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First steps in representation theory



We owe the term group(e) to Galois (1832).

Caveat: Actually this might not be true. It is possible that the term occurs earlier in Ruffini (1799).



Galois theory:

x3-1
f e Q[x] X2+ x+ 1=
Qi
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{a;} roots of f e 0
[ ]
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Form K = Q(aq,...,ap) Q(e?mi/3).

Gal(K,Q) := Aut(Q(a1,...,am)) (“Galois group™)
Gal(K,Q) acts on {a1,...,am}.

Galois theory: This action tells us everything about f and its roots.



En d’autres termes, quand un groupe G en contient un autre H, le
groupe G peut se partager en groupes, que 'on obtient chacun en opérant
sur les permutations de H une méme substitution ; en sorte que

G=H+HS+HS +....

1. Terite la veille de la mort de l'auteur. (Insérée en 1832 dans la Revue ency-
clopédigue, numéro de septembre, page 568.) {J. LIOUVILLE.)
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Et aussi il peut se diviser en groupes qui ont tous les mémes substitutions,
en sorte que

G=H+TH+TH+....

Ces deux genres de décompositions ne coincident pas ordinairement.
Quand ils coincident, la décomposition est dite propre.

11 est aisé de voir que, quand le groupe d'une équation n’est susceptible
d’aucune décomposition propre, on aura beau transformer cette équation,
les groupes des équations transformées auront toujours le méme nombre
de permutations.

Au contraire, quand le groupe d’'une équation est susceptible d'une dé-
composition propre, en sorte qu'il se partage en M groupes de N permuta-
tions, on pourra résoudre I’équation donnée au moyen de deux équations :
T'une aura un groupe de M permutations, 'autre un de N permutations.

Lors done qu'on aura épuisé sur le groupe d’une équation tout ce qu'il
y a de décompositions propres possibles sur ce groupe, on arrivera & des
groupes qu'on pourra transformer, mais dont les permutations seront tou-
jours en méme nombre.

Si ces groupes ont chacun un nombre premier de permutations, I'équa-
tion sera soluble par radicaux ; sinon, non.

H < G is a subgroup

Letter to Auguste Chevalier in 1832

written on the eve of Galois' death

notion of a normal subgroup

notion of a simple group

notion of a soluble group

main theorem of Galois theory



Representation theory is the study of linear group actions:
A representation of a group G is a homomorphism
p:G— GL(V)
for some vector space V.
A representation is the same thing as a linear action of G on V.

A representation is irreducible if the only subspaces U < V which
are stable under the action of G are {0} — V and V itself.

There is a Jordan-Holder theorem: the irreducible representations
are the building blocks of all representations.



A representation theorist’s strategy:

problem involving a problem involving a
group action ANNANNNNNS  linear group action
ccX G C k[X

R

“decomposition” of
problem
GCoV;



Three examples of mathematics in light of representation theory



Example 1: Finite group actions on sets.

For a fixed finite group G these two problems are “the same”:
1) classify finite sets with G-action;
2) classify subgroups H — G up to conjugacy.

The equivalent problems turn out to be extremely complicated.
Because every finite group is a subgroup of a symmetric group, a
solution to (2) would be something like a classification of all finite

groups. There are more than 30 papers on the classification of

maximal subgroups of the monster simple group.

However the analogous linear problem ‘“classify C-vector spaces
with linear G-action” is representation theory. Here we have a
satisfactory answer for many groups.



Example 2: The circle and the Fourier transform.
Let S' = {ze C||z| = 1}. Then S!is a (Lie) group.
For any m € Z we have a one-dimensional representation of S! via:

Slezw zMe C* = GL4(C).

In fact, these are all irreducible representations of S!!



Now we consider: ST & St
We linearize this action and consider for example
st e [3(sh 0.
Now our irreducible characters z™ belong to the right hand side.
Moreover, as Hilbert spaces:
12(s%,¢) = dczm

If we identify S' = R/Z then the functions z™ become the
fundamental frequencies A — 2™ of Fourier analysis.

Moral: The decomposition of L?(S1,C) into irreducible
representations is the theory of Fourier series.

Similarly, the Fourier transform can be explained in terms of
representations of (R, +), spherical harmonics in terms of
representations of SO(3) & S?, ...



