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1. Lecture 1

Suppose that X is a nice space (manifold, algebraic variety) acted on by a Lie
group G. Suppose one is interested in some aspect of the topology of X. Surely
the fact that X is a G-space should give you some leverage?! It does, and one such
lever is equivariant cohomology.

Equivariant cohomology is a “cohomology theory for G-spaces”. That is, equi-
variant cohomology is a contravariant functor HG(−) from the category of G-spaces
to graded rings. It turns out that if G is a Lie group, then H•G(X) is determined
by H•T (X), where T is a maximal torus of G.

Now there is a very rich dictionary between the topology of X and properties of
H•T (X) as a module over H•T (pt) (which in contrast to ordinary cohomology is an
interesting ring; in fact a polynomial ring). This dictionary is so rich that it often
permits one to calculate the (ordinary) cohomology of X using relatively simple
commutative algebra. This is the subject of this course.

1.1. Conventions. Throughout:

(1) “space” will mean “CW complex” and
(2) H•(−) will denote cohomology with Q-coefficients.
(3) G will denote a topological group but nothing will be lost if one assumes

that G is a Lie group. The key examples to have in mind are G = Z/2Z,
Z, (C×)r, S1, GLn(C).

1.2. Principal bundles and classifying spaces.

Definition 1.1. (1) A bundle is a map π : E → B.
(2) A bundle π : E → B is locally trivial (with fibre F ) if it is locally isomorphic

to the projection map U × F → U .
(3) A (left) principal G-bundle is a a bundle such that

(a) E is a (left) G-space,
(b) π is locally isomorphic to the projection G × U → U with trivial G-

action on U . (In particular, π is equivariant with respect to the trivial
action of G on B.)

(4) A (left) G-space X is a free G-space if the quotient map

π : X → G \X
is a principal G-bundle.
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Exercise 1.2. (1) Show that the projection map

C2 \ {0} → P1C

is a principal C∗-bundle.
(2) Find ten (good) examples of principal bundles “in nature”!

If π : E → B is a principal G-bundle and φ : B′ → B is any map then we can
form the Cartsian square

E′ //

π′

��

E

π

��
B′ // B

and one can check (do it!) that E′ is a principal G-bundle. We say that π′ : E′ → B′

is the pull-back of E under f and write π′ = f∗π.
The following theorem might look a bit miraculous when you first see it.

Theorem 1.3. Suppose that π0 : E0 → B0 is a principal G-bundle and that B is a
CW-complex of dimension n ≤ ∞. If B is connected and πi(B0) = 0 for 1 ≤ i ≤ n
then we have a bijection

[B,B0]
∼→

{
principal G-bundles

over B

}
/ ∼=

f 7→ f∗π0.

Very sketchy proof. Given a G-bundle π : E → B on G it is enough to find an

G-equivariant map f̃ : E → E0 in which case the π is automatically the pull-back

under the induced map f = G \ f̃ : B → B0. One then argues that one can find
a cell-decomposition of E compatible with the G-action. Compatible means: the
map to B is cellular, and the bundle is trivial over each cell in B. We use the
following fact constantly: to give an equivariant map π : C ×G→ E0 is equivalent
to giving a map C → E0. We map the 0-cells of B arbitrarily into E and extend it
to a map to the preimage of the zero skeleton in E to E0 using G-equivariance. To
extend this map to a map on the 1-skeleton we use that E to is path-connected.
To extend this map to the 2-skeleton we use 1-connectedness etc. Finally, one can
show that any two such maps are homotopic (again using n-connectedness). �

Remark 1.4. (1) This shows that (if π0 : E0 → B0 exists with πi(E0) = 0 for
all i ≥ 0) the functor which assigns to any space B the set of G-bundles
over B up to isomorphism is representable in the homotopy category.

(2) It is nice to think about this result for specific examples where EG has a
simple description. For example, the case G = Z is done in the exercises.

The above theorem (and remark) motivates the following definition:

Definition 1.5. A universal (G-)bundle is a right1 principal G-bundle πG : EG→
BG such that EG is contractible. The space EG (which is well-defined up to
homotopy) is the classifying space of G.

