
THE DECOMPOSITION THEOREM AND THE
TOPOLOGY OF ALGEBRAIC MAPS

Abstract. Notes from fives lectures given by Luca Migliorini in
Freiburg in February 2010. Notes by Geordie Williamson.

1. Lecture 1: Hodge theory

This first lecture will comprise a review of a few classical facts about
the topology of complex algebraic varities. All varieties will be complex
algebraic varieties.

Everything probably can (and should) be translated into the char-
acteristic p world, but there are some points that are not clear.

The important connection with D-modules will not be treated. This
is also very important and should not be forgotten by (young) re-
searchers interested in the area.

The main character in this story is the category of perverse sheaves.
The starting point is the Lefschetz hyperplane theorem:

Theorem 1.1 (S. Lefschetz 1924). Let U be a non-singular complex
affine algebraic variety of complex dimension n. Then U has the ho-
motopy type of a CW -complex of real dimension n. In particular,
H i(U,Q) = 0 for i > n and H i

c(U,Q) = 0 for i < n.

It is nice to think about his for curves: once one deletes some number
of points from a complex projective curve it becomes homotopic to a
bouquet of circles.

Perverse sheaves are those sheaves for which this theorem holds uni-
versally. (We will return to this later on.)

The Lefschetz hyperplane theorem can be improved as follows: if U
is affine and F is a constructible sheaf on U , then H i(U,F) = 0 for
i > n. (This can be found in M. Artin, exposé XIV in SGA4.) (Note
that no claim is made about the cohomology with compact supports of
such a sheaf.)

Topics to be discussed today:

(1) Hard Lefschetz theorem
(2) Degeneration of the Leray spectral sequence
(3) Semi-simplicity of monodromy
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This school consists of generalising these three statements to general
maps. (They will be replaced by the relative Hard Lefschetz theorem
and the decomposition theorem).

1.1. The Hard Leftschetz theorem.

Theorem 1.2 (Hard Lefschetz). Let X be projective and non-singular
and c1(L) ∈ H2(X) be the Chern class of an ample line bundle. Let
n = dimX. Then

c1(L)k : Hn−k(X)
∼→ Hn+k(X)

is an isomorphism for all k.

(In this theorem, and below, all cohomology groups are taken with
rational coefficients unless otherwise stated.)

Remark 1.3. In SGA this theorem is referred to as “Lefschetz vache”:
it causes suffering!

This result was originally stated by Lefschetz, but his proof contains
a hole. The first complete proof was given using Hodge theory in the
1950’s. A purely algebraic proof is given by Deligne in La conjecture
de Weil. II.

Remark 1.4. It follows form the the weak Lefschetz theorem that the
restriction map

Hr(X)→ Hr(XH) (for XH a general hyperplane section)

is an isomorphism for r < n− 1 and is injective for r = n− 1.
Using this isomorphism one reduces the proof of the hard Leftschetz

theorem to the critical case k = 1:

Hn−1(X)
i∗

&&NNNNNNNNNNN

c1(L)
// Hn+1(X)

Hn−1(XH)

88ppppppppppp

The two maps to and from Hn−1(XH) are dual. Hence the hard Left-
schetz theorem is equivalent to the fact that the Poincaré pairing on
Hn−1(XH) restricts to a non-degenerate pairing on the image of i∗. (In
the exercises this is shown to follow from the Hodge-Riemann bilinear
relations.)

The Hard Leftschetz theorem has a very non-trivial consequence:
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1.2. Degeneration of the Leray Spectral Sequence. This result
is due to Blanchard and Deligne.

Suppose f : X → S smooth and projective. One has a spectral
sequence

Epq
2 = Hp(S,Rqf∗Q)⇒ Hp+q(X)

(In fact one has such a spectral sequence for any fibration.)

Exercise 1.5. Obtain this spectral sequence from the derived category
formalism.

Theorem 1.6. This spectral sequence degenerates at E2. (!)

Example 1.7. This fails in the non-algebraic or non-proper situation.
The simplest example is given by the Hopf fibration: S3 → S2 with
fibres S1 (an algebraic version of which is given by C2 \ {0} → P1). If
the spectral sequence degenerated this would give H∗(S3) = H∗(S1)⊗
H∗(S2) which is obviously not true.)

This follows quite directly from the Hard Leftschetz theorem. We
will now explain why:

Remark 1.8. As f is smooth and proper, Rif∗Q are local systems (that
is locally constant sheaves of finite dimensional Q-vector spaces). (One
proof of this is given by that Ehresmann fibration lemma which shows
that f is topologically a locally trivial fibration. It is proved by lifting
vector fields.) Hence the cohomology sheaves Rif∗Q are equivalent to
representations of π1(S, s).

Remark 1.9. A stronger statement is true. There is an isomorphism in
the derived category of sheaves on S:

Rf∗Q =
⊕

Rif∗Q[−i]

(This implies the degeneration of the Leray Spectral sequence but is
“universal”.) This is discussed in the exercises.

Hard Leftschetz implies thatHr(X) =
⊕

a≥0 c1(L)qP r−2a where P n−k =

ker c1(L)k+1 ⊂ Hn−k is the “primitive component”. (This is the Lef-
schetz decomposition.)

This decomposition also works in families: if L is a relatively ample
bundle then we have a decomposition of local systems

Rrf∗Q =
⊕

c1(L)qP r−2a

where P r−2a is the “local system of primitive components”.
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To give an idea of the proof of the above theorem, we prove for
instance that d2 is 0 on Hp(S, P d−k) here d = dimX − dimS, the
relative dimension.

