clairaut’s theorem). If γ = (s(t), θ(t)) : I → (0, a) × R
is a geodesic, then 〈γ̇, ∂/∂θ〉 = λ2(γ(t))θ̇(t) = constant.
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Remark 4.8. Recall that, up to parametrization, all meridians θ = θ0 are
geodesics and that a parallel s = s0 is a geodesic if and only if s0 is a critical
point of λ.

We consider now a smooth metric g on (0, a) × R of the form (4.3) and
assume that it extends to a smooth Riemannian metric on S2, keeping the
names λ, µ, and g for the corresponding extensions; compare with Exer-
cise 4.5. Then, since λ(0) = λ(a) = 0 and λ > 0 on (0, a), λ has a maximum
λ0 in (0, a), say at a time s = s0.

Proposition 4.9 (A necessary condition). If all unit speed geodesics of g
are periodic with a common period, then s0 is the only critical point of λ.
Furthermore, s0 is non-degenerate, that is, λ̈(s0) < 0.

Proof. The assertion of Proposition 4.9 follows if any critical point of λ in
(0, a) is a non-degenerate local maximum.

Suppose now that ` is a common period of all unit speed geodesics of g,
and let s1 ∈ (0, a) be a critical point of λ. Then γ = (s1, t/λ(s1)) is a unit
speed geodesic, and hence γ(`) = γ(0). Let γα be the unit speed geodesic
with γα(0) = (s1, 0) and such that the oriented angle ∠(γ̇(0), γ̇α(0)) = α.
Then the γα constitute a geodesic variation of γ = γ0 with fixed starting
point (s1, 0) = γα(0). By assumption γα(`) = γα(0) = (s1, 0) for all α.
Hence the Jacobi field V associated to this geodesic variation satisfies V (0) =
V (`) = 0. It follows that V is perpendicular to γ. Since the curvature K
of g does not depend on θ, the oriented length v of V satisfies the scalar
Jacobi equation v̈ + k1v = 0, where k1 = K(s1). Since v is non-trivial with
v(0) = v(`) = 0, this is only possible if k1 > 0.

Since all meridians are geodesics, ∂/∂θ is a Jacobi field along each of

them. Hence λ̈ = −Kλ. We conclude that λ̈(s1) = −k1λ(s1) < 0, and
hence λ achieves a non-degenerate local maximum at s = s1. �

Remark 4.10. Suppose, more generally, that all unit speed geodesics of g
are closed, but maybe not with a common period. Let s1 be a critical point
of λ. Then K(s1) < 0 would imply that there are geodesics γ = (s(t), θ(t))
of g which are asymptotic to the geodesic s = s1 in the sense that s(t) would
converge strictly monotonically to s1 as t→∞. Such geodesics would never
close up, contradicting the hypothesis. The situation is maybe similar in
the case K(s1) = 0, and then Proposition 4.9 would follow under the given
weaker assumption.

Metrics of the form (4.3) that satisfy the assertion of Proposition 4.9
have a unique parallel of maximal length, the equator s = s0. Replacing
g by λ−2

0 g and substituting the parameter s by λ0s, we arrive at the first
normalization λ0 = 1. Then the equator is of length 2π. Our next aim is a
normal form for such metrics.

Lemma 4.11. Let f : (−ε, ε)→ R be a smooth function.

1) If s = 0 is a critical point of f with f(0) = 1 and f̈(0) < 0, then there
is a unique smooth function r = r(s) about s = 0 with r(0) = 0 and ṙ > 0
such that f(s) = cos r(s).
2) If f is even, then there are smooth functions h0 and h1 about s = 0 and
s = 1, respectively, such that f(s) = h0(s2) = h1(cos s).
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The existence of the function h0 in the second assertion of Lemma 4.11
is Theorem 1 in [23]. The existence of h1 is an immediate consequence.

Proof of the first assertion of Lemma 4.11. Diminishing ε if necessary, f is
strictly monotonically increasing to 1 on (−ε, 0] and strictly monotonically
decreasing on [0, ε). Hence there is a unique strictly increasing continuous
function r on (−ε, ε) such that r(0) = 0 and f = cos r, namely

r = − arccos f on (−ε, 0] and r = arccos f on [0, ε),

respectively. Since cos is real analytic and diffeomorphic on (−π/2, 0) and
(0, π/2), r is smooth on (−ε, 0) and (0, ε). Moreover,

ṙ = ḟ(1− f2)−1/2 on (−ε, 0) and ṙ = −ḟ(1− f2)−1/2 on (0, ε),

respectively. Now ḟ , 1 − f2 and the first derivative of 1 − f2 vanish at 0.
Furthermore, the second derivative of 1− f2 at 0 exists and equals −2f̈(0).
From Remark 4.6, we get that there are smooth functions φ, ψ : (−ε, ε)→ R
with φ(0) = ψ(0) = 1 such that

ḟ(s) = f̈(0)φ(s)s and 1− f2(s) = −f̈(0)ψ(s)s2.

Since f(s) < 1 for s 6= 0, we have ψ > 0. Now
√
s2 = ±s with minus-sign

on (−ε, 0) and plus sign on (0, ε), respectively. Since f̈(0) < 0, we obtain

ṙ =

√
−f̈(0)φψ−1/2 on (−ε, 0) ∪ (0, ε).

Hence ṙ extends to a smooth function on (−ε, ε) with ṙ(0) =
√
−f̈(0). It

follows that r is smooth with ṙ > 0. �

Proposition 4.12 (Normal form 1). Let g be a smooth metric of the form
(4.3) which extends to a smooth metric on S2. Assume that s0 is the only

critical point of λ with λ(s0) = 1 and λ̈(s0) < 0. Then there is a smooth
parameter change r : [0, a]→ [0, π] such that

g = µ2(r) dr2 + sin2(r) dθ2,

where µ : [0, π]→ R is a positive smooth function which is even about 0 and
π with µ(0) = µ(π) = 1.

Proof. Since λ is strictly monotonically increasing from 0 to 1 on [0, s0] and
strictly monotonically decreasing from 1 to 0 on [s0, a], there is a unique
increasing homeomorphism r : [0, a]→ [0, π] such that λ = sin r, namely

r = arcsinλ on [0, s0] and r = π − arcsinλ on [s0, a],

respectively. Since λ is diffeomorphic on (0, s0) and (s0, a) and sin like-
wise on [0, π/2) and (π/2, π], r is diffeomorphic on [0, s0) and (s0, a]. By
Lemma 4.11.1, r is diffeomorphic about s = s0. Hence r : [0, a]→ [0, π] is a
smooth parameter change.

As for the fundamental matrix of the metric in the (r, θ)-coordinates, we
note that ∂/∂s = ṙ ∂/∂r. Hence g = ṙ−2dr2 + sin2(r) dθ2. Now λ is odd

about 0 and a with λ̇(0) = 1 and λ̇(a) = −1. Hence r is odd about 0
and a with ṙ(0) = ṙ(a) = 1, and therefore s = s(r) is a smooth function
which is odd about 0 and π with ṡ(0) = ṡ(π) = 1. We conclude that
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µ = µ(r) = ṙ−1(s(r)) is a smooth function which is even about 0 and π with
µ(0) = µ(π) = 1. �

Example 4.13. On the standard sphere S2 of radius one, we have

g = dr2 + sin2(r) dθ2,

where r denotes the angle between north pole and foot point in question.

Proposition 4.14 (Normal form 2). Let µ : [0, π]→ R be a positive smooth
function, which is even about 0 and π with µ(0) = µ(π) = 1, and let g
be the corresponding metric on S as in Proposition 4.12. Then there is a
positive smooth function f : [−1, 1] → R with f(−1) = f(1) = 1 such that
µ(r) = f(cos r), that is, such that

(4.15) g = f2(cos r) dr2 + sin2(r) dθ2.

Conversely, any such metric, where f is smooth with f(−1) = f(1) = 1,
defines a smooth metric on S2 with equator r = π/2 of length 2π.

Assume from now on that the Riemannian metric on S2 is given in the
(r, θ)-coordinates as in (4.15). By Proposition 4.7 and Proposition 4.9, for
any unit speed geodesic γ = (r(t), θ(t)) on M , which is not a meridian
and not the equator, there is a number r0 = r0(γ) ∈ (0, π/2) such that
mint r(t) = r0 and maxt r(t) = π− r0. We now compute the angle difference
∆θ of γ between two events r = r0 and r = π−r0. Without loss of generality
we may assume that ṙ > 0 in the corresponding time interval.

Lemma 4.16. In the above situation, let

r(t0) = r0, r(t1) = π − r0, and r0 < r(t) < π − r0 for all t ∈ (t0, t1).

Then

∆θ = θ(t1)− θ(t0) =

∫ π−r0

r0

f(cos r) sin r0

(sin2 r − sin2 r0)1/2 sin r
dr.

Proof. Without loss of generality, we may assume that θ̇ > 0. Clairaut’s
theorem says that 〈γ̇, ∂/∂θ〉 = θ̇ sin2 r = constant. At time t = t0, we have

ṙ(t0) = 0, therefore θ̇(t0)2 sin2 r0 = 1, and hence θ̇ sin2 r = sin r0. Since γ

has unit speed, ṙ2f2(cos r) + θ̇2 sin2 r = 1, we obtain

ṙ2 =
1− θ̇2 sin2 r

f2(cos r)
=

1− sin2 r0/ sin2 r

f2(cos r)
=

sin2 r − sin2 r0

f2(cos r) sin2 r
.

We conclude that

(4.17)
dt

dr
=

f(cos r) sin r

(sin2 r − sin2 r0)1/2

and therefore that

�(4.18)
dθ

dr
=
dθ

dt

dt

dr
=

f(cos r) sin r0

(sin2 r − sin2 r0)1/2 sin r
.

