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In representation theory there are numerous examples of
beautiful combinatorial structure: Weyl’s character formula, Young
tableaux, Littelmann’s path model, Kazhdan-Lusztig conjecture . . .

But there are also questions which seem fundamentally difficult:
Kronecker coefficients, determination of the unitary dual, the
character table of SLnpFqq, . . .

(Perhaps there is beautiful structure waiting to be discovered
here. At present the difficulties seem to lie quite deep.)
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This will be a talk about modular representation theory: i.e. the
study of representations over some field k (usually Fp or Fp) of
positive characteristic p.

Here the same dichotomy is present. One has beautiful
structural theorems (Brauer’s theory of defect groups, derived
equivalence . . . ) and dimension/character formulas (LLT
conjecture, Lusztig conjecture, James conjecture . . . ).



In dimension and character formulas experience shows that the
situation is “chaotic” for very small p (Richard Guy: “There aren’t
enough small numbers to meet the many demands made of
them.”) and uniform for very large p. (Think about a finite rank
Z-algebra.)

One hopes that there is some range of “bad” primes, after which
the situation becomes uniform (what exactly uniform means might
take decades to pin down):

Examples:

(James conjecture) Modular representations of Sn should be
uniform if p ą

?
n.

(Lusztig conjecture) Modular representations of SLnpFpmq in
natural characteristic should be uniform if p ą n.



Theorem: There exists a constant c ą 1 such that Lusztig’s
conjecture on representations of SLnpFpq fails for many primes
p ą cn and n " 0.

Note: Lusztig’s conjecture holds for p very large (a highly
non-trivial theorem).

This theorem simply says that the “unstable range” is much
larger than we first thought.

It is disconcerting from the structural point of view that there is
some interesting number theory behind these results.
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Fix an algebraic group G over k :“ F̄p.

A rational representation is a homomorphism ρ : G Ñ GLn of
algebraic groups (i.e. matrix coefficients are regular functions on
G ).

Studying rational representations is “harmonic analysis in
algebraic geometry”.



Example: The standard representation of SL2 on V “ kx ‘ ky
(column vectors) is rational.

For any m ě 0 we get a representation on the symmetric power
SmpV q (a.k.a homogenous polynomials in x , y of degree m).

These are not all simple in characteristic p:

ˆ

a b
c d

˙

¨ xp “ pax ` cyqp “ apxp ` cpyp.

Hence Lppq :“ kxp ‘ kyp Ă SppV q is a submodule.
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The wierd and wonderful world of rational representations:

Exercise: (Easy) SppV q{Lppq is simple and isomorphic to
Lpp ´ 2q :“ Sp´2pV q. Hence:

rSppV qs “ rLppqs ` rLpp ´ 2qs

Moreover, Lppq – V p1q, where V p1q is V pulled back under the
Frobenius map

ˆ

a b
c d

˙

ÞÑ

ˆ

ap bp

cp dp

˙

Exercise: (Harder) For any m, Spm´1pV q is simple and

Spm´1pV q – Sp´1pV q b Sp´1pV qp1q b ¨ ¨ ¨ b Sp´1pV qpm´1q.

(Crazy from the perspective of char 0 representation theory!)
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Assume that G is reductive. Then G may be obtained by
reduction modulo p from an algebraic group (“Chevalley scheme”)
over Z.

Similarly, one may start with a simple highest weight
representation over C and “reduce it modulo p” to get a highest
weight representation ∆pλq of G .

For SL2: ∆pmq “ SmpV q˚.

Theorem: ∆pλq has a unique simple quotient Lpλq. The Lpλq
are pairwise non-isomorphic and exhaust all simple G -modules.

Hence one has a classification by highest weight just as in
characteristic zero. However the simple modules are usually much
smaller than in characteristic zero. (The definition of Lpλq as a
head is not explicit.)
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Explicit constructions of Lpλq are a distant dream (except for
SL2).

