Warming up:

1. Check that the one color relations hold in Soergel bimodules.

2. Describe all light leaves maps from ss . . . s (m times).

3. Let $m_{st} = m < \infty$. For $k > 0$, let $w = stst . . . st$ of length $2(m + k)$. What is the dimension of $\text{Hom}(BS(w), R)$ in degree $-2k$? Draw several different graphs realizing the same morphism in this space.

4. Let $f \in b^* \in R$ be a linear polynomial. For a general expression w, find a formula for $f e_w$ in the 01-sequence basis of $BS(w)$ as a right R-module.

Longer exercises:

5. Let TL_n be the Temperley-Lieb algebra with n strands, where a circle evaluates to $-[2] = -(q + q^{-1}) \in \mathbb{Z}[q, q^{-1}]$. Show that the space of all elements killed by caps above (resp. cups below) is one-dimensional, and show that these spaces agree. The Jones-Wenzl projector $JW_n \in TL_n$ is uniquely specified in this one-dimensional kernel by the fact that the coefficient of the identity is 1. Verify the following recursive formula.

\[
JW_{n+1} = JW_n + \sum_{i=1}^{n} \frac{[i]}{[n+1]} JW_n
\]

The trace of an element $a \in TL_n$ is the evaluation in $\mathbb{Z}[q, q^{-1}]$ of the closed diagram below. Calculate the trace of JW_n (hint: use induction). In a specialization of $\mathbb{Z}[q, q^{-1}]$ where the trace of JW_n is zero, what do you get when you rotate JW_n by one strand?

6. a) Whenever $m_{st} = 2$ show that $B_s B_t \cong B_t B_s$.

b) Whenever $m_{st} = 3$ show that $B_s B_t B_s \cong B_{sts} \oplus B_s$ and $B_t B_s B_t \cong B_{tst} \oplus B_t$ in $SBim$, where $B_{sts} = B_{tst}$ is a common summand. (Harder, but very important.)

c) For any simply-laced Coxeter group (i.e. $m_{st} \in \{2, 3\}$), show that the map $H \rightarrow [SBim]$ sending $b_s \mapsto [B_s]$ is a homomorphism.
7. Let \(S = \{s, t, u\} \) be type \(A_3 \). Let \(w = tsuts \) and let \(y = utstut \) be two expressions for the longest element \(w_0 \in W \). There are (essentially) two paths from \(w \) to \(y \) in the reduced expression graph of \(w_0 \). Find a reasonably quick proof that the two corresponding morphisms of Bott-Samelson bimodules are not equal.

8. For a Soergel bimodule \(B \), let \(\overline{B} \) denote \(B \otimes_R R \) be the right quotient. For example, \(\overline{BS(w)} \) has a basis over \(R \) given by 01-sequences. Just as \(BS(w) \) has an intersection form valued in \(R \), so too does \(BS(w) \) have an intersection form valued in \(R \).

The endomorphism \(L \) of \(B \) gives a degree 2 endomorphism \(L \) of the vector space \(\overline{B} \). What is \(\langle c_{\text{bot}}, L^2(c_{\text{bot}}) \rangle \)? What is \(\langle L(c_{\text{bot}}), L(c_{\text{bot}}) \rangle \)? Find an element \(b \) of degree zero which is perpendicular to \(L(c_{\text{bot}}) \). What is \(\langle b, b \rangle \)?

Now let \(L_0 \) be the degree 2 endomorphism of \(\overline{B} \) given by left multiplication by \(\alpha_s \). What is \(L^2_0(c_{\text{bot}}) \)?

9. In the previous question we defined the intersection form on \(\overline{BS(w)} \). Now repeat some of the same calculations with \(B_sB_tB_s \). What is \(\langle c_{\text{bot}}, L^2(c_{\text{bot}}) \rangle \)? What is \(\langle L(c_{\text{bot}}), L(c_{\text{bot}}) \rangle \)? Find a basis for \(B_sB_tB_s^{-1} \) (i.e. the elements in degree \(-1\)) in the kernel of \(L^2 \). Are they orthogonal to \(L^2(c_{\text{bot}}) \) under the intersection form? Show that the form \(\langle v, w \rangle = \langle v, Lw \rangle \) on this orthogonal subspace of \(\overline{B_sB_tB_s}^{-1} \) is negative definite.

Bonus problem: what does the picture look like when restricted to the summand \(B_s \subset B_sB_tB_s \)? What does it look like when restricted to the summand \(B_{sts} \subset B_sB_tB_s \)?

