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Dear Hiring Committee,

I would like to apply for the position of Professor in Mathematics at the University of Sydney.
I have been employed as a research professor (level W2) at the Max Planck Insitute in Bonn,
Germany. This is one of the foremost mathematical research institutes in the world. Prior
to this I held an EPSRC posdoctoral research fellowship at the University of Oxford and,
concurrently, a Junior Research Fellowship (JRF) at St. Peter’s college.

In 2016 I was awarded the inaugural Claude Chevalley Prize in Lie Theory from the Amer-
ican Mathematical Society. I was honored for my ". . . work on the representation theory of
Lie algebras and algebraic groups [which includes] proofs and reproofs of some longstand-
ing conjectures as well as spectacular counterexamples to the expected bounds in others.”
The prize citation continues: "Williamson provided a new framework for thinking about these
conjectures—a framework that revealed how inadequate the numerical evidence for these con-
jectures really had been. Williamson’s work has re-opened the field of modular representations
to new ideas, in a sense taking it beyond a focus on the famous conjectures."

I have papers published in the Annals of Mathematics and the Journal of the American
Mathematical Society. These two journals are widely regarded as the two most prestigious
journals in pure mathematics. (The majority of mathematicians never publish in these journals;
leading mathematicians usually publish in these journals only a few times in their careers.) A
number of my papers have appeared or will appear in Duke Mathematical Journal, Compositio
Mathematica, Annales scientifiques de l’ENS and Proceedings of the London Mathematical
Society, all of which have extremely high standards for research quality and exposition.

In mathematics, invitations to international conferences are one of the main indicators of
research quality. I have been invited to give one of the two talks in the algebra section at the
2016 European Congress of Mathematics, which is the premier European mathematics con-
ference. I have also been invited to speak at the Seminaire Bourbaki in Paris. This seminar
has been running since 1948 and has served over the last half century as a barometer of math-

ECM, July 2016.



The motivation for the ideas discussed in this talk come from
representation theory.

For example we would like to understand the representation theory
of finite groups, Lie algebras, Lie groups, algebraic groups,

quantum groups, . . .

In the “spectrum of mathematics” this is a very rigid subject.

Thus it is surprising that several central conjectures
(Kazhdan-Lusztig conjecture, Jantzen conjecture, Lusztig

conjecture . . . ) can be understood as saying that certain situations
behave as though they were generic.

Example: a general bilinear form on a vector space is
non-degenerate, however establishing that a specific form is

non-degenerate might be very difficult.
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One approach to these questions is via ideas from Hodge theory.

Suppose that X is a smooth projective variety over C. Set

H˚pX q: its singular cohomology ring with R coefficients.

Two central theorems (let n :“ dimC X ):

1. Hard Lefschetz: If λ P H2 is the class of an ample line bundle
then for all k ě 0, multiplication by λk gives an isomorphism

λk : Hn´kpX q
„
Ñ Hn`kpX q.

2. Hodge-Riemann bilinear relations: A formula (which we don’t

make explicit) for the signature of the forms

pa, bqλ :“ xa, λkby

on Hn´k for all k ě 0.
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Fix Λ Ă R a subfield. By Lefschetz data over Λ we mean:

1. A finite-dimensional graded Λ-vector space H “
À

iPZ H i

which vanishes in either even or odd degree and is equipped
with a non-degenerate graded symmetric bilinear form
x´,´y : H ˆ H Ñ R.

2. A vector space V and an action of V on H via commuting
degree two endomorphisms. We require compatibility with
x´,´y in the sense that

xp ¨ h, h1y “ xh, p ¨ h1y for all p P S‚pV q and h, h1 P H.

3. An open and non-empty convex cone Vample Ă V (“cone”
means that Vample is closed under multiplication by
Λą0 :“ Rą0 X Λ.)

We require that all γ P Vample satisfy hard Lefschetz and
Hodge-Riemann in the sense of the following slide . . .
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We say that γ P V satisfies hard Lefschetz if for all k ě 0 action
by γk yields an isomorphism

γk : H´k
„
Ñ Hk .

