SIX LECTURES ON DELIGNE-LUSZTIG THEORY

1. Lecture 1

Here the example of SL_2 was considered in detail and the character table was discussed.

2. Lecture 2: Finite groups of Lie type

Fix $k = \overline{k}$.

Algebraic group (affine) over k is an affine algebraic smooth variety G endowed with a group structure.

Consider the algebra of regular functors $k[G]$ on G. Then $G = \text{Spec} k[G]$ and $k[G]$ is a (commutative) Hopf algebra.

Example 2.1.

- $G_a = \text{Spec} k[T]$, $G_a(k) = k$ as an additive group.
- $G_m = \text{Spec} k[T, T^{-1}]$, $G_a(k) = k^*$ multiplicative group.

These are all the one-dimensional groups.

- $GL_n = \text{Spec} k[T_{ij}]_{1 \leq i,j \leq n}[\det(T_{ij})^{-1}]$, $GL_n(k)$ consists of invertible $n \times n$ matrices over k.

Fact 2.2. Every algebraic group is isomorphic to a closed subgroup of GL_n for some n. (This is the reason for the terminology “linear algebraic group”).

The notion of a semi-simple (diagonalisable) element of GL_n gives rise to the notion of a semi-simple element for any G. Similarly we have the notion of a unipotent element of GL_n (conjugate to an upper uni-triangular matrix). This gives rise to the notion of a unipotent element in any G.

Fact 2.3 (Jordan Decomposition). Let $x \in G$. There exists a unique pair (u, s) in G such that $x = us$, $[u, s] = 1$, such that u is unipotent and s is semi-simple.

(This is an analogue of the p, p' decomposition of elements in a finite group.)
G^0 is defined to be the maximal connected closed subgroup of G and G/G^0 is a finite group.

$R_u(G)$: unipotent radical = largest closed normal connected unipotent subgroup.

A nice fact is that $R_u(G/R_u(G)) = 1$.

So an arbitrary finite group looks like:

(2.1) G/G^0 finite

(2.2) $G = G^0/R_u(G)$ connected, reductive

(2.3) $R_u(G)$ unipotent

A connected algebraic group G is solvable if it has a chain of closed normal subgroups with 1-dimensional quotients (that is, \mathbb{G}_a or \mathbb{G}_m).

Fact 2.4. A unipotent group is solvable.

Definition 2.5. A torus is an algebraic group isomorphic to \mathbb{G}_m^r for some r.

Proposition 2.6.

- If G is an algebraic group, there exists a maximal closed torus in G. All maximal tori are conjugate.
- There exists a maximal closed solvable subgroup (called a Borel subgroup). All Borel subgroups are conjugate.

Proposition 2.7. G solvable, T maximal torus in G. Then

$G = R_u(G) \rtimes T$, semi-direct product

Example 2.8. $G = GL_n \supset B \supset U$. Here B upper triangular matrices, U is unitriangular matrices, T is diagonal matrices.

Proposition 2.9.

- If B is a Borel subgroup then $N_G(B) = B$.
- If $T \subset G$ is a maximal torus, then $C_G(T) = T$. Moreover $W := N_G(T)/T$ is a finite group, the Weyl group.

Example 2.10. $G = GL_n$, $N_G(T) =$ monomial matrices, $W = S_n$ the symmetric group.

2.1. Finite fields. \mathbb{F}_q a finite field, $k = \overline{\mathbb{F}_q}$, $q = p^m$. X_0 algebraic variety over \mathbb{F}_q, $X = X_0 \times_{\mathbb{F}_q} \overline{\mathbb{F}_q}$.

The (geometric) Frobenius endomorphism $F : X \to X$ which acts on $a = a_0 \otimes \alpha \in k[X] = \mathbb{F}_q[X] \otimes_{\mathbb{F}_q} \overline{\mathbb{F}_q}$ then $F(a) = a_0^q \otimes \alpha$.

Example 2.11. $X_0 = \text{Spec} \mathbb{F}_q[X_{ij}, \det(X_{ij})^{-1}]$, $X = GL_n$. $F(X_{ij}) = X_{ij}^q$, $g \in GL_n(\overline{\mathbb{F}_q})$, $g = g_{ij}$ then $F(g) = (g_{ij}^q)$.

There is another possibility: $F'(g) = (g^q)^{-1}$ on G. Note that $(F')^2 = F^2$. (F' is “a” Frobenius because $(F')^2$ is one.)
Given an F-rational structure is the same as giving the endomorphism F.

We can look at $(X(F_q))^F = X_0(F_q)$, a finite set.

If G is an algebraic group defined over F_q, or equivalently endowed with a Frobenius endomorphism F. Then G^F is a finite group.

Example 2.12. $GL^F_n = GL_n(F_q)$ and $GL^F_n = U_n(F_q)$.

We define the Lang map $L : G \to G : g \mapsto g^{-1}F(g)$.

Clearly $\ker L = G^F$.

Theorem 2.13. If G is connected then L is surjective.

The Lang map (and the above theorem) is absolutely fundamental to all that follows! It allows us to pass between the algebraic group G and its points over finite fields.

Proof. (Sketch) The key point is that $(dF)_1 = 0$. Hence $(dL)_1$ is equal to multiplication by -1. Hence $(dL)_1$ is bijective. Hence $L(G)$ contains a dense open subset (algebraic geometry: the image contains an open subset). Fix $x \in G$. Consider the map $L_x : g \mapsto g^{-1} \cdot x \cdot F(g)$ then $(dL_x)_1$ is bijective. Hence $L_x(G)$ contains a dense open subset. Hence $L(G) \cap L_x(G) \neq \emptyset$. Hence there exists $g, h \in G$ such that $g^{-1}F(g) = h^{-1}xF(h)$ and hence $x = L(gh^{-1})$.

Let G be an algebraic group and H a closed normal subgroup. We obtain an algebraic group G/H and one has a canonical morphism $G \to G/H$ of algebraic groups.

(This can be done neatly using the functor of points approach).

Suppose G is defined over F_q and H is an F-stable. Then we have $G^F/H^F \hookrightarrow (G/H)^F$.

Proposition 2.14. If H is connected, then $G^F/H^F \cong (G/H)^F$.

This is false if H is not connected.

Example 2.15. Take $Z \subset SL_n$ where Z denotes the centre.

[Exercise: Work out this example for SL_2.]

Hence $SL_n(F_q)/\pm 1 \neq (SL_2/\pm 1)^F$.

