C2.1a Lie algebras Mathematical Institute, University of Oxford Michaelmas Term 2010

Problem Sheet 5

Please be sure to attempt Question 4!

1. Let V be a Euclidean vector space, and let F be a subspace with orthonormal basis v_1, \ldots, v_k . Given any vector $v \in V$ with (v, v) = 1 show that the square of the distance from v to F is given by

$$1 - \sum_{i=1}^{k} (v_i, v)^2$$

2. Let \mathfrak{g} be a nilpotent Lie algebra. Show that the Killing form on \mathfrak{g} is identically zero.

3. Let κ denote the Killing form on $\mathfrak{gl}_n(\mathbb{C})$ and let \mathfrak{h} , \mathfrak{n}_+ and \mathfrak{n}_- denote the subspaces of diagonal, strictly upper triangular and strictly lower triangular matrices respectively.

- a) Show that \mathfrak{h} is orthogonal to $\mathfrak{n}_+ \oplus \mathfrak{n}_-$ and that the restriction of κ to $\mathfrak{n}_+ \oplus \mathfrak{n}_-$ is non-degenerate. (*Hint:* It might help to give a formula for κ in terms of matrix units.)
- b) Calculate \mathfrak{n}_{+}^{\perp} .
- c) Describe the radical of the restriction of κ to \mathfrak{h} , and conclude that the restriction of κ to $\mathfrak{sl}_n(\mathbb{C})$ is non-degenerate.

(We have seen the week before last that $\mathfrak{sl}_n(\mathbb{C})$ is simple. Hence part c) also follows from the Cartan-Killing criterion.)

4. Let V be a finite dimensional real vector space and $R \subset V$ a root system. Fix two roots $\alpha, \beta \in R$. In this exercise we analyse the possible angles between α and β .

Recall from lectures that we may equip V with a positive definite bilinear form (-, -) such that each reflection s_{α} is orthogonal with respect to this form. We also saw that we have

$$\langle \alpha^{\vee}, \beta \rangle = 2 \frac{(\alpha, \beta)}{(\beta, \beta)}.$$
 (*)

a) Let ϕ denote the angle between α and β . Show the relation

$$\langle \alpha^{\vee}, \beta \rangle \langle \beta^{\vee}, \alpha \rangle = 4 \cos^2 \phi$$

Conclude that $\langle \alpha^{\vee}, \beta \rangle \langle \beta^{\vee}, \alpha \rangle \in \{0, 1, 2, 3, 4\}$. (*Hint:* Use (*) together with the fact that, in a Euclidean space, we have $(v, w) = |v| |w| \cos \tau$, where τ denotes the angle between v and w.)

b) Show that, if α and β are not proportional, we have

$$\phi \in \{\pi/2, \pi/3, 2\pi/3, \pi/4, 3\pi/4, \pi/6, 5\pi/6\}.$$

What can be said about the ratios of the lengths of α and β in each case?

- c) Describe $\mathbb{R}\alpha \oplus \mathbb{R}\beta \cap R$ and deduce that any rank 2 root system is isomorphic to $A_1 \times A_1$, A_2 , B_2 or G_2 (as claimed in lectures).
- d) Show that $\langle \alpha^{\vee}, \beta \rangle > 0$ then $\beta \alpha$ is a root.

5. Let $R \subset V$ be a root system. Show that the set $R^{\vee} = \{\alpha^{\vee} \mid \alpha \in R\}$ is a root system in V^* . (We call R^{\vee} the *dual root system* to R).