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First steps in representation theory



We owe the term group(e) to Galois (1832).

Caveat: Actually this might not be true. It is possible that the term occurs earlier in Ruffini (1799).



Galois theory:

f P Qrxs x2 ` x ` 1 “ x3´1
x´1

tαiu roots of f

‚

‚

‚
α1

‚ 0

‚
α2

Form K “ Qpα1, . . . , αnq Qpe2πi{3q.

GalpK ,Qq :“ AutpQpα1, . . . , αmqq (“Galois group”)

GalpK ,Qq acts on tα1, . . . , αmu.

Galois theory: This action tells us everything about f and its roots.



H Ă G is a subgroup

Letter to Auguste Chevalier in 1832

written on the eve of Galois’ death

notion of a normal subgroup

notion of a simple group

notion of a soluble group

main theorem of Galois theory



Representation theory is the study of linear group actions:

A representation of a group G is a homomorphism

ρ : G Ñ GLpV q

for some vector space V .

A representation is the same thing as a linear action of G on V .

A representation is irreducible if the only subspaces U Ă V which
are stable under the action of G are t0u Ă V and V itself.

There is a Jordan-Hölder theorem: the irreducible representations
are the building blocks of all representations.



A representation theorist’s strategy:

problem involving a
group action

G ýX

problem involving a
linear group action

G ýkrX s

“decomposition” of
problem
G ý‘Vi



Three examples of mathematics in light of representation theory



Example 1: Finite group actions on sets.

For a fixed finite group G these two problems are “the same”:
1) classify finite sets with G -action;

2) classify subgroups H Ă G up to conjugacy.

The equivalent problems turn out to be extremely complicated.
Because every finite group is a subgroup of a symmetric group, a
solution to (2) would be something like a classification of all finite

groups. There are more than 30 papers on the classification of
maximal subgroups of the monster simple group.

However the analogous linear problem “classify C-vector spaces
with linear G -action” is representation theory. Here we have a

satisfactory answer for many groups.



Example 2: The circle and the Fourier transform.

Let S1 “ tz P C | |z | “ 1u. Then S1 is a (Lie) group.

For any m P Z we have a one-dimensional representation of S1 via:

S1 P z ÞÑ zm P C˚ “ GL1pCq.

In fact, these are all irreducible representations of S1!



Now we consider: S1 ýS1.

We linearize this action and consider for example

S1 ýL2pS1,Cq.

Now our irreducible characters zm belong to the right hand side.

Moreover, as Hilbert spaces:

L2pS1,Cq “ ˆà

Czm

If we identify S1 “ R{Z then the functions zm become the
fundamental frequencies λ ÞÑ e2πimλ of Fourier analysis.

Moral: The decomposition of L2pS1,Cq into irreducible
representations is the theory of Fourier series.

Similarly, the Fourier transform can be explained in terms of
representations of pR,`q, spherical harmonics in terms of

representations of SOp3q ýS2, . . .



Example 3: Rational points and Fermat’s last theorem.

Suppose we want to find rational solutions to an equation X like:

y2 “ x3 ´ x2 ´ 24649x ` 1355209

Let us write X pCq for the solutions with x , y P C, X pQq for
solutions x , y P Q etc.



It turns out that X pCq is a Riemann surface of genus one:



The points in an algebraic closure X pQq are also “easy” (think of
the stars in the night sky):



The tricky point is to find the rational points X pQq:



Let GalpQq denote the absolute Galois group (automorphisms of
Q Ă Q). Group theory interpretation:



Diophantine geometry can be encoded in questions like:

Understand the GalpQq-action on X pQq.

But we will probably never understand the GalpQq sets X pQq.



However representation theory suggests that we should cook up a
linear object out of the action of GalpQq out of X pQq.

It turns out that we can do this, and it is extremely profitable. The
short version: GalpQq acts in a very interesting way on

H1pX ; Q`q “ Q2
` . (Can be thought of as something like a tangent

space.)

.