We say that γ P V satifies the Hodge-Riemann relations if for all
k ě 0 the form

pa, bqγ :“ xa, γkby

on H´k is p´1qpm´kq{2-definite on kerpγk`1 : H´k Ñ Hk`2q. Here
m denotes the minimal non-zero degree in H.
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Suppose that X is as smooth projective variety with dimC X “ n
and whose Hodge numbers hp,q are zero unless p “ q. (For

example this will hold if H˚pX q is generated by algebraic cycles.)

The cohomology ring of X yields Lefschetz data:

H :“ H˚pX ,Rqrns i.e. H i :“ Hn`i pX ,Rq

x´,´y “ intersection form

V “ H2pX ,Rq

Vample :“ Rą0-cone generated by ample classes Ă V

If X is singular (but still projective) then we obtain Lefschetz
data by taking H to be the intersection cohomology of X .

In fact, everything above is defined over Q. Thus algebraic varieties
give rise to Lefschetz data over Q.
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Remarkably there are three other sources of Lefschetz data:

1. Polytopes (Stanley, McMullen, Bressler-Lunts, Karu,
Barthel-Brasselet-Fieseler-Kaup, Braden 1980 - 2005)

2. Coxeter groups (Elias-W., W., 2014 - 2016)

3. Matroids (Adiprasito-Huh-Katz 2015)

These all have some overlap with classical Hodge theory and with
each other. However at the moment none of the four theories can

be deduced from the others.

It is a fascinating question whether there are other examples, a
unifying principle, or more general theories.
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Polytopes: To any polytope in P Ă Rn one may associate Lefschetz
data (McMullen, Stanley, Bressler-Lunts, Karu). The hard

Lefschetz theorem implies the necessity of McMullen’s conditions
on the face numbers of simplicial polytopes. The Hodge-Riemann

relations imply generalisations of the Aleksandrov-Fenchel
inequalities in convex geometry. If the polytope has rational

vertices then the hard Lefschetz and Hodge-Riemann relations
follow from classical Hodge theory. The existence of non-rational

polytopes gives rise to Lefschetz data which is not defined over Q.



Matroids: To any matroid M one may associate Lefschetz data
(Adiprasito-Huh-Katz). The Hodge-Riemann relations imply the
longstanding conjecture as to the log concavity of the absolute
value of the coefficients of the characteristic polynomial of M.

(This generalises an earlier proof by Huh of the log concavity of
the absolute value of the coefficients of the chromatographic

polynomial of a graph.) If the matroid is realisable over a field k
then the hard Lefschetz and Hodge-Riemann relations are implied

by Grothendieck’s standard conjectures.



The goal of the rest of the talk is to try to explain how to
associate Lefschetz data to Coxeter systems.

In part the motivation for doing this is to understand positivity
conjectures in Kazhdan-Lusztig theory.
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Let pW , Sq denote a Coxeter system:

W “ xs P S | pstqmst “ id for all s, t P Sy

for certain mst P Zě0 such that mss “ 1 for all s P S and
mst P t2, 3, 4, . . . u Y t8u for s ‰ t.

Let ` : W Ñ Zě0 be the length function of W with respect to S .

To pW ,Sq we can associate its Hecke algebra. It is a free
Zrv˘1s-algebra H with basis thxuxPW and multiplication

determined by the rules (for s P S and x PW )

hshx “

#

hsx if `psxq ą `pxq,

pv´1 ´ vqhx ` hsx if `psxq ă `pxq.

The basis thx | x PW u is the standard basis of H.
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The algebra H posesses an involution h ÞÑ h determined by
v ÞÑ v´1 and hx ÞÑ h´1

x´1 .The Kazhdan-Lusztig basis is the unique
basis tbxu for H such that:

bx “ bx (“self-duality”) and bx P hx `
ÿ

`pyqă`pxq

vZrv shy .

If we write

bx “
ÿ

yPW

py ,xhy

the polynomials py ,x are Kazhdan-Lusztig polynomials.

There are efficient inductive methods to calculate Kazhdan-Lusztig
polynomials. The basis seems to enjoy deep positivity properties.



