
KOSZUL DUALITY AND APPLICATIONS IN
REPRESENTATION THEORY

Abstract. Notes from lectures given by Wolfgang Soergel in Lu-
miny, September 2010. Notes by Geordie Williamson.

1. Lecture 1: Koszul duality

g ⊃ b ⊃ h a semi-simple Lie algebra, Borel and Cartan. (Certainly
on may take sln containing the upper triangular matrices, and diagonal
matrices.)

We consider

U(g) ⊃ Z ⊃ Z+ = AnnZC
where Z denotes the center.

We consider

O :=

M ∈ g−mod

∣∣∣∣∣∣
finitely generated /g

locally finite /b
semi-simple /h


A good reason to study to study O is that is “almost” Harish-Chandra
modules for G(C).
O contains O0 as a direct summand.

O0 = {M ∈ O | (Z+)NM = 0 for N big enough}.

Note that modules inO0 are certainly not unitary, and we study to what
extent semi-simplicity fails when we leave unitary representations.

Set

L = (sum of all simples from O0)

��
I = injective hull of L.

(Note that I is well-defined up to non-unique isomorphism.)

Theorem 1.1 (Koszul self-duality for O0). There exists an isomor-
phism of finite dimensional C-algebras:

EndO0 I
∼=
⊕

ExtiO0
(L,L).
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(This was conjecture by Beilinson and Ginzburg.)
If λ ∈ h∗ this leads to U(g) ⊗U(b) Cλ = ∆(λ) ∈ O. This is a Verma

module and corresponds to a principal series Harish-Chandra module.
One has a unique simple quotient

∆(λ)→ L(λ)

the unique simple quotient.
There is a bijection between h∗

∼→ irrO which associates L(λ) to
λ ∈ h∗.

This restricts to a bijection

W
∼→ irrO0

x 7→ L(x · 0)

Where the W -action on h∗ is shifted by −ρ where ρ denotes the half-
sum of the positive roots.

Hence L = ⊕x∈WL(x · 0) and we have the injective hull L(x · 0) ↪→
I(x · 0). Then

I =
⊕
x∈W

I(x · 0).

Hence the above theorem becomes

Endg(
⊕

I(xw0 · 0))
∼→ Ext•O0

(
⊕

L(x · 0))

This isomorphism preserves the idempotents. The idempotent 1x is
mapped to the idempotent 1x.

Let us recall some general theory. Let A be an abelian category in
which every object is of finite length and assume A admits an injective
generator I. (This means that every simple object has a non-zero
morphism to I.)

Then we have an equivalence of categories:

A ∼→ EndA I−Modfl

M 7→ HomA(M, I).

(where Modfl denotes modules of finite length.)

Proof. Functor is exact and fully faithful on ⊕I. Given any object we
resolve it

M ↪→ ⊕finiteI → ⊕finiteI
Hence the functor is fully faithful always. �

This means that if we set

A = Endg(
⊕

I(xw0 · 0))
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then O0
∼= A−Modfl. (We use the fact that O0 has the above nice

properties.)

Example 1.2. Let us consider g = sl2 and M ∈ O0. There are two
simple objects L(0) = C and L(−2ρ) = ∆(−2ρ). The only weight
spaces which M can have belong to N(−2ρ).

If we let X,H, Y be as usual. X =

(
0 1
0 0

)
, H =

(
1 0
0 −1

)
and

Y =

(
0 0
1 0

)
.

We can picture M as

M0

Y
��

M−2

Y
��

X

OO

M−4

X

OO

and we have a functor that only remembers the M0 and M−2 weight
spaces. We get a functor to representations of the quiver

•
Y

��
•

X

OO

and one can check that this gives an equivalence with representations
that satisfy xy = 0. We get that dimCA = 5 with basis

deg
2 yx
1 x y
0 1e 1s

We now explain why the theorem can be seen as saying that A is a
self-dual Koszul ring.

Definition 1.3. A positively graded Z-graded ring A =
⊕

i≥0A
i is

called Koszul if

(1) A0 is semi-simple,
(2) As a module for A, A0 = A/A≥0 admits a graded projective

resolution
. . .→ P2 → P1 → P0 → A

with Pi generated in degree i (that is Pi = AP i
i ).
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(Note that the fact that A0 is semi-simple in degree 0 is clear in the
above example. The idempotent projectors give the decomposition.)