This is the structure behind the proof of Fermat’s last theorem:

1. start with a solution xn ` yn “ zn with x , y , z P Z, n ą 2;

2. build from this solution a strange elliptic curve E (the “Frey
curve”);

3. observe that such a curve would give a very strange
G -representation H1pE ; Q3q (Frey, Serre, Ribet);

4. show that such a G -representation cannot exist (Wiles,
Taylor-Wiles).



Moreover the Langlands program gives us a vast array of theorems
and conjectures linking representations of Galois groups coming

from Diophantine problems (like the rational points question
above) to analysis and automorphic forms. The bridge between

these two worlds is provided by representation theory.

A beautiful introduction to these ideas:

R. P. Langlands, Representation theory: its rise and its role in
number theory. Proceedings of the Gibbs Symposium (New Haven, CT, 1989)



Representations of finite groups and the character table



Basic theorems in the representation theory of a finite group G :

1. any C-representation of G is isomorphic to a direct sum of
irreducible representations (“semi-simplicity”);

2.

#

"

irreducible
C-representations of G

*

{–

“ #

"

conjugacy
classes in G

*

.

3. Any finite dimensional representation ρ : G Ñ GLpV q is
determined (up to isomorphism) by its character:

χρ : G Ñ C : g ÞÑ Tr ρpgq.



Hence, we know (almost) everything about the C-representations
of a group once we know the characters of the irreducible

representations of our group G .

χphgh´1q “ Trpρphgh´1qq “ Trpρphqρpgqρphq´1q “ Trpρpgqq “ χpgq.

Hence χ is a function on the conjugacy classes of G .

All of this information can be conveniently displayed in the
character table of G . The rows give the irreducible characters of G

and the columns are indexed by the conjugacy classes of G .

The character table of G is the C-linear shadow of G .



The first character table ever published. Here G is the alternating
group on 4 letters, or equivalently the symmetries of the

tetrahedron.

Frobenius, Über Gruppencharaktere, S’ber. Akad. Wiss. Berlin, 1896.

Frobenius was a professor at the Eidgenössische Polytechnikum from

1875 to 1892. (He moved to Berlin four years before his discovery of the

character table!)



Now G “ S5, the symmetric group on 5 letters of order 120:



Conway, Curtis, Norton, Parker, Wilson, Atlas of finite groups. Maximal subgroups and ordinary

characters for simple groups. With computational assistance from J. G. Thackray. Oxford University Press, 1985.





However around 1900 other mathematicians took some convincing
at to the utility of representation theory...



– Burnside, Theory of groups of finite order, 1897.
(One year after Frobenius’ definition of the character.)



– Burnside, Theory of groups of finite order, Second edition, 1911.
(15 years after Frobenius’ definition of the character table.)



First steps in modular representation theory



We have so far discussed representations over C.

The story remains the same over fields of characteristic not
dividing |G |.

However over fields of small characteristic the situations becomes
much more complicated.



Let k be a field and let Sn ýkn by permutation of the variables.

Consider:

∆ :“ tpλ, λ, . . . , λq P kn | λ P ku “thin diagonal”

Σ :“ tpλ1, λ2, . . . , λnq P kn |
ÿ

λi “ 0u “sum zero”

Note
řn

i“1 λ “ nλ.

Hence ∆X Σ “ 0 if and only if n ‰ 0 in k .

If p - n, kn “ ∆‘ Σ. (“complete reducibility”)

If p|n, ∆ Ă Σ Ă kn.

In fact, in this case kn is indecomposable as a representation of Sn.
(“complete reducibility fails”)



In fact, any representation of G over a field of characteristic p is
completely reducible if and only if p does not divide |G |.



Why study modular representations?

1. Provides a way of recognising groups. (If I suspect that

G – SLnpFqq, I might like to proceed by constructing a

representation of G on Fn
q.)

2. Explains deep properties of the reduction modulo p of the
character table.

3. Many representations occurring in (mathematical) nature are
modular representations. (In number theory, algebraic
geometry, . . . )

4. If a high power of p divides the order of G then the category
of representations of G is extremely complicated. It is possible
that this explains that recent interest in the subject (a source
of “small” abelian categories with highly intricate structure).