Example 4.19. On the standard sphere of radius 1, we have ∆θ = π. In
other words, ∫ π−r0

r0

sin r0

(sin2 r − sin2 r0)1/2 sin r
dr = ∆θ = π,

for all 0 < r0 < π/2. This formula will be crucial in our discussion below.
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Clearly, ∆θ also gives half the θ-difference between two consecutive times
that γ reaches r = r0 or r = π − r0, respectively, or that γ, after starting
on the equator, comes back to the equator the next time. (Note that we do
not, and should not, assume that the northern and southern hemissphere
are isometric). We conclude that γ closes after n > 0 such events if and only
if 2n∆θ = 2mπ for some integer m > 0, hence if and only if

(4.20) ∆θ =

∫ π−r0

r0

f(cos r) sin r0

(sin2 r − sin2 r0)1/2 sin r
dr =

m

n
π.

Assume now that all unit speed geodesics of M are periodic with a common
period. Then, since ∆θ is continuous in r0 and rational, it is constant, say
equal to mπ/n. Choosing m and n divisor free, we conclude that all unit
speed geodesics, except for the equator and the meridians, close after n
events r = r0. By continuity, the smallest common period of all unit speed
geodesics, except for the meridians, is equal to 2mπ. Therefore the length of
a segment of a geodesic between two consecutive events r = r0 and r = π−r0

as above is equal to mπ/n. Again by continuity, the meridians also have
length mπ/n. Note that this discussion did not involve the regularity of the
metric at the poles.

Theorem 4.21. Up to the sign of h = f −1, the isometry classes of smooth
or real analytic metrics of revolution on S2 with all geodesics closed and
simple of length 2π are in one-one correspondence with metrics of the form

(4.22) g = (1 + h(cos r))2 dr2 + sin2 r dθ2,

where h : [−1, 1]→ (−1, 1) is a smooth or real analytic function, respectively,
which is odd about 0 and such that h(−1) = h(1) = 0.

Proof. The zeros of a non-trivial Killing field on a connected surface are
isolated and of index one. Hence, by the Poincaré-Hopf index theorem, a
non-trivial Killing field X of a metric g on S2 has exactly two zeros; call
them north and south pole N and S, respectively. Then N and S are fixed
points of the flow (φt) of X. It follows easily that a minimizing unit speed
geodesic c : [0, a] → S2 from N to S is perpendicular to X and that (φt)
is periodic. Normalizing X so that the period of (φt) is 2π, we arrive at a
correspondence (s, θ) ←→ φθ(c(s)) as in (4.1) such that X = ∂/∂θ and g
is of the form (4.3). Since g is smooth or real analytic, the change to the
normal form (4.15) does not change regularity; that is, f is smooth or real
analytic, respectively.

Now we consider geodesics γ as in Lemma 4.16. By Example 4.19 and
the discussion further up, we must have

∆θ =

∫ π−r0

r0

f(cos r) sin r0

(sin2 r − sin2 r0)1/2 sin r
dr = π,

for any r0 ∈ (0, π/2). Writing f = 1 + h, this holds if and only if∫ π−r0

r0

h(cos r) sin r0

(sin2 r − sin2 r0)1/2 sin r
dr = 0,

for any r0 ∈ (0, π/2), by Example 4.19. It is easy to see that the latter
condition holds if and only if h is odd with respect to π/2. From the oddness
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of h about π/2 and (4.17), we also get that the length of a geodesic between
two consecutive events r = r0 and r = π − r0 as above is equal to π, as on
the unit sphere.

Note that for any metric of the form in (4.22), except for the standard
metric, the space of Killing fields is one-dimensional and generated by ∂/∂θ.
It then follows that the parallels are invariantly defined as flow lines of ∂/∂θ.
The parallels come in pairs of length 2π sin r, and the distance of them to
the equator is an isometry invariant of the metric which determines h up to
sign. Hence metrics g1 and g2 of the form (4.22) and with h2 6= ±h1 are not
isometric. �

Exercise 4.23. Let g be a metric on S2 as in (4.22). Then, up to the
parametrization, the meridians θ = θ0 are geodesics and ∂/∂θ is a Jacobi
field along them. The speed of the meridians is µ(r) = f(cos r) = 1+h(cos r).
Write ∂/∂θ = sin r E, where E is of length one (and therefore parallel along
the meridians) and show that the curvature of g is given by

K = K(r) =
1 + h(cos r)− ḣ(cos r) cos r

(1 + h(cos r))3
.

Zoll’s original surfaces were real analytic surfaces of revolution in R3.
Following his Ansatz as in (4.24) below, we derive his main examples. By
Proposition 4.9, we know that, up to a motion of the ambient Euclidean
space, the surface should be of the form

(4.24) (x, y, z) = (sin r cos θ, sin r sin θ, z±(sin r)), 0 ≤ r ≤ π,

where we normalize the height functions z± by z±(1) = 0. The height
functions z+ and z− are responsible for the part of the surface above and
below the (x, y)-plane, respectively. We also have

(4.25) cos2(r)(1 + ż2
±(sin r)) = (1 + h(cos r))2.

Thus a necessary condition for the existence of the surface is

(4.26) (1 + h(cos r))2 ≥ cos2 r.

We set ρ = sin r and η = cos r. Then η2 + ρ2 = 1 and

(4.27)
√

1 + ż2
±(ρ) =

1√
1− ρ2

± h(
√

1− ρ2)√
1− ρ2

=:
1√

1− ρ2
± ϕ(ρ) ≥ 1,

where ϕ is real analytic and ϕ ≡ 0 corresponds to the standard sphere. For
0 ≤ ρ < 1, the right hand side is given by

(4.28)
1√

1− ρ2
± ϕ(ρ) = 1 +

1

2
ρ2 +

1 · 3
2 · 4

ρ4 +
1 · 3 · 5
2 · 4 · 6

ρ6 + · · · ± ϕ(r),

The right hand side should be ≥ 1 and equal to 1 at ρ = 0. Zoll’s main
candidate is ϕc(ρ) = cρ2, where 0 ≤ c ≤ 1/2. Then hc(η) = cη(1− η2) is an
odd real analytic function which vanishes in ±1. It has maximum 2c/3

√
3,

hence it defines a real analytic metric of revolution as in Proposition 4.14
under the weaker restriction 0 ≤ c < 3

√
3/2. However, in the following

discussion, we require 0 ≤ c ≤ 1/2.
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To show the regularity of the surface Sc of revolution associated to ϕc,
we consider

(4.29) ζ = ζ(r) =

{
z+(sin r) for 0 ≤ r ≤ π/2,
z−(sin r) for π/2 ≤ r ≤ π.

Then c = c(r) = (sin r, ζ(r)) is a profile curve for Sc. We have

ζ̇(r) = −
√

(1 + hc(cos r))2 − cos2 r

= −
√

(1 + 2c cos r) sin2 r + c2 cos2 r sin4 r
(4.30)

and hence ζ̇ is a real analytic function of r on (0, π/2), therefore also ζ. We
thus see that Sc, so far except for north and south pole, is real analytic.

Observe that Sc is real analytic at north and south pole if and only if the
height functions z± are even real analytic functions of ρ about ρ = 0. This
holds if and only if the derivatives ż± are odd real analytic functions of ρ
about ρ = 0. Now we have

ż2
±(ρ) =

( 1√
1− ρ2

± cρ2
)2 − 1

=
1

1− ρ2
± 2cρ2√

1− ρ2
+ c2ρ4 − 1

= ρ2 + ρ4 + · · · ± 2cρ2
(
1 +

1

2
ρ2 +

1 · 3
2 · 4

ρ4 + . . .
)

+ c2ρ4

= (1± 2c)ρ2 + (1± c+ c2)ρ4 + higher order terms.

(4.31)

For the functions on the right hand side to be the squares of odd real analytic
functions of ρ, we actually need 0 ≤ c < 1/2, slightly stronger than Zoll’s
assumption 0 ≤ c ≤ 1/2.

Exercise 4.32. 1) For c ∈ [0, 1/2), show that the curvature of Sc is strictly
positive. In other words, Sc is strictly convex in R3.
2) Discuss the surface Sd associated to the choice ϕd = ϕd(ρ) = dρ4. What
are appropriate d ≥ 0? For which d does Sd have regions with negative
curvature? (Compare with the figures on page 111 in [4].)
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5. Blaschke manifolds

Let M be a compact and connected Riemannian manifold. We say that M
is a Blaschke manifold with respect to p ∈M if injM (p) = radM (p). We say
that M is a Blaschke manifold if inj(M) = diam(M). It is easy to see that
the latter holds if and only if M is a Blaschke manifold with respect to any
p ∈ M . The only known examples of Blaschke manifolds are the compact
symmetric spaces of rank one, that is, spheres and projective spaces together
with their standard metrics. The (generalized) Blaschke conjecture says that
these are in fact the only examples.

Let k ∈ {1, . . . ,m − 1} and l > 0. Following [4], we say that M is
an Allamigeon-Warner manifold of type (k, l) with respect to p ∈ M , if
con(v) = l and if the multiplicity of γv(l) as a conjugate point of p along γv
is k, for all v ∈ SpM . We say that M is an Allamigeon-Warner manifold if
it is an Allamigeon-Warner manifold (of some type) at any p ∈M . It is then
easy to see that the type does not depend on p. Clearly, the Allamigeon-
Warner property is stable under Riemannian covers and subcovers.

It is clear from our discussion in Subsection 3 that M is a Wiedersehen
manifold if and only if M is an Allamigeon-Warner manifold of type (m−1, l)
for some l > 0. The Blaschke conjecture is known for these:

Theorem 5.1 (Berger-Kazdan [4]). If M is a Wiedersehen manifold, then
M has constant positive sectional curvature.