Example 1.4. (1) A = A0 is semi-simple (this is a silly example).
(2) A = k[X] then we have a graded projective resolution

k[X]X → k[X]→ k.

(3) A = SV where dimk V <∞ and we have a resolution

. . .→ SV ⊗ Λ2V → SV ⊗ V → SV → k

(this is the Koszul complex).

We first give a more intrinsic alternative definition of the Koszul
property. A positively Z-graded ring A is called Koszul if M = Mm

and N = Nn and both M and N are graded A-modules. (We say that
M and N are pure.) Then

ExtiA−gMod(M,N) = 0

unless i = n−m. Hence extensions between M and N only live on the
diagonal.

Remark 1.5. This can be seen as a graded version of semi-simple. This
is the “closest that a graded ring can come to being semi-simple”.

We now explain what self-dual means.

Definition 1.6. If A is a positively graded Z-graded ring then we can
define

E(A) = Ext•A(A0, A0)

Theorem 1.7. If A is Koszul and A1 is finitely generated as a left
A0-module then E(A) has the same property. Moreover

E(E(A)) ∼= A

canonically.

E(A) is called the Koszul dual of A.

Remark 1.8. In the above case, Ext•A(A0, A0) is formal, and this is why
it makes sense to consider it.

Sketch. The first step is to show that if A is Koszul then A is quadratic.
This means that A is generated in k := A0 and V = A1. Then V is a
k-bimodule. Consider the exact sequence

R→ TkV =
⊕
n≥0

V ⊗n → A.
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The quadratic condition says that the kernel R ⊂ V ⊗k V (that is,
generated in degree 2). Given a quadratic ring one can form A! the
quadratic dual ring. This is defined as

A! = TkV
∗/〈R⊥〉.

(Be careful of left and right duals in the above.) The theorem is that
if A is Koszul, then E(A) ∼= (A!)opp. The theorem then follows in a
straightforward way. �

We explained at the beginning the equivalence

A− mod
∼→ O0

A0 7→ L

E(A) ∼= Ext•O0
(L,L) ∼= A.

This implies that E(A) ∼= A. (This is the self-duality alluded to before.)

2. Second lecture

Recall from last time that we said that a graded ring A =
⊕

i≥0A
i

is Koszul if M,N ∈ A−ModZ, M = Mm, N = Nn then

Exti
A−ModZ(M,N) = 0

unless n = m+ i. We also defined the Koszul dual ring

E(A) = Ext•A(A0, A0)

Theorem 2.1.

Derb(A−ModflZ)
∼→κ

Derb(ModflZ−E)

We have

κ(M〈n〉) = (κM)[−n]〈−n〉

For all p ∈ A0 we have:

A0p 7→ pE

in other words, the simples are sent to projectives.
If: A is of finite length over A0 from left and right and E is right

Noetherian.

In this theorem we use the definition (M〈n〉)i = M i−n.
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Example 2.2. If A = ΛV ∗, E = SV and dimV <∞. Then

Derb(ΛV ∗ −ModflZ)
∼→ Derb(SV −ModflZ).

On the right is the category of coherent sheaves on P(V ) (after dividing
out by finite dimensional representations of SV ), and on the left are
the problems of linear algebra. (c.f. Beilinson’s theorem).

Because the above is at the heart of the Koszul duality formalism,
we will give a proof.

Proof. 1) Suppose that I is an additive category. Consider its ho-
motopy category Hot I and chain complexes Ket I. Given a complex
T ∈ KetT then

E = HomI(T, T ) = EndI(T )

is a complex of abelian groups, and is even a dg-ring.
We have a functor

Ket I HomI(T,−)−→ dgMod−E
and it descends to a functor

Hot I → dgHot−E
We may identify both sides of

HotI(T, [n]T )→ dgHot−E(E, [n]E)

with HnE. Hence we get an equivalence of triangulated categories

Hot I → dgHot−E
〈T 〉∆

∼→ 〈E〉∆
This shows the close relationship between triangulated categories and
modules over differential graded algebras.