Lemma 2.16. If G is a connected algebraic variety acting on X. Assume that everything is defined over F_q. If O is an F-stable orbit of G on X (means fixed, but not point-wise). Then $O^F \neq \emptyset$.

Proof. Choose $x \in O$. Then $F(x) = g(x)$ for some $g \in G$. Hence there exists $h \in G$ such that $g = h^{-1}F(h)$ then $F(h(x)) = h(x)$. [Check].
Proof. (Of the proposition) Set $X = G$ acted on by H. Set $O = gH$ and assume that O is F-stable. Hence there exists a point $h \in H$ such that $F(gh) = gh$. Hence $gh = G^F$. \hfill \qed

The above lemma can be refined as follows:

Lemma 2.17. With the same assumptions as in the previous lemma let $x \in O^F$ and $g \in G$.

1. We have $g(x) \in O^F$ if and only if $L(g) \in \text{Stab}_G(x)$.
2. There is a bijection (depending on X)

$$\{G^F \text{ - orbits on } O^F\} \simeq \left\{ F\text{-conjugacy classes of } \frac{\text{Stab}_G(x)}{\text{Stab}_G(x)^0} \right\}$$

$$g(x) \mapsto L(g)$$

Remark 2.18. Check that (2) is well-defined. Consider $hg(x)$ where $h \in G^F$. Then $L(hg) = g^{-1}h^{-1}F(h)F(g) = g^{-1}F(g) = L(g)$.

Definition 2.19. If F acts on G we say that g, g' are F-conjugate if there exists an $x \in G$ such that $g' = xgF(x)^{-1}$.

Note that if G is connected then there is a unique F-conjugacy class.

Corollary 2.20. F-conjugacy classes of G are in bijection with F-conjugacy classes of G/G^0.

Proposition 2.21. If G is an algebraic group defined over \mathbb{F}_q. There is a bijection:

$$\left\{ G^F \text{-conjugacy classes contained in } G\text{-conjugacy class of } x \right\} \simeq \left\{ F\text{-conjugacy classes of } \frac{C_G(x)}{C_G(x)^0} \right\}$$

Take $\Theta = G$-conjugacy class of x, $X = G$.

Remark 2.22. Centralisers are connected for GL_n. (Also works for unitary groups : non-dependence on choice of F).

Example 2.23. Take $G = SL_w$. Then G^F conjugacy classes of \begin{pmatrix} 1 & a \\ 0 & 1 \end{pmatrix}

for $a \in \mathbb{F}_q^*$ is in bijection with $\mathbb{F}_q^*/(\mathbb{F}_q^*)^2$.

This is even worse for symplectic groups!

Take G an algebraic group defined over \mathbb{F}_q.

Fact 2.24.

1. There exist F-stable Borel subgroups.
2. They are all G^F-conjugate.
3. There exist F-stable maximal tori.
4. There is a bijection:

$$\left\{ G^F \text{-conjugacy classes of } F\text{-stable maximal tori} \right\} \sim \left\{ F\text{-conjugacy classes of } W \right\}$$
3. LECTURE 3: DELIGNE-LUSZTIG INDUCTION

3.1. The Bruhat decomposition. \(k \) is an algebraically closed field and \(G \) a reductive connected algebraic group over \(k \). (Note: reductive usually contains connected as an assumption!)

Recall from last time that all Borel subgroups in \(G \) are conjugate. Set \(B = \{ \text{Borel subgroups in } G \} \)

If we fix \(B \in B \) there is a bijection \(G/B \cong B : gB \mapsto gBg^{-1} \). (Uses the two crucial facts: all Borel subgroups are conjugate, and \(B \) is its own normaliser.) In fact \(G/B \) can be endowed with the structure of an algebraic variety.

In fact, \(G/B \) is smooth and projective. Smoothness follows from the fact that it is a homogenous space. Set \(g := \text{Lie } G \). Then we can identify \(B \) with the set of Borel subalgebras of \(g \). But

\[
\{ \text{Borel subalgebras of } g \} \hookrightarrow \{ \text{Grassmannian of dimension } N = \dim B \text{ subspaces in } g \}
\]

the latter is the Grassmannian is projective. The condition that a subspace be a Borel subalgebra is a closed condition.

Remark 3.1. There exists an irreducible finite dimensional representation \(L \) of \(G \) and a line \(\ell \subseteq L \) such that \(\text{Stab}_G(\ell) = B \), then \(G/B \hookrightarrow \mathbb{P}(L) : gB \mapsto g\ell. \)

Example 3.2. \(G = GL_2 \) and \(B = \left\{ \begin{array}{cc} * & * \\ 0 & * \end{array} \right\}. \) Then
\[
G/B \cong \mathbb{P}^1 = \{ \ell \in \mathbb{P}^2 \mid \dim \ell = 1 \}
\[
gB \mapsto ge_1.
\]

Example 3.3. \(G = GL_n, \)
\[
\mathcal{F} \ell_n = \{ 0 = V_0 \subset V_1 \subset \cdots \subset V_n = k^n \mid \dim V_i = i \}
\]
Then
\[
G/B \cong \mathcal{F} \ell_n
\]
by acting on the standard flag.

Let \(T \subseteq B \) be a maximal torus, \(W = N_G(T)/T \). Given \(w \in W, \dot{w} \) denotes a lift to \(w \).

Theorem 3.4.
\[
G = \bigsqcup_{w \in W} B\dot{w}B
\]
Corollary 3.5.

\[G/B = \bigsqcup_{w \in W} BwB/B \]

In fact, \(BwB/B \cong \Delta^{\ell(w)} \). One may show that \(BwB \) is a homogenous space for \(U \), and can be realised as an explicit quotient (by certain root subgroups).

Recall that \(B = U \times T \) and \(U = R_n(B) \).

Lemma 3.6. \(N_G(T) \cap B = T \)

Proof. If \(g \in U \cap N_G(T) \) then there exists a \(t \in T \) such that \([g, t] \in T \). Hence \(T \cap U = 1 \). Hence \(g \in C_G(T) = T \). \(\square \)

There are two proofs of the Bruhat decomposition:

Proof 1. One constructs a Tits system (\(BN \)-pair). One has lots of structure with a \(BN \)-pair. (In particular, one always has a Bruhat decomposition.) \(\square \)

Proof 2. The second proof uses the fact that every \(B \)-orbit on \(G/B \) contains a unique \(T \)-fixed point. One can then study the \(B \)-orbits using the Bialynicki-Birula decomposition. \(\square \)

For \(GL_n \) the Bruhat decomposition is the Gaussian elimination. Every element can be written as a product of \(bnb' \) where \(b, b' \) are upper triangular matrices and \(n \) is a permutation matrix.

