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Reflections usually provide our first encounter with symmetry.



Already as children we can identify an axis of symmetry and are
drawn to objects with many reflexive symmetries.



In the 1930’s H. S. M. Coxeter developed a powerful tool for
understanding symmetry groups generated by reflections, or
reflection groups.

Let X be a geometric object whose symmetries are discrete and
generated by reflections. For example X might be a polytope, a
triangulation of a sphere, or a tesselation of hyperbolic space.
Suppose that we want to understand the symmetry group of X .

X �



In the 1930’s H. S. M. Coxeter developed a powerful tool for
understanding symmetry groups generated by reflections, or
reflection groups.

Let X be a geometric object whose symmetries are discrete and
generated by reflections. For example X might be a polytope, a
triangulation of a sphere, or a tesselation of hyperbolic space.
Suppose that we want to understand the symmetry group of X .

X �



Assumption: Each axis of reflection divides X into two pieces.

If we consider all axes at once then X is divided into pieces,
called alcoves:

Ñ 





 













Assumption: Each axis of reflection divides X into two pieces.

If we consider all axes at once then X is divided into pieces,
called alcoves:

Ñ 





 













Second assumption: Each alcove is a simplex.

Coxeter noticed that each alcove provides a fundamental domain
for the action of W on X . Moreover, after fixing a “fundamental”
alcove A � X :

i) W , the symmetry group of X , is generated by the set

S � ts | s is a reflection in a wall of Au

ii) W has a presentation

W � xS | s2 � pstqmst � idy

where mst denotes the order of st (possibly infinite).
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In our example







 











we get
W � xs, t | s2 � t2 � pstq6 � idy.



Groups admitting a presentation of the form

W � xS | s2 � pstqmst � idy

with mst � mts P t2, 3, . . . ,8u are Coxeter groups. The pair
pW ,Sq is a Coxeter system.

Coxeter’s assumptions are always satisfied for discrete groups of
orthogonal or Euclidean affine transformations. Hence all such
groups are Coxeter groups. Coxeter used this fact to classify all
such groups.

(Actually Coxeter was only concerned with these examples. The
study of general Coxeter groups began with Tits.)



Usually one uses a Coxeter graph to encode the orders mst .

For example

  
4

encodes the group

W � xs, t, u |
pstq3 � ptuq4 � psuq2 � id

s2 � t2 � u2 � id
y.

(No edge means mst � 2 and an unlabelled edge indicates
mst � 3.)
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For an infinite example we can take X to be the square lattice:
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Many examples of finite reflection groups are provided by the
Weyl groups of compact Lie groups.

For example the symmetries of the butterfly is the Weyl group of
SUp2q, the symmetries of the hexagon or snowflake is the Weyl
group of G2, and the symmetries of the octahedron is the Weyl
group of SOp7q.

However it is important for the story we will tell that not all
Coxeter groups belong to Lie groups.

For example, amongst the Platonic solids, the symmetries of the
tetrahedron and octahedron occur as Weyl groups, whereas the
symmetries of the icosahedron does not. Similarly, most hyperbolic
examples are not Weyl groups.
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The above discussion has a converse procedure.

Given any Coxeter group pW , Sq we can produce a coloured
simplicial complex whose automorphisms are precisely W . This
complex is called the Coxeter complex and will be denoted
|pW , Sq|.

Let n � |S | denote the rank of W . Its construction is as follows:

� colour the n faces of the n � 1-simplex ∆ by the set S ,

� take one such simplex ∆w for each element w P W ,

� glue ∆w to ∆ws along the wall coloured by s.



For example, consider the symmetric group on three letters:

W � xs, t | s2 � t2 � pstq3y � te, s, t, st, ts, stsu.

e s t st ts sts
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The Coxeter complex of S4 �    :

(barycentric subdivision of the tetrahedron).



By construction |pW ,Sq| has a left action of W .

W also acts on the alcoves of |pW , Sq| on the right by

∆w � s � ∆ws .

This action is not simplicial, but is “local”: cross the wall
coloured by s.



The Coxeter complex provides a convenient way of visualising
the group algebra ZW of W . Recall that the group algebra ZW
consists of finite formal linear combinations

°
λww of elements of

W . The product in W induces a multipliction in ZW .

Hence we can picture an element of ZW as the assignment of
integers to each alcove, such that only finitely many are non-zero.
If we view ZW as a right module over itself it is easy to picture
the action of the elements of S :

5
� s � 5

Similarly (“s averaging operator”)

5
� p1 � sq �

5
5
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Let ` : W Ñ N denote the length function on W :

`pwq � length of a minimal expression for w in the generators s

� number of walls crossed in a minimal path id Ñ w in |pW ,Sq|.
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The Hecke algebra H is a quantization of ZW . It is an algebra
over Zrv�1s with basis tHx | x P W u parametrised by W . If we
write Hs :� Hs � vHid then the multiplication in H is determined
by

HxHs �

#
Hxs � vHx if `pxsq ¡ `pxq,

Hxs � v�1Hx if `pxsq   `pxq.