The proof is involved and will not be presented in these lecture notes. Our
aim is to develop the general picture around the Blaschke conjecture. We will
see that Allamigeon-Warner and Blaschke manifolds describe the same class
of manifolds, up to Riemannian covers or subcovers. We will also see that the
pointed versions of both concepts are, more or less, completely understood,
where we say that M is a pointed Blaschke or Allamigeon-Warner manifold
if M is a Blaschke or Allamigeon-Warner manifold at some point p ∈M .

Exercise 5.2. After studying Subsections 5.1 and 5.2, prove the two ‘It is
easy to see’ statements from the beginning of this subsection.

5.1. Pointed Allamigeon-Warner manifolds. In what follows, we as-
sume that M is an Allamigeon-Warner manifold of type (k, l) with respect
to a given point p ∈ M . Rescaling the metric, we may assume that l = 1.
This will make the presentation easier.

Let f be the restriction of the exponential map to the unit sphere S =
SpM in TpM ,

(5.3) f = expp |S ,
and define F : S → SM by

(5.4) F (v) = γ̇v(1).

Note that f = π ◦ F .

Proposition 5.5. We have: 1) f has constant rank m− k − 1.
2) The connected components of the levels of f , that is, the leaves of the
foliation Φ associated to the smooth distribution ker f∗v, v ∈ S, are diffeo-
morphic to the sphere Sk.
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3) For each v ∈ S, F maps the leave L = Lv of Φ through v diffeomorphi-
cally to the unit sphere in (im f∗v)

⊥.
4) F : S → SM is an embedding.

Proof. The Gauss lemma implies that the kernel of expp∗v is perpendicular
to v, for all non-zero v ∈ TpM . Hence the multiplicity of γv(1) as a conjugate
point of p along γv equals the dimension of ker f∗v, and 1) follows.

A general version of the implicit function theorem maintains that, for
each v in S, there exist coordinate charts x = (x1, . . . , xm−1) about v in S
and y = (y1, . . . , ym) about f(v) in M such that

(5.6) (y ◦ f ◦ x−1)(x1, . . . , xm−1) = (x1, . . . , xm−k−1, 0, . . . , 0).

It follows that the distribution ker f∗ on S is smooth and integrable and that
the image of the domain of x under f is a submanifold W of M of dimension
m − k − 1. (In Theorem 5.8 below we will see that W is actually part of
a compact immersed manifold N .) The non-explicit assertions of 2) follow.
The remaining assertion of 2) is immediate from 3).

Since F is the restriction of the time one map of the geodesic flow to S,
we get that F : S → SM is an embedding. By the definition of L, all the
geodesics γw, w ∈ L, hit q = f(v) = γv(1) at time 1. With respect to a
coordinate chart x about v as above such that x(v) = 0, the vectors w with
coordinates (0, . . . , 0, xm−k, . . . , xm−1) constitute a neighborhood of v in the
leaf L = Lv of Φ. It follows from (5.6) that im f∗v = im f∗w for all such w.
Since this argument applies to any v ∈ L and L is connected, we conclude
that im f∗v is independent of v ∈ L.

By the first variation formula, the geodesics γw, w ∈ L, hit the image of
f perpendicularly at q, that is, F (w) = γ̇w(1) ∈ (im f∗v)

⊥ for all w. Now
L is a compact and connected manifold of dimension k, and the restriction
of F to L is an embedding of L. Furthermore, the unit sphere in (im f∗v)

⊥

is also a compact and connected manifold of dimension k and contains the
image of L under the embedding F . It follows that F is a diffeomeorphism
between L and the unit sphere in (im f∗v)

⊥. �

Exercise 5.7. Let M be a foliated manifold, and let p, q be points in a
leaf L of the foliation. Then there is a compactly supported (in particular,
complete) vector field X on M such that
1) X is tangent to the foliation and
2) ϕ1(p) = q, where (ϕt) denotes the flow of X.

Theorem 5.8. Let N be the space of leaves of Φ and ν : S → N be the
projection. Then N is a smooth manifold of dimension m − k − 1 in a
natural way such that ν is a submersion and such that the following holds:
1) N is compact and simply connected.
2) f factors over an immersion g : N →M , f = g ◦ ν.
3) F induces an isomorphism between ν : S → N and the normal sphere
bundle of the immersion g.

Proof. We show first that N has a natural atlas of coordinate charts such
that the coordinate transitions are smooth. The heart of the matter are
coordinates x and y as in (5.6). Let U ⊆ S be the domain of x and assume
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without loss of generality that x(U) = U ′ × U ′′, where U ′ ⊆ Rm−k−1 and
U ′′ ⊆ Rk are open and path connected. Split x = (x′, x′′) with

x′ = (x1, . . . , xm−k−1) and x′′ = (xm−k, . . . , xm−1).

Then U intersects the levels of f in the subsets x′ = constant. Since these
are diffeomorphic to U ′′, they are path connected and, therefore, belong to
pairwise different leaves of Φ. Thus, denoting ν(v) by v̄, v ∈ S, and setting
Ū = ν(U), the map

x̄ : Ū → U ′, x̄(v̄) = x′(v),

establishes a bijection between the leaves of Φ passing through U and U ′.
We show next that the coordinate transformations between such coordi-

nate charts are smooth. To that end, let v0 and v1 belong to the same leaf,
L, of Φ and consider coordinate charts x0 about v0 and y0 about f(v0) and,
respectively, x1 about v1 and y1 about f(v1) as above. Let X be a vector
field on S tangent to Φ such that the time one map ϕ1 of the flow (ϕt) of X
maps v0 to v1; compare with Exercise 5.7. Then ϕ1 ◦x−1

0 maps a sufficiently
small neighborhood V = V ′× V ′′ of x0(v0) into a neighborhood of v1 which
is contained in the domain of x1. Moreover, since X is tangent to Φ, the
flow lines of X stay in their respective leaves of Φ. Therefore the smooth
functions

ψj = xj1 ◦ φ1 ◦ x−1
0 , 1 ≤ j ≤ m− k − 1,

only depend on the first m − k − 1 coordinates in V . Thus we obtain an
induced map (ψ̄1, . . . , ψ̄m−k−1) in a small neighborhood of x̄0(v̄0) in U ′0. It is

smooth and, locally about v̄0, it is equal to the coordinate transition x̄1◦x̄−1
0 .

It follows that coordinate transitions are smooth and, therefore, that they
are diffeomorphism.

We now say that a subset V of N is open if x̄(V ) ⊆ U ′ is open, for all
charts x̄ as above. Since coordinate transitions are homeomorphisms, we get
that the coordinate charts x̄ as above are homeomorphisms. It is not hard
to see that any two different leaves L0 and L1 of Φ have neighborhoods U0

and U1 in S such that no leaf of Φ intersects U0 and U1 simultaneously. It
follows that N with the above topology is a Hausdorff space. In conclusion,
we obtain that N is a smooth manifold of dimension m − k − 1 such that
ν : S → N is a submersion.

The remaining assertions are easy to see: Since N is the image of S, it
is compact. If 0 < k = m − 1, then f is constant and N is a point. If
0 < k < m − 1, then S is simply connected and the fiber Sk of ν is path
connected. Thus N is simply connected in either case, and 1) follows.

By the definition of N , there is a smooth map g : N →M with f = g ◦ ν.
The lift to S of a vector u in the kernel of g∗ belongs to the kernel of f∗ and
thus is tangent to the corresponding fiber of ν. Hence u = 0, and hence g is
an immersion. Thus 2) follows. The remaining assertion 3) is an immediate
consequence of Proposition 5.5.3. �

Since geodesics are not minimal any more after the first conjugate point,
M is the image of the closed unit ball B̄ = B̄(0p, 1) ⊆ TpM under the
exponential map. Since M is an Allamigeon-Warner manifold with l = 1,
the map

(0, 1)× S →M, (t, v) 7→ γv(t),
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is a local diffeomeorphism. We also have γv(t) = γ−F (v)(1 − t), and this
identity suggests a diffeomorphism G between (0, 1)×S, thought of as open
unit ball B = B(0p, 1) ⊆ TpM minus center 0p, and the open unit disc
bundle D in the normal bundle associated to the immersion g minus the
zero section N ,

(5.9) G(t, v) = (t− 1)F (v).

Thus we obtain a manifold M̃ by gluing B to D via the diffeomorphism G.

Theorem 5.10. The exponential maps on B and D fit together and define
a local diffeomorphism and covering map M̃ →M . Moreover,
1) M̃ is compact and simply connected;

2) with respect to the induced metric, M̃ is a Blaschke manifold with respect
to p̃ := 0p, that is, injM̃ (p̃) = radM̃ (p̃).

Proof. By the definition of G, the exponential maps on B and D fit together
to a local diffeomorphism M̃ → M . Since M̃ and M are compact and
connected, such a local diffeomorphism is a covering map. Now B and D
are simply connected and intersect in a set diffeomorphic to (0, 1) × Sm−1.

Hence M̃ is simply connected, by the Seifert-van Kampen theorem.
As for the last claim, note that the lines (0, 1) × {v} in (0, 1) × S ⊆ B

correspond to the geodesics in M̃ issuing from p̃. Since they are pairwise
disjoint, we conclude that injM̃ (p̃) = 1 = radM̃ (p̃). �

Corollary 5.11. If M is simply connected, then M is a Blaschke manifold
with respect to p. �

5.2. Characterizations of pointed Blaschke manifolds. For a com-
plete and connected Riemannian manifold M and points p, q ∈ M , denote
by Σpq ⊆ SpM the closed subset of unit vectors which are tangent to min-
imal geodesic segments from p to q. For q ∈ Cut(p), denote by Cq the set
of unit vectors u ∈ SqM such that there is a sequence (qn) in Cut(p) \ {q}
converging to q such that un → u, where un is the unit tangent vector at q
tangent to the minimal geodesic from q to qn.