We have \(B \setminus G/B \sim G \setminus (G/B \times G/B) \). Now we have something intrinsic:

Corollary 3.7.

\[G\text{-orbits on } B \times B \sim W \]

\[O(w) \leftarrow w \]

Hence one has an intrinsic description of \(W \). \(O(1) = \Delta B \subset B \times B \). Simple reflections \(s \in S \) correspond to almost minimal \(G \) orbits. In fact,

\[\dim O(w) = \dim(B) + \ell(w). \]

We have a map \(O(w) \to B : (B_1, B_2) \mapsto B_2 \). This is a fibration and the fibres over a fixed \(B_2 \) are \(BwB/B \subset G/B \sim B \).

Once we fix a Borel subgroup

\[O(w) \sim \{ (g_1B, g_2B) \mid g_2^{-1}g_n \in BwB \} \]

\[B \times B \sim G/B \times G/B \]

We write \(B_1 \twoheadrightarrow B_2 \) for \((B_1, B_2) \in O(w) \) and say that “\(B_1 \) is in relative position \(w \) to \(B_2 \)”.
How do we multiply elements in W using the intrinsic description above? If $\ell(w) + \ell(w') = \ell(ww')$ then

$$O(w) \times_B O(w') \sim O(ww')$$

$$(B_1 \rightarrow B_2 \rightarrow B_3) \mapsto (B_1 \rightarrow B_2)$$

Hence one can recover the multiplication from G-orbits on $B \times B$.

3.2. Deligne-Lusztig varieties. Assume that k is the algebraic closure of \mathbb{F}_q and that G is defined over \mathbb{F}_q with corresponding Frobenius endomorphism F.

Take $w \in W$, define

$$X(w) := O(w) \cap \Gamma_F = \{B \in \mathcal{B} \mid B \rightarrow F(B)\}$$

where $\Gamma_F = \{(B, F(B)) \mid B \in \mathcal{B}\}$.

For example, $X(1) = \mathcal{B}^F = G^F/B^F$ if B is an F-stable Borel subgroup of G. Of course,

$$\mathcal{B} = \bigsqcup_{w \in W} X(w).$$

Switch to representations: $\mathbb{C}[G^F/B^F]$ is a permutation representation and $\text{End}_{\mathbb{C}[G^F]}(\mathbb{C}[G^F/B^F])$ is the Hecke algebra and the irreducible components of $\mathbb{C}[G^F/B^F]$ are in bijection with $\text{Irr}(W)$.

For GL_2, $\mathbb{C}[G^F/B^F] = 1_{G^F} \oplus (St)$. The Steinberg occurring with multiplicity 1. Note that $G^F/B^F = \mathbb{P}^1(\mathbb{F}_q)$.

Definition 3.8. $R_w := \sum_{i \geq 0} (-1)^i[H^i(X(w))]$ in $K_0(G^F)$.

Definition 3.9. An irreducible character of G^F is called unipotent if there exists $w \in W$ such that $\langle \chi, R_w \rangle \neq 0$.

Those $\chi \in \mathbb{C}[G^F/B^F]$ are principal series unipotent characters.

Note: G acts on $O(w)$ which restricts to an action of G^F on $X(w)$. G does not act on $X(w)$.

Fix B an F-stable Borel subgroup.

Remember that $G/B \sim \mathcal{B}$. We claim that $X(w) \cong \{g \in G/B \mid g^{-1}F(g) \in BwB\}$. We introduce a variety $Y(w)$ above $X(w)$:

$$Y(\hat{w}) := \{gU \in G/U \mid g^{-1}F(g) \in U\hat{w}U\}.$$

We have an obvious map

$$Y(\hat{w}) \mapsto X(w)$$

$$gU \mapsto gB$$

On G/U we have commuting left G and right T-actions. For $t \in T$,

$$\mathcal{L}(gt) = t^{-1}\mathcal{L}(g)F(t) \in t^{-1}U\hat{w}UF(t) = U\hat{w}U(w^{-1}t^{-1}w)F(t).$$

The
condition $\dot{w}^{-1}t^{-1}\dot{w}F(t) = 1$ is equivalent to $\dot{w}F(t)\dot{w}^{-1} = t$ which occurs if and only if $t \in T^wF$.

Hence G^F acts on the right on $Y(\dot{w})$ and T^wF acts on the left.

Note that there exists a d such that $(wF)^d = F^d$. Hence wF is a Frobenius endomorphism of T.

The map $G/U \to G/B$ is the quotient by T. The map $\pi : Y(\dot{w}) \to X(w)$ is a quotient by T^wF. Moreover, T^wF acts freely.

π is unramified (étale) and has Galois group T^wF.

Definition 3.10. Take $\theta \in \text{Irr}(T^wF)$ define

$$R_w(\theta) = \sum_{i \geq 0} (-1)^i [H^i(Y(\dot{w})) \otimes_{\mathbb{Q}_F} \theta]$$

We have $R_w(1) = R_w$ because $H^i(Y(w)) \otimes_{\mathbb{Q}_F} \theta = H^i(X(w), L_{\theta})$.

In fact

$$\pi_* \mathbb{Q}_F = \bigoplus L_{\theta}.$$

Example 3.11. If $G = SL_2$ then $B = \mathbb{P}^1$ and $W = S_2 = \{1, s\}$. We have $X(1) = \mathbb{P}^1(\mathbb{F}_q)$ and $X(s) = \mathbb{P}^1 \setminus \mathbb{P}^1(\mathbb{F}_q)$ which has a map from the Drinfeld curve $Y(s) = \{xy - x^qy = 1\}$.

Theorem 3.12 (Deligne-Lusztig). If θ is in general position (this means $\text{Stab} N_{G^F}(T^wF)(\theta) = 1$). Then $\pm R_w(\theta)$ is irreducible.

This was MacDonald’s conjecture. The proof will be given later.

[Generalities: suppose that $Y \to X$ is an unramified connected covering with group \mathbb{Z}/n are in bijection with $H^1(X, \mathbb{Z}/n)$. In the example of SL_2, $H^1(X(s), \mathbb{Z}/n)$ subspace of $(\mathbb{Z}/n[\mathbb{P}^1(\mathbb{F}_q)])$ such that $(\sum e_i)$ which is $(\mathbb{Z}/n) \otimes (S_t)$. Hence $H^1(X(s), \mathbb{Z}/n)$ is a rep of $SL_n(\mathbb{F}_q)$ over $\mathbb{Z}/(n)$. It has a one-dimensional fixed subspace if and only if $n|q + 1$.