Modular representation theory was initially developed almost single
handedly by Richard Brauer (1901 - 1977) from 1935 - 1960.

Brauer’s interest in representation theory seems have been
motivated by a lifelong interest in number theory, as well as an

fascination for the structure of finite groups. Brauer’s results are
widely regarded as providing the first steps towards the

classification of finite simple groups.



Theorem (Brauer-Nesbitt)

Let k be an algebraically closed field of characteristic p. Then the
number of irreducible representations of kG is equal to the number
of p-regular conjugacy classes in G .

(A conjugacy class in G is p-regular if the order of any element is
not divisible by p.)



The Lusztig conjecture and the James conjecture



We will concentrate on the following basic questions:

Describe the irreducible modular representations of the symmetric
group Sn.

Describe the irreducible modular representations of a (split) finite
group of Lie type (e.g. GLnpFqq, Sp2npFqq, E8pFqq . . . ) in natural

characteristic (i.e. in characteristic p where q “ pr ).

Recall that by the classification of finite simple groups, all but 26
exceptional “sporadic” simple groups are close relatives of the above

groups.



The basic structure of our knowledge in both cases is the same: it
is not difficult to write down a set parametrising the irreducible

representations, however the structure of the categories is
extremely complicated and largely unknown.

Examples:

1. (Rouquier, Bridgeland) There are known or conjectured
derived equivalences in modular representation theory which
are close relatives of derived equivalences occurring in the
birational geometry of algebraic varieties (“crepant resolution
conjecture”). This is a modern version of the question “can
two groups have isomorphic character tables?”.

2. (Arkhipov-Bezrukavnikov-Ginzburg) Generic versions of these
categories (over C) occur as basic ingredients in the tamely
ramified geometric Langlands equivalence.



It is remarkable fact that in both the above cases (modular
representations of symmetric groups, and natural characteristic

representations of finite groups of Lie type) the categories admit
“versions over C”.



Basic example:

In characteristic p we have the “Freshman’s dream”:

pX ` Y qp “ X p ` Y p

At first glance this looks like a pure characteristic p phenomenon.

However this can be imitated over C as follows:

Consider the “functions on the quantum plane”:

CqrX ,Y s :“ CxX ,Y y{pXY “ qYX q

Then if q “ e2πi{` is an `th-root of unity then

pX ` Y q` “ X ` ` Y ` p!q



A philosophy which has dominated modular representation theory
for the past 20 years is that one can factor the passage:

C ù Fp

as

C ù introduce q ù set q :“ e2πi{p ù Fp

Example: Instead of

CrX ,Y s ù FprX ,Y s

we do

CrX ,Y s ù CqrX ,Y s ù Ce2πi{p rX ,Y s ù FprX ,Y s



For symmetric groups we pass via the Hecke algebra.

If we write si “ pi , i ` 1q P Sn then we have a presentation

This is “quantized” as follows:

s2
i “ q1 ` pq ´ 1qsi

si si`1si “ si`1si si`1 for 1 ď i ă n ´ 1

si sj “ sjsi for |i ´ j | ą 2

We “deform the eigenvalues of si from t1,´1u to t1,´qu”.



In examples, the Hecke algebra at a pth-root of unity seems to
behave “just like” the group algebra in characteristic p.

This statement is made precise by the James conjecture (1990).



Gordon James formulated his conjecture
in 1990 following formidable calculations.
He conjectured a character formula for
the simple representations of Sn if p ą
?
n (“p not too small”).

Roughly speaking, his conjecture says
that the Hecke algebra at a pth-root if
p ą

?
n of unity sees all the complex-

ity of mod p representation theory. His
conjecture, if true, would represent major
progress on the problem.

His conjecture is true for n “ 1, 2, . . . , 22.

James, The decomposition matrices of GLnpqq for n ď 10, Proc.

London Math. Soc. (3) 60 (1990), no. 2, 225–265.

