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Abstract. We observe that certain numbers occuring in Schubert calculus
for SLn also occur as entries in intersection forms controlling decompositions

of Soergel bimodules and parity sheaves in higher rank. These numbers grow

exponentially in the rank. This observation gives many counterexamples to
Lusztig’s conjecture on the characters of simple rational modules for SLn over

a field of positive characteristic.

Dedicated to Meg and Gong.

1. Introduction

Let G be a connected algebraic group over an algebraically closed field. A basic
question in representation theory asks for the dimensions and characters of the
simple rational G-modules. Structure theory of algebraic groups allows one to
assume that G is reductive. If the ground field is of characteristic zero, then the
theory runs parallel to the well-understood theory for compact Lie groups. In
positive characteristic p, Steinberg’s tensor product theorem, the linkage principle
and Jantzen’s translation principle reduce this to a question about finitely many
modules which occur in the same block as the trivial module (the“principal block”).
For these modules Lusztig has proposed a conjecture if p ≥ h, where h denotes the
Coxeter number of the root system of G [Lus80].1 He conjectures an expression for
the characters of the simple modules in terms of affine Kazhdan-Lusztig polynomials
and the (known) characters of standard modules.

Lusztig’s conjecture has been shown to hold for p large (without an explicit
bound) thanks to work of Andersen, Jantzen and Soergel [AJS94], Kashiwara and
Tanisaki [KT95, KT96], Kazhdan and Lusztig [KL93, KL94a, KL94b] and Lusztig
[Lus94]. Alternative proofs for large p have been given by Arkhipov, Bezrukvanikov
and Ginzburg [BG04], Bezrukvanikov, Mirkovic and Rumynin [BMR08] and Fiebig
[Fie11]. Fiebig also gives an explicit (enormous) bound [Fie12], which is exponential
in the rank, and establishes the multiplicity one case [Fie10]. For any fixed G and
“reasonable” p very little is known: the case of rank 2 groups can be deduced
from Jantzen’s sum formula, and intensive computational efforts have checked the
conjecture for small p and certain groups, all of rank ≤ 5. There is no conjecture
as to what happens if p is smaller than the Coxeter number.

In [Soe00] Soergel introduced a subquotient of the category of rational represen-
tations, dubbed the “subquotient around the Steinberg weight”, as a toy model for
the study of Lusztig’s conjecture. Whilst the full version of Lusztig’s conjecture is

1Lusztig first proposed his conjecture under the restriction p ≥ 2h− 3. This is not the orginal

formulation, see [Jan08, §4] and [Jan03, §8.22] for a discussion. The statement of the conjecture for
p ≥ h seems to have first been made by Kato [Kat85], who also showed that Lusztig’s conjecture
is compatible with Steinberg’s tensor product theorem.
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based on the combinatorics of alcoves and the affine Weyl group, the subquotient
around the Steinberg weight is controlled by the finite Weyl group, and behaves like
a modular version of category O. Lusztig’s conjecture implies that the multiplicities
in the subquotient around the Steinberg weight are given by finite Kazhdan-Lusztig
polynomials. Thus Lusztig’s conjecture implies that “the subquotient around the
Steinberg weight satisfies the Kazhdan-Lusztig conjecture”.

In [Soe00] Soergel also explains how the subquotient around the Steinberg weight
is controlled by Soergel bimodules. This allows him to relate this category to the
category of constructible sheaves on the Langlands dual flag variety, with coefficients
in the field of definition ofG. Using Soergel’s results and the theory of parity sheaves
[JMW09], one can see that a part of Lusztig’s conjecture is equivalent to absence
of p ≥ h torsion in the stalks and costalks of integral intersection cohomology
complexes of Schubert varieties in the flag variety. It has been known since the birth
of the theory that 2-torsion occurs in type B2, and 2 and 3 torsion occurs in type
G2. For over a decade no other examples of torsion were known. In 2002 Braden
discovered 2-torsion in the stalks of integral intersection cohomology complexes on
flag varieties of types D4 and A7. Much more recently Polo and Riche discovered
3-torsion in the cohomology of the flag variety of type E6, and Polo discovered
n-torsion in a flag variety of type A4n−1. Polo’s (as yet unpublished) results are
significant, as they emphasize how little we understand in high rank (see the final
lines of [Wil12]).