We have

Hp(S, P d−k)
d2 //

0=c1(L)k+1

��

Hp+2(S,Rd−k−1f∗Q)

ck+1
1 (L)
��

Hp(S,Rd+k+1f∗Q)
d2

// Hp+2(X,Rd+k+1f∗Q)

(Remember d2 : Epq
2 → Ep+2,q−1

2 .)
We now recall the Hodge-Riemann bilinear relations. They are a

statment about signs. Assume X is projective and non-singular of
dimension n and that L is an ample line bundle.

Suppose that α ∈ P r of Hodge type (p, q) and α 6= 0. Then

±ip−q
∫
X

cq(L)n−rα ∧ ᾱ > 0

± depends on r (i.e. this is valid for all α once one has fixed ±!)

1.3. Semi-simplicity of monodromy. We first recall the notion of a
mixed Hodge structure. See Theorie de Hodge II and Theorie de Hodge
III by Deligne. (Theorie de Hodge I is a survey, with some discussion
of the dictionary with positive characteristic situations.)

Suppose that X is now possibly singular and possibly non-compact.
Then H∗(X) is equipped with a functorial mixed Hodge structure.
Namely:

(1) an increasing filtration W• on H∗(X,Q);
(2) a decreasing filtration F • on H∗(X,C);

such that, for all k, F • induces on Wk/Wk−1⊗C a (p, q)-decomposition
with p+ q = k.

IfX is non-singular thenWk/Wk−1(H
`) = 0 for k < ` andW`H

`(X) =
ImH`(X)→ H`(X) where X is a smooth compactification of X.

If X is projective (but perhaps singular) the Wk/Wk−1(H
`) = 0 for

k > `. If X̃ → X is a desingularisation then the pullback map

H`(X) → H`(X̃)

has precisely Wl−1 as its kernel.
Hence the situations for projective and smooth varieties are in some

sense dual.



THE DECOMPOSITION THEOREM AND THE TOPOLOGY OF ALGEBRAIC MAPS5

Theorem 1.10. Suppose we have Y ⊂ X ⊂ X where Y is projective,
X is projective and smooth, and X is non-singular. Then

Im(H•(X)→ H•(Y )) = Im(H∗(X)→ H∗(Y ))

Remark 1.11. This is very non-trivial! For example, it is not true at all
the in the real world: Take for example S1 ⊂ C∗ ⊂ P1(C). This fails
badly!!

The theorem follows immediately by consider mixed Hodge struc-
tures.

The main criticism of the degeneration of the Leray spectral sequence
is that there are not very many smooth maps! Being smooth is too
strong a requirement.

Consider a projective map f to a projective variety S

X

f
��

Xoo

f

��
S Soo

Suppose that X is non-singular and that f is smooth.

Theorem 1.12 (Global invariant cycle theorem). Fix s ∈ S. Then

ImH∗(X)→ H∗(f−1(s))

is the subspace of monodromy invariants. ( = H0(S,Rkf∗Q.)

Corollary 1.13. The subspace of monodromy invariants is a Hodge
substructure.

(This is a very global statement: consider the example of a family of
elliptic curves over C∗ to see that the local statement cannot be true.)

Proof. We have H0(X,Rkf∗Q) is the monodromy invariants (= E0,k
2 ).

The map

Hk(X)→ H0(S,Rkf∗Q) = E0,k
2 = Hk(f−1(s))π1

would continue with d2 which is zero. By degeneration, this map is sur-
jective. hence ImHk(X) → Hk(f−1(s)) = ImHk(X) → Hk(f−1(s)).

�

Theorem 1.14 (Semi-simplicity of monodromy). The monodromy rep-
resentations π1(S, s)→ GL(Hk(f−1(s))) are completely reducible.
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Remark 1.15. This result is nontrivial because often the category of
representations of π1(S, s) can be very“non-semi-simple”. For example,
this group is often a free group in the case of curves. For symplectic
manifolds this is very false: any representation can occur.

The proof is based on splitting (analagous to the fact that the in-
variants are a Hodge substructure).

Exercise 1.16. Deduce the hard Lefschetz theorem from the semi-simplicity
of monodromy above.

Hint: Replace X by its universal hyperplane section

X X̃oo

��

XH
oo

Pr

and use the invariant cycle theorem.

We have seen four crucial facts: weak Lefschetz, hard Leftschetz, deg-
neration of the Leray spectral sequence and the invariant cycle theorem.
At every point Poincaré duality is used. If one wants a generalisation,
one must put Verdier duality into the picture!

Two remarks from the last lecture:

Remark 1.17. (1) (Sebastien Goette) The local monodromy is quasi-
unipotent! Hence locally monodromy is the “opposite” of semi-
simple.

(2) (Annette Huber Klawitter) The result about the fact that the
invariants form a hodge sub structure does not depend on the
compactification.

2. Lecture 2

Suppose K,L ∈ Db(A) and suppose that K = τ≤0K and L ∼= τ≥0L.
Then

Hom(K,L) = HomA(H0(K), H0(L)).

(Note that this doesn’t work the other way around!)
To motivate intersection cohomology complexes and the decompo-

sition theorem we will treat the case of a surface resolution in detail.
So suppose that f : X̃ → X is the resolution of a surface singularity
x0 ∈ X.

[picture here]
Our goal is to understand Rf∗Q eX . Let U = X \ {x0} be the smooth

locus and j : U ↪→ X its inclusion. Clearly (Rf∗Q eX)U = QU . As
dim f−1(x0) = 1, Rif∗Q = 0 for i > 2. Hence Rf∗Q eX = τ≤2Rf∗Q eX .
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We have

Rf∗QX → Rf∗j
∗Rf∗Q eX

which factors to give

Rf∗QX
//

??