The following theorem guarantees the existence of universal bundles:

1The switch from left to right bundles is to make the discussion of equivariant cohomology
easier. It can be ignored.
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Theorem 1.6. For any topological group G there exists a universal G-bundle πG :
EG→ BG.

Remark 1.7. The construction of such a bundle (as the geometric realisation of a
certain simplicial G-space) is due to Milnor and is often referred to as the Milnor
construction. If one has a particular case in mind there are usually a number of
possible constructions. Some such possibilities are discussed in the exercises.

Example 1.8. (1) If G = Z then G acts freely by translations on R with
quotient S1. Because R is contractible we can take πZ : R → S1 as a
universal bundle in this case.

(2) If G = C× then we might be tempted to take G = C×. But π1(C×) 6= 0.
What about C2 \ {0}? No, π3(C2 \ {0}) 6= 0. What about Cn \ {0}? No,
π2n−1(Cn \ {0}) 6= 0. Hence we are force to take C∞ \ {0} (the direct limit
of all these possibilities). This works (showing directly that C∞ \ {0} is a
fun exercise!) and so we can take

πC× : C∞ \ {0} → P∞C
as our universal bundle.

1.3. Characteristic classes. Fix a group G. By the above theorem, given a G-
bundle π : E → X is the same thing as given a homotopy class of maps

f ∈ [X,BG].

If we fix generators ξ1, . . . , ξn ∈ H∗(BG) we get well-defined elements f∗ξ1, . . . , f
∗ξn ∈

H∗(X). There are the characteristic classes of π.

Example 1.9. If G = C× then we can take BG = P∞C and H•(P∞C) = Q[x]
where x is the fundamental class of P1. Given a CM×-bundle on π : E → X, then
we have π = f∗πC∗ for some map f : X → P∞C (well-defined up to homotopy).
The Chern class of π is c1(π) = f∗x ∈ H2(X).

Further examples include the Chern classes of a vector bundle (the case of G =
GLn) and the Stiefel-Whitney classes (the case G = GLn(R) with cohomology
coefficients Z/2Z).

1.4. Equivariant cohomology. Equivariant cohomology is a cohomology theory
for G-spaces. An essential feature is that H•G(X) = H•(G \ X) if X is a free G-
space. In general the relationship between H•B(X) and H•(X) is somewhat subtle
(this will be a big part of next lecture).

The definition is motivated by the following fact:

Exercise 1.10. If X is a free G-space, and Y is any G-space, then the diagonal
G-action on X × Y is free.

Notation 1.11. If X is a right G-space and Y is a right G-space write

X ×G Y := X × Y/(xg, y) ∼ (x, gy).

For want of a better name we call X ×G Y the balanced product of X and Y .

Now, suppose we have a G-space X. Then in the previous sections we have
seen that we always have a (right) G-space EG which is contractible, and has free
G-action. Hence one might expect the “G-homotopy type” of X and EG×X to be
the same. If this is true then one is forced into the following definition.
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Definition 1.12. Given a G-space X its G-equivariant cohomology is the graded
vector space

H•G(X) = H•(EG×G X).

Here are some basic properties of equivariant cohomology:

(1) It is independent of the choice of EG. Indeed, if E′G denotes another choice
then one can check that

(EG× E′G)×G X → EG×G X

is a locally trivial E′G-bundle (and similarly for the other projection).
Hence one has canonical isomorphisms

H•(EG×G X) ∼= H•((EG× E′G)×G X) ∼= H•(E′G×G X).

(2) By definition

H•G(pt) = H•(EG×G pt) = H•(BG).

We will see that this is an interesting algebra, even for relatively simple
groups G.

(3) If X is a free G-space then

EG×G X → X

is a locally trivial EG-bundle. Hence H•G(X) = H•(G \X).
(4) In ordinary cohomology the final map X → pt tells us that H•(X) is a

H•(pt) = Q-algebra, which we already knew. In equivariant cohomology
this becomes more interesting: H•G(X) is a graded H•G(pt)-algebra. Much
of this course will be concerned with translation topological facts about X
into algebraic facts about the H•G(pt)-module H•G(X).

(5) Given a subgroupH ↪→ G one can take EH = EG (under some assumptions
on H which we won’t spell out). Thus one obtains map

BH = EG/H → EG/G = BG

and hence

(1.1) H•H(pt)← H•G(pt).

