Given any Coxeter group \((W, S)\) we can produce a coloured simplicial complex whose automorphisms are precisely \(W\). This complex is called the \textit{Coxeter complex} and will be denoted \(|(W, S)|\).

Let \(n = |S|\) denote the rank of \(W\). Its construction is as follows:

- colour the \(n\) faces of the \(n - 1\)-simplex \(\Delta\) by the set \(S\),
- take one such simplex \(\Delta_w\) for each element \(w \in W\),
- glue \(\Delta_w\) to \(\Delta_{ws}\) along the wall coloured by \(s\).
For example, consider the symmetric group on three letters:

\[W = \langle s, t \mid s^2 = t^2 = (st)^3 \rangle = \{ e, s, t, st, ts, sts \}. \]
For example, consider the symmetric group on three letters:

\[W = \langle s, t \mid s^2 = t^2 = (st)^3 \rangle = \{ e, s, t, st, ts, sts \}. \]
For example, consider the symmetric group on three letters:

\[W = \langle s, t \mid s^2 = t^2 = (st)^3 \rangle = \{ e, s, t, st, ts, sts \} \].
For example, consider the symmetric group on three letters:

$$W = \langle s, t \mid s^2 = t^2 = (st)^3 \rangle = \{e, s, t, st, ts, sts\}.$$
\[W = \langle s, t \mid s^2 = t^2 = (st)^3 \rangle = \{ e, s, t, st, ts, sts \}. \]
\[W = \langle s, t \mid s^2 = t^2 = (st)^3 \rangle = \{ e, s, t, st, ts, sts \}. \]
\[W = \langle s, t \mid s^2 = t^2 = (st)^3 \rangle = \{e, s, t, ts, st, sts\}. \]
\[W = \langle s, t \mid s^2 = t^2 = (st)^3 \rangle = \{ e, s, t, st, ts, sts \}. \]
The Coxeter complex of $S_4 = \bullet \quad \bullet \quad \bullet$:

(barycentric subdivision of the tetrahedron).
\[s \quad 4 \quad t \quad 4 \quad u \]
Let $\ell : W \to \mathbb{N}$ denote the length function on W. It is easy to describe the length function using the Coxeter complex:

$$\ell(w) = \text{length of a minimal expression for } w \text{ in the generators } s$$

$$= \text{number of walls crossed in a minimal path } id \to w \text{ in } |(W, S)|.$$
Let $\ell : W \to \mathbb{N}$ denote the length function on W. It is easy to describe the length function using the Coxeter complex:

\[\ell(w) = \text{length of a minimal expression for } w \text{ in the generators } s \]
\[= \text{number of walls crossed in a minimal path } id \to w \text{ in } |(W, S)|. \]
Let $\ell : W \rightarrow \mathbb{N}$ denote the length function on W. It is easy to describe the length function using the Coxeter complex:

$$\ell(w) = \text{length of a minimal expression for } w \text{ in the generators } s = \text{number of walls crossed in a minimal path } id \rightarrow w \text{ in } |(W, S)|.$$

The Bruhat order is trickier...
By construction $|(W, S)|$ has a left action of W.

W also acts on the alcoves of $|(W, S)|$ on the right by

$$\Delta_w \cdot s = \Delta_{ws}.$$

This action is \textit{not} simplicial, but is “local”: cross the wall coloured by s.
Using the Coxeter complex makes it easy to visualize elements of the Hecke algebra H.

We view an element $f = \sum f_x H_x$ as the assignment of $f_x \in \mathbb{Z}[\nu^{\pm 1}]$ to the alcove indexed by $x \in W$.
Recall the Kazhdan-Lusztig generator $H_s := H_s + νH_{id}$. The formulas for the action of H_s on the standard basis can be rewritten

$$H_x H_s = \begin{cases}
H_{xs} + νH_x & \text{if } ℓ(xs) > ℓ(x), \\
H_{xs} + ν^{-1}H_x & \text{if } ℓ(xs) < ℓ(x).
\end{cases}$$
Recall the Kazhdan-Lusztig generator \(\underline{H}_s := H_s + vH_{id} \). The formulas for the action of \(\underline{H}_s \) on the standard basis can be rewritten

\[
H_x \underline{H}_s = \begin{cases}
H_{xs} + vH_x & \text{if } \ell(xs) > \ell(x), \\
H_{xs} + v^{-1}H_x & \text{if } \ell(xs) < \ell(x).
\end{cases}
\]

We can visualise this as follows: ("quantized averaging operator")
Recall that the Kazhdan and Lusztig basis has the form

\[
H_x := H_x + \sum_{y < x} h_{y,x} H_y
\]

with \(h_{y,x} \in \nu \mathbb{Z}[\nu] \) and satisfies \(\overline{H_x} = H_x \).

The polynomials \(h_{y,x} \) are the Kazhdan-Lusztig polynomials.
We want to use the Coxeter complex to understand how to calculate the Kazhdan-Lusztig basis. The first few Kazhdan-Lusztig basis elements are easily defined:

\[H_{id} := H_{id}, \quad H_s := H_s + vH_{id} \quad \text{for } s \in S. \]

Now the work begins. Suppose that we have calculated \(H_y \) for all \(y \) with \(\ell(y) \leq \ell(x) \). Choose \(s \in S \) with \(\ell(xs) > \ell(x) \) and write

\[H_x H_s = H_{xs} + \sum_{\ell(y) < \ell(xs)} g_y H_y. \]