10. Fix a Soergel bimodule \(B \) and consider the two maps \(\alpha, \beta : B \to B \otimes_R B \) given by \(\alpha(b) := bc_{\text{id}} \) and \(\beta(b) := bc_s \).

Together, \(\alpha(B) \) and \(\beta(B) \) span \(BB_s \). Show that \(\beta \) is a morphism of bimodules, whilst \(\alpha \) is a morphism of left modules. Find a formula for \(\alpha(br) \) for \(b \in B \) and \(r \in R \).

Suppose that \(B \) is equipped with an invariant form \(\langle \cdot, \cdot \rangle_B \). Prove that there is a unique invariant form \(\langle \cdot, \cdot \rangle_{BB_s} \) on \(BB_s \), which we call the induced form, satisfying

\[
\langle \alpha(b), \alpha(b') \rangle_{BB_s} = \varDelta_s(\langle b, b' \rangle_B) \quad (1)
\]

\[
\langle \alpha(b), \beta(b') \rangle_{BB_s} = \langle b, b' \rangle_B \quad (2)
\]

\[
\langle \beta(b), \beta(b') \rangle_{BB_s} = \langle b, b' \rangle_B \alpha_s \quad (3)
\]

for all \(b, b' \in B \). Show that the intersection form on a Bott-Samelson bimodule agrees with the form induced many times from the canonical form on \(R \).

Now consider \(\overline{BB_s} \), with its induced form valued in \(R \). Calculate a matrix for this form in some basis. Prove that the induced form is non-degenerate whenever the original form on \(\overline{B} \) is non-degenerate.

11. After localization to \(Q \), the fraction field of \(R \), the Bott-Samelson bimodule \(B_s \otimes_R Q \) splits as a direct sum of \(Q_s \) and \(Q \) (when using localization we ignore the grading). Therefore, for any subsequence \(e \subset w \), there is a summand \(Q_e \subset BS(w) \otimes_R Q \), a tensor product of either \(Q_{w} \) or \(Q \) depending on whether \(e_i \) is 1 or 0. Obviously \(Q_e \cong Q_{x} \) when \(e \) expresses the element \(x \).

Use localization and the Bruhat path dominance order to prove that the images in \(\mathbb{E}BS\text{Bim} \) of the light leaves maps in \(\Xi_{w,x} \) are all linearly independent.

12. Show that the functor from \(D \) to \(\mathbb{E}BS\text{Bim} \) is an equivalence of categories, assuming that double leaves form a basis for morphisms in \(D \).
13. (Assumes knowledge of the support of a coherent sheaf.) For \(w \in W \), let \(\text{Gr}_w = \{(w(v), v) \subset \mathfrak{h} \times \mathfrak{h} \} \). Let \(w_1, w_2, \ldots \) be an enumeration of the elements of \(W \), and let \(B \) be an \(R \)-bimodule. Suppose there exists a filtration \(0 \subset B^1 \subset \ldots \subset B^m = B \) such that \(B^i/B^{i-1} \cong \oplus R_{w_i}^{\oplus n_w} \). Show that \(B^i \) is equal to the submodule of \(B \) consisting of sections with support on the subvariety \(\bigcup_{j=1}^i \text{Gr}_{w_j} \). Deduce that a standard filtration on a Soergel bimodule is unique and is preserved by all morphisms. (Hint: the support of any nonzero element of \(R_x \) is \(\text{Gr}_x \).)

For fun?:

14. Find the appropriate notion of the Jones-Wenzl relation in type \(B_2 \), with the usual non-symmetric Cartan matrix. Find the orthogonal idempotents giving the direct sum decomposition \(B_sB_tB_sB_t \cong B_{stat} \oplus B_{st} \oplus B_{st} \). (Warning: Computationally intensive.)

Research level questions:

15. Consider the space \(\text{Hom}(BS(w), BS(y)) \), and let \(s \) be a color which does not appear in either sequence (i.e. does not appear on the boundary). Exercise: Soergel’s Hom formula implies that this Hom space is spanned by diagrams which do not involve the color \(s \). Exercise: Similarly, if \(s \) only appears on the boundary once, show that the Hom space is spanned by diagrams for which the \(s \)-colored strand ends immediately in a dot, and \(s \) is otherwise nonexistent. This phenomenon is called color elimination.

Is there a diagrammatic algorithm to take a graph with extraneous colors, and rewrite it as a linear combination of graphs only involving the colors on the boundary? Is there a simple, graph-theoretic proof of color elimination (without deducing it from double leaves, for instance)? Such a proof was given for “extremal colors” in type \(A \) in Elias-Khovanov, and in dihedral type by Elias.

16. Is there a way to make light leaves canonical? Is there a way to make them adapted to intersection forms?