# Soergel bimodules and Kazhdan-Lusztig conjectures QGM, Aarhus March 2013

#### Tuesday problem sheet

Warming up:

- 1. Check that the one color relations hold in Soergel bimodules.
- **2.** Describe all light leaves maps from  $ss \dots s$  (*m* times).

**3.** Let  $m_{st} = m < \infty$ . For k > 0, let  $\underline{w} = stst \dots st$  of length 2(m+k). What is the dimension of Hom $(BS(\underline{w}), R)$  in degree -2k? Draw several different graphs realizing the same morphism in this space.

**4.** Let  $f \in \mathfrak{h}^* \in R$  be a linear polynomial. For a general expression  $\underline{w}$ , find a formula for  $fc_{\underline{\varepsilon}}$  in the 01-sequence basis of  $BS(\underline{w})$  as a right *R*-module.

#### Longer exercises:

5. Let  $TL_n$  be the Temperley-Lieb algebra with n strands, where a circle evaluates to  $-[2] = -(q + q^{-1}) \in \mathbb{Z}[q, q^{-1}]$ . Show that the space of all elements killed by caps above (resp. cups below) is one-dimensional, and show that these spaces agree.

The Jones-Wenzl projector  $JW_n \in TL_n$  is uniquely specified in this one-dimensional kernel by the fact that the coefficient of the identity is 1. Verify the following recursive formula.

The trace of an element  $a \in TL_n$  is the evaluation in  $\mathbb{Z}[q, q^{-1}]$  of the closed diagram below. Calculate the trace of  $JW_n$  (hint: use induction). In a specialization of  $\mathbb{Z}[q, q^{-1}]$  where the trace of  $JW_n$  is zero, what do you get when you rotate  $JW_n$  by one strand?



**6.** a) Whenever  $m_{st} = 2$  show that  $B_s B_t \cong B_t B_s$ .

- b) Whenever  $m_{st} = 3$  show that  $B_s B_t B_s \cong B_{sts} \oplus B_s$  and  $B_t B_s B_t \cong B_{tst} \oplus B_t$  in SBim, where  $B_{sts} = B_{tst}$  is a common summand. (Harder, but very important.)
- c) For any simply-laced Coxeter group (i.e.  $m_{st} \in \{2,3\}$ ), show that the map  $\mathbf{H} \to [\mathbb{S}Bim]$  sending  $b_s \mapsto [B_s]$  is a homomorphism.

7. Let  $S = \{s, t, u\}$  be type  $A_3$ . Let  $\underline{w} = tstuts$  and let  $\underline{y} = utstut$  be two expressions for the longest element  $w_0 \in W$ . There are (essentially) two paths from  $\underline{w}$  to  $\underline{y}$  in the reduced expression graph of  $w_0$ . Find a reasonably quick proof that the two corresponding morphisms of Bott-Samelson bimodules are not equal.

8. For a Soergel bimodule B, let  $\overline{B}$  denote  $B \otimes_R \mathbb{R}$  be the *right quotient*. For example,  $BS(\underline{w})$  has a basis over  $\mathbb{R}$  given by 01-sequences. Just as  $BS(\underline{w})$  has an intersection form valued in R, so too does  $\overline{BS(\underline{w})}$  have an intersection form valued in  $\mathbb{R}$ .

The endomorphism t of  $B_s B_s$  gives a degree 2 endomorphism L of the vector space  $\overline{B_s B_s}$ . What is  $\langle c_{\text{bot}}, L^2(c_{\text{bot}}) \rangle$ ? What is  $\langle L(c_{\text{bot}}), L(c_{\text{bot}}) \rangle$ ? Find an element b of degree zero which is perpendicular to  $L(c_{\text{bot}})$ . What is  $\langle b, b \rangle$ ?

Now let  $L_0$  be the degree 2 endomorphism of  $\overline{B_s B_s}$  given by left multiplication by  $\alpha_s$ . What is  $L_0^2(c_{\text{bot}})$ ?

**9.** In the previous question we defined the intersection form on  $\overline{BS(\underline{w})}$ . Now we repeat some of the same calculations with  $B_s B_t B_s$  when  $m_{st} = 3$ . Let  $\rho \in \mathfrak{h}^*$  satisfy  $\partial_s(\rho) = \partial_t(\rho) = 1$ . Let L be the degree 2 endomorphism of  $\overline{B_s B_t B_s}$  given by left multiplication by  $\rho$ .

What is  $L^3(c_{\text{bot}})$ ? What is  $\langle c_{\text{bot}}, L^3(c_{\text{bot}}) \rangle$ ? Find a basis for  $\overline{B_s B_t B_s}^{-1}$  (i.e. the elements in degree -1) in the kernel of  $L^2$ . Are they orthogonal to  $L^2(c_{\text{bot}})$  under the intersection form? Show that the form  $(v, w) = \langle v, Lw \rangle$  on this orthogonal subspace of  $\overline{B_s B_t B_s}^{-1}$  is negative definite.

Bonus problem: what does the picture look like when restricted to the summand  $B_s \stackrel{\oplus}{\subset} B_s B_t B_s$ ? What does it look like when restricted to the summand  $B_{sts} \stackrel{\oplus}{\subset} B_s B_t B_s$ ?

