Lecture 6.1

Hecke Algebras w/ unequal parameters and folding.

There's a generalization of H, by first generalizing the length function L^2. Instead of requiring $L(s) = 1 \forall s \in S$, instead, $L(s) \in \mathbb{Z}$. However, we want $L(t)$ well-defined, so L must satisfy the basic relation, i.e. $L(st_m) = L(ts_m) \Rightarrow L(s) = L(t)$ when m is odd.

Now define H_L w/ generators H_s as before, but replace the old quadratic relation $H_s - t)(H_s + t^r) = 0$ with a new one $(H - t)(H + t^r) = 0$.

The basic theory of the Hecke algebra extends to H_L; basic, given by W.

- bar maintain $H_s = H_s^2$, $v = v^2$

- x, y in W with $H_x = H_x^2$ and $H_y = H_y$ mod v. $\mathbb{Z}v[x, y] < H_L$

The KL polyhedron is even degenerate (after napping $y^2 = H_L$)

(Though some facts get weird when $L(s) < 0$, $L(t) > 0$.)

However, behavior of KL basis is quite different!

Ex: $S = \{s, t\}$, $m_{st} = 4$. $L(s) = 1$, $L(t) = 0$. $H_s = 1 + V$, $H_t = H_t + V^2$.

However, much of this
I wish to do
will be decided...
Where do weigted Cox sets come from? One nice set of examples: folding

\[\text{Ex 1: } s + v \mapsto w \]

Then \(W^* = \langle s, u, v, w \rangle \) is type \(B_{k+1} \).

\[(W, l) = \]

with natural length \(l \) (cf. \(L(s) = 2, L(u) = 2, L(v) = 1 \)).

However, you don't get \(H^*(w) \) or \(H^*(w, s) \) either, but fixed

\[(w, v^0_s) \]}

Clearly, \(\sigma^* C \) \(H_{(w, s), l} \) too, but fixed

\[\sigma^* C \]}

\[H_{x, y}^* \]}

while \(H_{x, y}^* \) should have size \(H_{x, y}^* \).

Ex 1: \(\sigma^* C \) \(\text{Ob} = (w, S_{\text{Bin}}) \)

On color level, wrong to just look at "fixed points" \(M \) or \(M = \sigma(M) \).

Should look at \(\text{equivalent objects} \)

\[\sigma_{\text{Bin}} = \text{Ob} = (M, \quad M \rightarrow \sigma M) \]

\[\text{(so clearly } \sigma_{\text{Bin}}) \]

\[M_{x, y}^* (M, \phi) (N, \psi) = \{ M \rightarrow \sigma M \} \]

\[\phi \leftarrow \lambda \psi \]

\[M \rightarrow \sigma M \]

\[N \rightarrow \sigma N \]

Example objects:

\[(B_1, 1) \quad (B_2, B_1, 1) \quad (B_2, B_1, -1) \quad (B_2 \otimes B_1, (s, 0) \times (a, b) = 1) \]

All isomorphic?

Not isomorphic.

\[B_2 \not\cong B_1 \]

\[a \not\equiv b \]

of order scalars.
There's an action of $\mathbb{Z}/2\mathbb{Z}$ on objects: $(M, \nu) \leftrightarrow (M, -\nu)$

$$(b_\nu, 1) \leftrightarrow (b_\nu, -1)$$

The Grothendieck group will be too big - 2 copies of W, one of the rest. But you can "weight" or "twist" the Grothendieck group by a character of $\mathbb{Z}/2\mathbb{Z}$!

Def: \[
\mathbb{S}_{\text{Bino}}^{\text{inv}} = \mathbb{S}_{\text{Bino}}^{\text{inv}} / [\mathbb{M}, \mathbb{E}] = [\mathbb{M}, -\mathbb{E}] \quad \text{basis same as } (H^{w, S_{\text{Bino}}})
\]

\[
\mathbb{S}_{\text{Bino}}^{\text{inv}} = \mathbb{S}_{\text{Bino}}^{\text{inv}} / [\mathbb{M}, \mathbb{E}] = - [\mathbb{M}, -\mathbb{E}] \quad \text{basis just } \nu.
\]

Why bases? Space $\text{End}(M) = k$ for an adec. $\text{End}(M)$.

Then $(M \pm 1)$ and $(M \otimes M, \mathbb{E})$ are adec. in $\mathbb{S}_{\text{Bino}}^{\text{inv}}$. \(\otimes_{\text{adeq}}\)

Thm: Assume the Soergel conjecture holds. Then $\mathbb{S}_{\text{Bino}}^{\text{inv}}$ categories

\((H^{w, S_{\text{Bino}}})^2\) and $\mathbb{S}_{\text{Bino}}^{\text{inv}}$ categories

Ex: (hypothetical) $$(H^{w, S_{\text{Bino}}})^2 = (v^2 + q^2 + v) H^{w, S_{\text{Bino}}}

\mathbb{S}_{\text{Bino}} \cong \mathbb{S}_{\text{Bino}}(2) \oplus \mathbb{S}_{\text{Bino}}(3) \oplus \mathbb{S}_{\text{Bino}}(2) \oplus \mathbb{S}_{\text{Bino}}(3)

\text{but } (\mathbb{S}_{\text{Bino}}(2), \mathbb{S}_{\text{Bino}}(2)) \cong (\mathbb{S}_{\text{Bino}}(2)^2) \oplus (\mathbb{S}_{\text{Bino}}(2)^2) \oplus (\mathbb{S}_{\text{Bino}}(3))

\text{they cancel in Groth } \mathbb{P}_{\text{no}}

To get KL poly, can count light leaves, like in usual way, but weigh by the trace of σ. for [Jaya]
\[\text{Ex}_{Buv(Buv Buv Buv, Buv)} \]

we know \[B_{Buv}(uv^2) \subseteq B_{Buv}A_{Buv} \]

\[+1 \]

projection

\[\frac{1}{2} + \frac{1}{2} \]

inclusion

\[\text{remapping maps on} \]

\[\frac{1}{2} + \frac{1}{2} \]

\[\text{traw} - 1 \]

\[\text{traw} + 1 \]

so get KL poly \[V^3 - V. \]

Any ideas on how to prove in this talk?