Example 3: Rational points and Fermat's last theorem.
Suppose we want to find rational solutions to an equation X like:

y? = x3 — x? — 24649x + 1355209

Let us write X(C) for the solutions with x,y € C, X(Q) for
solutions x, y € Q etc.



It turns out that X(C) is a Riemann surface of genus one:

X(cC) =




The points in an algebraic closure X(Q) are also “easy” (think of
the stars in the night sky):




The tricky point is to find the rational points X(Q):

X(@) = "



Let Gal(Q) denote the absolute Galois group (automorphisms of
Q = Q). Group theory interpretation:

_ GaM(®)
= (&)

4 £.‘ xedh ‘Po{\A‘\(S\\

K@) =



Diophantine geometry can be encoded in questions like:

Understand the Gal(Q)-action on X(Q).

But we will probably never understand the Gal(Q) sets X(Q).



However representation theory suggests that we should cook up a

linear object out of the action of Gal(Q) out of X(Q).

It turns out that we can do this, and it is extremely profitable. The
short version: Gal(Q) acts in a very interesting way on
H1(X; Q) = Q2. (Can be thought of as something like a tangent
space.)




This is the structure behind the proof of Fermat's last theorem:

1. start with a solution x" + y" = z" with x,y,z€e Z, n > 2;

2. build from this solution a strange elliptic curve E (the “Frey
curve’);

3. observe that such a curve would give a very strange
G-representation Hi(E;Q3) (Frey, Serre, Ribet);

4. show that such a G-representation cannot exist (Wiles,
Taylor-Wiles).



Moreover the Langlands program gives us a vast array of theorems
and conjectures linking representations of Galois groups coming
from Diophantine problems (like the rational points question
above) to analysis and automorphic forms. The bridge between
these two worlds is provided by representation theory.

A beautiful introduction to these ideas:

R. P. Langlands, Representation theory: its rise and its role in
number theory Proceedings of the Gibbs Symposium (New Haven, CT, 1989)



Representations of finite groups and the character table



Basic theorems in the representation theory of a finite group G:

1. any C-representation of G is isomorphic to a direct sum of
irreducible representations (“semi-simplicity” );

u irreducible _ conjugacy
C-representations of G J= N classesin G |~
3. Any finite dimensional representation p: G — GL(V) is

determined (up to isomorphism) by its character:

Xp:G—C:gw—Trp(g).



Hence, we know (almost) everything about the C-representations
of a group once we know the characters of the irreducible
representations of our group G.

x(hgh™) = Tr(p(hgh™)) = Tr(p(h)p(g)p(h) ™) = Tr(p(g)) = x(g).
Hence x is a function on the conjugacy classes of G.

All of this information can be conveniently displayed in the
character table of G. The rows give the irreducible characters of G
and the columns are indexed by the conjugacy classes of G.

The character table of G is the C-linear shadow of G.



The first character table ever published. Here G is the alternating
group on 4 letters, or equivalently the symmetries of the
tetrahedron.

TAALINELUAS WAL AL LA VALIUARESR & AZLAVANGAL  WAAAL £ VY LARIGA W

.
) ' I . . .
‘]““H,Q' 3 zwei inverse Classen (2) und (3) = (2). Sei p eine prim
fische Wurzel der Einheit.
Tetraeder. - =12.

l X0 5l 5 XMI he

| Bl 3 1 1 1
X1 1 -1 1 1 8
o |1 0 P ool
Xa 1 0 Pl 4

Die Werthe von y, sind zugleich die von f= e.

Frobenius, Uber Gruppencharaktere, S'ber. Akad. Wiss. Berlin, 1896.

Frobenius was a professor at the Eidgenossische Polytechnikum from
1875 to 1892. (He moved to Berlin four years before his discovery of the
character table!)



Now G = S5, the symmetric group on 5 letters of order 120:




Conway, Curtis, Norton, Parker, Wilson, Atlas Of flnlte Zroups. Maximal subgroups and ordinary

characters for simple groups. With computational assistance from J. G. Thackray. Oxford University Press, 1985
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However around 1900 other mathematicians took some convincing
at to the utility of representation theory...



