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First steps in representation theory.



We owe the term group(e) to Galois (1832).



H Ă G is a subgroup

Letter to Auguste Chevalier in 1832

written on the eve of Galois’ death

notion of a normal subgroup

notion of a simple group

notion of a soluble group

main theorem of Galois theory



Mathematicians were studying group theory for 60 years before
they began studying representations of finite groups.



The first character table ever published. Here G is the alternating
group on 4 letters, or equivalently the symmetries of the

tetrahedron.

Frobenius, Über Gruppencharaktere, S’ber. Akad. Wiss. Berlin, 1896.



Now G “ S5, the symmetric group on 5 letters of order 120:



Conway, Curtis, Norton, Parker, Wilson, Atlas of finite groups. Maximal subgroups and ordinary

characters for simple groups. With computational assistance from J. G. Thackray. Oxford University Press, 1985.



However around 1900 other mathematicians took some convincing
at to the utility of representation theory...



– Burnside, Theory of groups of finite order, 1897.
(One year after Frobenius’ definition of the character.)



– Burnside, Theory of groups of finite order, Second edition, 1911.
(15 years after Frobenius’ definition of the character table.)



Representation theory if largely useful because often . . .

. . . out of group actions one can produce linear actions.



Examples:

1. Finite G ýX (hard)  G ýkrX s (easier).

2. S1 ýS1  S1 ýL2pS1,Cq  Fourier series.

3. GalpQ{Qq ýE pQq  GalpQ{Qq ýH1pE ; Q3q  Fermat’s
last theorem.
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Categories can have symmetry too!

What “linear” means is more subtle.

Usually it means to study categories in which one has operations
like direct sums, limits and colimits, kernels . . .

(Using these operations one can try to “categorify linear algebra”
by taking sums, cones etc.

If we are lucky Ben Elias will have more to say about this.)
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Example: Given a variety X one can think about CohpX q or
DbpCohX q as a linearisation of X .

Example: Given a finite group G its “C-linear shadow” is the
character table (essentially by semi-simplicity). However the subtle

homological algebra of kG if kG is not semi-simple means that
Rep kG or DbpRep kG q is better thought of as its k-linear shadow.
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First steps in higher representation theory.



Monoids, groups and algebras are categorified by forms of tensor
(=monoidal) categories.

Fix an additive tensor category A.

This means we have a bifunctor of additive categories:

pM1,M2q ÞÑ M1 bM2

together with a unit 1, associator, . . .

Examples: Vectk , RepG , G -graded vector spaces, FunpM,Mq
(endofunctors of an additive category), . . .



A A-module is an additive category M together with a b-functor

AÑ FunpM,Mq.

What exactly this means can take a little getting used to.

As in classical representation theory it is often more useful to think
about an “action” of A on M.
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A first example:

A :“ Rep SU2 p“ Repfd sl2pCqq

A is generated under sums and summands by nat :“ C2.

An A-module is a recipe M ÞÑ nat ¨M and a host of maps

HomApnatbm,natbnq Ñ HomMpnatbm ¨M, natbn ¨Mq

satisfying an even larger host of identities which I will let you
contemplate.
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Let M be an A “ Rep SU2-module which is

1. abelian and semi-simple,

2. indecomposable as an A-module.

Examples:

M :“ VectC with V ¨M :“ ForpV q bM (“trivial rep”)

M :“ RepSU2 with V ¨M :“ V bM (“regular rep”)

M :“ Rep S1 with V ¨M :“ pResS
1

SU2
V q bM.

M :“ Rep Γ (Γ Ă SU2 finite or NSU2pS
1q) with

V ¨M :“ pResΓ
SU2

V q bM.
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Examples:

M :“ VectC with V ¨M :“ ForpV q bM (“trivial rep”)

M :“ RepSU2 with V ¨M :“ V bM (“regular rep”)

M :“ Rep S1 with V ¨M :“ pResS
1

SU2
V q bM.

M :“ Rep Γ (Γ Ă SU2 finite or NSU2pS
1q) with

V ¨M :“ pResΓ
SU2

V q bM.

Theorem

(Classification of representations of Rep SU2.) These are all.





Remarkably, the action of Rep SU2 on the Grothendieck group of
M already determines the structure of M as an RepSU2-module!

This is an example of “rigidity” in higher representation theory.
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An example of higher representation theory
(joint with Simon Riche).