We assume throughout Lemmata 5.12–5.15 that M is a Blaschle manifold
with respect to a given point p ∈M and let l = radM (p) and q ∈ Cut(p).

Lemma 5.12. For all v ∈ Σqp and w ∈ Cq, we have 〈v, w〉 ≤ 0.

Proof. Choose a sequence (qn) in Cut(p)\{q} such that the sequence of unit
tangent vectors wn at q pointing to qn converges to w. Then 〈v, w〉 > 0
would imply that 〈v, wn〉 > 0 for all sufficiently large n. But then we would
have d(p, qn) < d(p, q) for all sufficiently large n. On the other hand, we
have d(p, qn) = d(p, q) = l = radM (p) for all n since qn ∈ Cut(p). �

Lemma 5.13. For all u ∈ SqM with u /∈ Σqp ∪ Cq, there exist v ∈ Σqp and
w ∈ Cq with 〈v, w〉 = 0 such that u = av + bw with a, b > 0.

Proof. Let σ be the unit speed geodesic with σ̇(0) = u. Then, since u /∈ Cq,
we have d(p, σ(ε)) < l = radM (p) for all sufficiently small ε > 0. Therefore,
for these there exists a unique minimal geodesic γε from p to pε = σ(ε).
Then qε = γε(l) ∈ Cut(p). Since u /∈ Σqp, qε 6= q for all sufficiently small
ε > 0. Let wε be the unit tangent vector at q pointing at qε.
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Since d(p, σ(ε))→ l as ε→ 0, we have d(pε, qε)→ 0 and therefore qε → q
as ε → 0. By compactness, there exists a sequence εn → 0 such that
the sequences γn = γεn and wn = wεn converge to a minimal unit speed
geodesic γ from p to q and a unit tangent vector w ∈ Cq, respectively. By
Lemma 5.12, we have ∠(v, w) ≥ π/2, where v = −γ̇(l) ∈ Σqp.

Thus we obtain a sequence of isosceles geodesic triangles (γ|[0,l], γn|[0,l], βn),
where βn is the shortest geodesic segment from q to qn = qεn , together with
a sequence of points pn = σ(εn) on γn|[0,l] such that the length of βn tends to
0 and γn → γ. Using Fermi coordinates along γ, we see that, after rescaling
the metric of M so that βn has length one, we get a Euclidean half strip as
a limit, with base β of length one in the direction of w, with sides in the
direction of v, and with interior angles π/2 at the vertices q and q∞ of the
base. Moreover, the sequence pn tends to the limit point p∞ on the q∞-side
which lies in the direction of u as seen from q. Hence 〈v, w〉 = 0 and u is a
positive linear combination of v and w. �

Lemma 5.14. For all v0, v1 ∈ Σqp with v0 6= ±v1, the great circle arc
between v0 and v1 is contained in Σqp. That is, Σqp is π-convex.

Proof. Let u be on the great circle arc from v0 to v1 and assume that u 6= Σqp.
Write u = av0 + bv1 with a, b ≥ 0. Now u /∈ Cq, by Lemma 5.12, since at
least one of the angles between u and v0 or u and v1 is acute. Hence we
can write u = a′v + b′w with v ∈ Σqp and w ∈ Cq such that 〈v, w〉 = 0
and a′, b′ > 0. By Lemma 5.12, the (spherical) distance between w and v0

and between w and v1 is at least π/2, hence also the distance to u. This
contradict 〈v, w〉 = 0 which says that the distance between v and w is π/2
and hence that the distance between w and u is less than π/2. �

Lemma 5.15. For all v ∈ Σqp, there exists v′ ∈ Σqp with 〈v, v′〉 < 0.

Proof. In the decomposition of Σ = Σqp as in Exercise 5.23, we cannot have
Σ = Σ2 since otherwise Σ would be contained in an open hemisphere. But
that is not possible, by Berger’s lemma, since q is at maximal distance from
p. That is, q is a critical point of the distance function d(p, .) in the sense of
Gromov-Grove-Shiohama. It follows that Σ contains a unit vector v0 such
that −v0 is also contained in Σ.

If v is not perpendicular to v0, then 〈v, v′〉 < 0 for v′ = v0 or v′ = −v0, and
the assertion follows. Hence we may assume that 〈v, v0〉 = 0. Then the great
circle arc from v0 to −v0 through v is contained in Σ, by Lemma 5.14. This
great circle arc gives rise to a smooth one-parameter family γs, 0 ≤ s ≤ 1,
of minimal geodesics from p to q such that γ̇0(l) = v0 and γ̇1(l) = −v0. In
particular, there are Jacobi fields J0 and J1 along γ0 and γ1, respectively,
such that

J0(0) = J1(0) = 0, J0(l) = J1(l) = 0, J ′0(l) = J ′1(l) = v.

Let now w ∈ TqM with 〈v, w〉 < 0. Assume first that 〈v0, w〉 ≤ 0, and
let W be a smooth vector field along γ0, perpendicular to γ0, such that
W (0) = 0 and W (l) = w. For a constant k > 0, to be determined later, let
V = J0 +kW and (cs) be a variation of c0 = γ0 with cs(0) = p and variation
field V such that γ = γ(s) = cs(l) is the geodesic with initial velocity kw.
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Then we have, for the length L(s) of cs,

L(0) = l, L′(0) = k〈u0, w〉 ≤ 0, L′′(0) = I(V, V ),

where

I(V, V ) =

∫ l

0
{〈V ′, V ′〉 −R(V, γ̇0)γ̇0, V 〉}

denotes the index form of γ0. Now I(J0, J0) = 0 since J0 is a Jacobi field
along γ0 vanishing at t = 0 and t = l. Furthermore,

I(J0, kW ) = 〈J ′0(l), kW (l)〉 = k〈v, w〉 < 0.

Hence we get, for k > 0 sufficiently small, that the first derivative of L is non-
positive and the second is strictly negative. It follows that d(p, γ(s)) < l for
all sufficiently small s > 0. The same conclusion also follows if 〈v0, w〉 ≥ 0,
now using variations of γ1. Thus all points close to q in a direction sufficiently
close to −v have distance < l to p and, hence, do not belong to Cut(p). We
conlude that −v does not belong to Cq.

To arrive at the conclusion of the lemma, we may also assume that −v is
not contained in Σqp. By what we found above and Lemma 5.13, we may
then write −v = av′ + bw with v′ ∈ Σqp and w ∈ Cq such that 〈v′, w〉 = 0
and a, b > 0. Then

〈v, v′〉 = −〈av′ + bw, v′〉 = −a < 0. �

Theorem 5.16. For any p ∈M , the following conditions are equivalent:
1) M is a Blaschke manifold with respect to p.
2) CutT (p) ⊆ TpM is a round sphere about 0p.
3) For any v ∈ SpM , we have γv(2 cut(v)) = p.
4) For any q ∈ Cut(p), Σqp is a great sphere in SqM .

Proof. 1) ⇒ 4): This is the hardest step of the proof. Therefore we out-
sourced the mayor part of the arguments to the above Lemmata 5.12–5.15.
By Lemma 5.14, Σqp is a π-convex subset of SqM . Hence Σqp is the spherical
join of two π-convex subsets Σ1 and Σ2 as in Exercise 5.23. Now Σ2 = ∅,
by Lemma 5.15, and hence Σ = Σ1 is a great sphere.

4) ⇒ 3): Let v ∈ SpM . Then q = γv(cut(v)) is in the cut locus of p and
−γ̇v(cut(v)) is tangent to γv run backwards, a minimal geodesic from q to p.
Since the set of unit tangent vectors in TqM tangent to minimal geodesics
from q to p is a great sphere in SqM , we conclude that γ̇v(cut(v)) is also
tangent to a minimal geodesic from q to p. In other words, γv is back at p
at time 2 cut(v).
3) ⇒ 2): Following the argument in the proof of Lemma 3.3, we show first
that cut = cut(v) is not only continuous, but that it depends smoothly on
v ∈ SpM . To that end, we choose a sufficiently small ε > 0 and let S(p, ε) =
{q ∈M | d(p, q) = ε}, the geodesic sphere of radius ε about p. Then each γv,
v ∈ SpM , hits the hypersurface S(p, ε) at time t(v) = 2 cut(v)− ε and hits
it transversally; in fact, perpendicularly. Hence t = t(v) depends smoothly
on v ∈ SpM , by the implicit function theorem. It follows that cut(v) also
depends smoothly on v ∈ SpM .

Let now v = v(s) be a curve in SpM and consider the corresponding
geodesic variation γ = γs(t) = γv(s)(t). Then we have γs(2 cut(v(s))) = p,
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and hence

0 =
d

ds
γs(2 cut(v(s)))

= J(s, 2 cut(v(s))) + 2γ̇s(2 cut(v(s))) · d cut(v(s))

ds
,

where J = ∂γ/∂s is the family of associated Jacobi fields. Since J(s, 0) = 0
and J ′(s, 0) = dv/ds, J(s, t) is perpendicular to γ̇s(t), for all s, t. Hence the
above calculation shows that d cut(v(s))/ds vanishes. It follows that cut is
constant on SpM .
2) ⇒ 1): This is just a reformulation. �

Corollary 5.17. If M is a Blaschke manifold, then Σpq is a great sphere
in SpM , for all p ∈ M and q ∈ Cut(p). In particular, SpM is fibered into
the great spheres Σpq, where q ∈ Cut(p).

