Lecture 1.3: Soergel Bimodules

The cat. SBim of Soergel Bimodules is an algebraic, "combinatorial" cat of \mathcal{H}. Fairly easy to define & play with - it amounts to the ∞-depth study of the reflection reps \mathcal{H}. Fix (W,S). Well define Λ^+ using the symmetric (generalized) Cartan matrix A of (W,S).

$$A = \begin{pmatrix} 2 & a_{st} \\ a_{ts} & 2 \\ a_{tt} & a_{tt} \end{pmatrix} \quad \text{with } a_{st} - a_{ts} = -2 \cos \frac{\pi}{M_{st}} \quad \text{for } M_{st} \neq 0$$

\[\text{or for } M_{st} = 0, \quad a_{st} - a_{ts} = \pm 2 \text{ is an option, as is anything suitably generic.}\]

See exercises.

Let Λ^+ be the $1\text{SL-dim } W/\mathbb{R}$ spanned by $\langle \alpha_j \rangle_{j \in S}$, called simple roots.

$W\text{C}(\Lambda^+)$ by $s(\alpha_t) = \alpha_t - a_{st} \alpha_s$ so $s_j : \Lambda^+ \to \Lambda^+$.

\[s_j : s(\alpha_j) = \alpha_j + 2 \cos \frac{\pi}{M_{st}} \alpha_s \quad \text{is } \text{a technically part - in fact, many other versions of } \Lambda^+ \text{ will}\]

do (not-symmetric matrices, extension to $\times 1\text{SL-dim, etc.)}. \text{This will suffice for our purposes.}\]

From Λ^+, we will extract a bunch of interesting graded commutative rings.

Def: Let $R = \text{Sym}(\Lambda^+) = \mathbb{R}[\alpha_j]$ (a poly ring), graded w/ depth $= 2$. WGB.

For $J \subseteq S$, $W_J \subseteq W$ consider $R^J = R^{\Lambda_+^J}$ invariants. (Defined for all J, but we're really only interested when W_J is finite, i.e. J is frozen, for reasons you'll see.)

Ex: $W = S_p, C = \text{TR}[x_1, \ldots, x_n]/(x_i - 0) \quad \text{as in Remark, can ignore this.}$

$W_1 = S_3 \times S_2 \times S_1$ \quad $R_1^2 = \mathbb{R}[x_i, x_j, x_k, x_l, x_m, \alpha_i, \alpha_j, \alpha_k, \alpha_l, \alpha_m, \alpha_n]$. \quad \text{is still a poly ring}

Key Ex: R_1^S, R_1^R for fixed $s \in S$. We have $\alpha_i \in \mathcal{R}^S$. Since $\alpha_i \leftrightarrow \alpha_i + 2 \cos \frac{\pi}{M_{it}} \alpha_s$, we see $\alpha_i + 2 \cos \frac{\pi}{M_{it}} \alpha_s \in \mathcal{R}_1^S$.

In fact, $R_1^S = \text{TR}[\mathcal{R}_1^S, \alpha_i + 2 \cos \frac{\pi}{M_{it}} \alpha_s]$. \quad $R_2^1 = R_1^S \otimes R_1^{S_2}$, but here $R_2 = R_1^S \otimes R_1^{S_2}$. Any $f \in g + h \alpha_s, \quad g \in R^S, \quad h \in R_1^{S_2}$, so in fact, R is free over R^S w/ basis $\{ 1, \alpha_1^\perp \}$, $R^1 = R^S \otimes R^{1_2}$ as graded R^S-mod.

Easy way to find coeff: g1h: Demazure operator: $d_\alpha(f) = \frac{f - sf}{\alpha_s}$, kills R^S. $d^2 = 0$, exact. On Λ^+, get S column of A.

\[d_\alpha : R \to R^S, \quad d_\alpha \text{ is } R^S\text{-linear, and kills } R^S. \text{ } d^2 = 0. \text{exact.} \quad \text{On } \Lambda^+ \text{ get } S \text{ column of } A\]
\[f = g + h \mu s \]
\[h = \frac{1}{a} \partial_s(f) \]
\[g = \frac{1}{a} \partial_s(f) \mu s \]

- **Twisted Leibniz rule**
 \[\partial_s(fg) = \partial_s(f)g + sf(fg) \]

- The pairing \((fg) \rightarrow ds(fg)\)
 is perfect. I.e. the bases \[\{1, \frac{a}{s}, \frac{a}{s} 1\} \] are dual.
 \[ds(a; b) = \delta_{ab} \] \[\Rightarrow R^s \otimes R \text{ is a graded Frobenius} \]

What can we do with this ring ext?

Def. Let \(B_\omega = R \otimes R(1) \) be an \(R \)-bimodule.

- as a porous well
- \[\sum f \frac{g}{g} \]
- that only \(s \)-symmetric poly can osmose through.
- well make this notation more precise soon.

If \(f = g + h \mu s \) then \(\text{leaf} = \text{gol} + 1 \text{hool} \). As left \(R \)-mod, \(B_\omega \) has basis:

\(\{1, \frac{a}{s} 1\} \)

- **Def.** A **Bott-Samelson bimodule** is
 \[B_\omega = B_\omega \otimes R \otimes \cdots \otimes B_\omega = R \otimes R \otimes \cdots \otimes R \]

- **Exerc.** a) **Generalize** argument above. \(B_\omega \) has basis as left \(R \)-mod given

- by \(\{1 \otimes a \otimes s^t \otimes \cdots \otimes s^{u} \} \) for \(s \in E_\omega \)

b) \(B_\omega \otimes B_\omega \) can slide anything out of middle, since \(\mu_s c \mu^w + (s)^t \) (except \(a_{st} \neq 2 \))

\[\begin{align*}
\begin{cases}
\text{as an } R\text{-bimodule, generated by } 1 \otimes 1 \\
\text{So } \exists \text{ surjective map } R \otimes R(2) \rightarrow B_\omega \otimes B_\omega.
\end{cases}
\end{align*} \]

- Inverse map?
 - When \(m_s = 2 \), yes!
 - When \(m_s + 2 \), no!