  B
BB

BB
BB

BB
BB

BB
BB

BB
BB

BB
τ≤2Rf∗j

∗Rf∗Q eX
**UUUUUUUUUUUUUUUU

H2(Rj∗(j
∗Rf ∗Q))[−2]

[1]ttiiiiiiiiiiiiiiii

τ≤1Rj∗(j
∗Rj∗Q eX)

OO

We are interested in finding the lift marked ??. The obstruction to such
a lift lies in

Hom(Rf∗Q eX ,H2(Rj∗(j
∗Rf∗Q)[−2]).

which is equal to

Hom(H2(Rf∗ . . . ),H2(Rj∗ . . . ))

which, in turn can identified with

H2(f−1(N))→ H2(f−1(N − x0))

This can be completed to

HBM
2 (f−1(x0)) ∼= H2(f−1(N), f−1(N\{x0})→ H2(f−1(N))→ H2(f−1(N−x0))

or otherwise

HBM
2 (f−1(x0))→ H2(f−1(x0))→ H2(f−1(N − x0))

the first map is the intersection form. Thanks to Grauert, Mumford
etc. the map HBM

2 (f−1(x0)) → H2(f−1(x0)) is an isomorphism and
hence the map H2(f−1(x0))→ H2(f−1(N − x0)) is zero.

Hence we have a map

Rf∗Q eX → τ≤1Rj∗j
∗Rf∗Q eX

which we can complete to triangle

Rf∗Q eX u // τ≤1Rj∗j
∗Rf∗Q eX

[1]
wwpppppppppppp

Cu

ccGGGGGGGGG

Remark 2.1. Similar considerations to the above show that such a lift-
ing is unique.
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Exercise 2.2. Remark that Rf∗Q eX is self-dual up to a shift by 4. Hence

DRf∗Q eX = Rf!DQ eX = Rf∗Q eX [4]

is self-dual up to a shift as well.

From the exact cohomology sequence and duality we get thatH0(Cu) =
H1(Cu) = 0 and so Cu is concentrated in degree 2 and is equal to
H2(f

−1(x0))x0 [−2].

Look at the map τ≤1Rf∗(j
∗Rf∗)

[1]→ Cu. Again by the lemma one has
only one such map. This is basically given by H1(f−1(N − {x0}) =
H1(τ≤ . . . )→ H2(Cu). Writing it again:

H1(f−1(N − {x0})→ H2(f
−1(x0)→ H2(f−1(x))

hence the first map is the 0 map (this time using the injectivity of the
intersection form).

We have proved: there exists a canonical isomorphism

Rf∗Q eX ∼= H2(f
−1(x0))x0 [−2]⊕ τ≤1Rj∗QX−{x0}

In fact, τ≤1Rj∗QX−{x0} is the intersection cohomology complex of X
and this decomposition is the decomposition theorem for f∗.

Remark 2.3. This gives a decomposition

H∗(X̃) = 〈[Ei]〉 ⊕ (. . . )⊥

where [Ei] are the classes of the exceptional curves. The second term is
the intersection cohomology of X. (Note that this gives a Hodge struc-
ture on the intersection cohomology because the fundamental classes
are Hodge type (1,1).)

Remark 2.4. If one attempts the same process for a surface fibering
over a curve. Then

Rf∗Q = QC ⊕QC [−2]⊕R0j∗R
1f∗QCsmo [−1]⊕ {skyscraper sheaves}.

where Csmo ⊂ C is the locus over which f is smooth. (This is a highly
recommended exercise!)

2.1. Intersection cohomology. Intersection cohomology was born in
the realm of algebraic topology. The first definition was via chains.
Instead of looking at all chains, one should consider only those chains
that meet the singular locus in a reasonable way.

The sheaf theoretic approach was worked out by Goresky and MacPher-
son in Intersection homology II. However, one should be careful: in my
convention (borrowed from Beilinson, Bernstein and Deligne) there is
a shift by n.
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2.1.1. Stratifications of complex algebraic varieties. Suppose that X is
a singular algebraic variety. Then one can find a sequence

X = Xn ⊃ Xn−1 ⊃ · · · ⊃ X0 ⊃ ∅

where Xi are closed subvarieties of dimension i such that

Si := Xi −Xi+1

are non-singular and locally closed of dimension i (if non-empty).
The singular structure of X along the connected components of Si

is “constant” from the topological point of view.
[picture here : degenerating nodal curve to a cusp. The singular set

is the union of the singular sets of the curves. But this shouldn’t be
made into a single stratum. In this case the stratification should be
refined: nonsingular, everything in the singular locus except the point
of the cusp, then the singular point of the cusp.]

This can be formulated as follows: for x ∈ Sαi (connected component)
a neighbourhood N of x looks like a

Cone(L)×B

where Cone(L) denotes the real cone over a real stratified analytic
variety and B denotes a 2i dimensional ball. (Additionally, one requires
this isomorphism to preserve stratifications.)

Such a stratification always exists. This is poorly documented in the
literature, but there is a nice paper by Verdier in Inventiones.

Consider the open sets

Un = Xn −Xn−1

Un−1 = Xn −Xn−2

...

U0 = X

Set ICUn := QUn [n] and one then proceeds by induction. Set U ′ = UtS
and r = dimS. One defines:

ICU ′ := τ≤−r−1Rj∗ICU .