Proof. This follows immediately from Theorem 5.16 by noting that q belongs
to Cut(p) if and only if p belongs to Cut(q). �

Corollary 5.17 is the motivation for attacking the generalized Blaschke
conjecture via great sphere fibrations of spheres, as has been done in many
studies.

Proposition 5.18. Let M be a Blaschke manifold at p and l := radM (p).
Then 1) γv|[0,2l] is a simple geodesic loop at p, for all v ∈ SpM ;
2) there is a k ∈ {0, . . . ,m− 1} such that γv does not have conjugate points
on (0, l) and (l, 2l) and such that γv(l) is a conjugate point of p along γv of
multiplicity k, for all v ∈ SpM .

Proof. 1) is clear from Theorem 5.16. Since any γv is minmal up to l, there is
no conjugate point to p along γv up to time l. Now p = γv(2l) is conjugate
to p along γv of multiplicity m − 1 since all unit speed geodesics from p
come back to p at time 2l. If a non-trivial Jacobi field J along γv with
J(0) = 0 would vanish at a time t ∈ (l, 2l), then, since J(2l) = 0, γv(t)
would be a conjugate point to p along γw at time 2l − t ∈ (0, l), where
w = −γ̇v(2l) ∈ SpM . It follows that only γv(l) can possibly be a conjugate
point to p along γv. Since γv(l + ε) is not a conjugate point of p along γv
for any v ∈ SpM , we get that the index of γv|[0,l+ε] does not depend on
v ∈ SpM , hence is equal to a constant k ∈ {0, . . . ,m− 1}. By what we said
above, k is the multiplicity of γv(l) as a conjugate point of p along γv. �

Theorem 5.19. Let M be a Blaschke manifold at p with associated numbers
k and l as in Proposition 5.18. Then we have:
1) If k ≥ 1, then M is a simply connected Allamigeon-Warner manifold of
type (k, l).
2) If k = 0, then π1(M) = Z/2 and M is an Allamigeon-Warner manifold
of type (m− 1, 2l).

Proof. The first claim is clear from Theorem 5.10. As for the second claim,
we note that M is an Allamigeon-Warner manifold of type (m− 1, 2l) since
all unit speed geodesics starting in P come back to p at time 2l. It also
follows that the covering M̃ →M as in Theorem 5.10 is twofold. �
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Example 5.20. Let k ∈ {0, . . . ,m − 1} and l > 0. Let N be a compact
manifold of dimension m − k and E → N be a vector bundle of rank k.
Let DE and SE be the disc and sphere bundle of E with respect to some
given Riemannian metric h on E as a vector bundle; that is, hx is an inner
product on the fiber Ex, for each x ∈ N . Assume that SE is diffeomorphic
to the sphere Sm−1. Identify the zero section of E with N and DE \N with
(0, l)×SE . Let gE be a Riemannian metric on DE such that the restriction
of gE to (0, l)× SE is of the form ds2 + gE,s where gE,s is a smooth family
of Riemannian metrics on SE .

Let Dm ⊆ Rm be the ball of radius l. Identify Dm\{0} with (0, l)×Sm−1.
Let gD be a Riemannian metric on D such that the restriction of gD to
(0, l) × Sm−1 is of the form dt2 + gD,t, where gD,t is a smooth family of
Riemannian metrics on Sm−1.

Let F : SE → Sm−1 be a diffeomorphism. Then we obtain a compact
manifold M = Dm ∪F DE by identifying

Dm \ {0} 3 (t, x) = (l − t, F (x)) ∈ DE \N.
The origin 0 ∈ D is a distinguished point of M and will be denoted by p.

Let χ : R → R be a monotone smooth function such that χ(t) = 1 for
t ≤ l/3 and χ(t) = 0 for t ≥ 2l/3. Then we obtain a smooth Riemannian
metric g on M by letting g = gD in a neighborhood of p, g = gE in a
neighborhood of N , and

g = χ(t)(dt2 + gD,t) + (1− χ(t))(ds2 + gE,l−t)

= dt2 + χ(t)gD,t + (1− χ(t))gE,1−t

on M \ ({p}∪N), where we observe that ds = ds(t) = −dt. It follows easily
that the t-lines are unit speed geodesics. As a consequence, g turns M into
a Blaschke manifold of type (k, l) with respect to p. Our previous discussion
shows that any Riemannian manifold M , which is a Blaschke manifold of
type (k, l) with respect to some point p ∈M , arises in this way.

Exercise 5.21. Let N be a Riemannian manifold and E → N be a vector
bundle of rank k. Let h be a Riemannian metric on E as a vector bundle
over N , that is, hx is an inner product on the fiber Ex, for all x ∈ N .
1) Show that there is a Riemannian metric g on E such that the restriction
gx of g to the fiber Ex coincides with hx, for each x ∈ N , and such that
E → N is a Riemannian submersion with totally geodesic fibers. Conclude
that g = gE is a Riemannian metric on E as required in Example 5.20.
2) Let (φα) be a partition of unity subordinate to an open covering (Uα) of
N such that there are trivializations fα : Eα → Uα×Rk of E over Uα which
preserve inner products on the fibers. Let (gα) be a family of Riemannian
metrics on the restrictions Dα of the disc bundle DE of E to Uα such that
each gα is of the form ds2 +gα,s with respect to the identification of Dα \Uα
with (0, l)×Uα×Sk−1 (induced by fα), where gα,s is a family of Riemannian

metrics on Uα × Sk−1 which is smooth in s, for each α. Show that

gE =
∑

φαgα

is a Riemannian metric on DE as required in Example 5.20 and that, con-
versely, any such metric can be obtained in the described way.
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Exercise 5.22. Discuss restrictions on the topology of compact manifolds
N which admit a vector bundle E → N whose sphere bundle is diffeomorphic
to a sphere.

Exercise 5.23. Let S be the unit sphere in some Euclidean space E and
Σ be a closed π-convex subset of S. Show that there is an orthogonal (and
possibly trivial) decomposition E = E1 ⊕ E2 such that Σ1 = Σ ∩ E1 is the
unit sphere in E1 and such that Σ2 = Σ ∩ E2 has circumradius < π/2.
Conclude also that Σ is the spherical join of Σ1 with Σ2 if Σ1 and Σ2 are
non-empty; that is, Σ then consists of all points which lie on great circle
arcs of length π/2 from Σ1 to Σ2.

5.3. The cohomology of pointed Blaschke manifolds. Let M be a
Blaschke manifold with respect to some point p ∈ M . Assume that M is
simply connected and of type (k, l), where k ∈ {1, . . . ,m− 1}.

Fix a point q ∈ M \ Cut(p); that is, d(p, q) = l − ε for some ε ∈ (0, l).
Then there is precisely one geodesic loop γ at p of length 2l which passes
through q, and q divides γ into two segments γ1 of length l − ε and γ2 of
length l+ε from p to q. All other geodesic segments from p to q are obtained
by concatenation of geodesic loops at p with γ1 and γ2. Geodesic loops at p
have lengths 2il, i ≥ 0, and thus the set of geodesic segments from p to q is
an infinite family (γn), n ≥ 1, where the γ2i+1 and γ2i+2 are obtained by the
concatenation of a geodesic loop of length 2il with γ1 and γ2, respectively.
Thus the set of geodesic segments from p to q is strictly ordered by length,

L(γ2i+1) = (2i+ 1)l − ε and L(γ2i+2) = (2i+ 1)l + ε.

Note that q is not a conjugate point along any geodesic segment from p to
q and that the indices of the geodesic segments are given by

ind γ2i+1 = i(k +m− 1) and ind γ2i+2 = i(k +m− 1) + k.

Thus the indices are strictly increasing with the lengths of the segments.
We now invoke the critical point theory of the length functional L on the

space Ωpq of continuous paths c : [0, 1]→ M from p to q. There are several
ways of making critical point theory precise in this context. We assume that
the reader is familiar with at least one of them.

By the first variation of the length, the critical points of L are the geodesic
segments from p to q. Moreover, L is a Morse function since q is not a
conjugate point of p along any geodesic segment from p to q.

Theorem 5.24. Let M be a simply connected Blaschke manifold with respect
to a point p ∈ M . Let M be of type (k, l), and let q belong to M \ Cut(p).
Then the length functional L on Ωpq is a perfect Morse function. In partic-
ular, we have

Hj(Ωpq) =


Z if j = i(k +m− 1) for some i ≥ 0,

Z if j = i(k +m− 1) + k for some i ≥ 0,

0 otherwise.

Proof. We enumerate the geodesic segments from p to q as above (and pa-
rameterize them on [0, 1]). Then their lengths and indices increase strictly.
Thus it suffices to show now that, through each geodesic segment γn ∈ Ωpq,
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there is an embedded closed and orientable manifold Pn in Ωpq of dimen-
sion equal to ind γn which consists of paths with lengths at most L(γn).
To that end, consider the foliation Φ of SpM into k-dimensional spheres
as in Proposition 5.5. For n = 2i + 1, let Pn be the manifold of 2i-tuples
(v1, w1, . . . , vi, wi) of vectors in SpM , where each wj belongs to the same
leaf of Φ as the corresponding vj . Then Pn is closed and orientable of di-
mension i(k + m − 1) as required. For each (vj , wj), let σj : [0, 2l] → M
be the geodesic loop at p with initial velocity vj and σ′j : [0, l] → M be the

geodesic segment with initial velocity wj . Let σ′′j be the restriction of σj to

its second half [l, 2l]. Finally, associate to the tupel (v1, w1, . . . , vn, wn) the
broken geodesic segment

σ′1 ∗ σ′′1 ∗ . . . σ′i ∗ σ′′i ∗ γ1 ∈ Ωpq.