[Exercise: Check that “in general” there are no fixed points.]

$\theta \in \mu _{q+1}^\vee : \alpha \mapsto \alpha^d$ is in general position if and only if $d \neq \pm 1$.

$X(w) = \mathcal{O}(w) \cap \Gamma_F$. Note that $\mathcal{O}(w)$ is smooth and $\Gamma_F \cong B$. Claim: the intersection is transverse. Hence $X(w)$ is smooth and its dimension is $\ell(w)$.

A more complicated fact is:

Theorem 3.13. $X(w)$ is affine if $q > h$, where h is the Coxeter number.

Proof. Later!

Bonnafé-Rouquier: conjecture this always holds.

Rappaport: conjectures that this doesn’t always hold.
In fact, Deligne and Lusztig show:

\[R_w(\theta) = H^{l(w)}(Y(w)) \otimes_{\mathbb{Q}^F} T_w \theta \]

4. Lecture 3

Let \(G \) be an algebraic group, reductive over \(k = \mathbb{F}_q \). We assume that \(G \) is defined over \(\mathbb{F}_q \) or equivalently, endowed with \(F : G \to G \) a Frobenius. \(G^F \) is a finite group.

If we fix \(T_0 \subset B_0 \) an \(F \)-stable torus contained in an \(F \)-stable torus contained in an \(F \)-stable Borel subgroup of \(G \).

We define \(W = N_G(T_0)/T_0 \).

Given \(w \in W \) we define \(X(w) = \{ gB_0 \in G/B_0 \mid \mathcal{L}(g) \in B_0wB_0 \} \).

Remember that the Lang map being \(L(g) = g - 1 \).

One can see that \(X(w) \sim \{ g \in G \mid \mathcal{L}(g) \in wB_0 \}/B_0 \sim \{ g \in G \mid \mathcal{L}(g) \in wB_0 \}/(B_0 \cap (wB_0w^{-1})) \)

the last isomorphism is not obvious. If we put \(B = gB_0g^{-1} \) then \(\mathcal{L}(g) \in B_0wB_0 \) if and only if \(B \overset{w}{\to} F(B) \) if and only if there exists \(h \in G \) such that \((B, F(B)) = h(B_0, wB_0w^{-1})h^{-1} \). Now \(\mathcal{L}(h^{-1}g) \in wB_0 \). [Check!]

\(X(w) \) has a left \(G^F \)-action (because \(L(hg) = L(g) \) if \(h \in G^F \).

\(Y(w) = \{ g \in G \mid \mathcal{L}(g) \in wU_0 \}/U_0 \cap (wU_0w^{-1}) \)

Note that \(B_0 \cap wB_0w^{-1} = T_0 \ltimes (U_0 \cap wU_0w^{-1}) \)

The natural map

\(Y(w) \to X(w) \)

is the quotient by \(T_0^wF \).

\(\{(T \subset B), T \text{ is } F\text{-stable}\}/G^F \text{ – conjugacy} \sim \)

\((T \subset B) \mapsto \text{unique } w \text{ such that } B \overset{w}{\to} F(B) \).

\(\{T \text{ } F\text{-stable maximal torus}\}/G^F \text{ – conjugacy} \sim \) \(F\text{-conjugacy classes in } W \).

One can consider

\(X_{T \subset B} = \{ g \in G \mid \mathcal{L}(g) \in BF(B) \}/B \sim \{ g \in G \mid \mathcal{L}(g) \in F(B)/B_0F(B) \} \)

and

\(Y_{T \subset B} = \{ g \in G \mid \mathcal{L}(g) \in F(U) \}/U \cap F(U) \)

and \(X_{T \subset B} \) is the quotient of \(Y_{T \subset B} \) by \(T^F \). In fact

\(X_{T \subset B} \to \{ B' \mid B' \overset{w}{\to} F'B' \} \sim \{ gB_0 \mid \mathcal{L}(g) \in B_0wB_0 \} \)

the latter map being \(gB_0 \mapsto gB_0b^{-1} \).
One always has a canonical isomorphism $N_G(T_0)/T_0 \sim N_G(T)/T$ (this was explained last time).

One can identify $Y_{T \subset B} \sim Y(\dot{w})$.

Theorem 4.1. $\sum (-1)^i \chi_{H^i(Y_{T \subset B})}$ is independent of B. Similarly, $\sum (-1)^i \chi_{H^i(Y(\dot{w}))}$ depends only on the F-conjugacy class of w.

If we consider $Y = \{ g \in G \mid \mathcal{L}(g) \in F(U) \}/U \cap F(U)$ is a quotient by $U \cap F(U)$ of $\mathcal{L}^{-1}(F(U))$. Clearly

$$G \supset \mathcal{L}^{-1}(F(U)) \xrightarrow{\mathcal{L}} F(U) \subset G$$

Locally, the quotient map is trivial with fibres $U \cap F(U)$ which is an affine space. Hence $H^*(\mathcal{L}^{-1}(F(U))) \sim H^*(Y)$. Note that the Lang map is a quotient of G by the finite group G^F.

This is an amazing topological situation!!

$$\mathcal{L}^{-1}(F(U)) \xrightarrow{\mathcal{L}} \text{affine space}$$

the map is unramified with group G^F. (Thinking topologically, we get a map $\pi_1(F(U)) \to G^F$) (and this map is onto for a semi-simple group).

(Hence the fundamental group of a vector space is very complicated!!)

We can even make $\pi(A^1) \to G^F$ (this is a Lefschetz type principle).

Theorem 4.2 (Raynaud, formerly Abyankar’s conjecture). If G is a finite group, then there exists a $\pi_1(A^1_{F}) \to G$ if and only if G is generated by its p-Sylow subgroups. That is $O^pG = G$.

(uses p-adic geometry in an essential way).

$G = GL(V)$ where $V = k^n$.

$$T_0 = \begin{cases} * & 0 & \ldots & 0 \\ 0 & * & \ldots & 0 \\ \vdots & \ddots \\ 0 & 0 & \ldots & * \end{cases}$$

$F((x_{ij})) = (x_{ij}^q)$ and W is the symmetric group.

$\mathcal{B} = \{ \text{Borel subgroups} \} \sim \{ 0 = D_0 \subset D_1 \subset \cdots \subset D_n = V \mid \dim D_i = i \}$

The bijection is given by sending B to the unique complete flag fixed by B. These are “complete flags”.

Also $G/B_0 \cong \mathcal{B}$.