In general these topological calculations appear extremely difficult (for a sam-
ple computation see Braden’s appendix to [WB12]). Recently Ben Elias and the
author have found a presentation for the monoidal category of Soergel bimodules
by generators and relations, completing work initiated by Libedinsky [Lib10] and
Elias-Khovanov [EK]. One of the applications of this theory is that one can de-
cide whether a given intersection cohomology complex has p-torsion in its stalks
or costalks (the bridge between intersection cohomology and Soergel bimodules is
provided by the theory of parity sheaves).2 The basic idea is as follows: given any
pair (w, x), where x,w ∈ W and w is a reduced expression for w ∈ W , one has an
“intersection form”, an integral matrix. Then the stalks of the intersection coho-
mology complex w are free of p-torsion if no elementary divisors of the intersection
forms associated to all elements x ≤ w are divisible by p.3 In principle, this gives
an algorithm to decide whether Lusztig’s conjecture is correct around the Steinberg
weight.4 This algorithm (in a slightly different form) was discovered independently
by Libedinsky [Lib].

The generators and relations approach certainly makes calculations easier. How-
ever this approach still has its difficulties: the diagrammatic calculations remain

2One can also perform this calculation using the theory of moment graphs [FW]. However the

computations using generators and relations are generally much simpler.
3The terminology “intersection form” comes from geometry: in de Cataldo and Migliorini’s

Hodge theoretic proof of the decomposition theorem, a key role is played by certain intersection

forms associated to the fibres of proper maps [dCM02, dCM05]. In our setting, these intersection
forms are associated to the fibres of Bott-Samelson resolutions of Schubert varieties. The relevance

of these forms for the study of torsion in intersection cohomology was pointed out in [JMW09].
4One can extend this to the full version of Lusztig’s conjecture by using a certain subset of the

affine Weyl group, thanks to the work of Fiebig [Fie11]. Although it seems likely that the converse
holds, at present one only knows one implication: the absence of p ≥ h torsion implies the truth

of Lusztig’s conjecture in characteristic p.
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extremely subtle, and the“light leaves”basis in which the intersection form is calcu-
lated depends on additional choices which seem difficult to make canonical. Recent
progress in this direction has been made by Xuhua He and the author, who discov-
ered that certain entries in the intersection form (which in some important examples
are all entries) are canonical and may be evaluated in terms of expressions in the
nil Hecke ring.

The main result of this paper is the observation that one may embed certain
structure constants of Schubert calculus for SLn as the entries of 1× 1 intersection
forms associated to pairs (w, x) in higher rank groups. In this way one can produce
many new examples of torsion which grow exponentially in the rank. For example,
using Schubert calculus for the flag variety of SL4 we observe that the Fibonacci
numbers Fn and Fn+1 occur as torsion in SL4n+7. We deduce that there is no linear
function f(h) of h such that Lusztig’s conjecture holds for all p ≥ f(h). It seems
likely that the prime factors occuring grow exponentially5, which would imply the
non-existence of any polynomial bound.

1.1. Main result. Let R = Z[x1, x2, . . . , xn] be a polynomial ring in n variables
graded such that deg xi = 2 and let W = Sn the symmetric group on n-letters.
Then Sn acts by permutation of variables on R. Let s1, . . . , sn−1 denote the simple
transpositions of Sn and let ` denote the corresponding length function. Let ∂i
denote the ith divided difference operator:

∂i(f) =
f − sif
xi − xi+1

∈ R.

For any element w ∈ Sn we set ∂w = ∂i1 . . . ∂im where w = si1 . . . sim is a reduced
expression for w.