The algebra H posesses an involution h ÞÑ h determined by
v ÞÑ v´1 and hx ÞÑ h´1

x´1 .The Kazhdan-Lusztig basis is the unique
basis tbxu for H such that:

bx “ bx (“self-duality”) and bx P hx `
ÿ

`pyqă`pxq

vZrv shy .

If we write

bx “
ÿ

yPW

py ,xhy

the polynomials py ,x are Kazhdan-Lusztig polynomials.

There are efficient inductive methods to calculate Kazhdan-Lusztig
polynomials. The basis seems to enjoy deep positivity properties.



The algebra H posesses an involution h ÞÑ h determined by
v ÞÑ v´1 and hx ÞÑ h´1

x´1 .The Kazhdan-Lusztig basis is the unique
basis tbxu for H such that:

bx “ bx (“self-duality”) and bx P hx `
ÿ

`pyqă`pxq

vZrv shy .

If we write

bx “
ÿ

yPW

py ,xhy

the polynomials py ,x are Kazhdan-Lusztig polynomials.

There are efficient inductive methods to calculate Kazhdan-Lusztig
polynomials. The basis seems to enjoy deep positivity properties.



1. Positivity of Kazhdan-Lusztig polynomials:

py ,x P Zě0rv s. (1)

2. Positivity of inverse Kazhdan-Lusztig polynomials: If we write

hx “
ÿ

p´1q`pxq´`pyqgy ,xby then gy ,x P Zě0rv s. (2)

3. Positivity of structure constants: If we write

bxby “
ÿ

µzx ,ybz then µzx ,y P Zě0rv
˘1s. (3)

4. Unimodality of structure constants: If we set

rms :“
vm ´ v´m

v ´ v´1
“ v´m`1 ` v´m`3 ` ¨ ¨ ¨ ` vm´3 ` vm´1

and, for all x , y , z PW , write

µzx ,y “
ÿ

mě1

az,mx ,y rms then az,mx ,y P Zě0. (4)

(In other words, µzx ,y is the character of a finite dimensional
sl2pCq-module.)
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Theorem (Elias-W. 2014 & 2016)

Positivity properties (1), (2), (3) and (4) hold.

Properties (1) and (3) were conjectured in 1979 by
Kazhdan-Lusztig. They proved their conjecture a year later for

Weyl and affine Weyl groups via intersection cohomology methods.
(2) and (4) have also been known for some time for Weyl and
affine Weyl groups, and have become folklore conjectures for

arbitrary Coxeter systems.

Our proof proceeds by uncovering Lefschetz data in Soergel
bimodules, a monoidal category which categorifies the Hecke

algebra. Lefschetz data turns out to be a powerful and flexible tool
to carry out certain inductive arguments.
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Let h denote a finite dimensional real vector space together with
subsets tα_s usPS Ă h and tαsusPS Ă h˚ of coroots and roots

satisfying the following two conditions:

1. the subsets tα_s usPS Ă h and tαsusPS Ă h˚ are linearly
independent;

2. under the natural pairing h˚ ˆ hÑ R we have

xαs , α
_
t y “ ´2 cospπ{mstq. (5)

Then s ÞÑ φ_s P GLphq (resp. s ÞÑ φs P GLph
˚q) where

φ_s pvq :“ v ´ xαs , vyα
_
s presp. φspλq :“ λ´ xλ, α_s yαsq

defines a representation of W on h (resp. h˚).

Basically we are imitating how the Weyl group of a complex semi-simple
Lie algebra acts on the Cartan subalgebra.
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Let R denote the regular functions on h. (After choosing a basis
x1, . . . , xn for h˚, R is simply the polynomial ring Rrx1, . . . , xns.)

By our assumptions above the intersections of half-spaces

h`reg :“
č

sPS

tv P h | xαs , vy ą 0u

h˚`reg :“
č

sPS

tλ P h | xλ, α_s y ą 0u

are non-empty. Borrowing terminology from Lie theory we refer to
elements in either set as dominant regular.



We describe an inductive recipe for producing Lefschetz data Hx

for any x PW .

Base: Hid :“ R (in degree zero).