2) Now imagine that A is an abelian category. Let us say that
T ∈ KetA is endacyclic if

HotA(T, [n]T )
∼→ DerA(T, [n]T )

for all n. For example a bounded below complex of injective objects is
endacyclic.

In this case we could reinterpret the above as giving an equivalence

DerA dgDer−E
∪ ∪
〈T 〉∆

∼→ 〈E〉∆
∩ ∩

HotA dgHot−E
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2b) If A is a Γ-category and T is such that
⊕

γ∈Γ T 〈γ〉 is endacyclic.
(This can be made to make sense even if we don’t have infinite sums.)

Then we set
E =

⊕
γ∈Γ

Hom(T, T 〈γ〉)

which is a Γ-graded differential graded ring. Then we have an equiva-
lence

DerA dgDerΓ−E
U U

〈T 〈γ〉〉γ∈Γ
∼→ 〈E〈γ〉γ∈Γ

3) Let Γ be an abelian group. Let R =
⊕

Rn
γ a Γ-graded differential

graded ring. We can consider

dgModΓ
G, dgHotΓ

R, . . .

Let ϕ : Γ→ Z be a group homomorphism, we can define

R̂n
γ = Rn+ϕ(γ)

γ

and we get an equivalence

dgModΓ−R ∼→ dgModΓ−R̂.
4) We now try to put all these things together.
We set A = A−ModZ and as our endacyclic complex T we take

T = P • a projective graded resolution of A0.

We set E = EndA(P •). From Step 2b) we have an equivalence

Der(A−ModZ dgDerZ−E
∪ ∪

〈A0〈n〉〉n∈Z
∼→ 〈E〈n〉n∈Z

We now apply 3) to regrade to Ê such that all homology is in degree
zero.

But if we have a differential graded algebra with all its cohomology
concentrated in degree zero then we have quasi-isomorphisms

Ê ← Ẑ → Ĥ

and hence
dgDerZ−E ∼→ dgDerZ−Ĥ.

But now Ĥ = E(A). This is Koszul duality! (One needs to allow direct
summands if A0 is not a field.) �

We now come back to representation theory. Recall that

O0 = A−modfg
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Theorem 2.3. A ∼= Ext•(L).

We want to deduce that A is Koszul!

Proposition 2.4. If A is a finite dimensional algebra over F a field.
If there exists and isomorphism

A ∼= E(A) = Ext•(A0, A0)

then A is Koszul!

Proof. We k = A0. We have an exact sequence

A>0 = I ↪→ A→ k

We get (by the long exact sequence)

Ext1
A(k, k) = HomA(I, k) ∼= HomA(I/I2, k)

∪ ∪
Ext1

A−ModZ(k, k〈1〉) ∼= HomA(A1, k)

Now Ext1
A(k, k) and HomA(A1, k) are of the same dimension. Hence

both inclusions above are equalities. Hence A is generated by A1 and
A0. But we have seen that all the Ext1

A(k, k) are pure. But since these
generated the ring, all extensions are pure, and Koszulity follows. �

Definition 2.5. OZ
0 = A − modfgZ. Then A ∼= E(A) has a Koszul

grading. Let us call this a Z-graded version of O0.

Corollary 2.6. Derb(OZ
0 )

∼→ Derb(OZ
0 ). There exist lifts of the simple

and projective modules such that

L̃(x · 0) 7→ ˜P (w0x · 0)

κ(M〈n〉) = (κM)〈−n〉[−n].

Also:

∇̃(y · 0) 7→ ˜∆(w0y · 0).

(Note that A = Aop.)
When people began investigating category O they discovered certain

strange formulas of the form:

[∆(x · 0), L(y · 0)] =
∑

dim Exti(∆(w0x · 0), L(w0y · 0)

In fact, both sides are given by the values at 1 of certain Kazhdan-
Lusztig polynomials. Beilinson and Ginzburg were investigating a
framework where the above strange formulas could be given an ex-
planation. This gave rise to Koszul duality!
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The above formulae have the following interpretation using Koszul
duality

Exti(L(y · 0),∇(x · 0)) =
⊕
j

DerOZ(L̃(y · 0), ∇̃(x · 0)[i]〈j〉)

= DerOZ( ˜P (w0y · 0), ˜∆(w0x · 0)[i− j]〈−j〉)
= [∆(w0x · 0) : L(w0y · 0)〈−i〉].