Cayley’s dictum that “a group is defined by means of the
laws of combination of its symbols” would imply that, in dealing
purely with the theory of groups, no more concrete mode of
representation should be used than is absolutely necessary.
Tt may then be asked why, in a book which professes to leave
all applications on one side, a considerable space is devoted to
substitution groups; while other particular modes of repre-
sentation, such as groups of linear transformations, are not
even referred to. My answer to this question is that while, in
the present state of our knowledge, many results in the pure
theory are arrived at most readily by dealing with properties
of substitution groups, it would be difficult to find a result that
could be most directly obtained by the consideration of groups
of linear transformations.

— Burnside, Theory of groups of finite order, 1897.
(One year after Frobenius' definition of the character.)



PREFACE TO THE SECOND EDITION

RY considerable advances in the theory of groups of

finite order bave been made since the appearance of the
first edition of this book. In particular the theory of groups
of linear substitutions has been the subject of numerous and
important investigations by several writers; and the reason
given in the original preface for omitting any account of it no
longer holds good.

In fact it is now more true to say that for further advances
in the abstract theory one must look largely to the representa-
tion of a group as a group of linear substitutions. There is
accordingly in the present edition a large amount of new matter.

— Burnside, Theory of groups of finite order, Second edition, 1911.
(15 years after Frobenius' definition of the character table.)



First steps in modular representation theory



We have so far discussed representations over C.

The story remains the same over fields of characteristic not
dividing |G|.

However over fields of small characteristic the situations becomes
much more complicated.



Let k be a field and let S, & k" by permutation of the variables.
Consider:

A={(MA ..., ) ek" | Aek} “thin diagonal”
Y= {(A, A2, An) € K" | Z/\,‘ =0} ‘“sum zero"

Note .7 ; A = n\.
Hence AnX =0ifand only if n# 0 in k.
If ptn k" =A@ (“complete reducibility”)
If pln, A < X ck".

In fact, in this case k” is indecomposable as a representation of S,,.
(“complete reducibility fails")



In fact, any representation of G over a field of characteristic p is
completely reducible if and only if p does not divide |G]|.



Why study modular representations?

. Provides a way of recognising groups. (If | suspect that
G = SL,(Fg), | might like to proceed by constructing a
representation of G on F7.)

. Explains deep properties of the reduction modulo p of the
character table.

. Many representations occurring in (mathematical) nature are
modular representations. (In number theory, algebraic
geometry, ...)

. If a high power of p divides the order of G then the category
of representations of G is extremely complicated. It is possible
that this explains that recent interest in the subject (a source
of “small” abelian categories with highly intricate structure).



Modular representation theory was initially developed almost single
handedly by Richard Brauer (1901 - 1977) from 1935 - 1960.

Brauer's interest in representation theory seems have been
motivated by a lifelong interest in number theory, as well as an
fascination for the structure of finite groups. Brauer's results are
widely regarded as providing the first steps towards the
classification of finite simple groups.



Theorem (Brauer-Nesbitt)

Let k be an algebraically closed field of characteristic p. Then the
number of irreducible representations of kG is equal to the number
of p-regular conjugacy classes in G.

(A conjugacy class in G is p-regular if the order of any element is
not divisible by p.)



The Lusztig conjecture and the James conjecture



We will concentrate on the following basic questions:

Describe the irreducible modular representations of the symmetric
group S,.

Describe the irreducible modular representations of a (split) finite
group of Lie type (e.g. GL,(Fq), Spon(Fq), Es(Fgq) ...) in natural
characteristic (i.e. in characteristic p where g = p").

Recall that by the classification of finite simple groups, all but 26
exceptional “sporadic” simple groups are close relatives of the above
groups.



The basic structure of our knowledge in both cases is the same: it
is not difficult to write down a set parametrising the irreducible
representations, however the structure of the categories is
extremely complicated and largely unknown.

Examples:

1. (Rouquier, Bridgeland) There are known or conjectured
derived equivalences in modular representation theory which
are close relatives of derived equivalences occurring in the
birational geometry of algebraic varieties (“crepant resolution
conjecture”). This is a modern version of the question “can
two groups have isomorphic character tables?”.

2. (Arkhipov-Bezrukavnikov-Ginzburg) Generic versions of these

categories (over C) occur as basic ingredients in the tamely
ramified geometric Langlands equivalence.



