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1. Introduction

Gromov suggested the use of the Riccati equation in the discussion of
Jacobi field and volume estimates under lower bounds on the curvature.
Indeed, this approach lead him to an important improvement of the
previously known estimates of the volume of geodesic balls, Lemma 5.3
in [3], now called the Bishop-Gromov inequality.

In these lecture notes, we will employ the Riccati equation to prove
the Bishop-Gromov inequality and to refine the Heintze-Karcher in-
equalities for tubes about submanifolds in [4]. As an application and
following [4], we obtain an improved version of Cheeger’s injectivity
radius estimate (Theorem 5.8 in [1]).

It is interesting to note that, in the derivation of our comparison
results for Riccati equations, we return to estimating solutions of asso-
ciated scalar Jacobi equations.

Date: March 9, 2016.
2010 Mathematics Subject Classification. 53C20.
Key words and phrases. Submanifold, Jacobi field, Riccati equation, volume.
I would like to thank Bogdan Georgiev and Anna Siffert for their careful read-

ing of first versions of the manuscript and their helpful comments. I am grateful
to the Max Planck Institute for Mathematics (MPIM) and Hausdorff Center for
Mathematics (HCM) in Bonn for their support.

1



2 WERNER BALLMANN

2. Notions and notations

We let M be a Riemannian manifold of dimension m with Levi-
Civita connection ∇, curvature tensor R, Ricci tensor Ric = RicM ,
and sectional curvature K = KM .

For m ≥ 2 and κ ∈ R, the model space Mm
κ is the unique complete

and simply connected Riemannian manifold of dimension m and con-
stant sectional curvature κ. For κ > 0, we have Mm

κ = Smκ , the round
sphere of radius 1/

√
κ.

2.1. Geodesics and Jacobi fields. For a tangent vector v of M , we
denote by γv the (maximal) geodesic in M with γ̇v(0) = v. For a
geodesic γ in M , we write

RγX = R(X, γ̇)γ̇ (1)

and consider Rγ as a field of symmetric endomorphisms of the nor-
mal spaces of γ. A Jacobi tensor field along γ is a smooth field J
of endomorphisms of the normal spaces of γ which solves the Jacobi
equation

J ′′ +RγJ = 0. (2)

In terms of a parallel frame (E1, . . . , Em−1) of vector fields along γ and
perpendicular to γ, this means that the Ji = JEi are Jacobi fields along
γ and perpendicular to γ. If the Ei are orthonormal, J is represented by
the field of matrices 〈Ji, Ej〉 with entries depending on the parameter
of the geodesic γ.

2.2. Submanifolds. We let N be a submanifold of M of dimension n.
Then we have an orthogonal decomposition

TM |N = TN ⊕ νN, (3)

where νN ⊆ TM is the normal bundle of N . For p ∈ N and v ∈ TpM ,
we write accordingly v = vτ + vν . Sections of νN will be called normal
fields. For smooth vector fields X and Y tangent to N , we have

∇XY = (∇XY )τ + (∇XY )ν = ∇N
XY + II(X, Y ), (4)

where ∇N and II denote the Levi-Civita connection and second fun-
damental form of N , respectively. For a smooth vector field X tangent
to N and a normal field ξ, we have

∇Xξ = (∇Xξ)
ν + (∇Xξ)

τ = ∇ν
Xξ + SξX, (5)

where ∇ν denotes the induced connection on νN and Sξ is called the
Weingarten or shape operator of N with respect to ξ. For smooth
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vector fields X and Y tangent to N and a smooth normal field ξ, the
inner product 〈ξ, Y 〉 vanishes and hence

IIξ(X, Y ) = 〈ξ, II(X, Y )〉 = 〈ξ,∇XY 〉
= −〈∇Xξ, Y 〉 = −〈SξX, Y 〉.

(6)

We conclude that −Sξ is the field of symmetric endomorphisms of TN
corresponding to the second fundamental form IIξ of N with respect
to the normal field ξ. We have the following fundamental equations,
named after Gauss, Codazzi, and Ricci, respectively:

〈R(X, Y )U, V 〉 = 〈RN(X, Y )U, V 〉
+ 〈II(X,U), II(Y, V )〉 − 〈II(Y, U), II(X, V )〉, (7)

〈R(X, Y )U, ξ〉 = 〈(∇ν
XII)(Y, U)− (∇ν

Y II)(X,U), ξ〉, (8)

〈R(X, Y )ξ, η〉 = 〈Rν(X, Y )ξ, η〉 − 〈[Sξ, Sη]X, Y 〉, (9)

for all vector fields X, Y, U, V tangent to N and normal fields ξ, η, where
RN and Rν denote the curvature tensors of N and νN , respectively.

Given a (local) orthonormal frame (E1, . . . , En) of vector fields tan-
gent to N , we obtain a normal field

η = ηN =
1

n

(
II(E1, E1) + · · ·+ II(En, En)

)
, (10)

called the mean curvature field of N . It does not depend on the choice
of the frame (E1, . . . , En). The norm h = |η| of η is called the mean
curvature of N . For a unit vector ξ ∈ νN , h(ξ) = 〈ξ, η〉 is called the
mean curvature of N in the direction of ξ. We have

h(ξ) = − 1

n
trSξ. (11)

We say that p ∈ N is an umbilical point or an umbilic of N if

II(v, w) = 〈v, w〉η(p) (12)

for all v, w ∈ TpN . Then Sξ = −〈η, ξ〉 id for all ξ ∈ νpN . We say that a
subset P of N is umbilical if every point of P is an umbilic of N . Then