Consider elements of the form

C = ∂wm
(xam

1 xbmn ∂wm−1
(x

am−1

1 xbm−1
n . . . ∂w1

(xa1
1 x

b1
n ) . . . ))

where wi ∈ Sn are arbitrary. We assume that
∑
`(wi) = a+ b where a =

∑
ai and

b =
∑
bi so that C ∈ Z for degree reasons. Given a subset I ⊂ {1, . . . , n−1} let wI

denote the longest element in the parabolic subgroup 〈sj〉j∈I . Our main theorem
is the following:

Theorem 1.1. Suppose that C 6= 0. Then there exists a (reduced) expression
w for an element of Sa+n+b such that the intersection form of w at wI , where
I = {1, 2, . . . , a+ n+ b− 1} \ {a, a+ n}, is the matrix (±C).

The construction of the expression w is explicit and combinatorial based on
w1, . . . , wm, a1, . . . , am and b1, . . . , bm. In §5 we will see that the numbers C (and
probably their prime factors) grow exponentially in h = n+ a+ b.

1.2. Schubert calculus. Let us briefly explain why “Schubert calculus” occurs
in the title. In some sense this explains the meaning of the above constants C.
Consider the coinvariant ring H for the action of W = Sn on R. That is, H is
equal to R modulo the ideal generated by W -invariant polynomials of positive de-
gree. The Borel isomorphism gives a canonical identification of H with the integral
cohomology of the complex flag variety of G = SLn.

5I expect to be able to prove this in the near future. This statement would already be a
theorem if one knew that infinitely many Fibonacci numbers are prime, which numbers theorists
seem to expect.
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The divided difference operators ∂w act on H, as do elements of R. The coin-
variant ring H has a graded Z-basis given by the Schubert classes {Xw | w ∈ Sn}
(normalized with Xw0 = xn−11 xn−22 . . . xn−1 and Xw = ∂ww0Xw0). We have:

(1.1) ∂iXw =

{
Xsiw if siw < w,

0 otherwise.

The action of multiplication by f ∈ R of degree two is given as follows (the Chevalley
formula):

(1.2) f ·Xw =
∑
t∈T

`(tw)=`(w)+1

〈f, α∨t 〉Xtw.

(Here T denotes the set of reflections (transpositions) in Sn, ` denotes the length
function and if t = (i, j) with i < j then α∨t = εi − εj where {εi} is a dual basis to
x1, . . . , xn.)

Now consider the numbers one may obtain as coefficients in the basis of Schu-
bert classes by multiplication by x1 and xn and by applying Demazure operators,
starting with Xid. Then Theorem 1.1 says that any such number occurs as torsion
in SLn+a+b where a (resp. b) counts the number of times that one has applied the
operator of multiplication by x1 (resp. xn).

1.3. Note to the reader. This paper is not yet in its final form and should be
considered as an announcement, together with a sketch of the argument. It should
be possible to replace the diagrammatic proof of the main theorem with a geometric
argument, using techniques explained to me by Patrick Polo. I hope to provide both
arguments in the final version.

1.4. Acknowledgements. The ideas of this paper crystallized after long discus-
sions with Xuhua He. I would like to thank him warmly for the invitation to Hong
Kong and the many interesting discussions that resulted from the visit. I would
also like to thank Ben Elias for countless hours (often productive, always enjoyable)
getting to know Soergel bimodules. His influence is omnipresent in this paper.

Thanks to Henning Haahr Andersen, Ben Elias, Peter Fiebig, Daniel Juteau and
Nicolas Libedinsky for valuable comments.

These results were announced in June 2013 at ICRT VI in Zhangjiajie, China.

2. Soergel bimodules

In this section and the next we give a brief overview of Soergel bimodules and
intersection forms. This paper is not self-contained. The main references are [Soe90,
Soe92, Soe07, JMW09, EK, EWa].6 The purpose of these two sections is to orient
the reader in the literature and give some examples of intersection forms.

Let (X,R,X∨, R∨) denote a reduced root datum, W its Weyl group, S ⊂ W a
fixed choice of simple reflections and {αs}s∈S , {α∨s }s∈S the corresponding simple
roots and coroots. We denote by ` : W → N the length function and ≤ the Bruhat
order.

Fix a field k of coefficients and let R = S•(X⊗Zk) denote the symmetric algebra
on the k-vector space X ⊗Z k, graded so that X ⊗Z k is homogenous of degree 2.

