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The motivation for the ideas discussed in this talk come from
representation theory.

For example we would like to understand the representation theory
of finite groups, Lie algebras, Lie groups, algebraic groups,
quantum groups, ...

In the “spectrum of mathematics” this is a very rigid subject.

Thus it is surprising that several central conjectures
(Kazhdan-Lusztig conjecture, Jantzen conjecture, Lusztig
conjecture ...) can be understood as saying that certain situations
behave as though they were generic.

Example: a general bilinear form on a vector space is
non-degenerate, however establishing that a specific form is
non-degenerate might be very difficult.
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One approach to these questions is via ideas from Hodge theory.
Suppose that X is a smooth projective variety over C. Set
H*(X): its singular cohomology ring with R coefficients.

Two central theorems (let n := dim¢ X):

. Hard Lefschetz: If A € H? is the class of an ample line bundle
then for all k > 0, multiplication by A* gives an isomorphism

M HPR(X) S HMHR(X).

. Hodge-Riemann bilinear relations: A formula (which we don't
make explicit) for the signature of the forms

(a, b)) := (a, \*b)

on H" K for all k > 0.
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We require that all v € Ve satisfy hard Lefschetz and
Hodge-Riemann in the sense of the following slide . ..
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We say that v € V satisfies hard Lefschetz if for all k > 0 action
by v yields an isomorphism

AR HTR S HK

We say that v € V satifies the Hodge-Riemann relations if for all
k = 0 the form

(a,b)y = (a,7"b)

on H ¥ is (—=1)(m=k)/2_definite on ker(yk*1 : H=k — H¥*2)_ Here
m denotes the minimal non-zero degree in H.



or




P = \Qer(\"—“-——a \'\-"1’0) =W

W £ = e (W W) BT
H' p° = ker (W — Ht) .
or V'(
Wodge- Ricumann relakions:
U G ptie ditiide on ©
I (> gl dabidh or T
A\

WP (o) G debiaibe o 7

(m even)



Suppose that X is as smooth projective variety with dim¢c X = n
and whose Hodge numbers hP9 are zero unless p = q. (For
example this will hold if H*(X) is generated by algebraic cycles.)



Suppose that X is as smooth projective variety with dim¢c X = n
and whose Hodge numbers hP9 are zero unless p = q. (For
example this will hold if H*(X) is generated by algebraic cycles.)

The cohomology ring of X yields Lefschetz data:

= b} n l.e. : n+i ,
H:= H*(X,R)[n] ie H :=H"(X,R)
(—,—) = intersection form
V = H*(X,R)

Vample := R>o-cone generated by ample classes = V



Suppose that X is as smooth projective variety with dim¢c X = n
and whose Hodge numbers hP9 are zero unless p = q. (For
example this will hold if H*(X) is generated by algebraic cycles.)

The cohomology ring of X yields Lefschetz data:

H:= H*(X,R)[n] i.e. H':=H™(X,R)
(—, —) = intersection form
V = H*(X,R)
Vample := R>o-cone generated by ample classes = V

If X is singular (but still projective) then we obtain Lefschetz
data by taking H to be the intersection cohomology of X.



Suppose that X is as smooth projective variety with dim¢c X = n
and whose Hodge numbers hP9 are zero unless p = q. (For
example this will hold if H*(X) is generated by algebraic cycles.)

The cohomology ring of X yields Lefschetz data:

H:= H*(X,R)[n] i.e. H':=H™(X,R)
(—, —) = intersection form
V = H*(X,R)
Vample := R>o-cone generated by ample classes = V

If X is singular (but still projective) then we obtain Lefschetz
data by taking H to be the intersection cohomology of X.

In fact, everything above is defined over Q. Thus algebraic varieties
give rise to Lefschetz data over Q.
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1. Polytopes (Stanley, McMullen, Bressler-Lunts, Karu,
Barthel-Brasselet-Fieseler-Kaup, Braden 1980 - 2005)

2. Coxeter groups (Elias-W., W., 2014 - 2016)
3. Matroids (Adiprasito-Huh-Katz 2015)

These all have some overlap with classical Hodge theory and with
each other. However at the moment none of the four theories can
be deduced from the others.

It is a fascinating question whether there are other examples, a
unifying principle, or more general theories.