Let U_0 be the subgroup of upper triangular matrices. Then G/U_0 is a T_0-torsor over G/B and we may identify

$$G/U_0 \sim \{ 0 = D_0 \subset \cdots \subset D_n, (e_1, \ldots, e_n) \mid e_i \in D_i/D_{i-1} \setminus \{0\} \}$$

T_0 acts on the (e_1, \ldots, e_n) in the natural way.
Let D and D' be two flags. Then $D \xrightarrow{w} D'$ if we have

$$\text{Gr}_D^{w(i)} \cap \text{Gr}_{D'}(V) \neq 0$$

for all i.

We will be discussing $w = (1, \ldots, n)$.

$D \xrightarrow{w} D'$ if and only if $D'_i + D_i = D_{i+1}$ for $i < n - 1$ and $D'_{n-1} + D_1 = V$.

Hence $D \xrightarrow{w} F(D)$ if and only if $D_2 = D_1 + F(D_1), \ldots, D_i = D_1 + F(D_1) + \cdots + F^{i-1}D_1$. Hence

$$X(w) \mapsto \mathbb{P}(V)$$
$$D \mapsto D_1$$

Hence the image is $\ell \in \mathbb{P}(V) \setminus \{\ell + F(\ell) + \cdots + F^{n-1}(\ell) = V\} = \mathbb{P}(V) \setminus \{\text{hyperplanes defined over } \mathbb{F}_q\}$.

In $Y(w)$ a point is determined by e'_is and hence by e_1. The condition is that $e_2 = F(e_1) \pmod{e_1}, e_3 = F^2(e_1) \pmod{e_1, F(e_1)}$ and $e_n = F^{n-1}(e_1) \pmod{e_1, \ldots, F^{n-1}(e_1)}$ and lastly

$$e_1 = F^n(e_1) \pmod{Fe_1, \ldots, F^{n-1}(e_1)}.$$

These conditions force

$$e_1 \wedge F(e_1) \wedge \cdots \wedge F^{n-1}(e_1) = F^n(e_1) \wedge F(e_1) \wedge \cdots \wedge F^{n-1}(e_1)$$

hence

$$e_1 \wedge \cdots \wedge F^{n-1}e_1 = (-1)^{n-1}F(e_1 \wedge \cdots \wedge F^{n-1}e_1)$$

if we write $e_1 = (x_1, \ldots, x_n)$ then we get the matrix

$$\det((x_{i,j})^{q^{j-1}}_{1 \leq i, j \leq n})^{q-1} = (-1)^{n-1}.$$

Proposition 4.3.

$$Y(w) \sim \{x_1, \ldots, x_n\} \in \mathbb{A}^n \mid \det((x_{i,j})^{q^{j-1}}_{1 \leq i, j \leq n})^{q-1} = (-1)^{n-1}\}$$

$GL_n(\mathbb{F}_q)$ acts naturally on V. $T_0^{\nu F} = \mathbb{F}_q^*$ acts diagonally.

The van de Monde determinant is up to scalar the product of all linear forms over \mathbb{F}_q. There are $q^n - 1$ linear forms (i.e. points in $\mathbb{P}(V^*) (\mathbb{F}_q)$).

For $n = 2$ $X(w) = \mathbb{P}^1 \setminus \mathbb{P}^1(\mathbb{F}_q)$ and $Y(w) = \{(x, y) \mid (xy^q - x^qy)^{q-1} = -1\} = \bigcup_{\zeta^{q-1} = -1}\{(x, y) \mid xy^q - x^qy = \zeta\}$. The connected components are permuted by $GL_2(\mathbb{F}_q)$ and the components are isomorphic to $\{(x, y) \mid xy^q - x^qy = 1\}$. $SL_2(\mathbb{F}_q)$ fixes the components.
5. Lecture 5: Cohomology

Let $k = \bar{\mathbb{F}}_q$ and ℓ be a prime with $\ell \nmid q$, let $\Lambda = \bar{\mathbb{Q}}_\ell$ (which is isomorphic with \mathbb{C} for all intents and purposes), and consider varieties over k. There is a functor H^*, ℓ-adic cohomology, between varieties over k and graded Λ-vector spaces. Note that there is no cohomology theory with values in \mathbb{Q}. Serre proved that there is a suitable elliptic curve X with automorphism group G, and the representation of G on $H^1(X)$ is not defined over \mathbb{Q}.

There is another cohomology theory from varieties over k to graded Λ-vector spaces, H^*_c, the cohomology with compact support, in some sense dual to H^*. This embeds X as an open set in \bar{X}, called proper (the algebraic geometry version of compact). If X is proper (e.g., projective) then $H^*_c(X) = H^*(X)$. It is often easier to work with H^*_c, but sometimes things look nicer with H^*.

Trace map: let X be smooth and connected, of dimension d. There is a map $tr : H^{2d}_c(X) \xrightarrow{\sim} \Lambda$. This leads to Poincaré duality: there exists a perfect pairing $H^i(X) \times H^{2d-i}_c(X) \rightarrow \Lambda$. A nice summary of the results on etale cohomology in Digne–Michel, and in Carter. In particular, $H^i(X) = H^{2d-i}_c(X)^{*}$.

For example, $H^*(\mathbb{A}^n) = \Lambda$, concentrated in degree 0. Therefore $H^*_c(\mathbb{A}^n) = \Lambda$, concentrated in degree $2n$. Finally, $H^0(X)$ is a free Λ-module of rank the number of connected components, and $H^i(X) = 0$ for $i \notin [0, 2d]$.

If X is a variety and $U \subset X$ is open, write $Z = X \setminus U$, then there is a long exact sequence

$$0 \rightarrow H^0_c(U) \rightarrow H^0_c(X) \rightarrow H^0_c(Z) \rightarrow H^1_c(U) \rightarrow H^1_c(X) \rightarrow H^1_c(Z) \rightarrow \cdots.$$

Let $X = \mathbb{P}^n$, $U = \mathbb{A}^n$, $Z = \mathbb{P}^{n-1}$, so by induction on n,

$$H^*(\mathbb{P}^n) = H^*_c(\mathbb{P}^n) = \begin{cases} \Lambda & * \in \{0, 2, \ldots, 2n\} \\ 0 & \text{otherwise} \end{cases}.$$

• If X is quasi-projective, and acted on by a group G, then $H^*(X/G) = H^*(X)^G$.

• If X is acted on by a connected algebraic group G, then G acts trivially on $H^*(X)$. If H is a finite subgroup of G, then H still acts trivially on $H^*(X)$. This is a useful method to prove that some groups act trivially on $H^*(X)$. (In particular, in extending actions of abelian groups to tori.)