Thus we have a natural embedding Pn → Ωpq as required.
For n = 2i + 2, the construction is similar. In this case, we let Pn be

the manifold of 2i+ 1-tuples (v1, w1, . . . , vi, wi, w) of vectors in SpM , where
each wj belongs to the same leaf of Φ as the corresponding vj as above and
where w belongs to the same leaf of Φ as γ̇2(0). To any such (2i+ 1)-tuple
we associate the broken geodesic segment

σ′1 ∗ σ′′1 ∗ . . . σ′i ∗ σ′′i ∗ σ′ ∗ γ′′2 ∈ Ωpq,

where the first part is as above, σ′ : [0, l]→M is the geodesic segment with
initial velocity w, and γ′′2 is the restriction of γ2 to [l, l + ε]. �

Theorem 5.25. Let M be a simply connected Blaschke manifold with respect
to a point p ∈M and of type (k, l). Then the cohomology of M is generated
by an element in degree k+1. In particular, the dimension of M is a multiple
of k + 1.

Sketch of proof. Let Ωp be the space of paths c : [0, 1] → M with c(0) = p.
Recall that the end point map

π : Ωp →M, π(c) = c(1),

is a Serre fibration. Since M is simply connected, the Serre spectral sequence
for cohomology applies,

Ei,j2 = H i(M,Hj(Ωpq)) =⇒ H i+j(Ωp).

Since Ωp is contractible, the assertion is now a rather straightforward con-
sequence of diagram chasing, using Theorem 5.24 and the multiplicative
properties of the Serre spectral sequence. �

Results from topology imply that there are only the following possibilities:

k = 1, m = 2n,

k = 3, m = 4n,

k = 7, m = 16,

k = m− 1, m ≥ 2.

These are realized by complex projective spaces, quaternionic projective
spaces, the Cayley projective plane, and spheres. However, the construction
in Example 5.20 shows that there exist further pointed Blaschke manifolds.
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6. Harmonic spaces

In Euclidean space Rm, the Laplace equation ∆f = 0 has the solution
||x||2−m for m > 2 and ln ||x|| for m = 2, respectively. It is defined on
Rm\{0} and depends only on the distance of x to 0. We read in the literature,
e.g., [4, Chapter 6], that, in 1930, Ruse tried to establish the existence of non-
trivial solutions of the Laplace equation on a general Riemannian manifold
M , depending only on the distance to a point p in M . The attempt was
doomed to fail, as is clear from today’s perspective, but it was a productive
failure.

Following Copson and Ruse [5], we say that M is harmonic about a point p
in M if, on some punctured neighborhood of p, ∆r = φ(r) for some function
φ, where r denotes the distance to p. We say that M is a harmonic space
if it is harmonic about each of its points. In [5], Copson and Ruse showed
that geodesic spheres of sufficiently small radius in harmonic spaces are of
constant mean curvature and that harmonic spaces are Einstein spaces. In
particular, if the dimension of M is 2 or 3 and M is harmonic, then the
curvature of M is constant. This led Copson and Ruse to conjecture that
harmonic spaces are of constant curvature, another productive error.

In [16], Lichnerowicz showed that non-flat harmonic spaces are irreducible
and reproved the result of Copson and Ruse that harmonic spaces are Ein-
stein spaces. He also oracled whether harmonic spaces, say complete and
simply connected, are either flat or symmetric spaces of rank one. This
became known as the Lichnerowicz conjecture and was studied in many ar-
ticles. The conjecture holds true in dimension 4, as shown by Lichnerowicz
and Walker. The conjecture had, and still has, its fascination and is the
source of many insights and results in differential geometry. Today there
are counterexamples to the conjecture, see below, but it holds true in the
case where M is compact and simply:

Theorem 6.1 (Szabó [22]). Let M be a compact and simply connected har-
monic space. Then M is a compact rank one symmetric space.

Szabó’s proof relies on important previous work, as exposited and devel-
oped by Besse and his friends, see [4]. In particular, his proof uses Besse’s
immersion as discussed on pages 174–178 in [4]. In these notes, we do not
prove Theorem 6.1, but discuss Besse’s immersion.

Given a compact and simply connected harmonic space of diameter d and
an eigenvalue λ > 0 of the Laplacian ∆ of M , there is a smooth 2d-periodic
and even function φ : R→ R with φ(0) = 1 such that, for any point p ∈M ,
the function f = f(q) = φ(d(p, q)) is a λ-eigenfunction of ∆, see Subsection
6.3 below.

Theorem 6.2 (Besse’s immersion). Let λ, φ be as above and (f1, . . . , fl) be
an orthonormal basis of the λ-eigenspace of ∆ in L2(M). Then the mapping

F : M → Rl, F (p) := C · (f1(p), . . . , fl(p)),

is a minimal isometric immersion into the sphere Sl−1(R) of radius R in
Rl, where C2 = volM/λ and R2 = m/λ. For all points p, q in M ,

||F (p)− F (q)|| = R
√

2− 2φ(d(p, q)).
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The map F as in Theorem 6.2 had been considered before [4], not in the
context of harmonic spaces, however, but for compact homogeneous spaces.
It occurs, for example, in the work [8] of do Carmo and Wallach on minimal
isometric immersions of spheres into spheres. That the map F works well for
harmonic spaces is a nontrivial insight, and this development was a milestone
in the theory of harmonic spaces. Below, we present a proof of Theorem 6.2
which avoids a somewhat unpleasant technical detail in the argument of
Besse, concerned with Brownian motion or the fundamental solution of the
heat equation and their properties, respectively, see Theorem 6.17 in [4].

A simplification of Szabó’s original proof of Theorem 6.1, which avoids
Besse’s immersion, appeared in [18]. A short survey on recent results on
harmonic spaces is contained in [15].

6.1. Preliminary remarks. LetM be a complete and connected Riemann-
ian manifold of dimension m, and let p ∈M be a point. For v ∈ TpM , let Pv
be parallel translation along the geodesic γv from p = γv(0) to γv(1). Then
P−1
v ◦ d expp |v is an endomorphism of TpM , hence

(6.3) ωp(v) := det(P−1
v ◦ d expp |v)

is well defined on all of TpM and depends smoothly on p and v.
Choose r0 > 0 such that expp : B0(r0) → Bp(r0) is a diffeomorphism,

where 0 = 0p. If g denotes the fundamental matrix of the Riemannian
metric with respect to expp on B(r0), then we have, for all v ∈ B(r0),

(6.4) ωp(v) =
√

det g(v).

We recall that, for all v, w ∈ TpM and t ∈ R,

(6.5) d expp |tv(tw) = J(t),

where J is the Jacobi field along γv with initial conditions J(0) = 0 and
J ′(0) = w. Hence, if E1, . . . , Em is a parallel frame along γv, then

(6.6) ωp(tv) = t−m det(J1(t), . . . , Jm(t)),

where Ji is the Jacobi field along γv with initial conditions Ji(0) = 0 and
J ′i(0) = Ei(0), expressed as linear combination in the frame E1, . . . , Em. If
v is a unit vector and E1, . . . , Em is orthonormal with E1 = γ̇v, we have
J1(t) = tγv(t) and then, by the Gauss Lemma,

(6.7) ωp(tv) = t1−m det(J2(t), . . . , Jm(t)).

The matrix J(t) = (J2(t), . . . , Jm(t)) satisfies the Jacobi equation

(6.8) J ′′ +RJ = 0

with initial condition J(0) = 0 and J ′(0) = I, where R(t) is the matrix with
entries

(6.9) Rij(t) := 〈R(Ei(t), γ̇v(t))γ̇v(t), Ej(t)〉, 2 ≤ i, j ≤ m.

Lemma 6.10. Let γ = γv, where v ∈ TpM is a unit vector. Let t0 > 0 and
q := γw(t0), where w := −γ̇(t0). Then ωp(t0v) = ωq(t0w).
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Proof. Let E1 = γ̇, E2, . . . , Em be an orthonormal frame along γ. Let J =
(J2, . . . , Jm) be as above and K := (K2, . . . ,Km), where Ki is the Jacobi
field along γ with Ki(t0) = 0 and K ′i(t0) = Ei(t0), expressed as a linear
combination in the frame E2, . . . , Em, 2 ≤ i ≤ m. Then

ωq(t0w) = (−t)1−m detK(0).

Now K satisfies the Jacobi equation (6.9) as well, and hence

J∗K ′ − (J∗)′K

does not depend on t, by the symmetry of R. Therefore

det J(t0) = det(J∗(t0)K ′(t0)) = det(J∗K ′ − (J∗)′K)

= det(−J∗(0)′K(0)) = (−1)m−1 detK ′(0),

where we use J(0) = K(t0) = 0 and J ′(0) = K ′(t0) = I. �

It is immediate from (6.9) that W := J ′J−1 satisfies the Riccati equation

(6.11) W ′ +W 2 +R = 0.

Exercise 6.12. Show that, along the given unit speed geodesic γ = γ(r),
W = W (r) is equal to the corresponding Weingarten map of the geodesic
sphere Sp(r) of radius r ∈ (0, r0) about p (with respect to the inner normal
and written as a matrix with respect to the chosen frame along γ). Use (6.7)
to conclude that the mean curvature h(r) := trW (r) of Sp(r) is given by

(6.13) h :=
ω′

ω
+
m− 1

r
.

Conclude also that rh(r) extends naturally and smoothly to R.

Lemma 6.14. The matrix function tW = tW (t) extends smoothly to a
neighborhood of t = 0 and

(tW )′′|t=0 = −2

3
R(0).

Proof. Since J(0) = 0, we may write J(t) = tV (t) in a neighborhood of
t = 0, where V is smooth in t. We get

J ′ = V + tV ′, J ′′ = 2V ′ + tV ′′, J ′′′ = 3V ′′ + tV ′′′.