(In fact one has a canonical such map for any homomorphism H → G of
topological groups. How might one construct it?)

(6) Under the above assumptions, if X is an H-space then one has a commu-
tative diagram

EG×G G×H X
∼ //

��

EG×H X

��
EG×G pt // EG×H pt

This gives the induction isomorphism:

H•G(G×H X) ∼= H•H(X).

This isomorphism is compatible (via (1.1)) with the H•G(pt)- and H•H(pt)-
module structures.
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(7) If X is a trivial G-space (that is, the action map G × X → X is the
projection) then

EG×G X = EG/G×X
and hence H•G(X) = H•G(pt)⊗Q H

•(X) by the Künneth formula.

2. Lecture 2

We start with a motivating example. If X is a reasonable S1-space then one has
an equality of Euler characteristics

χ(X) = χ(XS1

).

The classic example of this is S1-action on S2 by rotation about a fixed axis.
One might ask: can one lift this equality to cohomology? Note that of course

H•(X) 6∼= H•(XS1

) and so we expect a somewhat subtle answer. Localisation in
T -equivariant cohomology gives a satisfactory answer.

2.1. Borel’s picture. As we mentioned in the introduction, if G is a Lie group
then the equivariant cohomology H•G(X) is determined by H•T (X), where T is a
maximal torus of G. For this reason, for the rest of this course we will concentrate
on the case where G is a torus. That is, either G = (S1)n or G = (C×)n (the
compact, resp. algebraic case).

We will mostly be concerned with the case where G = T = (C×)n is an algebraic
torus. So for concreteness assume that this is the case. Our first goal is to obtain
a concrete, canonical description of H•T (pt).

We have seen that we can take ET = (C∞ \ {0})n with diagonal action of T .
Hence

(2.1) H•T (pt) = H•(BT ) = H•((P∞)n) =

n⊗
i=1

Q[xi] = Q[x1, . . . , xn]

(the third isomorphism follows by the Künneth theorem). This is certainly concrete,
but is not canonical. (It depended on our fixed isomorphism T ∼= (C×)n.)

A more canonical picture is as follows. Recall that a character of T is, by
definition, a homomorphism of algebraic groups χ : T → C∗. Because every homo-
morphism C× → C× is of the form z 7→ zn for some n ∈ Z, we have an isomorphism
Hom(C×,C×) = Z. It follows that

X(T ) = Hom(T,C∗)

is a free Z-module of rank n.
Any χ ∈ X(T ) allows us to view C× as a T -space via χ which we will denote

C×χ . Consider the quotient map

πχ : ET ×T C∗χ → ET ×T pt = BT.

This is easily seen to be a C∗-bundle on BT and hence has a first Chern class
c1(πχ) ∈ H•(BT ). Extending multiplicatively we obtain a map

ch : S(X(T )Q) → H•(BT ) = H•T (pt).

χ 7→ c1(πχ).

Here S(X(T )Q) denotes the symmetric algebra on X(T )Q := X(T )⊗Z Q, which we
view as a graded algebra with X(T )Q in degree 2. (Recall that the Chern class of
a C∗-bundle is of degree 2.)
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Theorem 2.1. ch is an isomorphism.

Remark 2.2. (1) The above theorem is true for any commutative algebraic
group.

(2) The analogue of the above theorem (an even the extension to commutative
algebraic groups) is valid with Z coefficients.

(3) With coefficients in C one can phrase the above as a canonical identification

ch : O(LieT )
∼→ HT (pt;C).

where O(LieT ) denotes the regular functions on the Lie algebra of T . This
allows one to view the equivariant cohomology of spaces as quasi-coherent
sheaves on LieT . This is both a suggestive and useful way of looking at
things.

Sketch proof. In view of the isomorphism (2.1) One just needs to check that a basis
of X(T ) is mapped to a generating set of H•(BT ). However, one can choose an
isomorphism T = (C∗)n compatible with the choice of basis of X(T ), and one
is reduced to checking that the first Chern class of C∞ \ {0} → P∞C generates
H•(P∞C). Hopefully you did this in the exercises! �

Note that the isomorphism ch is both concrete and canonical. From now on we
will use ch to identify H•T (pt) and S(X(T )Q).