6There are also a week’s worth of lectures, notes and exercises available at http://qgm.au.dk/
video/ and http://people.mpim-bonn.mpg.de/geordie/aarhus/.

http://qgm.au.dk/video/
http://qgm.au.dk/video/
http://people.mpim-bonn.mpg.de/geordie/aarhus/
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Then R is a graded W -algebra, and given s ∈ S we denote by Rs the invariant
subring.

The category of Soergel bimodules B is the full additive monoidal graded Karoubian
subcategory of graded R-bimodules generated by Bs = R ⊗Rs R(1) for all s ∈ S.
(Here R⊗RsR(1) denotes the R-bimodule R⊗RsR shifted so that 1⊗1 is in degree
−1.) In other words, the indecomposable Soergel bimodules are the shifts of the
indecomposable direct summands of the Bott-Samelson bimodules

BS(w) = Bs1 ⊗R Bs2 ⊗R · · · ⊗R Bsm

for all words w = s1s2 . . . sm in S. In [Soe07] Soergel proves that the category of
Soergel bimodules categorifies the Hecke algebra, as long the characteristic of k is
not 2 and the representation of W on X∨⊗Z k satisfies a non-degeneracy condition
(it should be “reflection faithful” [Soe07, Def. 1.5]). The most difficult part of
Soergel’s proof is a classification of the indecomposable Soergel bimodules: for all
w ∈ W there exists an indecomposable Soergel bimodule Bw which occurs with
multiplicity one as a summand of BS(w) for any reduced expression w for w, and
the set {Bw} coincides with the set of all indecomposable Soergel bimodules, up to
shifts in the grading.

Remark 2.1. Under mild and explicit restrictions on the characteristic of k, Bw

may be realized as the equivariant intersection cohomology of the indecomposable
parity sheaf [JMW09] of the Schubert variety labelled by w in the flag variety of
the complex group with root data (X,R,X∨, R∨) [Fie08, FW]. In particular, if k
is of characteristic zero, then Bw is the equivariant intersection cohomology of a
Schubert variety.

In [EWa] the category of Soergel bimodules is presented by generators and rela-
tions, following earlier work of Libedinsky [Lib10] and Elias-Khovanov [EK]. More
precisely, we define a graded R-linear monoidal category D by generators and re-
lations and prove that it is equivalent to the category of Soergel bimodules as an
additive graded monoidal category (under the same assumptions on k and X∨⊗Z k
as above). We will not repeat the rather complicated list of generators and relations
here, see [EWa, §1.4].

Remark 2.2. The theory of Soergel bimodules seems to break down if k is of char-
acteristic 2 or if the representation of W on X∨ ⊗Z k is not reflection faithful. On
the other hand, the category defined by generators and relations still makes sense
and appears to be the correct substitute [EWa, §3.2].

An important tool in the study of Soergel bimodules is Soergel’s hom formula
[Soe07, Theorem 5.15] which describes the graded rank of homomorphisms between
Soergel bimodules in terms of the canonical form on the Hecke algebra. This for-
mula was categorified by Libedinsky [Lib08] who introduced a recursively defined
set of morphisms between Bott-Samelson bimodules, which he called light leaves.
Certain compositions of these morphisms, called double leaves, give an R-basis for
morphisms of all degrees between Bott-Samelson bimodules. Light leaves and dou-
ble leaves morphisms admit a nice diagrammatic description [EWa, §1.5 and §6].

3. Intersection forms

From now on D denotes the diagrammatic category of Soergel bimodules as
defined in [EWa] over the field k. Given any ideal I ⊂ W (i.e. x ≤ y ∈ I ⇒ x ∈ I)
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we denote by DI the ideal of D generated by all morphisms which factor through a
Bott-Samelson bimodule BS(y), where y is a reduced expression for y ∈ I.

Given x ∈W we denote by D≥x the quotient category D/D6≥x. We write Hom≥x
for (degree zero) morphisms in D≥x. All Bott-Samelson bimodules BS(x) corre-
sponding to reduced expressions x for x become canonically isomorphic to Bx in
D≥x. We denote the resulting object simply by x. We have End≥x(x) = k.