(∇ν
XII)(Y, Z) = 〈Y, Z〉∇ν

Xη (13)

in the interior of P .
If N is a curve, then any point of N is an umbilic of N . For all 1 <

n < m and h ≥ 0, a connected umbilical submanifold N of dimension n
and mean curvature h in Mm

κ is an open subset of a standard subspace
Mn

κ+h2 ⊆ Mm
κ . The crux of the proof is that the mean curvature field

of such an N is parallel with respect to ∇ν . This in turn follows from
(13) since the left hand side of (8) vanishes for M = Mm

κ and since the
dimension of N is at least two.
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2.3. Cut locus. In this subsection, we assume that M is complete and
that N is proper, that is, the intersections of compact subsets of M
with N are compact in N . Then N is a complete Riemannian manifold
with respect to its first fundamental form. We have

radN = sup{d(q,N)} ≤ diamM ≤ ∞ (14)

for the radius radN of N .
Since M is complete, the exponential map exp of M is defined on all

of TM . The restriction of exp to νN is called the normal exponential
map of N . Let SN be the Sm−n−1-bundle of unit vectors in νN . For
ξ ∈ SN , set

tc(ξ) = sup{t > 0 | d(γξ(t), N) = t} ∈ (0,∞]. (15)

As in the case where N is a point, we have that tc : SN → (0,∞] is
a continuous function. If tc(ξ) < ∞, then γξ(tc(ξ)) = exp(tc(ξ)ξ) is
called the cut point of N along γξ. The closed subset

CT (N) = {tc(ξ)ξ | ξ ∈ SN and tc(ξ) <∞} (16)

of νN is called the tangential cut locus of N and its image C(N) under
the normal exponential map the cut locus of N . As in the case where
N is a point, we have that the normal exponential map

exp: {tξ | ξ ∈ SN and 0 ≤ t < tc(ξ)} → N \ C(N) (17)

is a diffeomorphism. Recall that tc(ξ) ≤ tb(ξ), where tb(ξ) ∈ (0,∞]
denotes the first positive time, when a focal point of N along γξ occurs;
see page 12 below for the definition of focal points.

3. Distance functions and Riccati equation

Let f : W → R be a function, where W is an open subset of M . We
say that f is a distance function if f is smooth with | grad f | ≡ 1.

3.1. Example. Suppose that M is complete, and let p ∈M . Then the
distance f = f(q) = d(p, q) from p is a distance function on the open
subset W = M \ ({p} ∪Cp) of M , where Cp denotes the cut locus of p
in M .

More generally, if N ⊆M is a properly embedded submanifold, then
the distance f = f(q) = d(N, q) from N is a distance function on the
open subset W = M \ (N ∪CN) of M , where CN denotes the cut locus
of N in M .

In what follows, let f : W → R be a distance function and Wr be
the level set of f of level r; that is, Wr = {p ∈ W | f(p) = r}. Since
the gradient of f does not vanish on W , the level sets Wr are smooth
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hypersurfaces in W (if non-empty). Note that grad f is a unit normal
field of the level sets Wr.

3.2. Lemma. Let c : [a, b]→ W be a piecewise smooth curve from p ∈
Wr to q ∈ Ws, where r ≤ s. Then L(c) ≥ s − r with equality if
and only if c solves ċ = grad f ◦ c up to monotonic reparametrization.
In particular, the solution curves of the gradient field are unit speed
geodesics which are minimal in W .

Proof. Since | grad f | ≡ 1, we have

L(c) =

∫ b

a

|ċ| ≥
∫ b

a

|〈grad f, ċ〉|

≥
∣∣ ∫ b

a

〈grad f, ċ〉
∣∣

= |f(q)− f(p)| = s− r.

This shows the asserted inequality. Moreover, equality holds if and only
if ċ(t) is a non-negative multiple of grad f |c(t) for all a ≤ t ≤ b. �

For p ∈ W , let γp be the solution curve of grad f with γp(r) = p,
where r = f(p). By Lemma 3.2, γp is a unit speed geodesic in W . The
geodesics γp, for p ∈ W , will be called f -geodesics. Notice that γp(t)
depends smoothly on p and t.

Recall that the Hessian Hess f of f is the symmetric tensor field on
W of type (2, 0) defined by

Hess f(X, Y ) = XY f − (∇XY )f = 〈∇X grad f, Y 〉, (18)

where X and Y are smooth vector fields on W . Since

2〈∇X grad f, grad f〉 = X〈grad f, grad f〉 = 0, (19)

we get that

Hess f(X, grad f) = 0 (20)

for all vector fields X on W . In particular, the non-trivial information
on Hess f comes from vector fields perpendicular to grad f , that is,
vector fields tangent to the level sets of f . Moreover,

UX = ∇X grad f = Sgrad fX (21)

is the Weingarten operator of the level sets Wr of f with respect to the
unit normal field grad f . For smooth vector fields X and Y tangent to
the level sets of f , we obtain

Hess f(X, Y ) = 〈∇X grad f, Y 〉 = 〈UX, Y 〉. (22)
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Let c = c(s) be a smooth curve in Wr through c(0) = p with ċ(0) = v.
Then

J =
∂

∂s
γc(s)

∣∣
s=0

is a Jacobi field along γ = γp with

J(0) = v and J ′(0) = Uv, (23)

where U denotes the Weingarten operator of Wr as in (21). The first
equality of (23) is clear. As for the proof of the second, we have in fact
that

J ′(t) =
∇
∂t

∂

∂s
γc(s)(t)

∣∣
s=0

=
∇
∂s

∂

∂t
γc(s)(t)

∣∣
s=0

= ∇J(t) grad f = UJ(t).