Having described H•T (pt) we now turn to the next simplest T -spaces, namely
homogenous spaces. Any homogenous space T -space X is of the form

X ∼= T/T ′

for some closed subgroup T ′ ⊂ T . By the induction isomorphism we have

H•T (T/T ′) = H•T (T ×T ′ pt) = HT ′(pt) = S(X(T ′)Q)

which we view as a H•T (pt) = S(X(T )Q)-module via the pullback homomorphism
X(T )→ X(T ′).

Example 2.3. One should keep the two extreme examples in mind:

(1) If X = pt then T = T ′ gives Borel’s picture.
(2) If X = T then T ′ = 1 and X(T ′) is of rank 0. In this case H•T (T ) =

S(X(T ′)) = Q which we already knew, because T acts freely on T .
(3) A very important case in what follows is the case whenX is one-dimensional.

In this case X ∼= C∗ and the action of T is given by a character χ : T → C∗
(which is well-defined up to ±1). Recall that we denote such a T -space by
C×χ . In this case we have an exact sequence

T ′ = kerχ ↪→ T
χ
� C×.

Taking characters we get

H•T (C∗χ) = X(T ′)Q = X(T )Q/(χ).

Let’s take a step back for a moment. From the above we see that the bigger the
T -orbit, the smaller it’s T -equivariant cohomology. This motivates the following

Slogan: T -equivariant information is concentrated at “small” orbits.
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2.2. The localisation theorem. As in the previous section T ∼= (C×)n is an
algebraic torus. From now on we abbreviate

ST := S(X(T )Q) = H•T (pt).

We now come to an all-important (and somewhat mysterious) condition:

Definition 2.4. A T -space X is equivariantly formal if H•T (X) is a free ST -module.

We probably won’t have time to do this condition justice.
Recall that we haven’t yet discussed the relation between H•T (X) and H•(X).

One important consequence (certainly not the only one) of equivariant formality is
the following theorem:

Theorem 2.5. If X is equivariantly formal then one has an isomorphism of graded
rings

H•(X) ∼= H•T (X)/(S+
TH

•
T (X))

where S+
T denotes the ideal of elements of positive degree.

Example 2.6. The following spaces are equivariantly formal:

(1) spaces for which Hi(X) = 0 for odd i (parity vanishing),
(2) smooth complex projective varieties with algebraic T -actions, (a conse-

quence of Deligne’s proof that the Leray-Serre spectral sequence degenerates
for smooth morphisms between complex algebraic varieties),

(3) if T is a compact torus and X is a compact symplectic T -variety with
Hamiltonian T -action (proved by Kirwan).

We now turn to the first part of the localisation theorem. One needs some kind
of finiteness conditions on X, which we won’t worry about for this lecture: we want
to first give feeling for the localisation theorem. So assume that X is a complex
algebraic variety with an algebraic T -action.

Consider the inclusion
i : XT ↪→ X.

Theorem 2.7. Suppose that X is equivariantly formal and satifies (4.1). Then the
restriction map

i∗ : H•T (X)→ H•T (XT ) = H•(XT )⊗Q ST .

is injective and becomes an isomorphism after tensoring with QT = QuotST .

Remark 2.8. (1) Because H•(X) is free over ST we have

dimH•(X) = rankS H
•
T (X) = dimQ(H•T (X)⊗ST

QT ) = rankS H
•
T (XT ) = dimH•(XT ).

which is interesting when compared with the equality χ(X) = χ(XT ). It
says that for an equivariantly formal space the sums of the even and odd
Betti numbers of H•(X) and H•(XT ) agree.

(2) Note that i∗ is a homomorphism of rings. In many cases, this gives a
relatively simple description of the ring structure on H•T (X).

The second part of the localisation theorem gives a description of the image of
i∗. Given any subtorus T ′ ⊂ T one has a commutative diagram of inclusions

XT

""D
DD

DD
DD

D
// X

XT ′

==||||||||
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and hence a commutative diagram of ST -modules

H•T (XT ) H•T (X)
i∗oo

yyssssssssss

H•T (XT ′)

i∗T

eeLLLLLLLLLL

Hence the image of i∗ is certainly contained in the image of i∗T ′ for all T ′ ⊂ T .
Somewhat amazingly, the image of i∗ is precisely the intersection of these images:

Theorem 2.9. Under the assumptions of Theorem 2.7 one has

Im i∗ =
⋂
T ′⊂T

Im i∗T ′

where the intersection runs over all (connected) subtori T ′ ⊂ T of codimension 1.