Inductive step: Suppose we have constructed Hy for all y PW
with `pyq ă k and suppose `pxq “ k. Choose s P S such that

`pxsq “ k ´ 1 (this is possible) and consider

Hpre :“ R bRs Hxsr1s.

This is naturally a graded R-module and comes equipped with a
graded symmetric form x´,´y.

Miracle: Hpre is Lefschetz data.

This miracle means that the situation is “essentially semi-simple”.
We define Hx to be the indecomposable R-module direct summand

which is non-zero in degree `pxq. It turns out that Hx does not
depend on the choice of s.
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Suppose that W is the Weyl group of a complex semi-simple
algebraic group G with maximal torus and Borel subgroup

T Ă B Ă G .

(We will refer to this case as the “geometric setting”.)

Then, for any w PW we have (Soergel)

Hx – IH˚pBwB{Bq.

(Intersection cohomology of a Schubert variety.)

In this case the “miracle” follows from Saito’s theory of mixed
Hodge modules or de Cataldo and Migliorini’s proof of the

decomposition theorem.
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The modules Hx are often called Soergel modules.

Theorem (Elias-W. 2014)

For all x PW, Hx is Lefschetz data.

Each Hx has a filtration such that the graded ranks of successive
subquotients is given by Kazhdan-Lusztig polynomials. The first

Kazhdan-Lusztig positivity conjecture is an immediate
consequence.

The techniques used to prove the “miracle” on the previous slide
also yield the positivity properties (2) and (3).
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Recall the Borel isomorphism:

H˚pG{Bq “ R{pRW
` q.

If w0 is the longest element then Bw0B{B “ G{B and hence

Hw0 “ H˚pG{Bq “ R{pRW
` q.

It turns out that one has Hw0 “ R{pRW
` q regardless of whether W

is a Weyl group or not. Even in this basic case the theorem is new.
(There must be an easier proof of this case though!)

Remark: Outside of the geometric setting Hw0 is usually not
defined over Q. (Remember cosp2π{mstq!)
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Recall the unimodality property (4) above: if we write x , y PW

bxby “
ÿ

µzx ,ybz

then µzx ,y is the character of a finite dimensional sl2pCq-module,

i.e. we can write

µzx ,y “
ÿ

mě1

az,mx ,y rms with az,mx ,y ě 0

where rms :“ v´m`1 ` v´m`3 ` ¨ ¨ ¨ ` vm´3 ` vm´1.
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Theorem (Elias-W. 2016)

For all x , y , z PW there exists a graded R-module V z
x ,y equipped

with a symmetric form x´,´y such that:

1. the graded dimension of V z
x ,y is µzx ,y ;

2. V z
x ,y is Lefschetz data.

This immediately implies the unimodality property (4) for the
structure constants of the Kazhdan-Lusztig basis.

(Unimodality has been checked by Fokko du Cloux for a finite
reflection group of type H4 by computer. Here almost three trillion

polynomials µzx ,y were computed!)
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Soergel’s conjecture implies the Kazhdan-Lusztig conjecture on the
formal characters of simple highest weight modules for a complex
semi-simple Lie algebra. (Indeed, this was his initial motivation for

the introduction of Soergel modules.)

We thus obtain an algebraic proof of the Kazhdan-Lusztig
conjecture. (The conjecture was first proved by Brylinski-Kashiwara

and Beilinson-Bernstein in 1981 via D-module techniques.)



There is a third (“local”) way to associate Lefschetz data to
Soergel bimodules (W. 2015).

The local Hodge theory of Soergel bimodules gives an algebraic
proof of the Jantzen conjectures (1979) on the Jantzen filtration

on Verma modules, via a bridge built by Soergel (2008) and Kübel
(2012).

(The Jantzen conjectures were first proved by Beilinson-Bernstein
in 1990 again via D-module techniques.)



The hard Lefschetz theorem for the “multiplicity spaces” V z
x ,y

allows one to construct many “exotic” modular tensor categories
associated to any Coxeter systems.



Thank you!

Slides: people.mpim-bonn.mpg.de/geordie/talks.html


