
MIRROR SYMMETRY, LANGLANDS DUALITY AND
THE HITCHIN SYSTEM

Abstract. Notes of talks by Tamas Hausel in Oxford, Trinity
Term, 2010. Notes by Gergely Berczi, Michael Groechenig and
Geordie Williamson.

1. Higgs bundles and the Hitchin system

1.1. The moduli space of vector bundle on a curve. Let C be a
complex projective curve of genus g > 1. We fix integers n > 0 and
d ∈ Z. We asssume throughout that (d, n) = 1.

1.1.1. GLn. A central object of study in these talks will be:

N d :=
moduli space of rank n vector bundles on C

which are semi-stable of degree d.

This space can be constructed using geometric invariant theory (GIT)
or gauge theory.

We recall that a vector bundle is called stable if ever subbundle F
satisfies

µ(F ) =
degF

rkF
≤ µ(E) =

degE

rkE
A vector bundle is stable if one has strict inequality above for all proper
subbundles.

Remark 1.1. In general one has to be careful in constructing such mod-
uli spaces. However, as we assume (d, n) = 1 the notions of semi-
stability and stability agree and geometric invariant theory allows us
to conclude that N d is a fine moduli space, which is smooth and pro-
jective.

1.1.2. SLn and PGLn. Consider the determinant morphism

det : N d → Jacd(C)

which sends a vector bundle of rank n to its highest exterior power
ΛnE.

Choose Λ ∈ Jacd(C) and define Ň Λ := det−1(Λ). We can think of
points in Ň Λ as “twisted SLn-bundles”. It is easy to see that ŇΛ does
not depend (up to isomorphism) on the choice of Λ ∈ Jacd(C). We
often abuse notation and write Ň d instead of ŇΛ.
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The abelian variety Pic0(C) = Jac0(C) acts on N d via

(L,E) 7→ L⊗ E.
We define

N̂ d := N d/Pic0(C).

One can show that N̂ d = Ň Λ/Γ, where Γ := Pic0(C)[n] denotes the

n-torsion points of the Jacobian. Hence N̂ d is a projective orbifold.

1.1.3. Cohomology. The cohomology of N d, Ň d and N̂ d is well under-
stood.

Here we only comment on the additive structure. The first major
breakthrough was make in 1975 by Harder and Narasimhan who ob-
tained recursive formulae for the number of points of these varieties
over finite fields. It is then possible to use the Weil conjectures (which
had been proven the year before by Deligne) to obtain formulae for the
Betti numbers. In 1981 Atiyah and Bott gave a completely different
gauge-theoretic proof [1].

The central result of Harder and Narasimhan’s paper is the following:

Theorem 1.2 (Harder-Narasimhan). The finite group Γ acts trivially

on H∗(Ň d). In particular, we have H∗(Ň d) = H∗(N̂ d).

Remark 1.3. This result is very difficult to prove and relies on showing
that the spaces Ň d and N̂ d) have the same number of points over finite
fields. The analogue of this result is false in the context of character
varieties. [links to Ngǒ ... ask Tamas]

1.2. The Hitchin system. We now consider the Hitchin system, which
is a related to the the cotangent bundle to the moduli spaces consid-
ered in the previous section. As in the previous section, fix n and d
and abbreviate N := N d.

The cotangent bundle T ∗N is a (non-projective) algebraic symplectic
variety. The ring of regular functions C[T ∗N ] is known to be finitely-
generated. The affinization

χ : T ∗N → A = Spec(C[T ∗N ])

is the Hitchin map.
We now describe this map more explicitly. For a point E ∈ N

standard deformation theory gives us an identification

TEN = H1(C,End(E)).

Applying Serre duality we obtain

T ∗EN = H0(C,End(E)⊗K)
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where K denotes the canonical bundle of C. An element

φ ∈ H0(C,End(E)⊗K)

is called a Higgs field. Morally it can be thought of as a matrix of
one-forms on the curve.

For any (E, φ) ∈ T ∗N we can consider the characteristic polynomial
of the Higgs field. It has the form

tn + a1t
n−1 + · · ·+ an

where ai ∈ H0(Kn). For example an ∈ H0(Kn) is the determinant of
the Higgs field.

