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First steps in representation theory.



We owe the term group(e) to Galois (1832).




En d’autres termes, quand un groupe G en contient un autre H, le
groupe G peut se partager en groupes, que 'on obtient chacun en opérant
sur les permutations de H une méme substitution ; en sorte que

G=H+HS+HS +....

1. Terite la veille de la mort de l'auteur. (Insérée en 1832 dans la Revue ency-
clopédigue, numéro de septembre, page 568.) {J. LIOUVILLE.)
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Et aussi il peut se diviser en groupes qui ont tous les mémes substitutions,
en sorte que

G=H+TH+TH+....

Ces deux genres de décompositions ne coincident pas ordinairement.
Quand ils coincident, la décomposition est dite propre.

11 est aisé de voir que, quand le groupe d'une équation n’est susceptible
d’aucune décomposition propre, on aura beau transformer cette équation,
les groupes des équations transformées auront toujours le méme nombre
de permutations.

Au contraire, quand le groupe d’'une équation est susceptible d'une dé-
composition propre, en sorte qu'il se partage en M groupes de N permuta-
tions, on pourra résoudre I’équation donnée au moyen de deux équations :
T'une aura un groupe de M permutations, 'autre un de N permutations.

Lors done qu'on aura épuisé sur le groupe d’une équation tout ce qu'il
y a de décompositions propres possibles sur ce groupe, on arrivera & des
groupes qu'on pourra transformer, mais dont les permutations seront tou-
jours en méme nombre.

Si ces groupes ont chacun un nombre premier de permutations, I'équa-
tion sera soluble par radicaux ; sinon, non.

H < G is a subgroup

Letter to Auguste Chevalier in 1832

written on the eve of Galois' death

notion of a normal subgroup

notion of a simple group

notion of a soluble group

main theorem of Galois theory



Mathematicians were studying group theory for 60 years before
they began studying representations of finite groups.



The first character table ever published. Here G is the alternating
group on 4 letters, or equivalently the symmetries of the
tetrahedron.
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Now G = S5, the symmetric group on 5 letters of order 120:
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Conway, Curtis, Norton, Parker, Wilson, Atlas Of flnlte Zroups. Maximal subgroups and ordinary

characters for simple groups. With computational assistance from J. G. Thackray. Oxford University Press, 1985
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However around 1900 other mathematicians took some convincing
at to the utility of representation theory...



Cayley’s dictum that “a group is defined by means of the
laws of combination of its symbols” would imply that, in dealing
purely with the theory of groups, no more concrete mode of
representation should be used than is absolutely necessary.
Tt may then be asked why, in a book which professes to leave
all applications on one side, a considerable space is devoted to
substitution groups; while other particular modes of repre-
sentation, such as groups of linear transformations, are not
even referred to. My answer to this question is that while, in
the present state of our knowledge, many results in the pure
theory are arrived at most readily by dealing with properties
of substitution groups, it would be difficult to find a result that
could be most directly obtained by the consideration of groups
of linear transformations.

— Burnside, Theory of groups of finite order, 1897.
(One year after Frobenius' definition of the character.)



PREFACE TO THE SECOND EDITION

RY considerable advances in the theory of groups of

finite order bave been made since the appearance of the
first edition of this book. In particular the theory of groups
of linear substitutions has been the subject of numerous and
important investigations by several writers; and the reason
given in the original preface for omitting any account of it no
longer holds good.

In fact it is now more true to say that for further advances
in the abstract theory one must look largely to the representa-
tion of a group as a group of linear substitutions. There is
accordingly in the present edition a large amount of new matter.

— Burnside, Theory of groups of finite order, Second edition, 1911.
(15 years after Frobenius' definition of the character table.)



Representation theory if largely useful because often ...

...out of group actions one can produce linear actions.
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Examples:
1. Finite G & X (hard) ~ G C k[X] (easier).
2. St @ St~ S & L2(S1,C) ~ Fourier series.

3. Gal(Q/Q) & E(Q) ~ Gal(Q/Q) & HY(E;Q3) ~ Fermat's

last theorem.
X (@) = ) GaA(®)
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Categories can have symmetry too!

What “linear” means is more subtle.



Categories can have symmetry too!
What “linear” means is more subtle.

Usually it means to study categories in which one has operations
like direct sums, limits and colimits, kernels ...

(Using these operations one can try to “categorify linear algebra”
by taking sums, cones etc.

If we are lucky Ben Elias will have more to say about this.)



Example: Given a variety X one can think about Coh(X) or
D"(CohX) as a linearisation of X.



Example: Given a variety X one can think about Coh(X) or
D"(CohX) as a linearisation of X.

Example: Given a finite group G its “C-linear shadow” is the
character table (essentially by semi-simplicity). However the subtle
homological algebra of kG if kG is not semi-simple means that
Rep kG or D?(Rep kG) is better thought of as its k-linear shadow.



First steps in higher representation theory.



Monoids, groups and algebras are categorified by forms of tensor
(=monoidal) categories.