We will finish this lecture with an example, which illustrates the power of this
theorem.

2.3. Example: PnC. Let T = (C×)n+1 and define ei ∈ X(T ) by ei(λ0, . . . , λn) =
λi. Let X = PnC with T -action in homogenous coordinates given by

(λ0, λ1, . . . , λn) · [x0 : · · · : xn] = [λ0x0 : · · · : λnxn]

If we let Ui = {x = [x0 : · · · : xn] ∈ PnC | xi 6= 0} then Ui ∼= An via x 7→
(x0/xi, . . . , xn/xi). Under this isomorphism T acts with characters

(e0 − ei, e1 − ei, . . . , en − ei).

Clearly this action has no fixed points outside of 0, and hence T has (n + 1)-fixed
points on X given by [1 : 0 : · · · : 0], [0 : 1 : . . . 0], . . . , [0 : 0 : · · · : 1]. Because X
is a smooth projective variety it is equivariantly formal, and the first part of the
localisation theorem gives an injection

H•T (PnC) ↪→
n⊕
i=0

ST .

We now want to use the second part of the localisation theorem to determine its
image. Let T ′ ⊂ T be a codimension 1 torus. Then the calculation of the action
of T on Ui above show that show that UT

′

i = UTi = {0} unless T ′ is the subtorus
given by ei = ej for some j 6= i. In this case

XT ′ = (n− 1)-points ∪ P1C

where T acts on P1C by the character ±(ei − ej).
In the exercises we have calulcated the equivariant cohomology of P1C and we

conclude that if T ′ is given by ei = ej then image of

H•T (XT ′)
ß∗
T ′
↪→

n⊕
i=0

ST

consists of those (f0, . . . , fn) such that fi − fj is divisible by ei − ej . Hence

H•T (Pn) = {(fi)ni=1 ∈ Sn+1
T | (ei − ej)|(fi − fj) for all i 6= j}.

Generalising this situation leads to the theory of moment graphs.
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3. Third lecture

3.1. Idea of the proof of the localisation theorem. Each flavour of the local-
isation theorem requires some sort of finiteness assumption. Our assumption will
be:

(3.1)
X has covering by finitely many T -stable subsets,

each of which admits an equivariant closed embedding
into a complex vector space with linear T -action.

For example this theorem is satisfied for any normal algebraic T -variety by a theo-
rem of Sumihiro. Analogues are true for actions of compact Lie groups on manifolds.

Both parts of the localisation theorem will following from the following statement
and a result of commutative algebra.

Proposition 3.1. Suppose that X is equivariantly formal and (4.1) is satisfied.
For any subtorus T ′ ⊂ T

H•T (XT ′)
i∗
T ′→ H•T (XT )

becomes an isomorphism after inverting those characters which restrict non-trivially
to T ′.

Remark 3.2. If we take T ′ = {1} ⊂ T this implies the first part of the localisation
theorem. Indeed, by assumption H•T (X) is free, and so injects into any localisation.

Sketch proof. We have a long exact sequence

. . .→ H•T (XT ′ , XT )→ H•T (XT ′)
i∗
T ′→ H•T (XT )→ H•+1

T (XT ′ , XT )→ . . .

and it is enough to show that H•+1
T (XT ′ , XT ) is annihilated by s ∈ ST which is a

product of characaters which restrict non-trivially to T ′.
However this follows from our assumption (4.1), Mayer-Vietoris, a trick and the

following“local” result: if V is a T -module, Y ⊂ V is a subset such that Y ∩V T ′ = ∅
then H•T (Y ) is annihilated by a power of

sV,T ′ = χ1 . . . χl

where the χ1, . . . , χl denote those characters which both occur in V and do not
contain T ′ in their kernel. �

To finish the proof we need to recall the following fact from commutative algebra.
Let M be a finitely generated free (or more generally reflexive) ST -module. Given
any prime ideal p ⊂ ST let Mp denote the localisation of M at p. Let i : M →M(0)

and ip : Mp →M(0) denote the canonical maps (here (0) denotes the zero ideal, so
M(0) = M ⊗ST

QT ). We have a commutative diagram

M //

  A
AA

AA
AA

A M(0)

Mp

ip

==zzzzzzzz

and we can try to use the maps ip to find M inside its localisation.