Given any expression w in S the intersection form is the canonical pairing

Ix,w,d : Hom≥x(x(d), BS(w))×Hom≥x(BS(w), x(d))→ End≥x(x(d)) = k.

Lemma 3.1. The multiplicity of Bx(d) as a summand of BS(w) is equal to the
rank of Ix,w,d.

Proof. Because Bx is indecomposable, End(Bx) is a local ring and the radical of
End(Bx) is the kernel of the canonical surjection

can : End(Bx)→ End≥x(Bx) = End≥x(x) = k.

Now, it is a standard fact (see e.g. [JMW09, Lemma 3.1]) that the multiplicity of
Bx(d) as a summand of BS(w) is equal to the rank of the form

Hom(Bx(d), BS(w))×Hom(BS(w), Bx(d))→ End(Bx)
can→ k.

However, the subspace of Hom(Bx(d), BS(w)) belonging to D6≥x is certainly in the
kernel of this form (D6≥x is an ideal), and similarly for Hom(BS(w), Bx(d)). The
form induced on the quotient is precisely the intersection form Ix,w,d. �

We now want to explain why the forms Ix,w,d are explicit, computable and defined
over Z. Given a word w = s1s2 . . . sm in S a subexpression e of w is a sequence e =
e1e2 . . . em of 0’s and 1’s. We set we = se11 . . . semm and say that the subexpression e
of w expresses we. Given a subexpression e its Bruhat stroll is the sequence

x0 = id, x1 = semm , x2 = s
em−1

m−1 s
em
m , . . . , xm = we.

We decorate each entry in the subsequence with a token U or D (for “up” and
“down”) as follows: for 1 ≤ i ≤ m, ei is decorated with U if sixm−i > xm−i and is
decorated with D if sixm−i < xm−i. The defect of the subsequence e is defined to
be the number of occurences of U0 minus the number of occurences of D0.

Example 3.2. If w = sts with s 6= t then there are two subexpressions expressing
the identity: 000 and 101. They are decorated U0 U0 U0, and D1 U0 U1 and have
defects 3 and 1.

Remark 3.3. See [EWa, §2.4] for a discussion and more examples. The reader
should be warned that in this paper we work from right to left (essentially due to
the convention that divided difference operators act on the left), rather than from
left to right as is done in [EWa].

By Libedinsky’s theorem [EWa, Theorem 1.1] the spaces Hom•≥x(x,BS(w)) and
Hom•≥x(BS(w), x) are free R-modules with graded basis given by light leaves cor-
responding to subexpressions e of w such that we = x. The degree is given by the
defect. Moreover the light leaves morphisms are defined over Z. Hence by using
the generators and relations one obtains integral matrices Ix,w,d whose reduction
modulo p controls the behaviour of the category of Soergel bimodules, as made
precise by Lemma 3.1.
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Example 3.4. We give two examples of intersection forms (the reader is referred
to [EWa] for more details):

(1) Assume that W is a dihedral group with simple reflections s and t. Let
w = sts, x = s and d = 0. There is only one subexpression of defect 0:
e =D0 U0 U1. The corresponding light leaves morphism is

Pairing it with itself we obtain:

= αt = ∂s(αt) + s(αt) = ∂s(αt)

Hence in this case the intersection form is the 1× 1-matrix:

(∂s(αt)) = (〈αt, α
∨
s 〉).

This example show the existence of torsion in the intersection cohomology
of the Schubert variety indexed by sts if 〈αt, α

∨
s 〉 < −1 (as happens in B2

and G2).
(2) Assume that W is of type D4 with generators s, t, u, v such that s, u and

v commute. Let w = suvtsuv, x = suv and d = 0. Then there are three
subexpressions of defect zero. These subexpressions, and the corresponding
light leaves maps are the following:

U1 D0 D0 U0 U0 U1 U1. D0 U1 D0 U0 U1 U0 U1 D0 D0 U1 U0 U1 U1 U0

We leave it to the reader to pair these morphisms and obtain the intersection
form  0 −1 −1

−1 0 −1
−1 −1 0


Note that the determinant of this matrix is -2. This example of 2-torsion
in the D4 flag variety was discovered by Braden [WB12, A.18].