We want to apply these ideas to the modular (i.e. characteristic p)
representation theory of finite and algebraic groups.

Here the questions are very difficult and we will probably never
know a complete and satisfactory answer.

It is a little like contemplating homotopy groups of spheres:
amazing mathematics has emerged from consideration of these
problems, although the complete picture is still a long way off.
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For the rest of the talk fix a field k and a connected reductive
group G like GLn (where we will state a theorem later) of Sp4

(where we can draw pictures).

If k is of characteristic 0 then RepG looks “just like
representations of a compact Lie group”. In positive characteristic
one still has a classification of simple modules via highest weight,

character theory etc. However the simple modules are usually
much smaller than in characteristic zero.
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Rep0
‘
Ă RepG the principal block.
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Let W denote the affine Weyl group and S “ ts0, . . . , snu its
simple reflections. For each s P S one has a wall-crossing functor

Ξs . These generate the category of translation functors.

xΞs0 ,Ξs1 , . . . ,Ξsny ýRep0 .



Rep0
‘
Ă RepG the principal block.

On Rep0 one has the action of wall-crossing functors:

“matrix coefficients of tensoring with objects in RepG”

Let W denote the affine Weyl group and S “ ts0, . . . , snu its
simple reflections. For each s P S one has a wall-crossing functor

Ξs . These generate the category of translation functors.

xΞs0 ,Ξs1 , . . . ,Ξsny ýRep0 .



Rep0
‘
Ă RepG the principal block.

On Rep0 one has the action of wall-crossing functors:

“matrix coefficients of tensoring with objects in RepG”

Let W denote the affine Weyl group and S “ ts0, . . . , snu its
simple reflections. For each s P S one has a wall-crossing functor

Ξs . These generate a monoidal category acting on Rep0:

xΞs0 ,Ξs1 , . . . ,Ξxny ýRep0 .

Easy: On Grothendieck groups one has canonically:

pxΞs0 ,Ξs1 , . . . ,Ξxny ýrRep0sq – pZW ýZW bZWf
sgnq

“Rep0 categorifies the anti-spherical module.”



Rep0
‘
Ă RepG the principal block.

On Rep0 one has the action of wall-crossing functors:

“matrix coefficients of tensoring with objects in RepG”

Let W denote the affine Weyl group and S “ ts0, . . . , snu its
simple reflections. For each s P S one has a wall-crossing functor

Ξs . These generate a monoidal category acting on Rep0:

xΞs0 ,Ξs1 , . . . ,Ξxny ýRep0 .

Easy: On Grothendieck groups one has canonically:

pxΞs0 ,Ξs1 , . . . ,Ξxny ýrRep0sq – pZW ýZW bZWf
sgnq

“Rep0 categorifies the anti-spherical module.”



Rep0
‘
Ă RepG the principal block.

On Rep0 one has the action of wall-crossing functors:

“matrix coefficients of tensoring with objects in RepG”

Let W denote the affine Weyl group and S “ ts0, . . . , snu its
simple reflections. For each s P S one has a wall-crossing functor

Ξs . These generate a monoidal category acting on Rep0:

xΞs0 ,Ξs1 , . . . ,Ξxny ýRep0 .

Easy: On Grothendieck groups one has canonically:

pxΞs0 ,Ξs1 , . . . ,Ξxny ýrRep0sq – pZW ýZW bZWf
sgnq

“Rep0 categorifies the anti-spherical module.”



Main conjecture: This action of wall-crossing functors can be
upgraded to an action of the Hecke category.

The Hecke category is a fundamental monoidal category in
representation theory. It categorifies the Hecke algebra and has

several incarnations:

DbpBzG{Bq, parity sheaves, Soergel bimodules, moment graph
sheaves (Fiebig), mixed modular category (Achar-Riche), . . .

Following earlier work of Soergel and insistence from Rouquier, it
has recently been presented by generators and relations by

Libedinsky, Elias-Khovanov, Elias, Elias-W.
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xΞs0 ,Ξs1 , . . . ,Ξxny ýRep0

categorifies the “anti-spherical module”

ZW ýZWbZWf
sgn “ ZW {ZW xp1`sq|s finite simple reflectiony

Using the Hecke category H one can also categorify the
anti-spherical module in an “obvious” way. This yields an

H-module

H ýAS :“ H{xBx | x PW
f y

(where W f :“ tw P W | ws ą w for finite simple reflections su).
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Assume the conjecture (or G “ GLn).