3. Lecture 3

Recall that last time we saw that we have

O ⊃ O0 3
⊕

x∈W L(x · 0)
∈⊕
I(x · 0)

We saw an isomorphism

Endg(
⊕

I(x · 0))
∼→ End•O0

(
⊕
x∈W

L(x · 0)).

We saw that such an isomorphism can be used to explain certain in-
version formulas for Kazhdan-Lusztig polynomials.

But first we should an idea how the above isomorphism comes about.
There exists a functor:

V : O0 → C−Mod

this functor is exact, L(x · 0) if x 6= w0 and L(w0 · 0) = ∆(w0 · 0) 7→ C.
In fact, this functor is given by Hom(?, I(w0 ·0)). Hence this functor

descends to

V : O0 → Z −Mod

where Z-denotes the center of the enveloping algebra. One can show
that this functor is fully-faithful on injective modules.

Hence we may identify

Endg(
⊕

I(x · 0)) = EndZ(
⊕

VI(x · 0)).

To handle the other side we need localisation:

DG/B −Mod
∼→Γ

U/Z+U −Mod

This leads to an equivalence of categories (cheating a bit):

PN(G/B)
∼→ O0

The left-hand category is perverse sheaves constructible on Bruhat
cells. Under this equivalence L(w0x·0) corresonds to Lx := IC(BxB/B).
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Hence the right hand side above becomes

Ext•O0
(
⊕

Lx)
∼→ Der•G/B(

⊕
Lx)

On DerG/B = Der(C−ModG/B) we have the functor

H•(?) : DerG/B → H•(G/B)−Mod.

It turns out this functor is fully-faithful on morphisms between inter-
section cohomology complexes and so we have an isomorphism

Der•G/B(
⊕
Lx)

∼→ EndH•(G/B)−Mod(
⊕

H•Lx).

Now take g ⊃ b ⊃ h we have the Harish-Chandra isomorphism

Z
∼→ (Sh)W ·

when we complete at Z+ we obtain an isomorphism

Z∨Z+

∼→ (Sh)∨0 .

We also have the Borel isomorphism

(Sh•)+
0 � H•(G/B).

One can show isomorphisms

EndZ(
⊕

VI(x · 0)) = End(Sh)∨0−Mod(
⊕

VI(x · 0))

Hence the above reduces to showing an isomorphism

(Sh)∨0 −Mod 3 VI(x · 0)
?∼= H•(Lx) ∈ (Sh∗)∨0 −Mod.

Note that the left hand module is a module over (Sh)∨0 and the right
hand module is a module over (Sh∗)∨0 . Hence we need to identify h
with h∗. This can be done using a Killing form, but it is much better
to regard the above using Langlands dual groups.

We now take another approach. Suppose that H acts on X, an
algebraic variety over C. Suppose additionally that H acts with finitely
many orbits. We can consider⊕

π

Lπ ∈ DerH(X)

the sum of all simple perverse sheaves (there are finitely many based
on our assumptions).

We can set
Ext•H(X) := Ext•H(

⊕
π

Lπ).

What we learnt before is that

O0
∼= Ext•N∨(G∨/B∨)−modfg .
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3.1. Koszul duality for real groups. We now try to learn what the
analogy of this statement is for real groups.

We take G/C a reductive connected algebraic group. γ is an anti-
holomorphic quasi-split involution. (This means that there is a Borel
subgroup fixed by γ.)

Here I am relying on work of Adams, Barbarsch and Vogan. (In
fact, most of the work is due to them.) We consider the first Galois
cohomology

H1(Γ;G(C))

Γ denotes the Galois group of R over C and γ denotes its non-trivial
element. Given δ ∈ H1(Γ;G(C)) this leads to G(R; δ). (Note that this
does not classify real forms; these are classified by H1(Γ; AutG(C)).)