Instead we try to write the unknown in terms of the “known”:

rLpλqs “
ÿ

aµλr∆pµqs.

(As “reductions modulo p”, the r∆pµqs have the same formal
characters as their characteristic zero cousins (Weyl’s character
formula). One can see the above equality as an identity of formal
characters.)
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Verma noticed that behind all of this lurks the dot action of an
affine Weyl group, where translations are dilated by p.

We denote this p-dilated dot action λ ÞÑ x ¨p λ.







Lusztig’s character formula (1979): If x ¨ 0 is “restricted” (all
digits in fundamental weights less than p) then

rLpx ¨p 0qs “
ÿ

y

p´1q`pyq´`pxqPw0y ,w0xp1qr∆py ¨p 0qs.

The Px ,y are Kazhdan-Lusztig polynomials associated to the affine
Weyl group.

This formula is enough to determin all characters (Steinberg
tensor product theorem, Jantzen’s translation principle).
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Lusztig’s character formula (1979): If x ¨ 0 is restricted then

pLCF q rLpx ¨p 0qs “
ÿ

y

p´1q`pyq´`pxqPw0y ,w0xp1qr∆py ¨p 0qs.

Lusztig’s formulation required p ě 2h ´ 2 where h is the Coxeter
number of G (e.g. n for SLn). It was later realized (by Kato and
others) that p ě h looks reasonable.

There is also a version for quantum groups at roots of unity
where the necessary but annoying assumptions (p ą h, x ¨ 0
restricted) magically disappear.
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A potted history:

1. It was shown in the early 90s that LCF holds for p " 0 by
combined work of Kazhdan-Lusztig, Kashiwara-Tanisaki,
Lusztig, Andersen-Jantzen-Soergel.

Hence, though
complicated, it seems that the LCF is necessarily complicated.

2. Another proof (for p " 0) was given by Bezrukavnikov and
coauthors in the mid 2000s.

3. Fiebig (2008) gave another approach. From his method he
could deduce an explicit enormous bound above which the
LCF holds.
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Soergel (2000): “The goal of this article is to forward [Lusztig’s
conjecture] to the topologists or geometers.”

After much translation (parts of) Lusztig’s conjecture (and
much of highest weight representation theory) can be formulated
in terms of “intersection forms”.



H1pT q “ Zrαs ‘ Zrβs



The Decomposition Theorem at the “most singular point”

In fact, both homomorphism spaces
may be canonically identified with

HBM
top F and the pairing is the

intersection form.

Conclusion: The Decomposition
Theorem is true at x if and only if
the intersection form on the fibre

is non-degenerate.

Geordie Williamson (joint with Daniel Juteau and Carl Mautner) Parity sheaves

rX is smooth.

π is a resolution of singularities.

X (usually singular), normal.
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After fixing a point x P X we
can consider the fibre

F :“ π´1pxq.

F is connected.
If F Ă rX half-dimensional (of
real dimension d) we have a
“refined intersection form”

HdpF qˆHdpF q Ñ H0p rX q “ Z.

HdpF q has a basis rFi s con-
sisting of fundamental classes
of irreducible components of
maximal dimension.

“How do the Fi move in rX?”
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Example (“miracle situation”):

Suppose F is irreducible. Then our intersection form is a
1ˆ 1-matrix!

If in addition F is smooth then its self-intersection is

xrF s, rF sy “ e

where e denotes the Euler class of the normal bundle of F Ă rX .

(One of the few examples where one can compute anything.)

E.g. Igelsatz: Sn Ă TSn, rSns2 “ 1` p´1qn “ χpSnq.
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Forms are everywhere in rep theory and geometry/topology.

In the passage from representation theory to geometry these
forms are either:

a) preserved (e.g. Springer correspondence, geometric Satake,
Nakajima quiver varieties). This is interesting, but doesn’t help
computations.

b) get much smaller (“we zoom in”). E.g. a contravariant form
on a 104 dimensional weight space is replaced by 1ˆ 1-matrix (e.g.
“miracle situation”). This is a computational dream!