Example 2.5. In our case, X was a surface and x0 is a singular point.
We have j : X \ {x0} → X and there is only one step:

ICX = τ≤−1Rj∗QX−{x0}[2]
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Remark 2.6. (1) Consider the first step Un − Un−1. Then

ICUn−1 = τ≤−nRj∗QUn [n] = j∗QUn [n]

is still cocentrated in degree −n. Hence IC becomes a true com-
plex in codimension ≥ 2. (Note that this sheaf is not necessarily
Q though: it is Q if and only if X is uni-branced.)

(2) For a curve, one always has ICC = v∗Q[1] where v is the nor-
malisation of C.

(3) Hi(ICX) = 0 for i < −n and i ≥ 0. Actually more is true:

dim{x | Hi(ICx) 6= 0} < −i for i 6= − dimX

cohom. degree 0 1 2 3 4
0 ∗
−1 ∗ ∗
−2 ∗ ∗ ∗
−3 ∗ ∗ ∗ ∗
−4 ∗ ∗ ∗ ∗ ∗

(The *’s denote the “perverse zone”).
(4) One can give a similar definition starting with a local system

on a non-singular open subset of X.
The most important thing is:

DICX(L) = ICX(L∗)

one defines

IH∗(X) = H∗(ICX)

and then one has

IH∗(X) = IH−∗c (X)∗

(This is Poincaré duality for intersection cohomology.)
(5) The good news is that IH is independent of the stratification.

The bad news is that it is not functorial!
(6) It has been an open (and interesting) problem in differential ge-

ometry to find a differential geometric definition of intersection
cohomology. There are many partial results in this direction.
On locally symmetric varieties this works. A complete under-
standing is still far away.

It has been proved for surfaces that if one restricts the Fubini-
Study metric on Pn to the regular part of an embedded vari-
ety then the L2 cohomology computes intersection cohomology.
This is not known in general.
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(7) If X is non-singular or has finite quotient singularities then
ICX = QX [n] (this fails for integral coefficients in the quotient
singularities case).

(8) Let X be smooth and Y ⊂ X is badly singular. The restriction
of QX to Y has almost nothing to do with the intersection
cohomology complex on Y .

It is true that the restriction of ICX to Y is (up to a shift)
ICY if Y is transversal to a stratification of X.

2.2. Lecture 3: perverse sheaves. Why should one care? This is a
good question.

Suppose we agree that intersection cohomology is interesting. (This
seems clear: it is an invariant which satisfies Poincaré duality etc.)
Also, it has a Hodge decomposition, satifies hard Lefschetz etc. Also
from the arithmetic point of view intersection cohomology is the object
that is pure.

We assume that intersection cohomology is interesting. We may
want to put all the intersection cohomologies of all strata together, and
consider morphisms that come from the derived category. Intersection
cohomology complexes have extensions, these should be in our category
too.

Remark 2.7. If x0 ∈ X is a point. Then ICx0 = Qx0 in degree 0. For
L a “local system on a point” then ICx0(L) = Lx0 .

Say X = C and U = C∗ and L is a local system on C∗. This is given
by a monodromy T ∈ GL. Consider

Rj∗L[1]

How is this related to IC(L) = τ−1Rj∗L[1] = j∗L[1]. The truncation
triangle has the form

IC(L) ∼= j∗L[1] // Rj∗L[1]

vvlllllllllllll

H0(Rj∗L[1]) = Coker(T − I)x0

[1]

iiTTTTTTTTTTTTTTT

Hence we have written Rj∗L[1] as an extension of two intersection
cohomology complexes.

Dually :

j!L[1] // j∗L[1] = IC(L)

uullllllllllllll

Ker(T − I)x0 [1]
[1]

ggOOOOOOOOOOO
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Note that Ker(T − I)x0 [1] is not an intersection cohomology complex.
But we can rewrite this as:

j!L[1] // j∗L[1] = IC(L)

[1]vvlllllllllllll

Ker(T − I)x0

ffMMMMMMMMMMM

Hence we can think of j!L[1] as an extension of two intersection coho-
mology complexes. We will construct an abelian category in which we
can view these triangles as genuine extensions:

0→ IC(L)→ Rj∗L[1]→ IC(Coker)→ 0

0→ IC(Ker)→ j!L[1]→ IC(L)→ 0

2.3. Second motivation. Here we give another motivation (moti-
vated more from the topology of complex algebraic varieties):

Suppose U is affine non-singular Hk(U) = 0 for k > dimU and
Hk
c (U) = 0 for k < dimU .
(From now on DX means complexes with constructible cohomology

sheaves and bounded cohomology. That is Hi(K) = 0 if |i| >> 0.)
What is the most general object satisfying these two properties.

Namely, I begin with X a complex algebraic variety. Look for K ∈ DX

such that Hk(U, k) = 0 for k > dimX and Hk
c (U,K) = 0 for k < dimX

for all affine open subsets of X.
(i.e. K universally satisfies the weak Lefschetz theorem).
The answer is again the category of perverse sheaves.
Reminder If F is a constructible sheaf and U is affine thenHk(U,F) =

0 for k > dimU . (My favourite proof: M. Novi, “constructible sheaves”
in the title.)

Let us start from K ∈ DX there is a spectral sequence

Epq
2 = Hp(U,Hq(K))⇒ Hp+q(X,K)

We can replace

Hp(U,Hq(K)) = Hp(supp(Hq(K)),Hq(K))

and the second term (by the above theorem) is zero for p > dim suppHq(K).
So if dim suppHq(K) + q ≤ n (*) for all q then

H i(U,K) = 0 for all i > n for all affine open subsets!

(n = dimX).
What about the dual condition? (That is, for Hk

c ).

Hk
c (U,K) = H−k(U,DK)∗
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So a good condition is that the above (*) holds for DK as well.