In the following Proposition Ix,w,d denotes the integral form of the intersection
form defined above, H denotes the Hecke algebra of (W,S) and {C ′x} its Kazhdan-
Lusztig basis. We denote by

ch : [D]
∼→ H

the isomorphism between the split Grothendieck group of Soergel bimodules and
the Hecke algebra (see [Soe07, §5] or [EWa, §6.5]).

Proposition 3.5. The following are equivalent:

(1) The indecomposable Soergel bimodules categorify the Kazhdan-Lusztig basis.
That is, ch(Bx) = C ′x for all x ∈W .
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(2) For all (reduced) expressions w in S, all x ∈ W and all m ∈ Z the graded
ranks of Ix,w,m ⊗Z Q and of Ix,w,m ⊗Z k agree.

Proof. Soergel’s theorem [Soe01, Lemma 5] implies that the indecomposable Soergel
bimodules categorify the Kazhdan-Lusztig basis if k is of characteristic zero (see
[EWb] for an algebraic proof of this fact). Now Lemma 3.1 says that (2) holds if
and only if BS(w) decomposes the same way over Q as it does over k. Hence (1)
and (2) are equivalent. �

Remark 3.6. The intersection form and the above proposition is one of the tools
used by Fiebig to establish his bound [Fie12].

Remark 3.7. In fact (1) and (2) are equivalent to Ix,w,0 ⊗Z Q and of Ix,w,0 ⊗Z k
having the same rank for all reduced expressions w and x ∈ W . (That is we only
need to check that the forms for degree zero summands have the correct ranks.
This fact plays a key role in [EWb].) We will not need this below.

Proposition 3.8. If p = chark ≥ h, the Coxeter number of W , and the underly-
ing root system (X,R,X∨, R∨) is that of a simply connected semi-simple algebraic
group, then Lusztig’s conjecture implies that both statements of Proposition 3.5 hold.

Sketch of proof: If p ≥ h then D is equivalent to the category of Soergel bimodules
B. By abuse of notation we also denote by Bx the indecomposable Soergel bimodule
parametrized by x ∈W . We claim that Dx = Bx ⊗R k is indecomposable as a left
C = R/(RW

+ )-module. The fact that Lusztig’s conjecture implies (1) follows (with
some effort) from [Soe00].

It remains to see that Dx is indecomposable. Because the quotient of a local
ring if local, it is enough to show that the natural morphism

φ : Hom•R−R(BS(x), BS(y))⊗R k→ HomC(BS(x)⊗R k, BS(y)⊗R k)

is an isomorphism. By Soergel’s hom formula [Soe07, Theorem 5.15] and [Soe00,
Lemma 2.11.2] we know that both sides have the same (finite) dimension. Using
the biadjointness of Bs⊗R− one can reduce to the case when x = ∅. Finally, in this
case it is not difficult to check that φ is injective, and hence is an isomorphism. �

4. Proof of the theorem

LetW denote the symmetric group on {1, 2, . . . , a+n+b} with Coxeter generators
S = {s1, s2, . . . , sa+n+b−1} the simple transpositions. Given a subset I ⊂ S let WI

denote the corresponding standard parabolic subgroup. Consider the sets

A = {s1, s2, . . . , sa−1},M = {sa+1, . . . , sa+n−1}, B = {sa+n+1, . . . , sa+n+b−1}.

Then WA (resp. WM , resp. WB) is the subgroup of permutations of {1, . . . , a}
(resp. {a+ 1, . . . , a+ n}, resp. {a+ n+ 1, . . . , a+ n+ b}).