In Soergel’s passage from Lusztig’s conjecture to the geometry
of the flag variety, we often find ourselves in situation b).
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Notation for the main theorem:

Consider the cohomology of the flag variety of SLn:

H “ Zrx1, . . . , xns{pe1, . . . , enq

(where ei denotes the i th elementary symmetric function.)

H “
à

ZXw

where Xw indexed by permutations of n (Schubert basis).

On H we consider the operators:

1. f ÞÑ Bi pf q :“ f´si pf q
xi´xi`1

(a Demazure operator).

2. f ÞÑ xi f for i P t1, nu (mult. by x2, . . . , xn´1 is verboten!)



Consider C P Z that may be obtained as a coefficient in the
Schubert basis after repeated application of the operators

Bi x1 ¨ xn ¨

to 1 P H. Let N denote the number of times we have multiplied by
x1 or xn.

Given the above data (C + the sequence of operators) one can
explicitly construct a Schubert variety X and a partial flag variety
for SLn`N (don’t miss the N) and a (Bott-Samelson) resolution

π : rX Ñ X

such that π has a smooth irreducible fibre F with self-intersection
˘C . (I.e. we get a 1ˆ 1-intersection form p˘C q: we are in the
“miracle situation”.)
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The original construction of these counter-examples was
algebraic and followed extensive calculations and joint work with
Ben Elias (generators and relations for Soergel bimodules) and was
based on a formula discovered with Xuhua He.

The above “geometric” version was discovered later (and was
influenced by discussions with Daniel Juteau, Tom Braden and
Patrick Polo).



A “discrete dynamical system”:

One has nilpotent operators x1, xn
(degree 2 Ò ), and nilpotent oper-
ators Bi (degree 2 Ó.)

Question: How do the prime fac-
tors of coefficients grow as we act
by these operators?
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E.g. if n “ 4 the operators

F1 : h ÞÑ B23px
2
4 pB1px1hqqq

F2 : h ÞÑ B21px
2
1 pB4px4hqqq

U1 : h ÞÑ B21px
2
1 pB1px1hqqq

U2 : h ÞÑ B23px
2
4 pB3px4hqqq

preserve the submodule

Zx1 ‘ Zpx1 ` x2 ` x3q Ă H

and in this basis are given by the matrices:

F1 “

ˆ

1 1
1 0

˙

F2 “

ˆ

0 ´1
´1 ´1

˙

U1 “

ˆ

1 0
1 1

˙

U2 “

ˆ

´1 ´1
0 ´1

˙



The main theorem implies:

Let p be a prime dividing a coefficient or any word of length ` in
the generators:

ˆ

1 1
1 0

˙

,

ˆ

0 ´1
´1 ´1

˙

,

ˆ

1 0
1 1

˙

,

ˆ

´1 ´1
0 ´1

˙

Then Lusztig’s conjecture fails for SL3``5 in characteristic p.

E.g.
ˆ

1 1
1 0

˙n

“

ˆ

fn`1 fn
fn fn´1

˙

where f0 “ 0, f1 “ 1, f2 “ 1, f3 “ 2 . . . are the Fibonacci numbers.
One expects infinitely many Fibonacci numbers to be prime, but
this is a conjecture.



Some number theory (which I pretend to understand):

Theorem (with Kontorovich and McNamara): There exists a
constant c « 1.39 . . . such that for all large L there exists a word
γ of length L in the semi-group

Bˆ

1 0
1 1

˙

,

ˆ

1 1
0 1

˙F`

and a prime p ą cL dividing the top-left entry of γ. Moreover, the
number of such primes is of the order of cL{L.

This theorem is an easy consequence of recent deep work of
Bourgain and Kontorovich on Zaremba’s conjecture.

Using the main theorem we get the exponential growth of the
unstable range in Lusztig’s conjecture.
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