2.4. Perverse sheaves. We shift by dimX and consider{
K ∈ DX

∣∣∣∣ dim supp(Hq(K)) ≤ −q
dim supp(Hq(DK)) ≤ −q

}
These objects are the perverse sheaves. We denote this category by P .

One can think about the dual DK as

Hi(DK)x = lim
N nbhd. of x

H−1
c (N,K)∗

(by constructibility one shouldn’t worry about the limit too much.)

Remark 2.8. The subcategory of perverse sheaves is stable by duality
D. (This is clear from the definition.)

Example 2.9. If X is non-singular then QX [n] ∈ P . (I.e. is perverse).
This follows from the fact that DQX [n] ∼= QX [n].

We observed that

Hq(i∗SIC(L)) = 0 for i ≥ − dimS unless S is open

this plus the fact that IC(L) is “self-dual” implies that IC(L) ∈ P .
In the surface resolution example at the start of yesterdays lecture

f : X̃ → X then Rf∗QX [2] is perverse. (This follows because H−1 and
H0 are concentrated on a point and Rf∗QX [2] is self-dual.)

If f : X̃ → X is a proper map with X̃ non-singular. Also f is

semi-small if and only if Rf∗Q eX [dim X̃] is perverse (see the exercises).

2.5. Properties of the category of perverse sheaves P.

(1) P is an abelian subcategory of DX ;
(2) P is Artinian and Noetherian (the simple objects are i∗ICY (L)

where L is a simple local system on an open subset Y0 of a
subvariety Y );

(3) perverse sheaves and maps between them can be glued (this is
not true in the derived category).

(These formal properties look like the properties held by local systems).
Bob MacPherson’s notes on perverse sheaves: does everything with-

out mentioning sheaves! He says that the fact that P is abelian is a
miracle!
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2.6. t-structures. The formalism of t-structures provide a systematic
way to produce abelian subcategories of the derived category of an
abelian category.

Basic example D(A). Consider

D≤0 = {K | H i(K) = 0 for i > 0},
D≥0 = {K | H i(K) = 0 for i < 0}.

We have D≤0∩D≥0 = A. This is related to the existence of truncation
functors τ≤0 and τ≥0.

We have

D(A)
H0

→ A
K 7→ τ≤0τge0K = H0(K)

We also know that H0 is a cohomological functor: triangles are sent to
long exact sequences. (Note that H i(−) = H0 ◦ [i])

(1) D≤0 ⊂ D≤1 and D≥1 ⊂ D≥0,
(2) X ∈ D≤0 and Y ∈ D≥1 then Hom(X, Y ) = 0,
(3) For all K ∈ D(A) there is a distinguished triangle

K // K≥1

[1]{{wwwwwwww

K≤0

aaDDDDDDDD

where K≤0 ∈ D≤0 and K≥1 ∈ D≥1.

A t-structure is the data of two full subcategories D≤0 and D≥0 such
that the above axioms are satisfied.

From the axioms of t-structures it follows that the inclusions D≤0 ⊂
D and D≥0 ⊂ D have adjoint functors tτ≤0 and tτ≥0 which we call
truncation functors.

It also follows that we have functors

tH0 : D → D≤0 ∩D≥0 = C

an abelian category (called the core of the t-structure) and tH0 is a
cohomological functor.

(c.f. Morel: works with a degenerate t-structure.)
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Why does the kernel of f : K → L with K,L ∈ C exist?

K // L

[1]{{xxxxxxxxx

C

``@@@@@@@@

tτ≤0C

bbEEEEEEEE

note that C is not in C (rather in D≤0 ∩D≥0). Then tτ≤0C is a kernel
of f . (And τ≥1C[−1] is the cokernel.)

Returning to DX . We define

D≤0 := {K | dim suppHi(K) ≤ −i}
D≥0 := {K | dim suppHi(DK) ≤ i}

This is a t-structure and its core is the category P of perverse of sheaves.
One has to verify the three properties of a t-structure. The first

axiom is obvious, and second axiom is also not too difficult. The non-
trivial one is axiom 3.

Given a complex K, one has to provide a complex which lives in
D≤0.

2.7. Glueing of truncations. Suppose I know how to truncate on U
and U ′ = U tS where dimS = r. We denote by pτU the truncation on
U .

Denote by j : U ↪→ U ′ ← S : i the inclusions.

K // Rj∗
pτU>0K

[1]
zzvvvvvvvvvv

C //

^^>>>>>>>>

i∗τ>ri
∗C

[1]xxqqqqqqqqqq

pτU
′
≤0K

ddHHHHHHHHHH

Remark 2.10. Note that if one wants to compute pH0 one needs four
triangles!

3. Lecture 4

Summary of what happened yesterday:
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We defined two subcategories pD≤0 and pD≤0:
pD≤0 = {K | dim suppHi(K) ≤ −i}

If we fix a stratification this can be written as
pD≤0 = {K | Hi(i∗SK) for i > dimS}

In fact:

K ∈ pD≤0 ⇔ H`(U,K) = 0 for ` > 0 for all U affine

We have
pD≥0 = {K | DK ∈ pD≤0}

for a stratification

{K H`(i!SK) = 0 for ` < − dimS}
Note that i!S is not scary in this situation! It is simply sections sup-
ported on S. We have

H∗(N, i!SK) = H i(N,N − S,K)

Again this is equivalent to

H`
c(U, k) = 0 for ` < 0 and U affine

We then defined P = pD≤0 ∩ pD≥0.
We defined truncation functors

pτ≤0 : D → pD≤0

pτ≥0 : D → pD≥0

and
pτ≤0

pτ≥0 : D → P
by shifting one obtains pHi : D → P .