Theorem 3.3. We have
Im i =

⋂
Im ip

where the intersection takes place over all height one prime ideals p ⊂ ST .
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This is true for more general rings and (reflexive) modules over them. Note that
in our case, “height one” means the same as “principal”.

It should be clear now how to proceed: if an ideal p doesn’t contain any char-
acters then HT (X)p = HT (XT )p. Hence we only need to consider ideals generated
by a character χ. If we let T ′ denote its kernel then the above results gives us
isomorphisms

HT (X) //

((QQQQQQQQQQQQQ
HT (X)(0) = HT (XT )(0)

HT (X)(χ) = HT (XT ′)(χ)

44iiiiiiiiiiiiiiiii

and Proposition 3.1 gives the localisation theorem. (Could explain this better!)

4. Moment graphs

Let X be a T -variety.

Definition 4.1. a T -fixed point x ∈ X is attactive if there exists C∗ ⊂ T such that

lim
C∗3λ→0

λ · z = x

for all z in some neighbourhood of x.

Now let X be a smooth projective T -variety. Let us assume that

(4.1) T has finitely many fixed points and one-dimensional orbits on X,

and

(4.2) every T -fixed point is attractive.

Because X is smooth there exists an open affine T -stable neighbourhood U of
x ∈ X and a T -equivariant isomorphism

U
∼→ TxX.

Exercise 4.2. Using this isomorphism, show that assumption (4.1) implies

(4.3)
For any fixed point x ∈ XT , the characters of T

which occur in TxX are pairwise linearly independent.

For any subtorus T ′ ⊂ T the T -action on XT ′ factors over T/T ′ and hence, for

any T ′ ⊂ T of codimension 1, this implies (using (4.3)) that XT ′ is a disjoint union
of the closures of one-dimensional orbits of T on X.

We can encode this structure in an edge labelleded graph Γ with

(1) vertices V in bijection with XT ,
(2) edges E corresponding to one-dimensional orbits, with each edge incident

to the T -fixed points in its closure.
(3) each edge E is labelled with a character χE ∈ X(T ) for which there is an

equivariant isomorphism with E ∼= C∗χE
. (This character is well-defined up

to ±1.)

Definition 4.3. (V, E , E 7→ χE) is the moment graph of the T -variety X.
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Remark 4.4. The terminology “moment graph” comes from the following. If we
instead consider the compact subtorus K ⊂ T the K-action on X admits a moment
map µ : X → k∗ where k denotes the Lie algebra of K. The image of X under µ
yields a convex polytope with vertices µ(XT ). Moreover, if x, y ∈ XT lie in the
closure of a one-dimensional orbit E then µ(x) − µ(y) is a multiple of αE ∈ k∗.
Hence the moment map µ gives a nice “realisation” of the moment graph inside k∗.

We can specialise the localisation theorem as follows:

Theorem 4.5. The T -equivariant cohomology HT (X) is equal to the ring

{(fx) ∈
⊕
x∈V C

ST |
χE divides fx − fy,

whenever x and y lie on a common edge E
}

Remark 4.6. The localisation theorem implies that the subring of
⊕

x∈V C ST given
by the conditions of the theorem is free. Moreover, Poincaré duality for equivariant
cohomology implies that it is self-dual (up to a shift) over ST . These two conditions
are often far from obvious a priori.

5. Moment graphs for Grassmannians and flag varieties

We begin with an exercise:

Exercise 5.1. Let Gr(k, n) denote the Grassmannian of k-planes in Cn. This has
a T = (C×)n-action induced from the obvious T -action on Cn. Show that the
moment graph of Gr(k, n) has the following description:

(1) vertices are given by k-subsets I ⊂ {1, . . . , n,
(2) two vertices I1 6= I2 are joined by an edge if and only if |I1 ∩ I2| = (k − 1)

in which this edge is labelled by ei− ej , where i and j are the two elements
in the symmetric difference of I1 and I2.