**10.** Fix a Soergel bimodule B and consider the two maps  $\alpha, \beta : B \to BB_s = B \otimes_R B_s$  given by

$$\alpha(b) := bc_{\mathrm{id}} \quad \mathrm{and} \quad \beta(b) := bc_s.$$

Together,  $\alpha(B)$  and  $\beta(B)$  span  $BB_s$ . Show that  $\beta$  is a morphism of bimodules, whilst  $\alpha$  is a morphism of left modules. Find a formula for  $\alpha(br)$  for  $b \in B$  and  $r \in R$ .

Suppose that B is equipped with an invariant form  $\langle -, - \rangle_B$ . Prove that there is a unique invariant form  $\langle -, - \rangle_{BB_s}$  on  $BB_s$ , which we call the *induced form*, satisfying

$$\langle \alpha(b), \alpha(b') \rangle_{BB_s} = \partial_s(\langle b, b' \rangle_B) \tag{1}$$

$$\langle \alpha(b), \beta(b') \rangle_{BB_s} = \langle b, b' \rangle_B \text{ and } \langle \beta(b), \alpha(b') \rangle_{BB_s} = \langle b, b' \rangle_B$$
(2)

$$\langle \beta(b), \beta(b') \rangle_{BB_s} = \langle b, b' \rangle_B \alpha_s \tag{3}$$

for all  $b, b' \in B$ . Show that the intersection form on a Bott-Samelson bimodule agrees with the form induced many times from the canonical form on R.

Now consider  $\overline{BB_s}$ , with its induced form valued in  $\mathbb{R}$ . Calculate a matrix for this form in some basis. Prove that the induced form is non-degenerate whenever the original form on  $\overline{B}$  is non-degenerate.

11. After localization to Q, the fraction field of R, the Bott-Samelson bimodule  $B_s \otimes_R Q$  splits as a direct sum of  $Q_s$  and Q (when using localization we ignore the grading). Therefore, for any subsequence  $\mathbf{e} \subset \underline{w}$ , there is a summand  $Q_{\mathbf{e}} \overset{\oplus}{\subset} BS(\underline{w}) \otimes_R Q$ , a tensor product of either  $Q_{\underline{w}_i}$ or Q depending on whether  $\mathbf{e}_i$  is 1 or 0. Obviously  $Q_{\mathbf{e}} \cong Q_x$  when  $\mathbf{e}$  expresses the element x.

Use localization and the Bruhat path dominance order to prove that the images in  $\mathbb{BS}Bim$  of the light leaves maps in  $\mathbb{LL}_{w,x}$  are all linearly independent.

12. Show that the functor from  $\mathcal{D}$  to  $\mathbb{BS}Bim$  is an equivalence of categories, assuming that double leaves form a basis for morphisms in  $\mathcal{D}$ .

**13.** (Assumes knowledge of the support of a coherent sheaf.) For  $w \in W$ , let  $\operatorname{Gr}_w = \{(w(v), v\} \subset \mathfrak{h} \times \mathfrak{h}.$  Let  $w_1, w_2, \ldots$  be an enumeration of the elements of W, and let B be an R-bimodule. Suppose there exists a filtration  $0 \subset B^1 \subset \ldots \subset B^m = B$  such that  $B^i/B^{i-1} \cong \bigoplus R_{w_i}^{\oplus n_i}$ . Show that  $B^i$  is equal to the submodule of B consisting of sections with support on the subvariety  $\cup_{j=1}^i \operatorname{Gr}_{w_j}$ . Deduce that a standard filtration on a Soergel bimodule is unique and is preserved by all morphisms. (Hint: the support of any nonzero element of  $R_x$  is  $\operatorname{Gr}_x$ .)

### For fun?:

14. Find the appropriate notion of the Jones-Wenzl relation in type  $B_2$ , with the usual nonsymmetric Cartan matrix. Find the orthogonal idempotents giving the direct sum decomposition  $B_s B_t B_s B_t \cong B_{stst} \oplus B_{st} \oplus B_{st}$ . (Warning: Computationally intensive.)

## Research level questions:

15. Consider the space  $\text{Hom}(BS(\underline{w}), BS(\underline{y}))$ , and let s be a color which does not appear in either sequence (i.e. does not appear on the boundary). Exercise: Soergel's Hom formula implies that this Hom space is spanned by diagrams which do not involve the color s. Exercise: Similarly, if s only appears on the boundary once, show that the Hom space is spanned by diagrams for which the s-colored strand ends immediately in a dot, and s is otherwise non-existent. This phenomenon is called *color elimination*.

Is there a diagrammatic algorithm to take a graph with extraneous colors, and rewrite it as a linear combination of graphs only involving the colors on the boundary? Is there a simple, graph-theoretic proof of color elimination (without deducing it from double leaves, for instance)? Such a proof was given for "extremal colors" in type A in Elias-Khovanov, and in dihedral type by Elias.

**16.** Is there a way to make light leaves canonical? Is there a way to make them adapted to intersection forms?