Hence

V (0) = I, V ′(0) = 0, 3V ′′(0) = J ′′′(0) = −R(0),

where we recall (6.9). Now tW = J ′V −1, hence tW extends smoothly to
t = 0 with (tW )′ = J ′′V −1 − J ′V −1V ′V −1. Differentiating once more, the
claimed equality follows by substituting the above values for V , V ′, and V ′′

at t = 0. �

Remark 6.15. Note that R(0) represents the curvature tensor R(., v)v,
written as a matrix with respect to the orthonormal basis E2, . . . , Em of v⊥.
The point of Lemma 6.14 is that we obtain R(., v)v from W . Clearly, using
higher derivatives of tW at t = 0, we get more information on the curvature
tensor and its covariant derivatives in the direction of v.
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6.2. Harmonic spaces. We say that M is harmonic about p if ωp(v) de-
pends only on ||v||, for all v ∈ TpM with sufficiently small norm. We say
that M is harmonic if it is harmonic about any p ∈M .

It is clear from (6.13) that M is harmonic iff the mean curvature of geo-
desic spheres with sufficiently small radius is constant. The latter is men-
tioned as a consequence of harmonicity as defined in the introduction. How-
ever, from our discussion below it will become clear that the two definitions
are equivalent.

Theorem 6.16. If M is harmonic, then M is an Einstein space and hence
an analytic Riemannian manifold. Moreover, there is an even analytic func-
tion ω : R→ R, the associated volume density, such that ωp(tv) = ω(t) for
any p ∈M , unit vector v ∈ TpM , and t ∈ R.

Proof. For any p ∈M , unit tangent vector v ∈ TpM , and γ = γv as above,

−2

3
Ric(v, v) = (t trW )′′|t=0 = (th(t))′′|t=0,

by Exercise 6.12 and Lemma 6.14. Hence harmonic manifolds are Einstein
spaces. It follows that they are analytic Riemannian manifolds, see Theorem
5.2 in [7].

For analytic Riemannian manifolds, the functions ωp are analytic. Hence,
for any given p ∈ M , unit vectors v1, v2 ∈ TpM , and t ∈ R, we have
ωp(tv1) = ωp(tv2), by the unique continuation property of analytic functions.
In particular, ωp(−tv) = ωp(tv), for any unit vector v ∈ TpM and t ∈ R, and
hence there exists an even analytic function ωp : R→ R such that ωp(tv) =
ωp(t) for any unit vector v ∈ TpM and t ∈ R. Moreover, ω(p, t) = ωp(t) is
smooth in p and t.

To show that ωp does not depend on p, let p ∈ M and u ∈ TpM , and
assume ωt(p) := ωp(t) 6= 0. Let v ∈ TpM be a unit vector perpendicular
to u and q = expp(v). By Lemma 6.10, we have ωq(tw) = ωp(tv), where
w = −γ̇v(t), and hence ωt(q) 6= 0. In particular, p is not conjugate to q
along γw. Hence there is a smooth curve ws, −ε < s < ε, of unit tangent
vectors in TqM with w(0) = w such that the curve c(s) := expq(tw(s)) has
derivative u in s = 0. Then ωt(c(s)) = ωt(q) = ωt(p), again by Lemma 6.10.
Hence the derivative of ωt in the direction of u vanishes. Since ω is smooth
in p and t, we get that the derivative of ωt vanishes for each t, and hence ωt
is constant. �

Suppose from now on that M is harmonic with associated volume density
ω. Then there are two cases, by Theorem 6.16: Either ω does not have (real)
zeroes, then M does not have conjugate points, and then expp : TpM →M
is the universal covering, for any p ∈M . In particular, the universal covering
space of M is diffeomorphic to Rm. Or, else, ω does have a first positive zero
l (where we recall that ω(0) = 1). Then M does have conjugate points, and,
in fact, the first conjugate point along each unit speed geodesic in M occurs
precisely at time l and has multiplicity k ∈ {1, . . . ,m−1} equal to the order
of vanishing of ω at t = l. Thus we arrive at the theorem of Allamigeon, see
[1, 2] and also Theorem 6.82 in [4]:
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Theorem 6.17. Let M be a compact harmonic manifold with associated
volume density ω and first positive zero l of ω. Then M is an Allamigeon-
Warner manifold of type (k, l) with k and l as above. �

Assume from now on that M is a compact and simply connected har-
monic manifold with associated volume density ω and first positive zero d of
ω. Let p ∈M . Then the cut locus C(p) ⊆M is a submanifold of dimension
n independent of p. Unit speed geodesics starting from p hit C(p) perpen-
dicularly at time d and, vice versa, for any unit normal vector v of C(p), the
geodesic γv hits p at time d. Moreover, such geodesics from a point q ∈ C(p)
correspond precisely to a great sphere of dimension m − n − 1 in the unit
sphere SpM in TpM , thus giving rise to a smooth foliation of SpM by great
(m− n− 1)-spheres.

Lemma 6.18. Let p ∈ M . For a smooth function f : M → R, let f̄ :
M → R be the function which associates to q ∈M the average of f over the
geodesic sphere Sp(r) if r := d(p, q) < d and over N := C(p) if d(p, q) = r.
Then f̄ is p-radial about p and smooth.

Proof. With N = {p}, smoothness of f̄ in M \ C(p) is immediate from
Lemma A.3. Now with N = C(p), we have Sp(r) = SN (d − r). Hence
smoothness of f̄ in M \ {p} is also immediate from Lemma A.3. �

Lemma 6.19. Let p ∈ M . Then, via f(q) = φ(d(p, q)), p-radial smooth
functions f : M → R are in one to one correspondence with 2d-periodic
even smooth functions φ : R→ R.

Proof. Define φ : [0, d] → R by φ(r) := f̄(q), where d(p, q) = r. Since f̄ is
smooth, all derivatives of odd order of φ at r = 0 and r = d vanish. Hence
the extension of φ to an even and 2d-periodic function on R is smooth.
The converse is clear: any such function gives rise to a smooth p-radial
function. �

As for the L2-norms of a given radial function f : M → R and the related
2d-periodic even function φ : R→ R, we have

(6.20) ||f ||2L2(M) = volSm−1

∫
[0,d]

φ2rm−1ω(r)dr =: ||φ||2ω.

6.3. Besse’s immersion. Suppose again that M is simpy connected, com-
pact, and harmonic with diameter d. Let p ∈ M . For a smooth p-radial
function f on a normal geodesic ball Bp(d) about p,

(6.21) ∆f = −f ′′ − hf ′,
where h denotes the mean curvature of the geodesic spheres about p as in
(6.13). We keep in mind that h is an analytic function on (0, d) which only
depends on r.

We are interested in radially symmetric λ-eigenfunctions of ∆, where
λ > 0 is given: On [0, d), we want to solve

(6.22) φ′′ + hφ′ + λφ = 0.

By (6.13), r = 0 is a regular singular point of this linear ordinary differential
equation, and, therefore, it has precisely one solution φ : [0, d) → R with
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φ(0) = 1, and φ is analytic on [0, d). It follows easily that the p-radial
funtion f as in Lemma 6.19 is a λ-eigenfunction of ∆ on Bp(d) and, hence,
that φ extends to an even analytic function on (−d, d), also denoted by φ;
that is, φ : (−d, d) → R is an even analytic function. This holds for any
λ > 0.

Now we start with a λ-eigenfunction f : M → R of ∆. Then the average
f̄ of f as in Lemma 6.18 is again a λ-eigenfunction of ∆, by harmonicity, and
hence the associated 2d-periodic even analytic function φ as in Lemma 6.19
satisfies (6.22) on (0, d) with initial condition φ(0) = f(p). Conversely, any
such function φ satisfying (6.22) on (0, d) corresponds to an eigenfunction
of the Laplacian for the eigenvalue λ.

Lemma 6.23. If f : M → R is a p-radial λ-eigenfunction with f(p) = 0,
then f = 0.

Proof. This is a restatement of the fact that a solution φ of (6.22) with
φ(0) = 0 vanishes. �

Let Vλ ⊆ L2(M), λ > 0, be an eigenspace of ∆. Let φ : R → R be
the corresponding 2d-harmonic even analytic function φ satisfying (6.22) on
(0, d) with initial condition φ(0) = 1.

Lemma 6.24. For any be an orthonormal basis B = (f1, . . . , fl) of Vλ and
pair of points p, q in M ,∑

1≤i≤m
fi(p)fi(q) =

m

volM
· φ(d(p, q)).

Proof. It is clear that the left hand side does not depend on the choice of
B, which gives us the freedom of making a convenient choice, for any given
p ∈M .

Let f : Vλ → R be a λ-eigenfunction of ∆ of L2-norm 1, and choose q ∈M
with f(q) 6= 0. Then the average f̄ of f as in Lemma 6.18, but now with
averages centered at q, is a q-radial λ-harmonic function of L2-norm 1 with
f̄(q) = f(q) 6= 0. Hence the 2d-harmonic even analytic function φ1 : R→ R
associated to f̄ as in Lemma 6.19 has norm ||φ1||ω = 1 and satisfies (6.22)
on (0, d) with initial condition φ1(0) = f(p) 6= 0. Hence the corresponding
p-radial function f1 is a λ-harmonic function of L2-norm 1 with f1(p) 6= 0.