Polytopes: To any polytope in P — R" one may associate Lefschetz
data (McMullen, Stanley, Bressler-Lunts, Karu). The hard
Lefschetz theorem implies the necessity of McMullen's conditions
on the face numbers of simplicial polytopes. The Hodge-Riemann
relations imply generalisations of the Aleksandrov-Fenchel
inequalities in convex geometry. If the polytope has rational
vertices then the hard Lefschetz and Hodge-Riemann relations
follow from classical Hodge theory. The existence of non-rational
polytopes gives rise to Lefschetz data which is not defined over Q.



Matroids: To any matroid M one may associate Lefschetz data
(Adiprasito-Huh-Katz). The Hodge-Riemann relations imply the
longstanding conjecture as to the log concavity of the absolute
value of the coefficients of the characteristic polynomial of M.
(This generalises an earlier proof by Huh of the log concavity of
the absolute value of the coefficients of the chromatographic
polynomial of a graph.) If the matroid is realisable over a field k
then the hard Lefschetz and Hodge-Riemann relations are implied
by Grothendieck's standard conjectures.
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The goal of the rest of the talk is to try to explain how to
associate Lefschetz data to Coxeter systems.

In part the motivation for doing this is to understand positivity
conjectures in Kazhdan-Lusztig theory.
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for certain mg € Z>¢ such that mgs = 1 for all se S and
ms € {2,3,4,...} u {0} for s # t.

Let £ : W — Z- be the length function of W with respect to S.

To (W, S) we can associate its Hecke algebra. It is a free
Z[v*1]-algebra H with basis {hyx}xcw and multiplication
determined by the rules (for s € S and x € W)

b {hsx if £(sx) > £(x),
(v = V)he + g if £(sx) < £(x).

The basis {hy | x € W} is the standard basis of H.
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vi—vland hy — h;,ll.The Kazhdan-Lusztig basis is the unique
basis {bx} for H such that:

by = by (“self-duality’) and byehe+ Y. vZ[v]h,.
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If we write

by = Z Py xhy
yeW

the polynomials p, x are Kazhdan-Lusztig polynomials.

There are efficient inductive methods to calculate Kazhdan-Lusztig
polynomials. The basis seems to enjoy deep positivity properties.
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. Positivity of Kazhdan-Lusztig polynomials:

Py x € ZZO[V]' (1)

. Positivity of inverse Kazhdan-Lusztig polynomials: If we write

he = (1) gy b, then gy« €Zsolv]. (2)

. Positivity of structure constants: If we write
byb, = Z:“iybz then p3 € Z-o[vF]. (3)
. Unimodality of structure constants: If we set
v —y—m
[m] T S S V—m+1 + V—m+3 4o+ Vm—3 + Vm—l
v—v1

and, for all x,y,ze W, write

pi, = >, azy[m] then a2l e Zso. (4)

m>=1

(In other words, v , is the character of a finite dimensional
slp(C)-module.)



Theorem (Elias-W. 2014 & 2016)

Positivity properties (1), (2), (3) and (4) hold.



Theorem (Elias-W. 2014 & 2016)
Positivity properties (1), (2), (3) and (4) hold.

Properties (1) and (3) were conjectured in 1979 by
Kazhdan-Lusztig. They proved their conjecture a year later for
Weyl and affine Weyl groups via intersection cohomology methods.
(2) and (4) have also been known for some time for Weyl and
affine Weyl groups, and have become folklore conjectures for
arbitrary Coxeter systems.



Theorem (Elias-W. 2014 & 2016)
Positivity properties (1), (2), (3) and (4) hold.

Properties (1) and (3) were conjectured in 1979 by
Kazhdan-Lusztig. They proved their conjecture a year later for
Weyl and affine Weyl groups via intersection cohomology methods.
(2) and (4) have also been known for some time for Weyl and
affine Weyl groups, and have become folklore conjectures for
arbitrary Coxeter systems.

Our proof proceeds by uncovering Lefschetz data in Soergel
bimodules, a monoidal category which categorifies the Hecke
algebra. Lefschetz data turns out to be a powerful and flexible tool

to carry out certain inductive arguments.
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subsets {a) }ses < b and {as}ses < h* of coroots and roots
satisfying the following two conditions:

1. the subsets {a) }ses © b and {as}ses < b* are linearly
independent;

2. under the natural pairing h* x h — R we have

{as,af y = —2cos(m/mgt). (5)

Then s — ¢ € GL(h) (resp. s — ¢s € GL(H*)) where
o) (v) i=v —Las, vya. (resp.  @s(A) ==X =\ o) Has)
defines a representation of W on b (resp. h*).