We use the notation of §1.1 except we shift all indices by a. That is we regard
Sn as embedded in Sa+n+b as the standard parabolic subgroup WM . We rename
R = Z[x1, . . . , xa+n+b] and write αi = xi − xi+1 for the simple root corresponding
to si. Fix

C = ∂wm
(xam

a+1x
bm
a+n∂wm−1

(x
am−1

1+a x
bm−1

a+n . . . ∂w1
(xa1

a+1x
b1
a+n) . . . ))

which we assume is a non-zero integer. (Now w1, . . . , wm ∈ WM and the fact that
C is a non-zero integer implies that

∑
`(wi) = a+ b.)
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Let M ′ = M \ {sa+1, sa+n−1}. Then for any w ∈ WM ′ , ∂w commutes with the
operators of multiplication by xa+1 and xa+n. Hence we may (and do) assume that
each wi is of minimal length in its coset wiWM ′ .

Fix a reduced expression wM for wM and reduced expressions wi for each wi.
Let w be the sequence

w = wmumvm . . . w2u2v2w1u1v1wM .

where

u1 = (sa . . . sa−a1+1) . . . (sasa−1)(sa)

u2 = (sa . . . sa−a1−a2+1) . . . (sa . . . sa−a1−1)(sa . . . sa−a1
)

...

um = (sa . . . s1) . . . (sa . . . sa−a1−···−am−1−1)(sa . . . sa−a1−···−am−1)

(subscripts fall by 1 within each parenthesis, and sa occurs ai times in ui) and

v1 = (sa+n . . . sa+n+b1−1) . . . (sa+nsa+n+1)(sa+n)

v2 = (sa+n . . . sa+n+b1+b2−1) . . . (sa+n . . . sa+n+b1+1)(sa+n . . . sa+n+b1)

...

vm = (sa+n . . . sa+n+b−1) . . . (sa+n . . . sa+n+b1+···+bm−1).

(subscripts rise by 1 within each parenthesis, and sa+n occurs bi times in vi).

Lemma 4.1. w is reduced.

Proof. It is routine but tedious to draw a picture of w and convince oneself that it
is reduced, using that each wi is minimal in wiWM ′ . �

Remark 4.2. In fact Lemma 4.1 is not necessary for the main theorem, as it is
enough to demonstrate an intersection form equal to (±C) associated to any ex-
pression w, reduced or not.

Set I = A ∪M ∪B and let wI be its longest element. Write w = si1 . . . sil .

Lemma 4.3. Any subexpression e of w with we = wI has ej = 0 if sij ∈ {sa, sa+n}
and ej = 1 if sij ∈ A ∪B.

Proof. Let e denote a subexpression of w with we = wI .
Any expression y for wA contains a subexpression of the form sa−1sa−2 . . . s1

(think about what happens to 1 ∈ {1, . . . , a}). In w, s1 only occurs once. Left of s1
there is only one occurence of sa−1, sa−2, etc. We conclude that the restriction of e
to (sasa−1 . . . s2s1) in um is equal to (01 . . . 11). Now any expression for wA starting
in sa−1 . . . s1 has to contain a subexpression to the right of the form sa−1 . . . s2
(think about what happens to 2 ∈ {1, . . . , a}). Continuing in this way we see that
the restriction of e to each uj has the form

(01 . . . 1) . . . (01 . . . 1)(01 . . . 1).

Similar arguments apply to each vi and the result follows. �

Lemma 4.4. There is a unique subexpression e of w such that we = wI and e has
defect zero.
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Proof. By the previous lemma we must have ej = 0 (resp. 1) if sij ∈ {sa, sa+n}
(resp. sij ∈ WA∪B). Because each ej with sij ∈ {sa, sa+n} is U0 and because
WA∪B and WM commute we only have to understand subexpressions of

w′ = wmwm−1 . . . w1wM

of defect −(a+b) = −
∑m

i=1 `(wi). Now it is easy to see that the only subexpression
of w′ fulfilling these requirements is

(0 . . . 0)(0 . . . 0) . . . (0 . . . 0)(1 . . . 1). �

Recall that the intersection form associated to w at wI in degree 0 is given by
pairing light leaves maps of defect zero. By the above lemma there is only one
subsequence of defect zero, and hence the intersection form is a 1× 1 matrix. The
following lemma calculates this matrix:

Lemma 4.5. The intersection form of w at wI is (±C).