Remark 3.1. (1) These truncation functors were not discovered by
pure thought, but instead via the Riemann-Hilbert correspon-
dence. The standard truncation on D-modules produces the
perverse truncation under this equivalence.

(2) Foundational remark: P is an abelian category. Why not de-
rive? That is, consider the category Db(P), another triangu-
lated category. The foundational result is the following theorem
of Beilinson. There is a functor:

real : Db(P)→ DX

and this functor is an equivalence. (See “On the derived cate-
gory of perverse sheaves” by Beilinson.)

It seems that one should instead start with perverse sheaves,
but it is unclear how to do this.
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If we have

F : DX → DY

is a functor of triangulated categories and we have perverse t-structures.
We say that f is

t-left exact if F (pD≥0)→ pD≥0
Y

t-right exact if F (pD≤0)→ pD≤0
Y

Such a functor induces a functor PX → PY as follows:

DX
F // DY

pH0

��
PX //

OO

PY

The induced functor PX → PY is left (resp. right) exact if the corre-
ponding functor F : DX → DY is t-left exact or t-right exact.

Suppose we have open and closed maps i and j resp.

S
i // X U

joo

The i∗ is t-exact and j∗ = j! is t-exact.

(1) j! is right t-exact (obvious by support conditions).
(2) Rj∗ is left t-exact (by duality for example).

One lucky case: if j is an affine open embedding then j! and Rj∗ are
exact.

Why does this happen?
One is extending across a divisor and so one has to understand

H i(N − S,K). The support conditions follow by vanishing on Stein
spaces. (Note that N − S is Stein because we are removing a divisor.)

Take a complex K ∈ DX and suppose that pHi(K) = 0 for i > i0.
We have

pτ≤i0−2K // pτ≤i0−1K // pτ≤i0K = K

vvmmmmmmmmmmmm

pHi0−1(K)[−i0 + 1]

hhRRRRRRRRRRRRR
pHi0(K)[−i0]

ggOOOOOOOOOOO

we get a spectral sequence

Est
2 = Hs(X, pHt(K))⇒ Hs+t(X,K)

“perverse Grothendieck spectral sequence”.
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This yields a filtration

P sHk(X,K) := Im(Hk(X, pτ≤−sK)→ Hk(X,K)

What is the meaning of this filtration? (For example, take K =

Rf∗QX [n] for Y
f→ X and n = dimY .)

Theorem 3.2 (de Cataldo + L). Let X be affine: X = X0 ⊃ X−1 ⊃
X−2 ⊃ · · · ⊃ X−n = ∅ and X−i is a generic linear section of X−i+1.
Then

P sHk(X,K) = ker(Hk(X,K)→ Hk(Xs−1, K|Xs−1).

(In particular, if we apply this to Rf∗QY [n] with f proper. Then this is
just kerHk+n(Y,Q) → Hk+n(f−1(X≤−1)). If X is not affine, one has
a similar (but more involved) recipe.

There is a mistake above, it should be:

P sH(K) = Im(Hj(pτ≤−sK)→ Hj(K)) = Ker(Hj(K)→ Hj(K|Yj−s−1
)

4. The “almost description” of perverse sheaves

Due to Bob MacPherson and Kari Vilonen Inv. Math., 84.
The idea is to try to understand what happens when we add a stra-

tum.
U is open, S closed and U ′ = U t S. Again i, j are the closed and

open embeddings respectively, d = dimS.
We look for K perverse on U ′ such that the cohomology sheaves of

K|S are locally constant.
Assumption: S is contractible.
(This forces us to give a local description.)
K ∈ PU ′ means that K|U is perverse and

(1) Hi(K|S) = 0 for i > −d
(2) Hi(i!SK) = 0 for i < −d.

We always have a map i!SK → i∗SK. (In a neighbourhood N this is
the map

H∗(N,N − S,K)→ H∗(N,K)

(For example, in the surface resolution example we can take S = x0

and K = Rf∗Q[2] this i!S → i∗S is the intersection form.)
The idea of MacPherson and Vilonen is quite simple. The complexes

i!SK and i∗S are only both non-zero in one degree: degree −d. The map
carrying information on K will be

H−d(i!SK)→ H−d(i∗SK).
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In other terms, consider the so-called attaching triangle

K // Rj∗j
∗K

[1]zzttttttttt

i∗i
!K

aaDDDDDDDD

when we restrict to S we have (i = iS):

i∗K // i∗Rj∗j
∗K

[1]yytttttttttt

i!K

bbDDDDDDDD

Now take the long exact sequence of cohomology sheaves

H−d−1(i∗Rj∗j
∗K)→ H−d(i!K)→ H−d(i∗K)→ H−d(i∗Rj∗j∗K) (∗)

A priori this is a complex of local systems, but because S is contractible
we can regard it as a complex of vector spaces.

This exact sequence allows one to reconstruct K from K|U and
H−d(i!K)→ H−d(i∗K).

Define:

M =

{
K ∈ PU

together with an exact sequence
H−d−1(i∗Rj∗K)→ V1 → V2 → H−d(i∗Rj∗K)

}
with an obvious notion of morphism.

There is a functor F : PU ′ →M sending K to K|U together with the
long exact sequence (*).

Theorem 4.1 (MacPherson, Vilonen). F is a bijection on isomor-
phism classes of objects.