We consider ⊕
δ∈H1(G;G(C))

M(G(R, δ))

where M denotes smooth admissible representations (or equivalently,
Harish-Chandra bimodules).

We take χ ∈ MaxZ and Z ⊂ U(g) denotes the centre as before. We
consider ⊕

δ∈H1(G;G(C))

M(G(R, δ))χ

where the subscript χ denotes the modules killed by some power of χ.
Given (G, γ, χ) then Adams, Barbarsch and Vogan associate a variety

X(χ) together with an action ofG∨. (X(χ) is a variant of the Langlands
parameter space.)

If χ integral then X(χ) is simply the cycles G∨×P∨(χ)Z
1(Γ, G∨). We

could write this as the set

X(χ) = G∨ ×P∨(χ) {g ∈ G∨ |g(gγ) = 1}.
where P∨(χ) is the parabolic corresponding to χ. (P∨(χ) = G∨ if χ is
maximally singular, and P∨(χ) = B∨ if χ is regular.)

As before we can form

Ext•G∨ X(χ)− Nil

where Nil denotes modules of finite dimension killed by high degrees.
The conjecture is⊕

δ∈H1(G;G(C))

M(G(R, δ))χ ∼= Ext•G∨ X(χ)− Nil

this looks a bit crazy (hopefully!).
First we should check that both sides have the same number of simple

objects. On the right hand the simple objects are parametrised by π.
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Let me introduce a nice parameter set. As before we have H acting
on X and we set

P (H,X) =

{
(Y, τ)

∣∣∣∣ Y ⊂ X an orbit
τ ∈ (Gy/G

0
y)
∨ for y ∈ Y

}
.

We have a bijection

Par(H,X)
∼→ irrPH(X)

π 7→ Lπ = IC(Y , τ).

It is easy to see that Par(H,X) parametrises simple modules on the
right hand side above. What ABV were able to show is a bijection

Par(G∨, X(χ))
∼→ irr

⊕
δ∈H1(G;G(C))

M(G(R, δ))χ.

For complex groups one can use the above techniques to check that the
conjecture is true for complex groups.

One can also check SL(2; R).
One can also check that the conjecture is true for generic χ. Here

the parameter space is basically a flag variety, and the proof goes as
above.

Let us see what it says for R×, the multiplicative group of the real
numbers.

There is only one form (Hilbert’s theorem 90?). We claim an equiv-
alence

M(R×)χ ∼= C[t]− Nil⊕C[t]− Nil .

The two copies come from the action of ±1. Then we identify C[t] with
the enveloping algebra.

We now consider the other side. We have C× with γ(z) = z. On the
dual side we have C× = G× and γ = Id. Hence

Z1 = {z ∈ C× | z2 = 1}.
Hence we have to compute

Ext•C×(two points).

We have
Ext•C×(pt) = H•C×(pt) = C[t]

and the conjecture follows.
In a similar way one can check the conjecture for tori.
One can also check the conjecture for p-adic groups in the unramified

case. (The same statement holds by work of Lusztig and Ginzburg. It
was checked by Suy Kato.)

So this gives some evidence.
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There is another range of evidence, given by identities of Kazhdan-
Lusztig polynomials. There exists a Jordan-Hölder matrix (measuring
multiplicities of simple modules in standard modules)

JHπ,Ψ

On the other side we have a matrix (given by stalks of intersection
cohomology complexes):

ICπ,Ψ
These two matrices are inverse transpose up to sign. (This is Vogan
duality explained in a paper called ... IV. It was understood in ABV
that Vogan duality could be interpreted in this way.

Let us set A = Ext•G∨(X(χ))− Nil. Consider

Der(A−ModZ)

There are two ways to forget the grading on this category. There are
two ways to forget the grading

Der(A−ModZ)

uulllllllllllll

((RRRRRRRRRRRRR

Der(A−Mod) dgDerA

∪ ∪

Der(⊕M) DerG∨(X(χ))

On the right, DerG∨(X(χ)) can be described in terms of modules over
a differential graded algebra. (This was recently completed by Olaf
Schnürer.)
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