We can visualise this as follows: (“quantized averaging operator”)

id
h

� Hs �
h

vh

id
h

� Hs �
v�1h

h
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In 1979 Kazhdan and Lusztig defined a new basis for the Hecke
algebra using the combinatorial structure of W . We denote this
new basis by tHx | x P W u. It satisfies

Hx :� Hx �
¸
yPW

`pyq `pxq

hy ,xHy

with hy ,x P vZrv s. These polynomials are the Kazhdan-Lusztig
polynomials.





The definition is inductive. The first few Kazhdan-Lusztig basis
elements are easily defined:

H id :� Hid , Hs :� Hs � vHid for s P S .

Now the work begins. Suppose that we have calculated Hy for all
y with `pyq ¤ `pxq. Choose s P S with `pxsq ¡ `pxq and write

HxHs � Hxs �
¸

`pyq `pxsq

gyHy .

The formula for the action of Hs shows that gy P Zrv s for all
y   `pxsq. If all gy P vZrv s then Hxs :� HxHs . Otherwise we set

Hxs � HxHs �
¸
y

`pyq `pxq

gy p0qHy .
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For dihedral groups (rank 2) we always have hy ,x � v `pxq�`pyq

(Kazhdan-Lusztig basis elements are smooth.)

However in higher rank the situation quickly becomes more
interesting...



















































































Kazhdan-Lusztig positivity conjecture (1979):

hx ,y P Z¥0rv s

Established for crystallographic W by Kazhdan and Lusztig in
1980, using Deligne’s proof of the Weil conjectures.

Crystallographic: mst P t2, 3, 4, 6,8u.
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Why are Kazhdan-Lusztig polynomials hard?

Polo’s Theorem (1999)

For any P P 1 � qZ¥0rqs there exists an m such that vmPpv�2q
occurs as a Kazhdan-Lusztig polynomial in some symmetric group.

Roughly: all positive polynomials are Kazhdan-Lusztig
polynomials!
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The most complicated Kazhdan-Lusztig-Vogan polynomial
computed by the Atlas of Lie groups and Representations project:

152q22�3 472q21 � 38 791q20 � 293 021q19 � 1 370 892q18�

�4 067 059q17 � 7 964 012q16 � 11 159 003q15�

�11 808 808q14 � 9 859 915q13 � 6 778 956q12�

�3 964 369q11 � 2 015 441q10 � 906 567q9�

�363 611q8 � 129 820q7 � 41 239q6�

�11 426q5 � 2 677q4 � 492q3 � 61q2 � 3q

(This polynomial is associated to the reflection group of type E8.
See www.liegroups.org.)

www.liegroups.org


Why are Kazhdan-Lusztig polynomials useful?



Infinite dimensional highest weight representations of
semi-simple Lie algebras.

Kazhdan-Lusztig conjecture (1979):

chLpx � 0q �
¸
y¥x

p�1q`pxq�`pyqhw0y ,w0xp1qch∆py � 0q.

(A major generalisation of the Weyl character formula.)

Implications for representations of real Lie groups.
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The Kazhdan-Lusztig conjecture was proved 1981 by
Beilinson-Bernstein and Brylinski-Kashiwara using every trick in
the book: algebraic differential equations “D-modules”; the
Riemann-Hilbert correspondence (monodromy of differential
equations); the theory of perverse sheaves (algebraic topology of
singular varieties); Deligne’s theory of weights (arithmetic
geometry):

“The amazing feature of the proof is that it does not try to
solve the problem but just keeps translating it in languages of
different areas of mathematics (further and further away from the
original problem) until it runs into Deligne’s method of weight
filtrations which is capable to solve it.

So have a seat; it is going to be a long journey.”
– Joseph Bernstein.



The Kazhdan-Lusztig conjecture was proved 1981 by
Beilinson-Bernstein and Brylinski-Kashiwara using every trick in
the book: algebraic differential equations “D-modules”; the
Riemann-Hilbert correspondence (monodromy of differential
equations); the theory of perverse sheaves (algebraic topology of
singular varieties); Deligne’s theory of weights (arithmetic
geometry):

“The amazing feature of the proof is that it does not try to
solve the problem but just keeps translating it in languages of
different areas of mathematics (further and further away from the
original problem) until it runs into Deligne’s method of weight
filtrations which is capable to solve it.

So have a seat; it is going to be a long journey.”
– Joseph Bernstein.



Kazhdan-Lusztig polynomials also play an important role in:

i) Lusztig’s description of the character table of a finite group of
Lie type.

ii) rational representations of reductive algebraic groups in
positive characteristic (Lusztig’s conjecture);

iii) character formulae for simple modules for affine Lie algebras
and quantum groups at roots of unity (conformal field theory);

iv) the geometric Langlands correspondence (geometric Satake);

v) symmetric polynomials, Macdonald polynomials,
Littelwood-Richardson coefficients;

vi) many connections to combinatorics;

vii) Kazhdan-Lusztig polynomials might end up helping us
understand the HOMFLYPT polynomial of a link...
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Theorem (Elias-W)

The Kazhdan-Lusztig positivity conjecture holds.