A variety over k has only finitely many coefficients involved in its definition, so we think of it as a variety over some finite field, which we might as well take to be \mathbb{F}_q. We can endow a variety X with a Frobenius
endomorphism F. Via H^*, we get a graded Λ-vector space with an
action of F. The computational power of the theory comes from the
action of F. The same is true for H^*_c. At first blush, the endomorphism
on graded vector spaces could be anything, but with a bit of work one
may show that it is invertible. Hence F gives an automorphism on the
graded Λ-vector spaces $H^*(X)$ and $H^*_c(X)$. (This has something to do
with sheaves and sites.)

If X is connected, then F acts trivially on $H^0(X)$. However, the
trace map doesn’t work so well, so we get $H^*_c(X) \sim \Lambda(n)$, where this
means that the map F acts by q^n. For Poincaré duality as well, we get
$H^i(X) \times H^{2d-i}(X)_c \rightarrow \Lambda(n)$. By being extra-careful in the computation
above, we get $H^*_c(\mathbb{A}^n) = \Lambda(n)$ concentrated in degree $2n$, and

$$ H^i(\mathbb{P}^n) = H^i_c(\mathbb{P}^n) = \begin{cases} \Lambda(i/2) & i \in \{0, 2, \ldots, 2n\} \\ 0 & \text{otherwise} \end{cases}. $$

Theorem 5.1. The eigenvalues of F on $H^*_c(X)$ have modulus q^a,
where a is a semi-integer and are algebraic integers.

Notice that the eigenvalues might well not be q^a themselves.

5.1. **Lefschetz Trace Formula.** We want to know $|X^F| = |X(\mathbb{F}_q)|$. We have

$$ |X^F| = \sum_{i \geq 0} (-1)^i \text{Tr}(F | H^i_c(X)). $$

Example 5.2. First let $X = \mathbb{A}^n$: $|X^F| = q^n$. Then F acts by q^n on
$H^*_c(\mathbb{A}^n, X)$.

If $X = \mathbb{P}^n$, then $|X^F| = 1 + q + \cdots + q^n$. To see this, if $U \subset X$ is
F-stable and open, and $Z = X \setminus U$, then $X^F = U^F \amalg Z^F$, and we can
basically add them.

Corollary 5.3. If g is finite order automorphism of X defined over \mathbb{F}_q
(i.e., commuting with F), then

$$ \text{Tr}(g | H^*_c(X)) = \sum_{l=1}^{\infty} (-1)^l \text{Tr}(g | H^*_c(X)) = \lim_{t \to \infty} \sum_{n=1}^{\infty} |X^{gF^n}| t^n. $$

Proof. gF^n is a Frobenius endomorphism on X relative to \mathbb{F}_q. Therefore
$|X^{gF^n}| = \text{Tr}(gF^n | H^*_c(X))$. We may choose F to be upper triangular,
with diagonal $\lambda_1, \ldots, \lambda_r$ and g to be diagonal with entries
$\alpha_1, \ldots, \alpha_r$. Set $\varepsilon_i = 1$ if in even H^* and -1 if in odd degree. Then

$$ \text{Tr}(gF^n | H^*_c(X)) = \sum_{l=1}^{r} \varepsilon_l \alpha_l \lambda_l^n, $$
and so
\[\sum_{n=1}^{\infty} |X^{gF^n}| t^n = \sum_l \varepsilon_l \alpha_l \sum_n (\lambda_l t)^n = \sum_l \varepsilon_l \alpha_l \left(\frac{1}{1 - \lambda_l t} - 1 \right). \]
As \(t \to \infty \) the last term in the brackets tends to \(-1\), and so this becomes \(\sum_l \varepsilon_l \alpha_l \).

Example 5.4. Let \(X = \{ xy^q - x^q y = 1 \} \subset \mathbb{A}^2 \), a closed subset. \(F(x, y) = (x^q, y^q) \). Then \(X^F = \emptyset \). This means that \(\text{Tr}(F \mid H^*_c(X)) = 0 \).

If \(X \) is an affine variety, then \(H^i(X) = 0 \) if \(i \) is greater than \(\dim X \), so \(H^0_c(X) = H^2(X)^* = 0 \). We also know that \(H^2_c(X) = \Lambda \) where \(F \) acts by \(q \). The only missing case is \(H^1_c(X) \). The trace being \(0 \) means that \(q = \text{Tr}(F \mid H^1_c(X)) \).

If \(g \in SL_2(\mathbb{F}_q) \times \mu_{q+1} \), then knowing \(|X^{gF^n}| \) for \(n \geq 1 \) determines \(\text{Tr}(g \mid H^1_c(X)) \).

Let \(G \) be a reductive algebraic group over \(k = \mathbb{F}_q \), with Frobenius endomorphism \(F \) defining an \(\mathbb{F}_q \)-structure. If \(T \) is an \(F \)-stable maximal torus contained in a (not necessarily \(F \)-stable) Borel \(B \), and \(\theta \) an irreducible character of \(T^F \), we get
\[R^G_{T \subset B}(\theta) = \sum_i (-1)^i H^i(Y_{T \subset B}) \otimes_{T^F} \theta. \]
If you vary \(\theta \) and \(T \) you get lots of virtual representations, and the first result is the following.

Theorem 5.5. We have
\[\langle R^G_{T \subset B}(\theta), R^G_{T' \subset B'}(\theta') \rangle_{GF} = |T^F| \cdot \{ g \in G^F \mid gTg^{-1} = T', g\theta g^{-1} = \theta' \}. \]
In particular, if \((T', \theta') \) is not \(GF \)-conjugate to \((T, \theta) \), then this scalar product is 0.

Proof. We have
\[H^i_c(Y_{T \subset B} \times_{GF} Y_{T' \subset B'}) \cong \bigoplus_{i_1+i_2=i} H^i_{T \subset B} \otimes_{AG^F} H^{i_2}_{T' \subset B'} \]
(Kuenneth formula). We will also need to understand the tensor product of \(\theta \) and \(\theta' \), but concentrate on the \(Y \)-s. This is
\[Z = L^{-1}(F(U)) \times_{GF} L^{-1}(F(U')) = \{(x, x', y) \in F(U) \times F(U') \times G \mid xF(y) = yx' \}. \]
Decompose according to the Bruhat decomposition of \(G \), i.e., \(G = \Pi_{w \in W} BwB \). The variety \(Z \) may be decomposed as the disjoint union of the \(Z_w \), which have an action of \(T^F \times T'^F \) acting on it.