(24)

Jacobi fields J along any f -geodesic γ = γp satisfying initial conditions
as in (23) will be called f -Jacobi fields. By their definition, f -Jacobi
fields along γ = γp do not vanish anywhere along γ (as long as γ stays
inside W ). From (24), we also get that

U ′J = (UJ)′ − UJ ′ = J ′′ − U2J = −RγJ − U2J, (25)

where Rγ is defined as in (1). Since (25) holds for all f -Jacobi fields
J , we conclude that the field of Weingarten operators U satisfies the
Riccati equation

U ′ + U2 +Rγ = 0 (26)

along each f -geodesic γ. More generally, let γ be a geodesic through a
point p = c(0) ∈ M and U0 be an endomorphism of the normal space
of γ̇(0) in TpM .

3.3. Lemma. In the above situation, let J be the Jacobi tensor field
along γ with initial condition

J(0) = id and J ′(0) = U0.

Then the field U = J ′J−1 of endomorphisms of the normal spaces of γ is
the solution of the Riccati equation with initial condition U0. Moreover,
U is a field of symmetric endomorphisms if and only if U0 is symmetric.

4. Comparison theory for the Riccati equation

For a smooth function κ on some interval, let j solve the scalar Jacobi
equation j′′+ κj = 0. Then u = j′/j solves the scalar Riccati equation

u′ + u2 + κ = 0 (27)

on its domain of definition, as we saw in greater generality in Lemma 3.3,
and any solution of the scalar Riccati equation arises in this way.
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If 0 belongs to the domain of definition of κ, then we denote by snκ
and csκ the solutions of the scalar Jacobi equation with

snκ(0) = 0, sn′κ(0) = 1 and csκ(0) = 1, cs′κ(0) = 0, (28)

respectively. Clearly, u = sn′κ / snκ is the unique solution of the Riccati
equation which satisfies limt→0 u(t) =∞.

If κ is constant, the case we need in our applications, then sn′κ = csκ
and cs′κ = −κ snκ, and we set

tnκ = snκ / csκ and ctκ = csκ / snκ . (29)

Note that u = ctκ is the unique solution of the scalar Riccati equation
which satisfies limt→0 u(t) =∞ and that tnκ does not solve the scalar
Riccati equation unless κ = 1.

4.1. Lemma. Let u, v : (a, b] → R be smooth with u′ + u2 ≤ v′ + v2

and assume that u′+u2 and v′+ v2 extend smoothly to [a, b]. Then the
limits u(a) = limt→a u(t) and v(a) = limt→a v(t) exist as extended real
numbers in (−∞,∞]. If u(a) ≤ v(a), then u ≤ v on (a, b] with equality
u = v if and only if u(b) = v(b).

Proof. The proof is motivated by the proof of the Sturm comparison
theorem for solutions of the scalar Jacobi equation. Let κ, λ : [a, b] →
R be the smooth extensions of −u′ − u2 and −v′ − v2, respectively.
Then u = j′κ/jκ, where jκ solves the associated scalar Jacobi equation
j′′+κj = 0 with jκ(a) = 1 and j′κ(a) = u(a) if u(a) <∞ and jκ(a) = 0
and j′κ(a) = 1 if u(a) =∞. Correspondingly, write v = j′λ/jλ. In both
cases, jκ, jλ > 0 on (a, b] since otherwise u and v would not be defined
on (a, b]. We have

0 =

∫ t

a

{jκ(j′′λ + λjλ)− (j′′κ + κjκ)jλ}

= {jκj′λ − j′κjλ}
∣∣t
a

+

∫ t

a

(λ− κ)jκjλ.

Therefore we obtain

jκ(t)j
′
λ(t)− j′κ(t)jλ(t) ≥ jκ(a)j′λ(a)− j′κ(a)jλ(a) +

∫ t

a

(κ− λ)jκjλ.

The first term on the right is nonnegative by the choice of jκ and jλ,
the second term is nonnegative since κ ≥ λ and jκjλ > 0 on (a, b].
Since u = j′κ/jκ and v = j′λ/jλ, this implies the asserted inequality and
criterion for the equality of u and v. �

There are two ways in which we arrive at scalar inequalities as in
Lemma 4.1 and we discuss them in Examples 4.2 and 4.3 below. To
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that end, we let γ be a unit speed geodesic in M and U be a symmetric
solution of the Riccati equation along γ (with domain of definition
possibly smaller than the domain of definition of γ).

4.2. Example. Let E be a parallel field along γ with |E| ≡ 1 and
perpendicular to γ. Then u = 〈UE,E〉 satisfies

u′ = 〈UE,E〉′ = 〈U ′E,E〉
= −〈U2E,E〉 − 〈RγE,E〉
≤ −〈UE,E〉2 − 〈RγE,E〉
= −u2 −KM(γ̇ ∧ E),

where we use the Schwarz inequality and that E has norm one and
where γ̇ ∧ E denotes the tangent plane in M spanned by γ̇ and E.
Hence if κ = κ(t) is a smooth function such that the sectional curvature
of tangent planes P of M containing γ̇(t) satisfies KM(P ) ≥ κ(t) for
all t in the domain of U , then u′ + u2 ≤ −κ. Moreover, the equality
u′ + u2 = −κ holds if and only if UE = uE and 〈RγE,E〉 = κ, that
is, if and only if UE = uE and RγE = κE. Lemma 4.1 now allows to
compare u with smooth functions v solving v′ + v2 = −κ with initial
condition u(a) ≤ v(a).