Morphisms are trickier (hence the “almost description above”)!
Suppose we have K,M ∈ PU ′ then we have

F (K) : H−d−1(i∗Rj∗j
∗K) // H−d(i!K)

u // H−d(i∗K) // H−d(i∗Rj∗j∗K)

F (M) : H−d−1(i∗Rj∗j
∗M) // H−d(i!M)

v // H−d(i∗M) // H−d(i∗Rj∗j∗M)

One has an exact sequence

0→ Hom(Cokeru,Ker v)→ Hom(K,M)→ Hom(F (K), F (M))→ 0.

Suppose L is a local system on some open subset of U and K|U =
ICU(L). What is F (ICU ′(L))? It is ICU(L) ∈ PU together with

H−d−1(i∗Rj∗j
∗(ICU(L))→ 0→ 0→ H−d(i∗Rj∗j∗(ICU(L))
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What about F (i∗(−))? It looks like

0→ V → V → 0.

Of course one can send KU ∈ PU to (KU) together with

H−d−1(i∗Rj∗j
∗(KU)→ 0→ 0→ H−d(i∗Rj∗j∗(KU)

this gives a functor PU → PU ′ . This is the intermediate extension
functor ji∗K.

The right definition is more complicated. One has j!K → Rj∗K
which induces τ≥0j!K → τ≤0Rj∗K and one defines j!∗ = =.

This means that j!∗K has no subobjects or quotients supported on
S. (From the description of morphisms.)

Working inductively on strata one sees that if L is a simple local sys-
tem then IC(L) is a simple object in the category of perverse sheaves.

Exercise 4.2. Describe F (pH0(Rj∗KU) and F (pH0(j!KU).

4.1. Splitting conditions. Suppose we have KU ∈ PU and an exact
sequence

H−d(−)→ V1 → V2 → H−d(...)
We can write this as

H−d(−) // 0 // 0 // H−d(...)
⊕ ⊕ ⊕ ⊕
0 // V1

// V2
// 0

precisely when H−d(i!K) → H−d(i∗K) is an isomorphism. That is,
when this is an isormorphism we can write:

K ∼= j!∗j
∗K ⊕ i∗H−d(K).

Two corrections:

(1) the realisation functor exists under the hypothesis that the ini-
tial abelian category has enough injectives;

4.2. Lecture 5: A proof of the decomposition theorem. Suppose
f : X → Y is semi-small and that X is smooth. Recall from the
exercises that f is semi-small if and only if Rf∗QX [n] is perverse.

Assume that X and Y are projective. (This is a very strong assump-
tion, but will be didactically useful.)

Set U = Y −{y1, . . . , yN} where yi are the (finite) set of points such
that dim f−1(yi) = N/2 (this is the maximal possible dimension of a
fibre under the semi-small hypothesis).
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Set K = Rf∗QX [n]|U . Our goal is to prove that

Rf∗QX [n] = j!∗K ⊕ (
⊕
i

Hn(f−1(yi)yi)

Remark 4.3. We have already seen in the second lecture why this is
true when X and Y are surfaces.

By yesterday’s lecture it is enough to prove that the map

H0(i!Rf∗QX [n])→ H0(i∗Rf∗QX [n]

is an isomorphism. This map can be rewritten as⊕
Hn(f−1(yi))→

⊕
Hn(f−1(yi)).

This map is the intersection form on the components of the fibres.
How does one prove that the intersection form is non-degenerate?
Set

W =
span of cohomology classes

of the irreducible components
of ∪f−1(yi)

⊂ Hn(X).

By Exercise 5, these components are linearly independent.
Pick a very ample line bundle on Y (say OY (1)). Consider the pull-

back of OY (1) to X and call it L.
Step 1: Let us pretend for a moment that L is ample. Choose s ∈

Γ(Y,OY (1)) a section of L whose zero set does not intersect ∪f−1(yi)
(this is possible, for example, by very ampleness on the base).

Then

W ⊂ ker(c1(L) : Hn(X)→ Hn+2(X)) = P n.

If L is ample, then W consists purely of real classes of type (n/2, n/2).
Then the Hodge-Riemann bilinear relations imply that (if α ∈ W ) then

(−1)
n
2

∫
X

α ∧ α > 0

if α 6= 0. Hence the intersection form on W is ± definite, and in
particular non-degenerate.

The only criticism is that we pretended that L is ample!!
Step 2: Actually, it turns out that L behaves just as if it were ample.

That is, it satisfies hard Lefschetz, and the Hodge-Riemann bilinear
relations hold.

There are a few tricks involved in proving this. It is important to
recall the proof of the hard Lefschetz theorem given in the exercises.
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Recall the crucial commutative triangle:

Hn−1(X)

++VVVVVVVVVVVVVVVVVVVV
// Hn+1(X)

Hn−1( zero set of a generic section of L )

33hhhhhhhhhhhhhhhhhhhh

One has weak Lefschetz because Rf∗QX [n] is perverse. The Hodge-
Riemann bilinear relations hold by induction on the dimension and
hard Lefschetz in dimension n then follows.

Hence

Hn(X) = ker(c1(L))⊕ Im c1(L). (*)

Trick : Although L is not ample, c1(L) is the limit the chern classes
of ample line bundles.

(Think about a cone: c1(L) lies on the boundary of the ample cone.)
Now take a sequence of ample Kähler classes c1(Hn) → c1(L). For

each c1(Hn) one has a space of primitive classes, of dimension bn(X)−
bn−2(X). (Here bi(X) denotes the ith Betti number of X.)

One proves that (in the Grassmannian of subspaces of Hn) one has:

lim ker c1(Hn) = ker c1(L).

(One inclusion is clear, and the other follows by the fact that we already
know the dimension of the space of primitive classes because we have
already shown hard Lefschetz.)

This means that any element in ker c1(L) is the limit of elements in
ker c1(Hn).