DECOMPOSITION MATRICES 261

The matrices A10 for e = 3

n = 10, e - 3 , p > 3

(10) 1
(91) 1
(82) 1 1

(812) 1
(73) 1 1

(721) 1 1 1 1
(713) 1 1
(64) 1

(631) 1 1
(62 2 ) 1 1 1

(6212) 1 1 1 1 1
(61 4 ) 1 1

(5 2 ) 1 1
(541) 1 1
(532) 1 1 1 1

(5312) 1
(5221) 1 1 1 1 1 1
(521 3 ) 1 1 1 1

(51 5 ) 1 1
( 4 ^ ) 1 1 1

(4 2 1 2 ) 1 1 1 1
(43 2 ) 1 1 1 1

(4321) 1 1 1 1 1 1 1 1 1 1 1
(4313) 1 1 1 1 1 1 1 1 1

(42 3 ) 1 1 1 1 1
(42 2 1 2 ) 1

(4214) 1 1 1 1 1 1 1 1 1
(41 6 ) 1 1 1
(3 3 1) 1 1 1 1 1 1

(3¥) 1 1 1
Qhl2) 1 1 1 1 1
(321*) 1 1 1 1 1
(3231) 1 1 1

(32213) 1 1 1 1 1
(3215) 1 1 1 1 1 1 1 1 1 1 1
(317) 1 1 1
(2s) 1 1 1 1 1 1

(2412) 1 1 1
(23lS 1 1 1 1 1 1 1 1 1
(221*) 1 1 1 1 1 1 1
(218) 1 1 1
(I10) 1 1 1 1

Adjustment matrix

n = 10 (331) 1
e = 3 (2314) 1 1
/> = 3 (I10) 1 1



Similarly for finite groups of Lie type the Lusztig conjecture (1980)
gives a conjectural answer.

His conjecture asserts that a quantum group (i.e. a q-deformation
of a complex semi-simple Lie algebra) at a pth-root of unity sees all

of the complexity of mod p representations (for p ą . . . )

This is ahistorical! Quantum groups hadn’t been discovered when Lusztig

made his conjecture. However in hindsight quantum groups, and the

“C ù introduce q ù set q :“ e2πi{p ù Fp” philosophy

provide the best way of understanding Lusztig’s conjecture.



Lusztig’s conjecture (1980).

Proceedings of Symposia in Pure Mathematics
Volume 37, 1980

SOME PROBLEMS IN THE
REPRESENTATION THEORY OF

FINITE CHEVALLEY GROUPS

GEORGE LUSZTIGI

In the first section of this paper, I will present a classification of the unipotent
(complex) representations of a finite Chevalley group and state a conjecture on
their character values. The second section is a review of results of Kazhdan and
myself [3], [4]; these lead to some questions which are formulated in the third
section. In particular, I will state a conjecture on the character of modular
representations of a finite Chevalley group.

1. Classification of unipotent characters (see [1], [5], [6], [7]). Let G be an
almost simple algebraic group defined and split over the finite field Fq (q =
power of a prime p). Choose a maximal torus and a Borel subgroup B D T such
that T and B are both defined over Fq. The G(Fq)-conjugacy classes of maximal
tori in G which are defined over Fq are in 1-1 correspondence with the
conjugacy classes in the Weyl group W(T)/T. Let T. be a maximal torus
defined over Fq, corresponding to w E W. The virtual character RT (l) of G(Fq)
(see [1] and the lectures of Curtis and Srinivasan) will be denoted R. We have
Rw = Rw, if and only if w, w' are conjugate. By definition, an irreducible
character p of G(Fq) is unipotent if <p, Rw> 0, for some w E W. For example
all components of R1 = IndB(Fgj(1) are unipotent characters; it is well known
that they are in 1-1 correspondence with the irreducible characters of W. For
each irreducible character X of W, we denote by Xq the corresponding irreduci-
ble character of G(Fq) contained in R1, and we define two polynomials PX(Z),
PX(Z) by

PX(q) = dim( W1 -12 X(w)R.),
W

PX(q) = dim(X;).