4.3. Example. Suppose that J is a Jacobi tensor field along γ with
det J > 0. Let U = J ′J−1 and set

u =
1

m− 1

d

dt
ln det J =

1

m− 1
tr(J ′J−1) =

1

m− 1
trU.

Then we have

u′ =
1

m− 1
(trU)′ =

1

m− 1
trU ′

= − 1

m− 1
tr(U2)− 1

m− 1
trRγ

≤ − 1

(m− 1)2
(trU)2 − 1

m− 1
Ric(γ̇, γ̇)

= −u2 − 1

m− 1
Ric(γ̇, γ̇),

where we use the Schwarz inequality (trU)2 ≤ (m− 1) tr(U2). There-
fore, if κ = κ(t) is a smooth function such that Ric(γ̇, γ̇) ≥ (m−1)κ on
the domain of definition of U , then u′+u2 ≤ −κ. Moreover, the equality
u′+u2 = −κ(t) holds if and only if U = uIγ and Ric(γ̇, γ̇) = (m− 1)κ,
where Iγ denotes the field of identity endomorphisms along γ. Since
U ′+U2 = −Rγ, this happens if and only if U = uIγ andRγ = κIγ. As in
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the previous example, Lemma 4.1 now allows to compare u with smooth
functions v solving v′ + v2 = −κ with initial condition u(a) ≤ v(a).

4.4. Remark. Section 1.6 in Karcher’s survey article [5] contains a
different approach to the comparison theory for solutions of the scalar
Riccati equation. In [2], Eschenburg and Heintze develop an elegant
comparison theory for solutions of the tensorial Riccati equation.

5. Bishop-Gromov inequalities

For simplicity, we assume throughout this section that M is com-
plete. Let p ∈ M and γ : [0, b)→ M be a unit speed geodesic starting
at p. Let J be the Jacobi tensor field along γ with initial condition
J(0) = 0 and J ′(0) = id. Clearly, we have

lim
r→0

det J(r)

rm−1
= 1. (30)

Notice that det J(t) > 0 for any t > 0 before the first conjugate point of
p along γ. If Rγ = κIγ, where κ ∈ R and Iγ denotes the field of identity
endomorphisms along γ as above, then J = snκ Iγ and det J = snm−1κ .

The first version of the Bishop-Gromov inequality reads as follows.

5.1. Theorem. Assume that Ric(γ̇, γ̇) ≥ (m−1)κ for some κ ∈ R and
that det J > 0 on (0, b). Then

1 ≥ det J(r)

snm−1κ (r)
≥ det J(s)

snm−1κ (s)

for all r < s in (0, b). The inequality on the left is strict unless Rγ = κIγ
on [0, r], the inequality on the right is strict unless Rγ = κIγ on [0, s].

Proof. This follows easily from Lemma 4.1, Example 4.3, and (30). �

5.2. Corollary. In the situation of Theorem 5.1, b ≤ π/
√
κ if κ > 0.

Let S be the unit sphere in TpM . For v ∈ S, denote by tb(v) ∈ (0,∞]
the first positive time, when a conjugate point of p along γv occurs,
and by tc(v) ∈ (0,∞] the cut point of p along γv. As usual, the value
∞ indicates that no conjugate or cut point occurs along γv|(0,∞). By
Theorem 5.1 and Jacobi’s theorem, we have tb(v) ≤ π/

√
κ if κ > 0 and

tc(v) ≤ tb(v), respectively. Now for 0 ≤ t < tb(v), the Jacobian of

(0,∞)× S →M, (t, v) 7→ exp(tv),

at (t, v) is given by det Jv(t), where Jv is the Jacobi tensor field along
γv with initial conditions Jv(0) = 0 and J ′v(0) = id. In particular, the



10 WERNER BALLMANN

volume Vp(r) of the geodesic ball Bp(r) of radius r about p in M is
given by

Vp(r) =

∫
S

∫ r∧tc(v)

0

det Jv(t) dtdv, (31)

where we use the notation a ∧ b = min{a, b}. We will compare Vp(r)
with the volume

Vκ(r) = vol(Sm−1)

∫ r

0

snm−1κ (t) dt (32)

of a geodesic ball Bκ(r) of radius r in the model space Mm
κ . Here we

only consider radii r ≤ π/
√
κ if κ > 0. By (30), we have

lim
r→0

Vp(r)

Vκ(r)
= 1. (33)

The global version of the Bishop-Gromov inequality reads as follows.

5.3. Theorem. Assume that Ric(γ̇, γ̇) ≥ (m − 1)κ for all unit speed
geodesics through p and some κ ∈ R. Then

1 ≥ Vp(r)

Vκ(r)
≥ Vp(s)

Vκ(s)

for all 0 < r < s ≤ max{d(p, q)} (with s < π/
√
κ if κ > 0). The

inequality on the left is strict unless Bp(r) is isometric to Bκ(r) and
the inequality on the right is strict unless Bp(s) is isometric to Bκ(s).

Proof. By what we said above, we have

Vp(r)

Vκ(r)
=

1

vol(Sm−1)
∫ r
0

snm−1κ (t)dt

∫
S

∫ r

0

f(t, v) snm−1κ (t) dtdv, (34)

where f(t, v) = det Jv(t)/ snm−1κ (t) for 0 < t < tc(v) and f(t, v) = 0 for
t ≥ tc(v). By (30), we have limt→0 f(t, v) = 1. By Theorem 5.1, f is
monotonically decreasing, where f(t, v) = 1 can only hold if t < tc(v)
and Rγv = κIγv on [0, t]. Now the right hand side in (34) is the mean
of f with respect to the volume form snm−1κ dtdv on (0, r]× S. �

5.4. Corollary. If RicM ≥ κ > 0, then

diamM ≤ diamSmκ = π/
√
κ and volM ≤ volSmκ ,

and the inequalities are strict unless M is isometric to Smκ .