The formula for the action of \(H_s \) shows that \(g_y \in \mathbb{Z}[v] \) for all \(y < \ell(xs) \). If all \(g_y \in v\mathbb{Z}[v] \) then \(H_{xs} := H_x H_s \). Otherwise we set

\[H_{xs} = H_x H_s - \sum_{y} g_y(0) H_y. \]
\[H_{id} = \begin{array}{c}
\end{array} \]

\[H_{t} = \begin{array}{c}
\end{array} \]

\[H_{s} = \begin{array}{c}
\end{array} \]
\[H_{id} = \]

\[H_t = \]

\[H_s = \]

\[H_t H_s = \]

\[H_s = \]

\[= H_{ts} \]
\[H_{id} = \begin{array}{c}
\begin{array}{c}
1
\end{array}
\end{array} \quad H_t = \begin{array}{c}
\begin{array}{c}
1 \quad v
\end{array}
\end{array} \quad H_s = \begin{array}{c}
\begin{array}{c}
v \quad 1
\end{array}
\end{array} \]

\[H_{ts} = \begin{array}{c}
\begin{array}{c}
1 \quad v \quad v^2 \quad v
\end{array}
\end{array} \quad H_{st} = \begin{array}{c}
\begin{array}{c}
v \quad v^2 \quad 1
\end{array}
\end{array} \]
\[
\begin{align*}
H_{id} &= \begin{array}{c}
\text{Diagram 1}
\end{array} \\
H_t &= \begin{array}{c}
\text{Diagram 2}
\end{array} \\
H_s &= \begin{array}{c}
\text{Diagram 3}
\end{array} \\
H_{ts} &= \begin{array}{c}
\text{Diagram 4}
\end{array} \\
H_{st} &= \begin{array}{c}
\text{Diagram 5}
\end{array}
\end{align*}
\]
\[
\begin{align*}
H_{id} &= \begin{array}{c}
\begin{array}{c}
1 \\
\end{array}
\end{array} & H_t &= \begin{array}{c}
\begin{array}{c}
1 \\
V \\
V^2 \\
V \\
\end{array}
\end{array} & H_s &= \begin{array}{c}
\begin{array}{c}
V \\
V^2 \\
1 \\
V \\
\end{array}
\end{array} \\
H_{ts} &= \begin{array}{c}
\begin{array}{c}
1 \\
V \\
V^2 \\
V \\
\end{array}
\end{array} & H_{st} &= \begin{array}{c}
\begin{array}{c}
V \\
V^2 \\
1 \\
V \\
\end{array}
\end{array} & H_{ts}H_t &= \begin{array}{c}
\begin{array}{c}
1 \\
V \\
V^2 \\
V \\
\end{array}
\end{array} \cdot H_t &= \begin{array}{c}
\begin{array}{c}
1 + V^2 \\
V \\
V + V^3 \\
V^2 \\
V \\
\end{array}
\end{array}
\end{align*}
\]
\[H_{id} = \begin{array}{c}
1 \\
\end{array} \quad H_t = \begin{array}{c}
1 \\
\end{array} \quad H_s = \begin{array}{c}
1 \\
\end{array} \]

\[H_{ts} = \begin{array}{c}
1 \\
\end{array} \quad H_{st} = \begin{array}{c}
1 \\
\end{array} \]

\[H_{ts} H_t = \begin{array}{c}
1 \\
\end{array} \quad \cdot H_t = \begin{array}{c}
1 + \nu^2 \\
\end{array} \]

Hence: \[H_{tst} = H_{ts} H_t - H_t = \begin{array}{c}
\nu^2 \\
\end{array} \]
For dihedral groups (rank 2) we always have $h_{y,x} = v^{\ell(x) - \ell(y)}$ (Kazhdan-Lusztig basis elements are smooth.)

However in higher rank the situation quickly becomes more interesting...
Kazhdan-Lusztig positivity conjecture (1979):

\[h_{x,y} \in \mathbb{Z}_{\geq 0}[v] \]
Kazhdan-Lusztig positivity conjecture (1979):
\[h_{x,y} \in \mathbb{Z}_{\geq 0}[v] \]

Established for crystallographic \(W \) by Kazhdan and Lusztig in 1980, using Deligne’s proof of the Weil conjectures.

Crystallographic: \(m_{st} \in \{2, 3, 4, 6, \infty\} \).
Why are Kazhdan-Lusztig polynomials hard?
Why are Kazhdan-Lusztig polynomials hard?

Polo’s Theorem (1999)

For any $P \in 1 + q\mathbb{Z}_{\geq 0}[q]$ there exists an m such that $v^m P(v^{-2})$ occurs as a Kazhdan-Lusztig polynomial in some symmetric group.
Why are Kazhdan-Lusztig polynomials hard?

Polo’s Theorem (1999)

For any $P \in 1 + q\mathbb{Z}_{\geq 0}[q]$ there exists an m such that $v^m P(v^{-2})$ occurs as a Kazhdan-Lusztig polynomial in some symmetric group.

Roughly: all positive polynomials are Kazhdan-Lusztig polynomials!
The most complicated Kazhdan-Lusztig-Vogan polynomial computed by the *Atlas of Lie groups and Representations* project:

\[152q^{22} + 3 472q^{21} + 38 791q^{20} + 293 021q^{19} + 1 370 892q^{18} +
\]
\[+ 4 067 059q^{17} + 7 964 012q^{16} + 11 159 003q^{15} +
\]
\[+ 11 808 808q^{14} + 9 859 915q^{13} + 6 778 956q^{12} +
\]
\[+ 3 964 369q^{11} + 2 015 441q^{10} + 906 567q^{9} +
\]
\[+ 363 611q^{8} + 129 820q^{7} + 41 239q^{6} +
\]
\[+ 11 426q^{5} + 2 677q^{4} + 492q^{3} + 61q^{2} + 3q
\]

(This polynomial is associated to the reflection group of type \(E_8 \). See www.liegroups.org.)