The action of \(T^F \times T'^F \) on \(Z_w \) extends to an action of
\[H_w = \{(t, t') \in T \times T' \mid \mathcal{L}(t') = F(w)^{-1} \mathcal{L}(t) F(w) \}. \]
Now we may use the fact that $H_w^* \varphi$ acts trivially on $H^*(Z_w)$. (We extend the action of $T^F \times T^F$ to one of an algebraic group, as we said would be useful before.) If $\theta \otimes_{AT^F} H_c(Z_w) \otimes_{AT^F} \theta' \neq 0$ then $(\theta \otimes \theta')|_{H_w^*} = 1$. One readily checks that there exists w such that $(\theta \otimes \theta')|_{H_w^*} = 1$ if and only if $(T', \theta') \sim_{G^F} (T, \theta)$. □

Geometric conjugacy is $(T, \theta) \sim (T', \theta')$. Let λ be a geometric conjugacy class. Define

$$\xi(G^F, \lambda) = \{ \chi \in \text{Irr}(G^F) \mid \langle R_{T \subset B}^G(\theta), \chi \rangle \neq 0 \text{ for some } (T, \theta) \in \lambda \}.$$

Theorem 5.6. $\text{Irr}(G^F) = \coprod \xi(G^F, \lambda)$. Also

$$\xi(G^F, \lambda) = \{ \chi \in \text{Irr}(G^F) \mid \langle H^t(Y_{T \subset B}) \otimes_{T^F} \theta, \chi \rangle \neq 0 \text{ for some } i, (T \theta) \in \lambda \}.$$

Lusztig series: unipotent characters are $\xi(G^F, 1)$, where 1 is the geometric conjugacy class of $(T, 1)$. Also,

$$\xi(G^F, \lambda) \sim_{G^F} \xi(H^F, 1)$$

for some H (Jordan decomposition).

Remark:

$$\text{Cl}(G^F) \sim \coprod_{s \text{ semisimple}/G^F} \text{UnipCl}(C_{G^F}(s)),$$

with (x) on the right being sent to (xs) on the left.

G and G^* are Langlands dual: take $T \subset G$ and $T^* \subset G^*$ be F-stable and F^*-stable maximal tori. Then $X(T) \sim_{G^F} Y(T^*)$ compatible with F and F^*, going between roots and coroots. For example, $GL_n^* = GL_n$ and $SL_n^* = PGL_n$.

If T is a torus, $Y(T) = \text{Hom}(\mathbb{G}_m, T)$, and $Y(T) \otimes \mathbb{C} \rightarrow \mathbb{C}$ given by $\zeta \otimes x \mapsto \zeta(x)$. As $T^F = \ker(T(F - 1))$, we get a short exact sequence

$$0 \rightarrow T^F \rightarrow Y(T) \otimes \mathbb{C} \rightarrow 0.$$

Choose d such that F^d acts trivially on $Y(T)$. We have another sequence

$$0 \rightarrow Y(T) \rightarrow F^{-1} Y(T) \rightarrow T^F \rightarrow 0$$

with the last map being $N : \zeta \mapsto N_{F^d/F}(\zeta)(\alpha)$, the norm map. (Here α is a generator of \mathbb{F}_{q^d}. Then (T, θ) and (T', θ') are geometrically conjugate if $(T, \theta \circ N) \sim_G (T' \theta' \circ N')$.

6. Lecture 6

G a reductive algebraic group of $k = \mathbb{F}_q$ endowed with F a Frobenius. Let $\Lambda = K = \mathbb{Q}_\ell$ where ℓ does not divide q.

Given $T \subset B$ a maximal F-stable torus (B need not be stable). We have

$$R_{T \subset B}^G : K_0(KT^F) \to K_0(KG^F)$$

recall that $Y_{T \subset B}$ has commuting left G^F and right T^F actions and so $\sum_i (-1)^i[H^i(U, K) \otimes_{K^F} \cdots]$. A crucial property was the orthogonality relations.

$$\langle R_{T \subset B}^G(\theta), R_{T \subset B}^G(\theta') \rangle_{G^F} = 0$$

Corollary 6.1. $R_{T \subset B}^G(\theta) = R_{T \subset B}^G(\theta')$

Proof. $\langle f, f \rangle = \langle f', f' \rangle = \langle f, f' \rangle = \langle f', f \rangle = 0$ and so $f = f'$.

Remark 6.2. $H^*(T_{T \subset B})$ depends on B, only the alternating sum is independent.

The choice of a Borel $T \subset B$ yields an element $w \in W$ and $\dim Y_{T \subset B} = \ell(w)$.

Definition 6.3. We say that θ is in general position if $(g(T, \theta)g^{-1} = (T, \Theta)$ implies that $g \in T^F$.

Corollary 6.4. If θ is in general position then $R_T^G(\theta)$ is irreducible.

Problem: define $\phi \in K_0(KG^F)$ to be uniform if it is a linear combination of $R_T^G(\theta)$’s.

(Bad) fact: In general (i.e. type $\neq A$), not all class functions are uniform. (This means the lattice generated by $R_T^G(\theta)$’s is of strictly smaller rank.)

(Good) fact: $[KG^F]$ is uniform. This means that for all $\chi \in \text{Irr}(G^F)$ there exists a (T, θ) with $\langle \chi, R_T^G(\theta) \rangle \neq 0$.

$\mathbb{F}_q = k^F$ and $\mathbb{F}_{q^r} = k^{(F^r)}$. We have

$\xymatrix{ T^F_{q^r/F_q} \ar[r]^{N_{q^r/F_q}} \ar[dr]_{\theta_r} & T^F \ar[d]^\theta \\
K^r &}$

(N_{q^r/F_q} is the norm of \mathbb{F}_{q^r} over \mathbb{F}_q.)

Given (T, θ) relative to F we have (T, θ_r) relative to F^r.
Definition 6.5. \((T, \theta)\) and \((T', \theta')\) are geometrically conjugate if there exists an \(r\) such that \((T, \theta^r)\) and \((T', \theta'^r)\) are conjugate over \(G^F\).

Theorem 6.6. If \((T, \theta)\) is not geometrically conjugate to \((T', \theta')\) then \(R_T^G(\theta)\) and \(R_{T'}^G(\theta')\) have no irreducible characters in common.