The assertion diamM ≤ π/
√
κ is called the theorem of Bonnet-

Myers, the characterization of Smκ by the equality diamM = π/
√
κ the

maximal diameter theorem of Cheng.
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Proof. Except for the maximal diameter theorem, the assertions are
fairly straightforward consequences of Theorems 5.1 and 5.3. That
the maximal diameter theorem follows from Theorem 5.3 was observed
by Shiohama: Choose p, q ∈ M of maximal distance d(p, q) = π/

√
κ.

Then the geodesic balls Bp(π/2
√
κ) and Bq(π/2

√
κ) are disjoint and

hence

volBp(π/2
√
κ) + volBq(π/2

√
κ) ≤ volM. (35)

Now Theorem 5.3 implies that

volBp(π/2
√
κ)

volBp(π/
√
κ)

,
volBp(π/2

√
κ)

volBp(π/
√
κ)
≥ Vκ(π/2

√
κ)

Vκ(π/
√
κ)

=
1

2
. (36)

Since M = Bp(π/
√
κ) = Bq(π/

√
κ), by the theorem of Bonnet-Myers,

we conclude that

volBp(π/2
√
κ), volBq(π/2

√
κ) ≥ volM/2.

Hence we have equality in (35) and (36), hence volM ≥ volSmκ and
therefore M = Smκ by the equality case of the volume inequality. �

6. Heintze-Karcher inequalities

For simplicity, we assume throughout this section that M is complete
and that N is a proper submanifold of M .

Let π : νN → N be the normal bundle of N . Associated to the
induced connection ∇ν on νN , there is a canonical decomposition of
the tangent bundle of νN ,

TνN = H⊕ V , (37)

where the vertical space Vξ = ker dπξ at ξ ∈ νpN is canonically iso-
morphic to νpN and the horizontal space Hξ, defined to consist of all
tangent vectors to parallel sections of νN through ξ, is canonically iso-
morphic to TpN . If ζ = ζ(s) is a smooth curve in νN through ξ with

ζ̇(0) = v and σ = π ◦ ζ, then

vH = σ̇(0) = dπξ(v) and vV =
∇ν

∂s
ζ
∣∣
s=0

. (38)

The decomposition into vertical and horizontal subspaces induces a
Riemannian metric on TνN such that π is a Riemannian submersion.
Note that this metric only depends on the Riemannian metric on N ,
the metric on the fibers of νN , and the decomposition.

6.1. Lemma. For v ∈ TξνN , we have

d expξ(v) = J(1),
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where J is the Jacobi field along γξ with

J(0) = vH and J ′(0) = vV + Sξv
H.

Proof. Let ζ = ζ(s) be a smooth curve in νN through ξ with ζ̇(0) = v.
Then

d expξ(v) =
∂

∂s
exp(tζ(s))

∣∣
t=1,s=0

= J(1),

where J is the Jacobi field along γξ with

J(0) =
∂

∂s
exp(tζ(s))

∣∣
t=0,s=0

=
∂

∂s
π(ζ(s))

∣∣
s=0

= dπξ(v)

and

J ′(0) =
∇
∂t

∂

∂s
exp(tζ(s))

∣∣
s=0,t=0

=
∇
∂s

∂

∂t
exp(tζ(s))

∣∣
t=0,s=0

=
∇
∂s
ζ
∣∣
s=0

=
∇ν

∂s
ζ
∣∣
s=0

+ Sξdπξ(v). �

For ξ ∈ νpN , a Jacobi field J along γξ will be called an N -Jacobi
field if and only if it is associated to a geodesic variation (γs) of γ0 = γξ
such that σ = σ(s) = γs(0) is a smooth curve in N with γ̇s(0) ∈ νN .
By our discussion above, this holds precisely if

J(0) ∈ TpN and J ′(0)H = SξJ(0). (39)

For t > 0, we say that γξ(t) is a focal point of N along γξ if there is a
non-trivial N -Jacobi field along γξ that vanishes at t. If there is a t > 0
such that γξ(t) is a focal point of N along γξ, then we let tb(ξ) > 0 be
the smallest such t and call γξ(tb(ξ)) the first focal point of N along γξ.
If there is no non-trivial N -Jacobi field that vanishes in positive time,
then we set tb(ξ) =∞.

We say that a Jacobi field J along γξ is a special N -Jacobi field if it
is associated to a geodesic variation (γs) of γ0 = γξ as above and if, in
addition, |γ̇s(0)| does not depend on s. This holds precisely if

J(0) ∈ TpN and J ′(0) = SξJ(0). (40)

Special N -Jacobi fields will enter our discussion below. We will be
concerned with volume and integration. To that end, we introduce
polar coordinates; that is, we consider the diffeomorphism

F : (0,∞)× SN → νN \N, F (t, ξ) = tξ, (41)

where we identify N with the zero section of νN . Since π : SN → N
is a Riemannian submersion, we write dξdp for the volume element of
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SN , where dp denotes the volume element of N and dξ stands for the
volume elements of the unit (m− n− 1)-spheres SpN .