Proof. Note that the light leaves map corresponding to the unique defect 0 subex-
pression e of w is simple: the last terms corresponding to wM are U1 and all ej
with sj ∈ {sa+1, . . . , aa+n−1} before that are D0; all ej with sj ∈ {sa, sa+n} are
U0; and all other ej (corresponding to simple reflections in A∪B) are U1. We may
picture the pairing of the light leaves with itself schematically as follows:

βααααα

Here β denotes a morphism composed entirely of braid relations (2mst-valent ver-
tices in the terminology of [EWa]), blue lines indicate simple reflections belonging to
the set M , α stands for either αa or αn+a and red lines stand for simple reflections
belonging to A ∪B.

Every time we move an α through a red line we apply the nil Hecke relation:

j

α = sj(α) + ∂j(α)

However the expression in the red lines is reduced. Hence the second term (with
the broken line) always contributes zero to the intersection form (it belongs to the
ideal D 6≥wI

). Hence we can ignore the red lines if we replace each occurence of α
by w(α) for some w ∈WA∪B . Any such w(α) is of the form

w(α) = α+
∑

j∈A∪B
λjαj .

Each αj with j ∈ A ∪ B is invariant under WM and hence if we apply the nil
Hecke relation again we can slide all such terms outside all blue lines. Any diagram
with a positive degree polynomial on the left or right is necessarily zero (because
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End•≥wI
(wI) = R is concentrated in non-negative degrees). Hence we can replace

each w(α) by α. We conclude that we can simply ignore the red lines in the above
picture.

Now, when moving the left most power of α through a blue line it must break.
We conclude that the value of the intersection form is

C ′ = ∂wm
(αam

a αbm
a+n∂wm−1

(αam−1
a α

bm−1

a+n . . . ∂w1
(αa1

a α
b1
a+n) . . . )).

Finally, αa = xa − xa+1 and αa+n = xa+n − xa+n+1. Because xa and xa+n+1

commute with WM we can apply the argument of the previous paragraph to get

C ′ = ∂wm
((−xa+1)amxbma+n∂wm−1

((−xa+1)am−1x
bm−1

a+n . . . ∂w1
(((−xa+1)a1xb1a+n) . . . ))

= (−1)aC. �

5. (Counter)-examples

We use the notation of §1.2.

5.1. n < 4: One checks easily using (1.1) and (1.2) that for n = 2, 3 one can only
obtain C = ±1.

5.2. n = 4: Using (1.1) and (1.2) we see that

Y = x1(∂1(x21Xid) = X12 +X21.

Now consider the operator F : H → H given by

F (h) = ∂13(ω13∂12(ω13h)).

where ω13 = x1(−x4). Using (1.1) and (1.2) (Figure 1 might be helpful) one checks
easily that X32, X13 and X12 are in the kernel of F , that F preserves the submodule
ZX21 ⊕ ZX23 and that in this basis F is given by the matrix

F =

(
1 1
1 0

)
This matrix determines the Fibonacci recursion! Hence for i ≥ 1 we have

F i(x1(∂1(x21Xid)) = F iY = Fi+1X21 + FiX23

where F1 = 1, F2 = 1, F3 = 2, F4 = 3 etc. denote the Fibonacci numbers.
We conclude from the main theorem that the Fibonacci numbers Fi+1 and

Fi occur as torsion in SL4i+7. (For example ∂12(F i(x1(∂1(x21)))) = Fi+1.) By
Carmichael’s theorem [Car14] the first n � 0 Fibonacci numbers have at least n
distinct prime factors. Now by the prime number theorem we conclude that the
torsion in SLn grows at least as fast as some constant times n log n. Hence no linear
bound is sufficient for Lusztig’s conjecture.
n = 5: In the following table we list some examples of torsion in SLN found

using the SL5 flag variety. The entries in the list were found by random computer
searches, and are probably not optimal.

N 10 14 16 18 20 22 26 30 34 38 . . . 100 200
p 3 7 13 23 43 61 139 421 839 1867 . . . 5674199 1225837367
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Figure 1. Part of the Bruhat graph for S4 : 1− 2− 3.

1213 1321 2132 1232 2321

121 123 132 213 321 232

12 21 13 23 32
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