Our proof makes heavy use of techniques developed by Wolfgang
Soergel. We also use Hodge theoretic ideas of de Cataldo and
Migliorini in a crucial way.

We also obtain an algebraic proof of the Kazhdan-Lusztig
conjecture, as well as many of the results mentioned on the
previous slide.
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Our goal is to understand the Kazhdan-Lusztig positivity
conjectures:

Hx �
¸

hy ,xHy hy ,x P Z¥0rv s

HxHy �
¸
µzx ,yHz µzx ,y P Z¥0rv

�1s.

A basic principle in combinatorics to show that a number is
positive is to show that it is the cardinality of a set or the
dimension of a vector space.

This is a baby example of categorification. One upgrades a
number to an object in a category (in this example a set or vector
space).
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Given an abelian category A its Grothendieck group is

K0pAq �
à
MPA

rMs{

�
� rMs � rM 1s � rM2s

for all short exact sequences
0 Ñ M 1 Ñ M Ñ M2 Ñ 0

�
.

Given an additive category B its split Grothendieck group is

K split
0 pBq �

à
BPB

rBs{

�
rBs � rB 1s � rB2s

whenever B � B 1 ` B2



.

The passage from a category to its (split) Grothendieck group is
the process of decategorification. Finding interesting inverses to
this procedure is the process of categorification.
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An example of categorification:

If G is a finite group, and Rep G denotes its category of finite
dimensional complex representations, then character theory gives
an isomorphism

K0pRep G q bZ C � FunG∆
pG ,Cq

where FunG∆
pG ,Cq denotes the algebra of convolution invariant

functions on G .

This isomorphism gives the existence of an
interesting basis for the function space (the basis of irreducible
characters) which otherwise would be invisible.
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Categorifying the Hecke algebra:

For simplicity assume that W � OpV q is a finite reflection
group. Set

R � polynomial functions on V

graded such that V � � R has degree 2. Because W acts on V , it
also acts on R. For any simple reflection s P S consider Rs � R
the subalgebra of s-invariants.

Let R � biMod denote the monoidal category of graded
R-bimodules: MM 1 :� M bR M 1.

We denote by p1q the grading shift operator: Mp1qi � M i�1.



For s P S let Bs :� R bRs R. Consider

B �
full Karoubian subcategory of R � biMod
generated by Bspmq for all s P S , m P Z.

In other words, the objects B are the graded R-bimodule direct
summands of bimodules of the form

BsBt . . .Bu � R bRs R bRu R b � � � bRu Rpmq

for arbitrary sequences st . . . u and m P Z.

Let K split
0 pBq denote the split Grothendieck group of B. It is an

algebra over Zrv�1s via v rBs :� Bp1q and rB 1srB2s � rB 1B2s.



Soergel’s categorification theorem (2005):

The split Grothendieck group of B is isomorphic to the Hecke
algebra:

ch : K split
0 pBq �

Ñ H

Soergel proves the existence of indecomposable bimodules Bx

whose classes give a basis for K split
0 pBq and conjectures:

Soergel’s conjecture:

chpBxq � Hx

ñKazhdan-Lusztig positivity conjectures.
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An important role in our inductive proof of Soergel’s conjecture
is played by certain much stronger statements about the bimodules
Bx .

Set Bx :� Bx bR R. This is a finite dimensional graded vector
with left R action on the left. It is equipped with a non-degenerate
symmetric form x�,�y.

Example: if w0 P W denotes the longest element then
Bw0 � R bRW R and hence

Bw0 � R{pRW q�

is the “coinvariant algebra”: pRW q� denotes the ideal of R
generated by W -invariant polynomials of positive degree.



We show that Bx “looks like the cohomology of a smooth
projective variety”.

For any ρ P V � in the interior of the fundamental alcove we
have:

i) (Hard-Lefschetz theorem) pρi �q gives an isomorphism

pBxq
`pxq�i Ñ pBxq

`pxq�i

1. (Hodge-Riemann bilinear relations) The restriction of the form
pα, βq :� xα, ρiβy to the kernel of ρi�1 in pBxq

`pxq�i is
definite.



What does this say for the coinvariant algebra?

If W is a Weyl group then R{pRW q� is isomorphic to the
cohomology ring of the flag variety. Flag varieties are smooth
projective varieties and these properties follow from classical Hodge
theory.

If W is not a Weyl group (for example the symmetries of the
icosahedron), there is no algebraic variety with the coinvariant
algebra as cohomology.



To any element of any Coxeter group W one has a space which
looks like the cohomology of a smooth projective variety!

I will finish with two questions:

i) Is there any geometric interpretation of these spaces? (One
can ask a similar question for the intersection cohomology of
non-rational polytopes.)

ii) What does Kazhdan-Lusztig theory mean in the
non-crystallographic case?





For more images of two-sided cells in hyperbolic groups see Paul Gunnell’s web page.



Thanks for listening!