Fix an additive tensor category A.
This means we have a bifunctor of additive categories:
(My, Ma) — My ® My
together with a unit 1, associator, ...

Examples: Vecty, Rep G, G-graded vector spaces, Fun(M, M)
(endofunctors of an additive category), ...



A A-module is an additive category M together with a ®-functor

A = Fun(M, M).



A A-module is an additive category M together with a ®-functor

A = Fun(M, M).

What exactly this means can take a little getting used to.

As in classical representation theory it is often more useful to think
about an “action” of A on M.
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A first example:

A := Rep SU; (= Repgy sl2(C))
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A is generated under sums and summands by nat := C?.



A first example:
A := Rep SU; (= Repgy sl2(C))

A is generated under sums and summands by nat := C?.

An A-module is a recipe M — nat - M and a host of maps
Hom 4 (nat®™ nat®") — Hom((nat®™ - M, nat®" . M)

satisfying an even larger host of identities which | will let you
contemplate.



Let M be an A = Rep SU>-module which is

1. abelian and semi-simple,

2. indecomposable as an A-module.
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Let M be an A = Rep SU>-module which is

1. abelian and semi-simple,

2. indecomposable as an A-module.

Examples:
M := Vectc with V - M := For(V) ® M ("“trivial rep”)
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M := Rep S with V - M := (Resgy, V) ® M.
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V- M := (Res§y, V) @ M.
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M :=Rep SU, with V- M := V® M (“regular rep”)
M := Rep St with V - M := (Resg, V) ® M.
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Examples:
M := Vectc with V - M := For(V) ® M ("“trivial rep")
M :=Rep SU, with V- M := V® M (“regular rep”)
M := Rep St with V - M := (Resg, V) ® M.

M :=RepT (I = SU, finite or Nsy,(S)) with
VM := (Resgy, V) ® M.

Theorem

(Classification of representations of Rep SUs.) These are all.
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Remarkably, the action of Rep SU, on the Grothendieck group of
M already determines the structure of M as an Rep SU,-module!



Remarkably, the action of Rep SU, on the Grothendieck group of
M already determines the structure of M as an Rep SU,-module!

This is an example of “rigidity” in higher representation theory.



An example of higher representation theory
(joint with Simon Riche).



We want to apply these ideas to the modular (i.e. characteristic p)
representation theory of finite and algebraic groups.

Here the questions are very difficult and we will probably never
know a complete and satisfactory answer.



We want to apply these ideas to the modular (i.e. characteristic p)
representation theory of finite and algebraic groups.

Here the questions are very difficult and we will probably never
know a complete and satisfactory answer.

It is a little like contemplating homotopy groups of spheres:
amazing mathematics has emerged from consideration of these
problems, although the complete picture is still a long way off.



For the rest of the talk fix a field k and a connected reductive
group G like GL, (where we will state a theorem later) of Sp,
(where we can draw pictures).



For the rest of the talk fix a field k and a connected reductive
group G like GL, (where we will state a theorem later) of Sp,
(where we can draw pictures).

If k is of characteristic 0 then Rep G looks “just like
representations of a compact Lie group”. In positive characteristic
one still has a classification of simple modules via highest weight,

character theory etc. However the simple modules are usually
much smaller than in characteristic zero.
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Repq 2 Rep G the principal block.

Repy = Rep G depends on p!



Repq 2 Rep G the principal block.
On Repq one has the action of wall-crossing functors:

“matrix coefficients of tensoring with objects in Rep G”



Repq 2 Rep G the principal block.
On Repq one has the action of wall-crossing functors:
“matrix coefficients of tensoring with objects in Rep G”

Let W denote the affine Weyl group and S = {sp, ..., s,} its
simple reflections. For each s € S one has a wall-crossing functor
=s. These generate the category of translation functors.

(Z63 555+, =s,) C Repyg.
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On Repg one has the action of wall-crossing functors:
“matrix coefficients of tensoring with objects in Rep G”

Let W denote the affine Weyl group and S = {sp, ..., sp} its
simple reflections. For each s € S one has a wall-crossing functor
=s. These generate a monoidal category acting on Rep:
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Repg 2 Rep G the principal block.
On Repg one has the action of wall-crossing functors:
“matrix coefficients of tensoring with objects in Rep G”

Let W denote the affine Weyl group and S = {sp, ..., sp} its
simple reflections. For each s € S one has a wall-crossing functor
=s. These generate a monoidal category acting on Rep:

(Zspy 515+ -+ =xny C Repg -

Easy: On Grothendieck groups one has canonically:

((ZssZs1y-+ > =xp) C [Repg]) = (ZW & ZW ®zw, sgn)

“Repg categorifies the anti-spherical module.”



Main conjecture: This action of wall-crossing functors can be
upgraded to an action of the Hecke category.



Main conjecture: This action of wall-crossing functors can be
upgraded to an action of the Hecke category.

