B2b Lie algebras

Mathematical Institute, University of Oxford Michaelmas Term 2010

Problem Sheet 3

1. Let \mathfrak{g} be a Lie algebra. Suppose that the adjoint representation $\mathrm{ad} : \mathfrak{g} \to \mathfrak{gl}(\mathfrak{g})$ is irreducible. What can you say about \mathfrak{g} ?

- **2.** a) Let k be a field of characteristic 2 and let $\mathfrak{g} = \mathfrak{sl}_2(k)$. Show that \mathfrak{g} is solvable (and even nilpotent) but that the natural representation of \mathfrak{g} is irreducible. Conclude that Lie's theorem is not true in positive characteristic.
 - b) Let $\mathbb{C}[x]$ denote a polynomial ring in x, and consider the Lie subalgebra $\mathfrak{g} \subset \mathfrak{gl}(\mathbb{C}[x])$ generated by the endomorphisms given by multiplication by x and $\frac{d}{dx}$. Show that \mathfrak{g} is a three dimensional nilpotent Lie algebra, isomorphic to the Heisenberg algebra. Does \mathfrak{g} fix a line in $\mathbb{C}[x]$? Why doesn't this contradict Lie's theorem?

3. Prove Schur's lemma: if V is a simple finite dimensional \mathfrak{g} -module over an algebraically closed field and $\phi \in \operatorname{End}_{\mathfrak{g}}(V)$ is an endomorphism of V commuting with the \mathfrak{g} -action, then ϕ is a scalar. (*Hint:* Consider the eigenspaces of ϕ .)

4. Show that $\mathfrak{sl}_n(\mathbb{C})$ is simple. (*Hint:* It might be easier show that $\mathfrak{gl}_n(\mathbb{C})$ has no non-trivial ideals contained in \mathfrak{sl}_n .)

5. Let \mathfrak{g} be the set of complex matrices of the form $\begin{pmatrix} \alpha & \beta & \lambda \\ \gamma & \delta & \mu \\ 0 & 0 & 0 \end{pmatrix}$ where $\alpha + \delta = 0$. Show that \mathfrak{g} is

a Lie subalgebra of $\mathfrak{gl}_3(\mathbb{C})$. Find the radical of \mathfrak{g} and show that \mathfrak{g} contains a subalgebra isomorphic to $\mathfrak{g}/\operatorname{rad}\mathfrak{g}$. Prove that the only ideal of \mathfrak{g} strictly contained in rad \mathfrak{g} is $\{0\}$.

6. Let \mathbb{H} denote the associative four dimensional algebra over \mathbb{R} with basis e, i, j and k and multiplication given by $i^2 = j^2 = k^2 = -e, ij = k, jk = i, ki = j$ and requiring that e is the identity. The algebra \mathbb{H} is called the algebra of *quarternions*. Determine Der \mathbb{H} , the Lie algebra of derivations of \mathbb{H} . Can you identify Der \mathbb{H} with a classical Lie algebra?

7. (Optional question, requires some differential geometry.) Let A be a finite dimensional algebra over \mathbb{R} or \mathbb{C} . Let g_t denote a family of automorphisms of A parametrised by $t \in (\varepsilon, -\varepsilon)$ with $g_0 = \mathrm{id}_A$. Assume furthermore that g_t is differentiable in t.

- a) Let D denote the derivative of g_t at t = 0. Show that D is a derivation of A. (You may assume that g is analytic in t if you wish.)
- b) Conversely, if D is a derivation of A, show that

$$g_t := e^{tD} : \mathbb{R} \to \mathfrak{gl}(A)$$

is a one-parameter family of automorphisms of A.