1980 Mathematics Subject Classification. Primary 20D06, 20C15; Secondary 20C20.
'Supported in part by the National Science Foundation.
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Given y, w E W, we say that y -< w if the following conditions are satisfied:
y < w, l(w) - l(y) is odd and deg Py w = -'(1(w) - l(y) - 1). Using -< , we shall
define an equivalence relation '"LR on W. Given x, x' E W, we say x <LR x' if
there exists a sequence of elements of W: x = x0, x1, ... , x,, = x' such that for
each i (1 < i < n) we have x, _ 1 -< xt or x. -< x, _ 1 and, moreover, for some
s E S, we have either sx! _ 1 <x,_1, sx1 > x1 or xr _ is <x_1, x.s > x1. We say
thatx -LRx'ifx <LRx' and x' <LRX.

The equivalence classes for '"LR are called the 2-sided cells of W. By [3, 2.3],
for any x E W, the subspace of 3C with basis Ty (y <LR x) is a 2-sided ideal of
3C. It follows that the subspace spanned by the 7T for y in a fixed 2-sided cell
can be regarded as a quotient III' where 13 I' are 2-sided ideals in 3C and,
therefore, it is a 2-sided 3C-module.

3. Three more problems. Assume first that W is the Weyl group of G as in § 1.
Each 2-sided cell of W gives rise to a 2-sided 3C-module, hence (by specializing
q -* 1) to a 2-sided W-module. These give a decomposition (over Q) of the
2-sided regular representation of W.

Problem III. Two irreducible characters X', X" of W appear in the same 2-sided
cell of W if and only if XQ, X?' correspond to the same special representation of W.

In the remainder of this section G (as in § 1) will be assumed to be simply
connected. The Fq-rational structure on G will not play any role so G is now
regarded as an algebraic group over Fq. Let X(T) be the character group of T
and let Q be its subgroup generated by the roots. Let W. be the group of affine
transformations of X(T) generated by W and by translations by elements in
p.Q. Then W. is an infinite Coxeter group: its standard set of generators consists
of those of W, together with the reflection in the hyperplane (q E X(T)Jao (rp)
= p), where ao is the highest coroot.

In [3, 1.5], Kazhdan and I formulated a conjecture on the characters of the
irreducible quotients of Verma modules of a complex simple Lie algebra. I wish
to state a modular analogue of that conjecture. Let p E X(T) be defined by the
condition that p takes the value 1 on each simple coroot. An element w E W. is
said to be dominant if - wp - p takes > 0 values on each simple coroot. For
such w, let L. be the irreducible representation of G, of finite dimension over F
with highest weight - wp - p. Let V. be the Weyl representation of G over FP
obtained by reducing modulo p the irreducible representation with highest
weight - wp - p of the corresponding complex group. (It is well defined in the
Grothendieck group.) We assume that ao (p) < p.

Problem IV. Assume that w is dominant and it satisfies the Jantzen condition
ao (- wp) < p(p - h + 2), where h is the Coxeter number. Then

ch L. = 2 (- l)t(w)-rcr)Py,w(1)ch Vy. (4)
y E W dominant

Y <W

From this, one can deduce the character formula for any irreducible finite
dimensional representation of G (over Fr), by making use of results of Jantzen
and Steinberg. The evidence for this character formula is very strong. I have
verified it in the cases where G is of type A2, B2 or G2. (In these cases, ch Lw has
been computed by Jantzen.) One can show using results of Jantzen [2, Anhang]



Lusztig’s conjecture implies that for a (split) finite group of Lie
type (e.g. GLnpFqq, Sp2npFqq, E8pFqq . . . ) the representation
theory in natural characteristic (i.e. in characteristic p where

q “ pr ) becomes “uniform” for large p.



What “large” means on the previous slide is a tricky business.



What “large” means on the previous slide is a tricky business.

Let h denote the Coxeter number of G

(e.g. h “ n for GLn, h “ 2n for SP2n, h “ 30 for E8):

1. 1980: Lusztig conjectured p ě 2h ´ 3 (Jantzen condition);

2. 1985: Kato conjectured p ě h;

3. 1994: Several hundred pages of Andersen-Jantzen-Soergel,
Kazhdan-Lusztig, Kashiwara-Tanisaki and Lusztig prove the
conjecture for large p without any explicit bound!