The Hecke category is a fundamental monoidal category in
representation theory. It categorifies the Hecke algebra and has
several incarnations:

D*(B\G/B), parity sheaves, Soergel bimodules, moment graph
sheaves (Fiebig), mixed modular category (Achar-Riche), ...



Main conjecture: This action of wall-crossing functors can be
upgraded to an action of the Hecke category.

The Hecke category is a fundamental monoidal category in
representation theory. It categorifies the Hecke algebra and has
several incarnations:

D*(B\G/B), parity sheaves, Soergel bimodules, moment graph
sheaves (Fiebig), mixed modular category (Achar-Riche), ...

Following earlier work of Soergel and insistence from Rouquier, it
has recently been presented by generators and relations by
Libedinsky, Elias-Khovanov, Elias, Elias-W.
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Theorem: Our conjecture holds for G = GL,,.



Theorem: Our conjecture holds for G = GL,,.

Consequences of the conjecture...



Recall that

(Zsyy Zs1y - -+ =xnp C Repyg
categorifies the “anti-spherical module”

ZW C ZW®zw,sgn = ZW/ZW{(1+s5)|s finite simple reflection)



Recall that

(Zsyy Zs1y - -+ =xnp C Repyg
categorifies the “anti-spherical module”
ZW C ZW®zw,sgn = ZW/ZW{(1+s5)|s finite simple reflection)

Using the Hecke category H one can also categorify the
anti-spherical module in an “obvious” way. This yields an
‘H-module

HCAS = H/{B | xe W

(where W := {w e W | ws > w for finite simple reflections s}).



Assume the conjecture (or G = GLj,).
Theorem: We have an equivalence of H-modules

Repy = AS.



Assume the conjecture (or G = GLj,).
Theorem: We have an equivalence of H-modules

Repy = AS.

This may be seen as an instance of higher representation theory.
The mere existence of an action forces an equivalence. In the proof
an important role is played by the “easy” isomorphism on
Grothendieck groups considered above.
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Theorem: We have an equivalence of H-modules

Repy = AS.

In particular:

» Rep, admits a grading (because AS does).
» Rep, admits a graded integral form over Z' := Z[1/h!].
» Repg can be described by generators and relations.

This gives a strong form of the “independence of p" of
Andersen-Jantzen-Soergel, and answers a question of Wolfgang Soergel
from the 1990s.



Assume the conjecture (or G = GLj).
Theorem: We have an equivalence of H-modules

Repy = AS.

In particular:

» Rep, admits a grading (because AS does).
» Rep, admits a graded integral form over Z' := Z[1/h!].
» Repg can be described by generators and relations.

This gives a strong form of the “independence of p" of
Andersen-Jantzen-Soergel, and answers a question of Wolfgang Soergel
from the 1990s.

(The statement should be true of Z. Achar-Riche have very related results. There is probably a Z®_grading
coming from V — V' ® St.)
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A major motivation for this work was trying to get character
formulas in terms of the Hecke category.

When taken over a field of characteristic zero the Hecke category
is the home of the Kazhdan-Lusztig basis, and Kazhdan-Lusztig
polynomials.

When taken with coefficients in characteristic p the Hecke
category gives rise to the p-canonical basis, and p-Kazhdan-Lusztig
polynomials.
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When taken with coefficients in characteristic p the Hecke
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polynomials.

Theorem: Assume our conjecture or G = GL,,. Then there exist
simple formulas for the irreducible (if p > 2h — 2) and tilting (if
p > h) characters in terms of the p-canonical basis.
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Theorem: Assume our conjecture or G = GL,,. Then there exist
simple formulas for the irreducible (if p > 2h — 2) and tilting (if
p > h) characters in terms of the p-canonical basis.

Conjecture: The tilting character formulas in terms of the
p-canonical basis hold for any p.

| have checked this conjecture in several (very) non-trivial
examples for SL3 in characteristic 2.

Unfortunately, the p-canonical basis is far from simple. However these
results and conjectures tell us precisely where the difficulty lies.
Achar-Riche and Rider are close to showing our tilting conjectures for any
G and p > h.
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An example of this philosophy: Let fW denote minimal
representatives for W¢\W.

Then there exist finite subsets X, X, X4, < W such that:

1. Lusztig conjecture (1980) (simple characters) holds if and
only if PN, = N, for all x € X.

2. James conjecture (1990) (decomposition numbers for
symmetric groups) holds if and only if PN, = N, for all
X € X_j.

3. Andersen conjecture (1997) (tilting characters) holds if and
only if PN, = N for all x € X4 .

Actually, point (2) is still conjectural. Need tilting character formulas for
GL,, for p < n. Should follow from work in progress of Elias-Losev.

Point (1) may be compared to a result of Fiebig giving necessary
conditions for Lusztig's conjecture in terms of the spherical module.
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Thanks!

Slides:
people.mpim-bonn.mpg.de/geordie/Mooloolaba.pdf
Paper (all 135 pages!):

people.mpim-bonn.mpg.de/geordie/tilting-total.pdf