Let now ξ ∈ SN and (e1, . . . , en) be an orthonormal basis of TpN
consisting of eigenvectors of Sξ with corresponding eigenvalues

λ1 = λ1(ξ) ≤ · · · ≤ λn = λn(ξ). (42)

Recall from (11) that the mean curvature h(ξ) of N in the direction
of ξ is given by −nh(ξ) = λ1 + · · · + λn. Extend (e1, . . . , en) to an
orthonormal basis (e1, . . . , em) of TpM with em = ξ. Let (E1, . . . , Em)
be the orthonormal frame along γξ with Ei(0) = ei for all 1 ≤ i ≤ m.
Denote by Jξ = Jξ(t) the Jacobi tensor field along γξ which maps Ei
to the Jacobi field Ji with Ji(0) = ei and J ′i(0) = λiei for 1 ≤ i ≤ n
and with Ji(0) = 0 and J ′i(0) = ei for n < i < m, respectively. For
1 ≤ i ≤ n, Ji is the special N -Jacobi field with Ji(0) = ei. We note
that det Jξ > 0 up to tb(ξ).

6.2. Lemma. The volume distortion of exp ◦F is given by

(exp ◦F )∗(t,ξ)dV = det Jξ(t) dtdξdp

for all 0 < t < tb(ξ), where dV and dξdp denote the volume forms of
M and SN , respectively.

Proof. By Lemma 6.1, the special N -Jacobi fields J1, . . . , Jn corre-
spond to an orthonormal basis of Hξ. Furthermore, the Jacobi fields
Jn+1, . . . , Jm−1 together with the Jacobi field Jm = Jm(t) = tγ̇ξ(t) cor-
respond to an orthonormal basis of Vξ. Now exp is a radial isometry,
that is, Jm represents a unit normal vector of SN at ξ and stays nor-
mal to J1, . . . , Jm−1. Hence the volume distortion of F ◦ exp is given
by det Jξ(t) �

6.3. Lemma. As a field of matrices in terms of the Ei and up to O(t2)
for t → 0, Jξ(t) is the diagonal matrix with entries 1 + λit for all
1 ≤ i ≤ n and t for all n+ 1 ≤ i ≤ m. In particular,

det Jξ(t) = tm−n−1 + (λ1 + · · ·+ λn)tm−n +O(tm−n+1) as t→ 0.

We are after estimates of the volume distortion det Jξ and of the
volumina of tubes

UN(r) = {q ∈M | d(q,N) < r} (43)

about N . Here the case of balls from Section 5 may be considered as
the special case where n = 0, and we proceed in quite similar ways in
the other cases. We want to compare det Jξ with the corresponding
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quantity jh in the case of an umbilical submanifold of dimension n in
the model space Mm

κ , where h = h(ξ). We have

jh(t) = jm,n,κ,h(t) = (csκ(t)− h snκ(t))
n snm−n−1κ (t). (44)

The first positive zero z(h) of jh is determined by ctκ(z(h)) = h. Define

ah(t) = am,n,κ,h(t) =

∫
Sm−n−1

∫ t∧z(〈ξ,η〉)

0

j(〈ξ, η〉, t) dtdξ, (45)

where η ∈ Rm−n is a vector of length h. Clearly, a does not depend on
the choice of η. In the case where N is an umbilical hypersurface in
the model space Mm

κ with mean curvature h, ah(r) is the contribution
of a fiber over N in a tube of radius r to the volume of the tube.
We sometimes consider parameters as variables and write, e.g., a(h, t)
instead of ah(t) or jm,n,κ(h, t) instead of jm,n,κ,h(t).

6.4. Lemma. The function a is monotonically increasing in h and t.

Proof. The monotonicity in t is clear. As for the monotonicity in h, we
follow the arguments in the proof of the corresponding Proposition 2.1.1
of [4]. We start by noting that j〈ξ,η〉(t) is not monotonically increasing
in h = |η| for 〈ξ, η〉 ≥ 0. However, we may consider ±ξ simultaneously
to conclude monotonicity of a in h.

Since the integrand of the inner integral in (45) vanishes at z(〈ξ, η〉),
we only need to check the monotonicity of the intgrand in either case,
t∧z(〈ξ, η〉) = t or t∧z(〈ξ, η〉) = z(〈ξ, η〉). Assume now that 〈ξ, η〉 ≥ 0.
Then we have z(〈ξ, η〉) ≤ z(〈−ξ, η〉) and

(x− hy)n + (x+ hy)n = 2
∑
2k≤n

(
n

2k

)
xn−2ky2kh2k,

where x = csκ(t), y = 〈ξ, η〉 snκ(t)/|η|, h = |η|, and 0 ≤ t ≤ z(〈ξ, η〉).
Now the right hand side in the above formula is monotonic in h. Fur-
thermore, j(〈−ξ, η〉, t) is monotonic in h on z(〈ξ, η〉) ≤ t ≤ z(〈−ξ, η〉).
We conclude that a = a(h, t) is monotonic in h. �

6.5. Question. Given h < H, is a(h, t)/a(H, t) monotonic in t?

Up to tb(ξ), Jξ = Jξ(t) is invertible and U = J ′ξJ
−1
ξ solves the Riccati

equation along γξ. As in Example 4.3, we have the crucial relation

d

dt
ln det Jξ = tr(J ′ξJ

−1
ξ ) = trU. (46)

To estimate trU , lower bounds for the Ricci curvature can be used
efficiently in the cases n = 0, as we saw in Section 5, and n = m−1. In
the general case, we will use lower bounds for the sectional curvature.
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Using the results from Section 4, it would also be possible to discuss
the more refined bounds on the curvature from Section 3.2 in [4]. How-
ever, for the sake of simplicity, we will only consider the traditional
case of absolute lower bounds.