W. Soergel (2000): “Bei Wurzelsystemen verschieden von A2,
B2, G2, A3, weiß man aber für keine einzige Charakteristik ob
sie hinreichend groß ist.”
. . . a particularly strange situation for finite group theorists.



What “large” means on the previous slide is a tricky business.

Let h denote the Coxeter number of G .

(e.g. h “ n for GLn, h “ 2n for SP2n, h “ 30 for E8)

1. 1980: Lusztig conjectured p ě 2h ´ 3 (Jantzen condition);

2. 1985: Kato conjectured p ě h;

3. 1̃994: Andersen-Jantzen-Soergel, Kazhdan-Lusztig,
Kashiwara-Tanisaki, Lusztig: the conjecture holds for large p;

4. 2008: Fiebig gave an explicit enormous bound (e.g. p ą 1040

for SL9pFpq against the hoped for p ě 11)!



The following 2013 theorem has a part joint with Xuhua He and
another part joint with Alex Kontorovich and Peter McNamara,
and builds on work done in a long term project with Ben Elias.

Theorem

There exists a constants a ą 0 and c ą 1 such that Lusztig’s
conjecture on representations of SLnpFpq fails for many primes
p ą acn and n " 0.

The theorem implies that there is no polynomial bound in the
Coxeter number for the validity of Lusztig’s conjecture. This should
be compared with the hope (believed by many for over thirty years)
that the bound is a simple linear function of Coxeter number.

Provably we can take a “ 5{7 and c “ 1.101. Experimentally c can be taken much larger. For example, Lusztig’s

conjecture fails for SL100pFpq with p “ 470 858 183.

It is disconcerting (or enlivening?) that there is some interesting
number theory behind the above growth rates.



Following a line of attack suggested by Joe Chuang, the previous
result also yields:

Theorem

The James conjecture fails “generically”. In particular, it is not
true for Sn for all n ě 1 744 860.

The proof proceeds by constructing certain representations that are
(much) smaller than the James conjecture predicts. A key idea in

both results is a “translation of the problem into topology”,
completed by Wolfgang Soergel in 2000.

blah blah blah blah blah blah blah

We are trying to work out where, between n “ 22 and
n “ 1 744 860, the conjecture first goes wrong. But it is not easy!

There is still much to say about Sn, possibly the most fundamental
of all finite groups!



Following a line of attack suggested by Joe Chuang, the previous
result also yields:

Theorem

The James conjecture fails “generically”. In particular, it is not
true for Sn for all n ě 1 744 860.

Another key tool are techniques going back to Schur’s PhD thesis
in Berlin in 1901 (one year after Frobenius first wrote down the

character table of the symmetric group)!
blah blah blah blah blah blah blah

We are trying to work out where, between n “ 22 and
n “ 1 744 860, the conjecture first goes wrong.

There is still much to say about Sn, possibly the most fundamental
of all finite groups . . .



In summary:

The Lusztig and James conjecture predict a remarkable regularity
in the modular representation theory of symmetric groups and

finite groups of Lie type for large primes.

However it takes much longer for this regularity to show itself than
was expected.

For “mid range primes” (e.g. n ă p ă cn) subtle and unexpected
arithmetic questions show up in the representation theory of

groups like GLnpFpq. These features are not seen by the Hecke
algebra or quantum group at a root of unity.



However in spite of all our efforts, we know very little about finite
groups. The mystery has not been resolved, we cannot even say for

sure whether order or chaos reigns. If any excitement can be
derived from what I have to say, it should come from the feeling of
being at a frontier across which we can see many landmarks, but

which as a whole is unexplored, of planning ways to find out about
the unknown, even if the pieces we can put together are few and
far apart. My hope then is that some of you may go out with the

idea: “Now let me think of something better myself.”

– Richard Brauer, On finite groups and their characters,

Bull. Amer. Math. Soc. Volume 69, Number 2 (1963), 125-130.



Thanks!

.

Curtis, Pioneers of representation theory: Frobe-

nius, Burnside, Schur, and Brauer. History of

Mathematics, 15. AMS, 1999.
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