For example, here is a picture of the moment graph of Gr(2, 4):

2, 4

3, 4

1, 4

1, 3

1, 2

2, 3
e
1 −

e
2

(We have ommited all but one edge label.)
Another exercise (which requires the basic structure theory of algebraic groups)

is the following:

Exercise 5.2. Let G denote a connected complex reductive group and let T ⊂ G
denote a maximal torus and Borel subgroup of G. Let W be the Weyl group of
(G,T ). Recall that one has a bijection between the roots R of (G,T ) and reflections
in W which we denote by X(T ) 3 α 7→ sα ∈ W . Show that the moment graph of
G has:
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(1) show that (G/B)T = W and hence the vertices may be canonically identi-
fied with the Weyl group W of (G,T ),

(2) edges joining w1, w2 ∈W if and only if there exists a reflection t ∈W with
tw1 = w2, in which case the reflection is labelled by the root corresponding
to t.

For example, if G = GL3(C) then the moment graph of G/B looks like:

st

sts

ts

s

id

t

αβ

α
+
β

α β

α
+
β

β

α
+
β

α

Let us try to give an idea of why this is true for G = GLn(C). Let U− denote
the lower unitriangular matrices, and B the upper triangular matrices. Then one
can check directly that multiplication defines an open immersion

U− ×B → GLn(C).

It follows that U− gives a chart around the point B/B ∈ G/B. Now U− ∼=
An(n−1)/2 and the T -conjugation action U− induces linear action on An(n−1)/2

with weights ei − ej for i > j (the negative roots). Note that the one-dimensional
orbits with B/B in their closure are all given by root subgroups for negative roots.

Now one can cover G/B by subgroups of the form wU−/B (Bruhat decomposi-
tion) and hence (G/B)T = W . Similarly one can check that

lim
λ→∞

uα(λ) ·B/B = sαB/B

for any negative root α (here uα(λ) denotes the one-parameter root subgroup corre-
sponding to α). It follows that x, y ∈ (G/B)T are connected by a one-dimensional
T -orbit if and only if x = sαy for some root α in which case T -acts on this one-
dimensional orbit by ±α.

6. Directions of current research

Let us mention the following topics:

(1) The Bruhat decomposition

G/B =
⊔
w∈W

BwB/B

gives canonical classes cw := [BwB/B] in the (equivariant) cohomology
ring. They may be described in a completely combinatorial manner on the
moment graph. One also knows that one has a formula:

cxcy =
∑

azcz
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for some polynomials az ∈ ST (these determine the structure constants of
H•(G/B) under the specialisation ST → Q). What are these structure
constants? Even in the case of the Grassmannian they are very compli-
cated. The moment graph approach has recently received much attention
after the work of Knutsen-Tao which sheds new light on an old combinato-
rial description (using so called Littlewood-Richardson coefficients) of these
structure constants in the case of the Grassmannian.

(2) One can introduce the notion of a sheaf on the moment graph, and hence
handle other sheaves. In particular, this allows one to calculate the equivari-
ant intersection cohomology of Schubert varieties in a purely combinatorial
manner (Braden-MacPherson algorithm). Here the localisation theorem
can be rephrased as saying that the global sections of a given sheaf are
given as an intersection over P1C situations.

(3) The idea of “localising” a sheaf on the moment graph has a parallel in repre-
sentation theory. Given a complex semi-simple Lie algebra g it is a difficult
(and important) question to determine the characters of simple highest
weight modules. Using BGG reciprocity this can be translated into the
question of calculating the characters of indecomposable projective mod-
ules in the BGG category O. Now projective modules admit deformations
over S(h) and can also be localised on the moment graph, and hence one
obtains a purely formal proof (an idea of Soergel, Fiebig) that projective
modules correspond to Braden-MacPherson sheaves on the moment graph
which (using deep facts from complex algebraic gometry) can be shown to
calculate the stalks of intersection cohomology complexes, which are known
to be given by Kazhdan-Lusztig polynomials.

(4) These ideas can also be pursued in positive characteristic. Parity sheaves,
Fiebig’s proof of Lusztig’s conjecture. (So we get back to the question of
the simple modules for GLn(Fq)!)
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