6.1. The case of hypersurfaces. In the next result, we refine the
main inequality 3.2.1(d) from [4].

6.6. Theorem. Assume that N is a hypersurface and that RicM(γ̇ξ) ≥
(m− 1)κ along γξ, where ξ ∈ SN and κ ∈ R. Then we have

1 ≥ det Jξ(r)

j(h(ξ), r)
≥ det Jξ(s)

j(h(ξ), s)

for all 0 < r < s < tb(ξ), where j is as in (44). The inequality on the
left is strict unless Rγξ = κIγξ on [0, r] and Sξ = −h(ξ) id, the inequality
on the right is strict unless Rγξ = κIγξ on [0, s] and Sξ = −h(ξ) id.

Proof. With γ = γξ, J = Jξ, and U = J ′ξJ
−1
ξ , we choose u as in

Example 4.3. Then u satisfies u′ + u2 + κ ≤ 0 with initial condition

u(0) =
1

m− 1
trU(0) =

1

m− 1
tr J ′ξ(0) = −h(ξ) = −h.

From Lemma 4.1 we get that u ≤ v, where v solves v′ + v2 + κ = 0
with initial condition v(0) = −h. Then v = j′/j with j = csκ−h snκ
and hence the asserted inequalities follow.

Equality can only happen if (ln det J)′(t) = (m − 1)(ln j)′(t) for all
t ∈ (0, r) or t ∈ (r, R), respectively. This implies Rγ = κIγ on [0, t] by
the discussion in Example 4.3. �

6.2. The general case. In the following result, we refine the main
inequality 3.2.1(c) from [4].

6.7. Lemma. Assume that KM(γ̇ξ ∧ E) ≥ κ for all parallel unit fields
E along γξ perpendicular to γξ, where ξ ∈ SN and κ ∈ R. Then

1 ≥ det Jξ(r)

j(r)
≥ det Jξ(s)

j(s)

for all 0 < r < s < tb(ξ), where

j = (csκ +λ1(ξ) snκ) · · · (csκ +λn(ξ) snκ) snm−n−1κ .

The inequality on the left is strict unless Rγ = κIγ on [0, r], the in-
equality on the right is strict unless Rγ = κIγ on [0, s].
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Proof. The trace of U is the sum of the terms 〈UEi, Ei〉, where the Ei
are chosen as above. Since KM(γ̇ξ ∧ Ei) ≥ κ, we have

〈UEi, Ei〉 ≤ ui = j′i/ji

by Example 4.2 and Lemma 4.1, where ji = csκ +λi snκ for 1 ≤ i ≤ n
and ji = snκ for n < i < m, respectively. Hence

d

dt
ln det J ≤ j′1

j1
+ · · ·+

j′m−1
jm−1

=
d

dt
ln(j1 · · · jm−1) =

d

dt
ln j.

Hence det J/j is monotonically decreasing. On the other hand, we also
have limr→0 det J(r)/j(r) = 1 by Lemma 6.3.

Equality in the asserted inequalities can only happen if (ln det J)′(t) =
j′(t) for all t ∈ (0, r) or t ∈ (r, R), respectively, and then 〈UEi, Ei〉 = ui
for all 1 ≤ i ≤ m− 1. This implies Rγ = κIγ on [0, t] by the discussion
in Example 4.2. �

Following the discussion in [4], we get rid of the explicit dependence
on the eigenvalues λi = λi(ξ) of Sξ by weakening the inequality. Em-
ploying the inequality between geometric and arithmetic mean, we have

(csκ +λ1 snκ) . . . (csκ +λn snκ) ≤ (csκ−〈ξ, η〉 snκ)n (47)

between t = 0 and the first positive zero of the left hand side, where η
denotes the mean curvature vector field of N as in (10). We arrive at
a refined version of Corollary 3.3.1 of [4].

6.8. Theorem. Assume that KM(γ̇ξ∧E) ≥ κ for all parallel unit fields
E along γξ perpendicular to γξ, where ξ ∈ SN and κ ∈ R. Then

1 ≥ det Jξ(r)

j(h(ξ), r)
≥ det Jξ(s)

j(h(ξ), s)

for all 0 < r < s < tb(ξ), where j = jm,n,κ and h(ξ) = 〈ξ, η〉. The
inequality on the left is strict unless Rγ = κIγ on [0, r] and Sξ =
−h(ξ) id, the inequality on the right is strict unless Rγ = κIγ on [0, s]
and Sξ = −h(ξ) id.

In particular, the first zero z(〈ξ, η〉) of csκ−〈ξ, η〉 snκ is an upper
bound for the first focal point tb(ξ) of N along γξ.

Proof of Theorem 6.8. We show that the quotient

(csκ +λ1 snκ) . . . (csκ +λn snκ)

(csκ−〈ξ, η〉 snκ)n
(48)

is monotonically decreasing. Indeed, we have

d

dt
ln

(
(csκ +λ1 snκ) . . . (csκ +λn snκ)

(csκ−〈ξ, η〉 snκ)n

)
= u1 + · · ·+ un − nv,
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where the ui are as above and v = j′/j with j = csκ−〈ξ, η〉 snκ. Now
v solves v′ + v2 + κ = 0 and

u =
u1 + · · ·+ un

n

satisfies u′+u2+κ ≤ 0 with equality if all the ui coincide. Furthermore,
we have u(0) = v(0). Hence u ≤ v by Lemma 4.1, and therefore the
quotient in (48) is monotonically decreasing. �

6.3. Main estimate for the volume of tubes. For r > 0, the subset

UN(r) = {q ∈M | d(q,N) < r} (49)

of M is called the tube of radius r about N . For an open subset P of N ,
let UP (r) = {q ∈ UN(r) | d(q,N) = d(q, P )}. The next result refines
the global Heintze-Karcher inequality (Theorem 2.1 in [4]).