It is remarkable fact that in both the above cases (modular
representations of symmetric groups, and natural characteristic
representations of finite groups of Lie type) the categories admit
“versions over C".



Basic example:
In characteristic p we have the “Freshman’s dream”:
(X+Y)P=XP4+YP
At first glance this looks like a pure characteristic p phenomenon.
However this can be imitated over C as follows:
Consider the “functions on the quantum plane”:
CylX, Y] :=CX,Y)/(XY = q¥YX)
Then if g = e2™/% is an (™-root of unity then

X+Y)!=x+vt ()



A philosophy which has dominated modular representation theory
for the past 20 years is that one can factor the passage:

C « Fp
as
C v~ introduce g v~ setq:=e>™/P o Fp
Example: Instead of
CIX,Y] ~ FplX,Y]
we do

C[X,Y] v  Cg[X,Y] o Comtp[X, Y] o Fp[X, Y]



For symmetric groups we pass via the Hecke algebra.
If we write s; = (i,i + 1) € S, then we have a presentation

This is “quantized” as follows:

2
si=ql+(qg—1)s
SiSi+1Si = Sj+1SiSi+1 forl<i<n-—1
Sisj = SjS;i for |i —j| > 2

We “deform the eigenvalues of s; from {1, -1} to {1, —q}".



In examples, the Hecke algebra at a p"-root of unity seems to
behave “just like" the group algebra in characteristic p.

This statement is made precise by the James conjecture (1990).



Gordon James formulated his conjecture
in 1990 following formidable calculations.
He conjectured a character formula for
the simple representations of S, if p >

»/n (“p not too small”).

Roughly speaking, his conjecture says
that the Hecke algebra at a pt"-root if
p > +/n of unity sees all the complex-
ity of mod p representation theory. His
conjecture, if true, would represent major
progress on the problem.

His conjecture is true forn = 1,2,...,22.

James, The decomposition matrices of GL,(q) for n < 10, Proc.

London Math. Soc. (3) 60 (1990), no. 2, 225-265.

The matrices A for e =3

n=10,e=3,p>3

o) '
(s

o1 '
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')

(@ '

Adjustment matrix

=10 @) 1

DECOMPOSITION MATRICES



Similarly for finite groups of Lie type the Lusztig conjecture (1980)
gives a conjectural answer.

His conjecture asserts that a quantum group (i.e. a g-deformation
of a complex semi-simple Lie algebra) at a pt-root of unity sees all
of the complexity of mod p representations (forp> ...)

This is ahistorical! Quantum groups hadn't been discovered when Lusztig
made his conjecture. However in hindsight quantum groups, and the
“C > introduce ¢ v~ set q:=e?™/P  ww  F,” philosophy
provide the best way of understanding Lusztig's conjecture.



Lusztig's conjecture (1980).

Proceedings of Symposia in Pure Mathematics
Volume 37, 1980

SOME PROBLEMS IN THE
REPRESENTATION THEORY OF
FINITE CHEVALLEY GROUPS

GEORGE LUSZTIG'

obtained by reductng modulo p the irreducible representation with highest
weight —wp — p of the corresponding complex group. (It is well defined in the
Grothendieck group.) We assume that ay/(p) < p.

Problem 1V. Assume that w is dominant and it satisfies the Jantzen condition
ay (—wp) < p(p — h + 2), where h is the Coxeter number. Then

L= F  (=DOTOP ()ch K. O]
¥ €W, dominant
y<

From this, one can deduce the character formula for any irreducible finite
dimensional representation of G (over F,), by making use of results of Jantzen
and Steinberg. The evidence for this character formula is very strong. I have
verified it in the cases where G is of type A,, B, or G,. (In these cases, ch L, has
been computed by Jantzen.) One can show using results of Jantzen [2, Anhang]



Lusztig's conjecture implies that for a (split) finite group of Lie

type (e.g. GLn(Fq), Sp2n(Fq), Es(Fg) ...) the representation

theory in natural characteristic (i.e. in characteristic p where
q = p") becomes “uniform” for large p.



What “large” means on the previous slide is a tricky business.