The kernel of the linear map ε : Vλ → R, ε(f) := f(p), consists of the
space of λ-harmonic functions vanishing at p and is a compliment of the line
Rf1. Let f ∈ ker ε. Then the average f̄ of f as in Lemma 6.18 is a p-radial
λ-eigenfunction of ∆ with f̄(p) = 0, and hence f̄ = 0, by Lemma 6.23. Since
f1 is p-radial, we get

〈f1, f〉L2(M) = 〈f1, f̄〉L2(M) = 0,

and therefore ker ε is the orthogonal complement of Rf1 in Vλ. Hence, for
any orthonormal basis (f1, f2, . . . , fl) of Vλ starting with the given f1, the
remaining functions f2, . . . , fl belong to ker ε. But then∑

1≤i≤m
fi(p)fi(q) = f1(p)f1(q) = φ1(0)φ1(d(p, q)).

In particular,
∑
fi(p)

2 = φ1(0)2 does not depend on p and hence

φ1(0)2 volM =

∫
M

∑
fi(p)

2 =
∑
||fi||2L2(M) = m.
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Now φ1 = φ1(0)φ and the asserted equality follows. �

Proof of Theorem 6.2. We use Lemma 6.18 a couple of times, firstly by ob-
serving that the image of F is contained in Sl−1(R). For p ∈M and v ∈ TpM
a unit vector, we have

||dF (v)||2 = C2
∑
|dfi(v)|2.

Differentiating
∑
f2
i = const twice, we conclude that∑

|dfi(v)|2 = −
∑

fi(p) Hess fi(v, v)

= −
∑

fi(p)fi(γv(t))
′′|t=0 = −mφ′′(0)/ volM,

hence the left hand side does not depend on v. Therefore

m
∑
|dfi(v)|2 =

∑
i,j

|dfi(vj)|2 = −
∑
i,j

fi(p) Hess fi(vj , vj)

=
∑

fi(p)∆fi(p) = λ
∑

fi(p)
2 = λm/ volM,

where (v1, . . . , vm) is an orthonormal basis of TpM . Hence F is an isometric

imersion. Since ∆F = λF is a multiple of F , it is perpendicular to Sl−1(R),
and hence F is a minimal immersion into Sl−1(R). The remaining assertions
follow since 〈F (p), F (q)〉 = C2

∑
fi(p)fi(q). �
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Appendix A. Some background material

Let M be an affine manifold, i.e., a manifold together with a connection.
For a non-trivial geodesic γ : I →M and t0 6= t1 in I, we say that t0 and t1
are conjugate along γ and that γ(t0) and γ(t1) are conjugate points along γ
if there is a non-trivial Jacobi field J along γ which vanishes at t0 and t1.
Such Jacobi fields are perpendicular to γ.

Exercise A.1. Recall the two different ways in which conjugate points play
a role, namely as critical values of the exponential map and, in the Rie-
mannian case, for determining index and nullity of geodesics (Morse index
theorem).

Exercise A.2. Let M be a semi-Riemannian manifold and (φt) be the flow
of a vector field X on M . Show that the flow maps φt are isometric if and
only if ∇X is a field of skew-symmetric endomorphisms. If this holds, then
X is called a Killing field. Show that
1) for any geodesic γ : I →M , 〈γ̇, X〉 is constant along γ;
2) for any geodesic γ : I →M , X ◦ γ is a Jacobi field;
3) X is complete if M is a complete Riemannian manifold.

A.1. Mean averages. Let N ⊆M be a compact submanifold of dimension
n. Fix an r0 > 0 such that dN : B(r0) \N → R is smooth. Then S(r) is a
smooth submanifold of M , for all 0 ≤ r < r0.

Lemma A.3. Let f : B(r0)→ R be a smooth function. For 0 ≤ r < r0 and
p ∈ S(r), let f̄(p) be the mean of f over S(r) with respect to the induced
volume element. Then f̄ : B(r0)→ R is smooth.

Proof. Let φ : U → V be a local parameterization of N , where U ⊆ Rn and
V ⊆ N are open subsets and n = dimN . Let E1, . . . , Ek be an orthonormal
frame of the normal bundle of N over V , where k = m − n. Let D be the
open disc of radius r0 about 0 in Rk. Then

ψ : U ×D → B(r0), ψ(x, y) := exp
(∑

yiEi(φ(x))
)
,

is a parameterization of its image, W , in B(r0). Without loss of generality
we may assume that the support of f is contained in W .

Let g be the fundamental matrix of the Riemannian metric of M in the
parameterization ψ. Since grad dN is a smooth vector field of norm one
perpendicular to the hypersurfaces S(r), 0 < r < r0, the induced volume
element along these is given by the square root of det g. Since the frame
E1, . . . , Ek is orthonormal, the induced volume element along N = S(0)
is also given by the square root of det g. Now SO(k) acts transitively on
spheres about 0 in Rk and hence

f̄(ψ(x, y)) =

∫
U

∫
SO(k) f(ψ(x,Ay))

√
det g(x,Ay)dµ(A)dx∫

U

∫
SO(k)

√
det g(x,Ay)dµ(A)dx

,

where µ denotes normalized Haar measure of SO(k). �
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A.2. Higher helices. Let I be an open interval and c : I → Rn be a smooth
curve. We say that c is a helix if the inner products 〈c(i)(t), c(j)(t)〉, i, j ≥ 1,
do not depend on t. Suppose that c is a helix. Then, for all i, j ≥ 1,

(A.4) 0 = 〈c(i), c(j)〉′ = 〈c(i+1), c(j)〉+ 〈c(i), c(j+1)〉.

We conclude that

(A.5) 〈c(i−k), c(j+k)〉 = −〈c(i), c(j)〉

for all i, j ≥ 1 and k with i− k, j + k ≥ 1. For i, j, l ≥ 1 with i+ j = 2l + 1
we get

(A.6) 〈c(i), c(j)〉 = ±〈c(l), c(l+1)〉 = ±1

2
〈c(l), c(l)〉′ = 0.

Let t ∈ I. Then there is a first k ≤ n such that c(k+1)(t) is linearily

dependent on c′(t), . . . , c(k)(t),

(A.7) c(k+1)(t) =
∑

1≤i≤k
aic

(i)(t).

Since the inner products 〈c(i), c(j)〉 are constant, this equation holds for all
t ∈ I, and thus (A.7) is a linear ordinary differential equation for c of order
k+ 1 with constant coefficients a0 = 0, a1, . . . , ak, the associated differential
equation. By the choice of k, c′(t), . . . , c(k)(t) are linearily independent for all
t ∈ I. Note that not any linear ordinary differential equation is associated
to a helix. For example, the equation c′′ = c′ is not such an associated
equation.

A solution of the associated differential equation (A.7) is uniquely de-

termined by its initial conditions c(t0), c′(t0), . . . , c(k)(t0) at any given time
t0 ∈ I. Moreover, for any affine function F of Rn, F ◦ c is also a solution
of (A.7). Note also that the maximal domain of definition of a solution of
(A.7) is the real line R. From what we just said it follows easily that the
maximal solution containing c is a helix. In other words, we can assume
without loss of generality that I = R.

Proposition A.8. The following are equivalent:

1) c is a helix.
2) The function ||c(t+ s)− c(t)|| depends only on s.

Proof. Let t0, t1 ∈ I. Since the inner products 〈c(i), c(j)〉 are constant, there

is an orthogonal transformation A of Rn with A(c(i)(t1)) = c(i)(t0), for
1 ≤ i ≤ k. Let F be the affine map of Rn with F (x) = Ax + b, where
b = c(t0)−Ac(t1). Then F ◦c solves (A.7) and has the same initial conditions
at t = t1 as c at t = t0. Hence (F ◦ c)(t1 + s) = c(t0 + s), and therefore,
since F is a Euclidean motion,

||c(t1 + s)− c(t1)|| = ||F (c(t1 + s))− F (c(t1))||
= ||c(t0 + s)− c(t0)||.

Now assume conversely that the function ||c(t+ s)− c(t)|| depends only on
s and set

f(s) := ||c(t+ s)− c(t)||2 = 〈c(t+ s)− c(t), c(t+ s)− c(t)〉.
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By the product rule for higher derivatives,

(A.9) f (k)(0) =
∑

1≤i≤k−1

(
k

i

)
〈c(i)(t), c(k−i)(t)〉,

where we recall that the expression does not depend on t. In particular,
〈c′, c′〉 is constant, and, therefore, 〈c′′, c′〉 = 0. Let k ≥ 4 be even and assume

inductively that 〈c(i), c(j)〉 is constant, for all i, j ≥ 1 with i + j ≤ k − 1.
Assume that k ≥ 4 is even, k = 2l. Then, by (A.5) and (A.9),

f (k)(0) =
∑

1≤i≤k−1

(
k

i

)
(−1)l+i〈c(l), c(l)〉 = 2(−1)l+1〈c(l), c(l)〉,

where we recall that ∑
0≤i≤k

(−1)i
(
k

i

)
= 0.

We conclude that 〈c(l), c(l)〉 is constant and, therefore, that 〈c(i), c(j)〉 is con-

stant for all i, j ≥ 1 with i+ j = 2l = k. Hence 〈c(l+1), c(l)〉 = 0, and hence

also 〈c(i), c(j)〉 = 0 for all i, j ≥ 1 with i + j = 2l + 1 = k + 1. Hence c is a
helix. �

Remark A.10. Using the associated differential equation (A.7) we see that,
for any t0 ∈ I, c is contained in the k-dimensional affine subspace through
c(t0) spanned by c′(t0), . . . , c(k)(t0). Normalizing c by c(t0) = 0, we get that

c is contained in the linear subspace Rk ⊆ Rn spanned by c′(t0), . . . , c(k)(t0).
In this Rk, c possesses a Frenet frame and is a curve of constant curvatures
with respect to it. Conversely, any curve with a Frenet frame and constant
curvatures with respect to it is a helix.
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