6.9. Theorem. For a constant κ ∈ R, assume that
1) N is a hypersurface such that RicM(γ̇ξ) ≥ (m− 1)κ along γξ for all
unit normal vectors ξ of N or that
2) KM(γ̇ξ ∧E) ≥ κ for all unit normal vectors ξ of N and parallel unit
vector fields E along γξ perpendicular to γξ.
Then we have

1 ≥ volUP (r)∫
P
a(h(p), r) dp

≥ volUP (s)∫
P
a(h(p), s) dp

for all 0 < r < s < radN and relatively compact open subsets P of N ,
where a = am,n,κ and h denotes the mean curvature of N .

Proof. Consider the set

Z = {(t, ξ) ∈ (0,∞)× SN | t < z(ξ)},
endowed with the volume element ω = jh(ξ)(t) dtdξdp. Define a function
f : Z → R by

f(ξ, t) =

{
det Jξ(t)/jh(t) for 0 ≤ t < tc(ξ),

0 for tc(ξ) ≤ t < z(ξ).

Since the cut locus C(N) has measure 0, we have

volUP (r)∫
N
a(h(p), r) dp

=
1∫

N
a(h(p), r) dp

∫
SN |P

∫ r∧z(ξ)

0

f(ξ, t)jh(ξ)(t) dtdξdp.

By the definition of a, the right hand side is the mean of f over the set

Zr = {(t, ξ) ∈ Z | t ≤ r}
with respect to the volume element ω. For each ξ, f is monotonically
decreasing in t with 1 ≥ f(ξ, t) > 0 for 0 ≤ t ≤ tc(ξ), by Theorem 6.6
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and Theorem 6.8, respectively, and f(ξ, t) = 0 for t ≥ tc(ξ). Since tc is
continuous and ≤ radN , this proves the claimed inequalities. �

6.4. Some consequences. As a first consequence of Theorem 6.9, we
obtain the global Heintze-Karcher inequality (Theorem 2.1 in [4]).

6.10. Corollary. In the situation of Theorem 6.9, assume in addition
that M and N are compact and that h ≤ λ. Then we have

volM ≤
∫
N

am,n,κ(h(p), diamM)dp ≤ am,n,κ(λ, radN) vol(N).

Proof. The first inequality follows immediately from Theorem 6.9 since
UN(diamM) = M , the second from the monotonicity of a in h. �

As a second consequence, we obtain Corollary 2.3.2 of [4], which
improves Cheeger’s injectivity radius estimate (Theorem 5.8 in [1]).

6.11. Corollary. If M is compact with KM ≥ κ and c is a simple closed
geodesic in M , then

L(c)

volM
≥ 2π

volSm
snκ(max{d(q, c)})1−m.

Moreover, if κ > 0, then

L(c)

volM
≥ 2π/

√
κ

volSmκ
.

Note that the second inequality is sharp in the case M = Mm
κ . For a

compact hyperbolic surface S, we obtain L(c) ≥ |χ(S)|/2 sinh(diamS),
where χ(S) denotes the Euler characteristic of S.

Proof of Corollary 6.11. As a submanifold, c is totally geodesic of di-
mension n = 1. Hence the comparison function j satisfies

j = jm,1,κ,0 = csκ snm−2κ =
1

m− 1
(snm−1κ )′.

Therefore we have

a(h, r) =
1

m− 1
vol(Sm−2) snm−1κ (r) =

1

2π
vol(Sm) snm−1κ (r),

and hence the first inequality follows from Corollary 6.13. As for the
second, we note that rad c ≤ π/2

√
κ if κ > 0. �

The next volume estimate is Theorem 2.2 of [4]. It generalizes the
second estimate of L(c) above.



RICCATI EQUATION AND VOLUME ESTIMATES 19

6.12. Corollary. In the situation of Theorem 6.9, assume in addition
that M and N are compact and that κ > 0 and h ≤ λ. Then we have

volN

volM
≥

volSnκ+λ2

volSmκ
=

κm/2

(κ+ λ2)n/2
volSn

volSm
.

Heintze and Karcher show also that equality can only occur in the
case where N = Snκ+λ2 ⊆ Smκ = M (Theorem 4.6 in [4]).

Proof of Corollary 6.12. We recall that a(h, r) is the contribution of a
fibre to the volume of UP (r) for the standard N = Snκ+h2 in M = Smκ .
For κ > 0, we may choose P = Snκ+h2 and get

am,n,κ(h, π/2
√
κ) =

volSmκ
volSnκ+h2

=
(κ+ h2)n/2

κm/2
volSm

volSn
(50)

since radSnκ+h2 ≤ π/2
√
κ. Now the monotonicity of a in h implies the

asserted inequality. �

The following estimate on the growth of the volume of tubes about
submanifolds with constant mean curvature is a further immediate con-
sequence of Theorem 6.9. It seems to be new.

6.13. Corollary. In the situation of Theorem 6.9, if N has constant
mean curvature h = λ, then

volUP (s)

volUP (r)
≤ a(λ, s)

a(λ, r)

for all 0 < r < s ≤ sup{d(q,N)} and relatively compact open subsets
P of N , where a = am,n,κ.
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