What “large” means on the previous slide is a tricky business.
Let h denote the Coxeter number of G

(e.g. h = nfor GL,, h = 2n for SPp,, h =30 for Eg):

1. 1980: Lusztig conjectured p = 2h — 3 (Jantzen condition);
2. 1985: Kato conjectured p > h;
3. 1994: Several hundred pages of Andersen-Jantzen-Soergel,

Kazhdan-Lusztig, Kashiwara-Tanisaki and Lusztig prove the
conjecture for large p without any explicit bound!

W. Soergel (2000): “Bei Wurzelsystemen verschieden von Ay,
By, G, Az, weill man aber fiir keine einzige Charakteristik ob
sie hinreichend groB ist.”

...a particularly strange situation for finite group theorists.



What “large” means on the previous slide is a tricky business.
Let h denote the Coxeter number of G.

(e.g. h=nfor GL,, h = 2n for SP,,, h = 30 for Eg)

1. 1980: Lusztig conjectured p = 2h — 3 (Jantzen condition);

2. 1985: Kato conjectured p = h;

3. 1994: Andersen-Jantzen-Soergel, Kazhdan-Lusztig,
Kashiwara-Tanisaki, Lusztig: the conjecture holds for large p;

4. 2008: Fiebig gave an explicit enormous bound (e.g. p > 100
for SLo(Fp) against the hoped for p > 11)!



The following 2013 theorem has a part joint with Xuhua He and
another part joint with Alex Kontorovich and Peter McNamara,
and builds on work done in a long term project with Ben Elias.

Theorem

There exists a constants a > 0 and ¢ > 1 such that Lusztig's
conjecture on representations of SL,(Fp) fails for many primes
p > ac" and n>» 0.

The theorem implies that there is no polynomial bound in the
Coxeter number for the validity of Lusztig's conjecture. This should
be compared with the hope (believed by many for over thirty years)
that the bound is a simple linear function of Coxeter number.

Provably we can take a = 5/7 and ¢ = 1.101. Experimentally ¢ can be taken much larger. For example, Lusztig's

conjecture fails for SL1gg(Fp) with p = 470 858 183.

It is disconcerting (or enlivening?) that there is some interesting
number theory behind the above growth rates.



Following a line of attack suggested by Joe Chuang, the previous
result also yields:

Theorem

The James conjecture fails “generically”. In particular, it is not
true for S, for all n > 1 744 860.

The proof proceeds by constructing certain representations that are
(much) smaller than the James conjecture predicts. A key idea in
both results is a “translation of the problem into topology”,
completed by Wolfgang Soergel in 2000.



Following a line of attack suggested by Joe Chuang, the previous
result also yields:

Theorem

The James conjecture fails “generically”. In particular, it is not
true for S, for all n > 1 744 860.

Another key tool are techniques going back to Schur's PhD thesis
in Berlin in 1901 (one year after Frobenius first wrote down the
character table of the symmetric group)!

We are trying to work out where, between n = 22 and
n = 1744 860, the conjecture first goes wrong.

There is still much to say about S, possibly the most fundamental
of all finite groups ...



In summary:

The Lusztig and James conjecture predict a remarkable regularity
in the modular representation theory of symmetric groups and
finite groups of Lie type for large primes.

However it takes much longer for this regularity to show itself than
was expected.

For “mid range primes” (e.g. n < p < ¢") subtle and unexpected
arithmetic questions show up in the representation theory of
groups like GL,(Fp). These features are not seen by the Hecke
algebra or quantum group at a root of unity.



However in spite of all our efforts, we know very little about finite
groups. The mystery has not been resolved, we cannot even say for
sure whether order or chaos reigns. If any excitement can be
derived from what | have to say, it should come from the feeling of
being at a frontier across which we can see many landmarks, but
which as a whole is unexplored, of planning ways to find out about
the unknown, even if the pieces we can put together are few and
far apart. My hope then is that some of you may go out with the
idea: “Now let me think of something better myself.”

— Richard Brauer, On finite groups and their characters,

Bull. Amer. Math. Soc. Volume 69, Number 2 (1963), 125-130.
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Curtis, Pioneers of representation theory: Frobe-
nius, Burnside, Schur, and Brauer. History of
Mathematics, 15. AMS, 1999.
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