Theorem: We have an equivalence of H-modules

Rep0 – AS.

This may be seen as an instance of higher representation theory.
The mere existence of an action forces an equivalence. In the proof

an important role is played by the “easy” isomorphism on
Grothendieck groups considered above.
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In particular:

§ Rep0 admits a grading (because AS does).

§ Rep0 admits a graded integral form over Z1 :“ Zr1{h!s.

§ Rep0 can be described by generators and relations.

This gives a strong form of the “independence of p” of

Andersen-Jantzen-Soergel, and answers a question of Wolfgang Soergel

from the 1990s.

(The statement should be true of Z. Achar-Riche have very related results. There is probably a Z8-grading

coming from V ÞÑ VFr b St.)
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A major motivation for this work was trying to get character
formulas in terms of the Hecke category.

When taken over a field of characteristic zero the Hecke category
is the home of the Kazhdan-Lusztig basis, and Kazhdan-Lusztig

polynomials.

When taken with coefficients in characteristic p the Hecke
category gives rise to the p-canonical basis, and p-Kazhdan-Lusztig

polynomials.

Theorem: Assume our conjecture or G “ GLn. Then there exist
simple formulas for the irreducible (if p ą 2h ´ 2) and tilting (if

p ą h) characters in terms of the p-canonical basis.
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I have checked this conjecture in several (very) non-trivial
examples for SL3 in characteristic 2.

Unfortunately, the p-canonical basis is far from simple. However these

results and conjectures tell us precisely where the difficulty lies.

Achar-Riche and Rider are close to showing our tilting conjectures for any

G and p ą h.



Theorem: Assume our conjecture or G “ GLn. Then there exist
simple formulas for the irreducible (if p ą 2h ´ 2) and tilting (if

p ą h) characters in terms of the p-canonical basis.

Conjecture: The tilting character formulas in terms of the
p-canonical basis hold for any p.

I have checked this conjecture in several (very) non-trivial
examples for SL3 in characteristic 2.

Unfortunately, the p-canonical basis is far from simple. However these

results and conjectures tell us precisely where the difficulty lies.

Achar-Riche and Rider are close to showing our tilting conjectures for any

G and p ą h.



Theorem: Assume our conjecture or G “ GLn. Then there exist
simple formulas for the irreducible (if p ą 2h ´ 2) and tilting (if

p ą h) characters in terms of the p-canonical basis.

Conjecture: The tilting character formulas in terms of the
p-canonical basis hold for any p.

I have checked this conjecture in several (very) non-trivial
examples for SL3 in characteristic 2.

Unfortunately, the p-canonical basis is far from simple. However these

results and conjectures tell us precisely where the difficulty lies.

Achar-Riche and Rider are close to showing our tilting conjectures for any

G and p ą h.



Theorem: Assume our conjecture or G “ GLn. Then there exist
simple formulas for the irreducible (if p ą 2h ´ 2) and tilting (if

p ą h) characters in terms of the p-canonical basis.

Conjecture: The tilting character formulas in terms of the
p-canonical basis hold for any p.

I have checked this conjecture in several (very) non-trivial
examples for SL3 in characteristic 2.

Unfortunately, the p-canonical basis is far from simple. However these

results and conjectures tell us precisely where the difficulty lies.

Achar-Riche and Rider are close to showing our tilting conjectures for any

G and p ą h.



An example of this philosophy: Let fW denote minimal
representatives for Wf zW .

Then there exist finite subsets XJ ,XL,XA,p Ă
fW such that:

1. Lusztig conjecture (1980) (simple characters) holds if and
only if pNx “ Nx for all x P XL.

2. James conjecture (1990) (decomposition numbers for
symmetric groups) holds if and only if pNx “ Nx for all
x P XJ .

3. Andersen conjecture (1997) (tilting characters) holds if and
only if pNx “ Nx for all x P XA,p.

Actually, point (2) is still conjectural. Need tilting character formulas for

GLn for p ď n. Should follow from work in progress of Elias-Losev.

Point (1) may be compared to a result of Fiebig giving necessary

conditions for Lusztig’s conjecture in terms of the spherical module.
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Thanks!

Slides:

people.mpim-bonn.mpg.de/geordie/Mooloolaba.pdf

Paper (all 135 pages!):

people.mpim-bonn.mpg.de/geordie/tilting-total.pdf