Basically we are imitating how the Weyl group of a complex semi-simple
Lie algebra acts on the Cartan subalgebra.



Let R denote the regular functions on h. (After choosing a basis
X1,...,Xn for h*, R is simply the polynomial ring R[x1, ..., Xs].)

By our assumptions above the intersections of half-spaces

fei=[{ven|{as,v) >0}

seS

bl = (A eb |\ ay) > 0}

seS

are non-empty. Borrowing terminology from Lie theory we refer to
elements in either set as dominant regular.
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We describe an inductive recipe for producing Lefschetz data H,
for any x e W.

Base: Hjy := R (in degree zero).

Inductive step: Suppose we have constructed H, for all y € W
with £(y) < k and suppose ¢(x) = k. Choose s € S such that
{(xs) = k — 1 (this is possible) and consider

Hpre := R @gs Hys[1].

This is naturally a graded R-module and comes equipped with a
graded symmetric form (—, —).

Miracle: Hpre is Lefschetz data.

This miracle means that the situation is “essentially semi-simple”.
We define H, to be the indecomposable R-module direct summand
which is non-zero in degree /(x). It turns out that H, does not
depend on the choice of s.
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Suppose that W is the Weyl group of a complex semi-simple
algebraic group G with maximal torus and Borel subgroup
TcBcG.

(We will refer to this case as the “geometric setting”.)
Then, for any w € W we have (Soergel)
H, =~ IH*(BwB/B).
(Intersection cohomology of a Schubert variety.)

In this case the “miracle” follows from Saito’s theory of mixed
Hodge modules or de Cataldo and Migliorini's proof of the
decomposition theorem.
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Theorem (Elias-W. 2014)
For all x € W, Hy is Lefschetz data.

Each H, has a filtration such that the graded ranks of successive
subquotients is given by Kazhdan-Lusztig polynomials. The first
Kazhdan-Lusztig positivity conjecture is an immediate
consequence.

The techniques used to prove the “miracle” on the previous slide
also yield the positivity properties (2) and (3).
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Recall the Borel isomorphism:

H*(G/B) = R/(RY).

If wp is the longest element then BwyB/B = G/B and hence
Huy = H*(G/B) = R/(RY).

It turns out that one has H,, = R/(RY) regardless of whether W
is a Weyl group or not. Even in this basic case the theorem is new.
(There must be an easier proof of this case though!)

Remark: Outside of the geometric setting H,, is usually not
defined over Q. (Remember cos(27/mg)!)
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I (5): symmetries of the pentagon:
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Recall the unimodality property (4) above: if we write x,y € W
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Recall the unimodality property (4) above: if we write x,y € W

bib, = > % b,

then 1%, is the character of a finite dimensional sl>(C)-module,
i.e. we can write

z z,m . z,m
Py = Z ayy'[m]  with a2 7" >0
m=1

where [m] := v+ 4 y=mH3 g ym=3 g ymel
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Theorem (Elias-W. 2016)

For all x,y,z € W there exists a graded R-module V¢, equipped
with a symmetric form (—, —) such that:

1. the graded dimension of Vi, is u% \,;
2. V3, is Lefschetz data.

This immediately implies the unimodality property (4) for the
structure constants of the Kazhdan-Lusztig basis.

(Unimodality has been checked by Fokko du Cloux for a finite
reflection group of type Hy by computer. Here almost three trillion
polynomials p5 , were computed!)



Soergel's conjecture implies the Kazhdan-Lusztig conjecture on the

formal characters of simple highest weight modules for a complex

semi-simple Lie algebra. (Indeed, this was his initial motivation for
the introduction of Soergel modules.)

We thus obtain an algebraic proof of the Kazhdan-Lusztig
conjecture. (The conjecture was first proved by Brylinski-Kashiwara
and Beilinson-Bernstein in 1981 via D-module techniques.)



There is a third (“local”) way to associate Lefschetz data to
Soergel bimodules (W. 2015).

The local Hodge theory of Soergel bimodules gives an algebraic
proof of the Jantzen conjectures (1979) on the Jantzen filtration
on Verma modules, via a bridge built by Soergel (2008) and Kiibel
(2012).

(The Jantzen conjectures were first proved by Beilinson-Bernstein
in 1990 again via D-module techniques.)



The hard Lefschetz theorem for the “multiplicity spaces” V¢,
allows one to construct many “exotic” modular tensor categories
associated to any Coxeter systems.



Thank you!

Slides: people.mpim-bonn.mpg.de/geordie/talks.html



