Equivariant cohomology, localisation and moment graphs

University of Melbourne

June 6^{th} 2011

Monday Problem Sheet

1. Let G be a topological group and E a free G-space. Show that the diagonal G action on $E \times X$ is free for any G-space X.

2. Describe classifying spaces for the following groups: a) \mathbb{Z} , b) \mathbb{Z}^n , c) $\pi_1(\Sigma)$ where Σ is a compact Riemann surface of genus $g \ge 1$, d)* $G = \pi_1(M)$ where M is a compact hyperbolic manifold.

3. Denote by \mathbb{C}^{∞} the direct sum $\bigoplus_{i=1}^{\infty} \mathbb{C}e_i$. Show that $\mathbb{C}^{\infty} \setminus \{0\}$ is contractible first using Whitehead's theorem and then without it. Similarly show that $S^{\infty} = \{v \in \mathbb{C}^{\infty} \mid |v| = 1\}$ is contractible.

- 4. Let $\mathbb{P}^{\infty}\mathbb{C}$ denote the quotient of $\mathbb{C}^{\infty} \setminus \{0\}$ by the diagonal \mathbb{C}^* -action.
 - a) Show that

$$H^{i}(\mathbb{P}^{\infty}\mathbb{C},\mathbb{Z}) = \begin{cases} \mathbb{Z} & \text{if } i \geq 0 \text{ is even,} \\ 0 & \text{if } i \geq 0 \text{ is odd.} \end{cases}$$

b) Apply the Leray-Serre spectral sequence to the fibration $\pi : \mathbb{C}^{\infty} \setminus \{0\} \to \mathbb{P}^{\infty}\mathbb{C}$ to conclude that one has an isomorphism of rings

$$H^{ullet}(\mathbb{P}^{\infty}\mathbb{C},\mathbb{Z})=\mathbb{Z}[X]$$

where X denotes the first Chern class of π .

(You might like to start by proving an analogous statement for $H^{\bullet}(\mathbb{P}^{n-1}\mathbb{C},\mathbb{Z})$ using the fibration π_n : $\mathbb{C}^n \setminus \{0\} \to \mathbb{P}^{n-1}\mathbb{C}.$)

5. Let G be a finite group. Show that $H^{\bullet}_{G}(pt; \mathbb{Q}) = \mathbb{Q}$. Give an example to show that $H^{\bullet}_{G}(pt; k)$ can be non-trivial if k is of positive characteristic.

6. Using the Question 3 to describe BG for $G = S^1$ and a finite cyclic group. Show that BG cannot be taken to be a finite CW complex in these cases. (*Hint:* Use that $H^{\bullet}_{G}(pt) = H^{\bullet}(BG)$ does not depend on the choice of BG.)

- 7. Let B be a simplicial complex, and $\pi: E \to B$ a principal \mathbb{Z} -bundle.
 - a) Show that π is trivial over each simplex of B.
 - b) Show that there exists a \mathbb{Z} -equivariant map $f : E \to \mathbb{R}$ and conclude that $\pi = f^* \pi_{\mathbb{Z}}$ where $\pi_{\mathbb{Z}} : \mathbb{R} \to \mathbb{R}/\mathbb{Z} = S^1$ denotes the quotient map.

8. (This exercise is an attempt to convince the reader that much EG can also be constructed as a direct limit of algebraic varieties. This is useful to define equivariant étale cohomology, equivariant intersection theory etc.) Let G be an algebraic group over \mathbb{C} and $\rho: G \to GL(V)$ be a faithful (algebraic) representation on a finite dimensional complex vector space.

a) Show that the set

$$Z_n := \{ v = (v_1, \dots, v_n) \mid \operatorname{Stab}_G v \neq \{e\} \}$$

is a closed subvariety.

b) Show that

$$\lim_{\to} \operatorname{codim}(Z_n, V^n) = \infty$$

and hence conclude that

 $\lim V^n \setminus Z_n$

can be taken as a model for EG.

c) Explore what this construction gives if one takes V to be the natural representation of $G = (\mathbb{C}^*)^n$ and $G = GL_n(\mathbb{C})$.