In particular,

(−1)n/2
∫
X

α ∩ α ≥ 0 (**)

Hence this intersection form is semi-definite.
But by Poincaré duality this bilinear form is non-degenerate on

Hn(X). It is clear that the decomposition (*) is orthogonal with re-
spect to Poincaré duality. Hence the above pairing is semi-definite and
non-degenerate, hence definite.

This restricts to a definite pairing on W completing the proof!
Hence

Rf∗QX [n] = j!∗K ⊕ (
⊕

Hn(f−1yi)).

4.3. An induction. Thanks to this fact one can complete an inductive
study of semi-small maps.

Rf∗QX [n] if a semi-simple perverse sheaf
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There is a canonical splitting

Rf∗QX [n] ∼= ⊕ICYα
(Lα)⊗ Vα

The local systems Lα are associated to monodromy representations
which factor through a finite group. These are the monodromies of
irreducible components of fibres. Hence semi-simple.

It is interesting to consider

End(Rf∗QX [n])

which is a semi-simple algebra. (This is one reason why semi-small
maps play a big role in representation theory.)

4.4. What happens in general? In the general case one has a “de-
composition theorem package”.

As before, consider a projective map f : X → Y withX non-singular.
(If X is singular we replace Rf∗QX [n] by Rf∗ICX .)

Now et η be relatively ample on X. Then

c1(η) ∈ H2(X) = HomDX (Q,Q[2]).

This gives

η : Rf∗QX [n]→ Rf∗QX [n+ 2]

(This is somehow opposite to the L occurring in the semi-small case!
Note that η cannnot be the pullback of a line bundle on X.)

This gives

η : pHi(Rf∗QX)→ pHi+2(Rf∗QX)

and in fact

ηk : pH−k(Rf∗QX [n])→ pHk(Rf∗QX [n])

is an isomorphism for all k ≥ 0. This is the relative Hard Lefschetz
theorem. (Note that the range of pHq is −r(f), r(f) where

r(f) = max{dim{y ∈ Y, dim f−1(y) = k}+ 2k − dimX}.)
As in Exercise 2 of Set 1 this implies that we have a non-canonical

isomorphism

Rf∗QX [n] ∼=
r(f)⊕

i=−r(f)

pHi(Rf∗QX [n])[−i]

Depending on the choice of η.

Remark 4.4. In general, this decomposition depends heavily on the
choice of η, and is not even canonical once one has fixed η. However,
there is some (quite mysterious) canonicity here. See Deligne’s paper
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on decompositions in the derived category in the Seattle conference on
motives.

Each perverse sheaf pHi(Rf∗QX [n]) has a Lefschetz type decompo-
sition. One defines

P i := ker(η−i+1 : pHi → pHi+2)

and one gets decompositions

pHi =
⊕
a

ηaP i−2a.

The real core is the following:

Theorem 4.5 (Semi-simplicity theorem). The perverse sheaves pHi

are semi-simple. That is, they are direct sums of ICYα
(Lα) with values

in simple local systems Lα.

(Everything follows from this!!)

Example 4.6. An easy example:

f : X → Y

suppose f is birational, dimX = dimY = 3.
[Picture] One has a the regular locus, a curve C and p0 such that

f−1(p0) is a divisor (and f fibers in curves over C).
The restriction of f to Y − p0 is semi-small. By what we already

know:
Rf∗QX [3]Y−p0

∼= (ICY )U−p0 ⊕M
Where M is a local system on C − p0 of irreducible components of
fibres.

One can calculate pH−1 ∼= H4(D)p0 and pH1 ∼= H4(D)p0 .
What is relative hard Lefschetz here? One takes η very ample on X

and consider its zero set. The relative hard Lefschetz amounts to the
fact that the intersection form on H2(X) given by

∫
X
η ∧ (−) ∧ (−) is

definite.
One discovers

Rf∗Q[3] = H4(D)p0 [1]⊕H4(D)p0 [−1]⊕ ICY ⊕H3(D)p0 ⊕ ICC(M)

it follows that H3(D) must have a pure Hodge structure. (If X is
projective??)

One shouldn’t think that this decomposition can be applied without
any effort! To really work out what the decomposition theorem says in
any example is a major task.

For semi-small maps one knows that the local systems that occur are
those corresponding to relevant strata.
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One way to think about the decomposition theorem.

X

f

��

f−1(Y0) =: X0oo

f0

��
Y Y 0oo

By Blanchard-Deligne we know that

Rf 0
∗QX0 [n] =

⊕
i

Rif 0
∗QX [n− i] (local systems)

The decomposition theorem says that

Rf∗QX [n] ⊃
⊕

ICY (Rkf 0
∗QX)[. . . ] (***)

One can think about the right hand side as saying what aspects of the
geometry are are “forced” by the local system.

It is interesting to understand maps for which one has no contribution
from smaller strata. In the last part of this lecture we will describe one
situation where there are no extra terms in (***).

Simplified version: f : X → Y assume that f is flat of relative
dimension d and assume that P → Y is a connected commutative
group scheme acting on X → Y . Assume

(1) the fibres of f are irreducible,
(2) that P acts with affine stabiliers,
(3) P is polarisable

The big assumption is that P → Y is δ-regular. To explain what this
means notice that for every point one as an extension

{1} → Ga
m ×Gb

b → Py → Ay → {1}
Set

Sδ = {y ∈ Y where dim affine part of PY = δ}
We say that P → Y is δ-regular if codim(Sδ) ≥ δ.

Theorem 4.7 (Ngô’s support theorem(2007)). One has equality in
(***).
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