This yields a partition
\[
\operatorname{Irr}(G^F) = \bigsqcup_{\lambda=\{(T, \theta)\} \text{ up to geom. conjugacy}} \mathcal{E}(G^F, \lambda)
\]
where
\[
\mathcal{E}(G^F, \lambda) = \{ \chi \mid \langle \chi, R_T^G(\theta) \rangle \neq 0 \text{ for some } (T, \theta) \in \lambda \}
\]

\((T, 1)\) and \((T', 1)\) are always geometrically conjugate! (This follows from the fact that all maximal tori are conjugate over \(k\).)

Example 6.7. \(G = SL_2, T \subset B\) \(F\)-stable and \(T' \subset B'\) but \(B'\) are not \(F\)-stable.

(6.1) \(R_T^G(1) = \operatorname{Id} + \operatorname{St}^G\)
(6.2) \(R_{T'}^G(1) = \operatorname{Id} - \operatorname{St}^G\)

This decomposition was described by Lusztig. He also defined a “Jordan decomposition”. We will only note that
\[
\mathcal{E}(G^F, \lambda) \xrightarrow{\sim} \mathcal{E}(H^F, 1)
\]
for some reductive group \(H\), depending on \(\lambda\). (\(H^F\) is endoscopic?)

Hence the main difficulty is in describing unipotent characters \(\mathcal{E}(G^F, \lambda)\).

Remark 6.8. Green function = values of \(R_T^G(\theta)\) at a unipotent element.

One can express \(\chi_{R_T^G(\theta)(g)}\) in terms of Green functions.

The explanation is of a geometrical nature:
If \(X\) is an algebraic variety of \(k\) with a Frobenius \(F\) defining an \(F_q\)-structure and if \(g\) is an endomorphism of \(X\) of finite order (commuting with \(F\)) then we would like to compute the trace of \(g\) on \(H^s_c(X, K)\).

Theorem 6.9.
\[
\operatorname{Tr}(g, H^s_c(X, K)) = \operatorname{Tr}(u, H^s_c(X^s, K))
\]
where \(g = su, [s, u] = 1\), \(s\) is semi-simple (\(p'\)) and \(u\) is unipotent (\(p\)).

Proof. Step 1: \(\operatorname{Tr}(g, H^s_c(X, K))\) is independent of \(\ell\) (\(\ell \neq p\)). This is clear because
\[
\operatorname{Tr}(g, H^s_c(X, K)) = -\lim_{t \to \infty} \sum_{n=1}^{\infty} |X^gF^n| t^n
\]
Step 2: Write $X = \bigsqcup X_i$ where all points of X_i have the same stabilizer in $\langle g \rangle$. (Stabilizer decomposition.) The X_i has a free action of \overline{g}. Because

$$\text{Tr}(g, H^*_c(X, K)) = \sum_i \text{Tr}(g, H^*_c(X_i, K))$$

we can assume that g acts freely.

Assume that $s \neq 1$ and pick $\ell \neq p$ and $\ell | o(s)$. $H = \langle g \rangle$ acts freely on X and that the order of H is divisible by ℓ.

Lemma 6.10. X an algebraic variety, and G a finite group acting freely on X and ℓ is a prime. Then

$$\sum (-1)^i[H^i_c(X)]$$

is a virtual projective character (for $\ell \neq p$).

Proof. In fact $R\Gamma_c(X, \mathbb{Z}_\ell)$ complex of $\mathbb{Z}_\ell G$-modules is quasi-isomorphic to a bounded complex of finitely generated projective modules.

$$R\Gamma_c(X, \mathbb{Z}_\ell) \otimes_{\mathbb{Z}_\ell G}^L V = R\Gamma_c(X/G, (\pi_*\mathbb{Z}_\ell) \otimes_{\mathbb{Z}_\ell G}^L V)$$

$\pi : X \to X/G$ but

$$(\pi_*\mathbb{Z}_\ell) \otimes_{\mathbb{Z}_\ell G}^L V_x = (\pi_*\mathbb{Z}_\ell)_x \otimes_{\mathbb{Z}_\ell G}^L V \cong V$$

Then use the fact that if M is a complex of $\mathbb{Z}_\ell G$-modules and assume that there exists a finite interval I such that

$$H^i(M \otimes_{\mathbb{Z}_\ell G}^L V) = 0 \text{ for } i \in I$$

Then M is quasi-isomorphic to a bounded complex of projective $\mathbb{Z}_\ell G$-modules.

We are back at $g = su$ acting freely on X and $\ell | o(s)$. We know that

$$\sum (-1)^i[H^i_c(X, K)]$$

is virtually projective with respect to ℓ.

Hence the character of g is zero.

(If we take $Q \times R$ where Q is an ℓ-group, and R is an ℓ'-group then a projective character is $KQ \otimes \phi$ and so the character value vanishes (x,y) and $y \in R$ if $x \neq 1$, $x \in Q$.)

Example 6.11. Take $X = \mathbb{A}^1$, $g : x \mapsto x + 1$, $g^p = 1$ and $\mathbb{Z}/p\mathbb{Z}$ acts freely. Now

$$H^*_c(X) = \begin{cases} K & \ast = 2 \\ 0 & \ast \neq 2 \end{cases}$$
Note that $\text{Tr}(g, H^*_c(X)) = 1$ and $X^g = \emptyset$.

Note the big difference with characteristic 0 coefficients! This should be zero!!

6.1. **Green functions for GL_n.** We now consider $G = GL_n$ and $F : (a_{ij}) \mapsto (a_{ij}^q)$.

We now consider the unipotent characters $R^G_{T_w}(1)$ and T_w of type (w) with $w \in \Sigma_n$ (in bijection with a partition of n).

Define almost characters $\chi \in \text{Irr}(W)$

$$R_\chi := \frac{1}{|W|} \sum_{w \in W} \chi(w) R^G_{T_w}(1)$$

these are the **almost characters**.

Theorem 6.12. R_χ is an irreducible character (for G of type A!) and the map

$$\text{Irr}(W) \sim \text{E}(GL_n(q), 1)$$

$$\chi \mapsto R_\chi$$

is a bijection. In general

$$\text{Irr}(GL_n(q)) = \bigsqcup_{(s) \text{ semi-simple / conjugacy}} \text{E}(GL_n(q), (s))$$

and

$$\text{E}(GL_n(q), (s)) \sim \text{E}(C_{GL_n(q)}(s), 1)$$

(note that $C_{GL_n(q)}$ is a product of general linear groups).

If G is not of type A: decomposing R_χ as irreducible character in $\text{E}(G^F, 1)$ yields a matrix: this is part of a “non-commutative Fourier transform” matrix. (The groups involved are small groups: i.e. $(\mathbb{Z}/2)^n$, Σ_3, Σ_4 and Σ_5.)