- How to slide at \(1 \otimes 1 \) ?

- **Exerc.** c) Make this decom explicit:

- **Def.** A **Sergel bimodule** is a \((\oplus, \odot, \omega)\) of a summand of a **Bott-Samelson bimodule**.

Forms a full monoidal subset of \(R\text{-bimodules.} \)
The theory of Frobenius extensions:

Def: A (commutative) ring ext \(A \rightarrow B \) is Frobenius if \(E : B \rightarrow A \) is \(A \)-linear \(\text{trace map} \) and if \(B \) is free finite rank \(A \)-module with dual bases \(E_x \)'s \(E_y \)'s s.t. \(\varphi(x, y) = \delta_y \).

Frobenius extension \(\Rightarrow \) Frobenius reciprocity holds.

The bimodule \(\text{Ind}_A B \) gives functor \(\text{Ind}_A B : \text{Mod}_A \rightarrow \text{Mod}_B \) \(\text{"Induction"} \)

\[\text{Res}^B_A : \text{Mod}_B \rightarrow \text{Mod}_A \] \(\text{"Restriction"} \)

For any ring ext \(\text{Ind} \rightarrow \text{Res} \), i.e.

\[\text{Hom}_B(\text{Ind} M, N) \cong \text{Hom}_A(M, \text{Res} N) \]

determined by unit + counit of adjunction, \(\text{co-unit} \) \(\text{Hom}_B(\text{Ind} \text{ Res} M, N) \cong \text{Hom}_A(\text{Res} M, \text{Res} N) \Rightarrow \text{unit} \)

get natural terms \(\text{Ind} \text{ Res} \rightarrow \text{Id}_{\text{Mod}_B} \)

\[\& \text{Res} \text{ Ind} \rightarrow \text{Id}_{\text{Mod}_A} \]

just multiplication, \(\text{Res} \rightarrow \text{Ind} \)

Unit: Similarly get map \(\text{Res} \rightarrow \text{Id}_{\text{Mod}_B} \)

For Frobenius ext, also get \(\text{Res} \rightarrow \text{Ind} \). Defined by \(\text{Res} A \rightarrow A \)

Said another way, \(B \otimes_A B \) is a Frobenius object in \(\text{Mod}_B \)

Our example: \(A = \mathbb{Z} \), \(B = R \), \(R \otimes_A R = \mathbb{Z} \).

Rmk: Every graded version of all this business: \(\text{Ind}, \text{Res} \) commute up to shift by \(l \).

deg \(\varphi = -2l \) then call ext degree \(l \).

Next lecture and defn.

Thm: If \(I \) is finitary, \(R \otimes_I \) is a Frobenius object, \(R \otimes IC \) \(R \) is a Frobenius ext. of degree \(l \).

To get the trace \(R \otimes_I : \text{Claim:} \) satisfy braid relation.

\[\varphi \Rightarrow \text{defn for any } w \in W. \text{ Gysin's trick} \]

Clearly \(\text{Im}(\varphi) \cap \text{Im}(\psi) = \varphi \)

\(b/c \) can choose rel. exp with \(s \) on left.

Rmk: For \(I \) finitary, \(R \otimes IC \) is Frobenius of degree \(l(a_y) - l(a_z) \), \(\varphi \Rightarrow \text{associativity} \)

Def: Singular Seung-ki Bimodules are \(\otimes, \otimes_{(n)}, \otimes_{(1)} \) of \(\text{Ind} \rightarrow \text{Res} \) for finitary \(I \)

More precisely, 2-Act: \(\text{Ob: } I \text{-finitary} \)

\[\text{1-Meil: } K^{(n)} : \otimes K^{(n)} \otimes K^{(n)} \]

2-Meil: Bimodule maps.

and similar, etc.
If time

Ex. \(S = \frac{3}{2}, 3 \) \(m \leftrightarrow \lambda \cdot M. \)

\(Z = \alpha_s^2 + \alpha_s \alpha_t^2 + \alpha_t^2 = \alpha_s^2 + \alpha_t^2(\alpha_s \neq 0 \alpha_t) \in R^{st} \)

a) If \(m = \infty \), \(\alpha_s \neq \pm 2 \) (i.e., \(z \) is not a square) then \(R^{st} = R[z] \)

b) If \(m = \infty \), \(\alpha_s = \pm 2 \) then \(R^{st} = R[\alpha_s + \alpha_t] \)

either way, wrong transcendene degree, \(R^{st} \nsubseteq R \) is NOT a finite extension.

c) \(m < \infty \). Can define positive roots \(\Omega^+ \): Note that \(\omega_{st}(w) = w \), the collection of \(\{ \cdot \omega_{st}(\alpha_i) \}_{\alpha_i \in \Omega^+} \) = \(\Omega^+ \), full \(W \) orbit is \(\pm \Omega^+ \).

\(\Pi = \Pi \Omega^+ \) the \(m \)-fold, \(s(\Pi) = \{ s(\Pi) \} = -1 \) b/c permute roots except one, \(R^{st} = R^{st} \).

Similarly, let \(Z = \Pi (\Omega^+)^1 \), \(Z \in R^{st} \) and \(R^{st} = R[\Omega, Z] \).

More exercises on roots, Demazure operators, etc on exercise sheet.

Finding dual basis explicitly is very annoying. Want root-theoretic description.