The Hitchin map then has the explicit description

χ : T ∗N → A :=
⊕n

i=1H
0(Ki)

(E, φ) 7→ (a1, a2, . . . , an)

The affine space A is called the Hitchin base.
In the SLn-case we have

T ∗EŇ Λ = H0(End0(E)⊗K)

that is, a covector at E is given by a trace free Higgs field. Thus in
this case the Hitchin base is

Ǎ =
n⊕
i=2

H0(C,Ki).

The determination of the Hitchin base for PGLn is left as an exercise.
Recall that T ∗N is an algebraic symplectic variety.

Theorem 1.4 (Hitchin, 1987). If ψi, ψj are two coordinate function,
then they Poisson commute, i.e. {ψi, ψj} = 0. We have dim A =
dim N and the generic fibres of the ψ are open subsets of abelian vari-
eties. Therefore we have an algebraically completely integrable Hamil-
tonian system.

As a next step we will projectivize χ : T ∗N → A. Recall that a
complex point in T ∗N is given by a pair (E, φ). In order to projectivize
we need to allow E to become unstable.

Definition 1.5. A Higgs bundle is a pair (E, φ) where E is a vector
bundle and φ ∈ H0(C,End(E)⊗K) is a Higgs field.

The definition for semi-stability and stability for Higgs-bundles is
almost the sames as for vector bundles except we only consider φ-
invariant subbundles. The moduli-space of semi-stable Higgs bundles
is denoted by Md, it is a non-singular quasi-projective variety, having
T ∗N as an open subvariety.
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Of course, we can extend χ : Md → A. The following result shows
that we have succeeded in projectivizing the Hitchen map:

Theorem 1.6 (Hitchin 1987, Nilsen 1991, Faltings 1993). χ is a proper
algebraically completely integrable Hamiltonian system. Its generic fi-
bres are abelian varieties.

2. Topological mirror symmetry for Higgs bundles

The goal of this lecture (and perhaps the next) is to establish the
global picture:

M̌

χ̌   B
BB

BB
BB

B M̂

χ̂~~||
||

||
||

A0

(Here χ̌ and χ̂ are the Hitchin maps). The important point is that the
generic fibres are (torsors for) dual abelian varieties.

The reason we want to do this is the following. We have not yet
mentioned this, but M̌ and M̂ are hyperkähler, which means that
they have an S2 of complex structures. Hence we can change complex
structure

M̌DR

χ̌ ""E
EEEEEEE M̂DR

χ̂||yy
yy

yy
yy

A0

and in this model the fibres become (Lagrangian ??? ) tori. This is
the setting proposed by SYZ for mirror symmetry.

To begin, we need to have a description of the generic fibres of the
Hitchin map. It turns out that they will be related to the Jacobian of
the “spectral curve”, associated to a point in the Hitchin base.

The moduli space of SLn-Higgs bundles of degree d is a non-singular
quasi-projective variety, it is defined after the choice of a degree d
line bundle Λ. M̌d = M̌Λ, the isomorphism class is independent of
the chosen line bundle. It’s complex points are isomorphism class of
semi-stable (i.e. stable by coprime assumption) Higgs bundle (E, φ)
of rank n, detE = Λ and φ ∈ H0(End0(E) ⊗ K). As in the GLn-
case the Hitchin map χ̌ is given by the coefficients of the characteristic
polynomial, it is proper and a completely integrable system. We also
have that T∗ Ň ⊂ M̌d open and dense.

Let us remember the two constructions of the moduli space of PGLn-
Higgs bundles. The cotangent bundle T∗ Pic0(C) = Pic0(C)×H0(C,K)
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acts on Md by

(L, ϕ)(̇E, φ) 7→ (L⊗ E,ϕ+ φ)

This induces an action of Γ = Pic0[n] on M̌d. Then we may either
define the PGLn-moduli space as

M̂d =Md/T∗ Pic0(C) ∼= χ−1(A0)/Pic0(C)

or as

M̌/Γ

To avoid difficulties in forming the first quotient it is wise to quotient
first in Higgs direction, as indicated. The second quotient tells us that
we obtain an orbifold. Since χ̌ is compatible with the Γ action, we
obtain a well-defined Hitchin map

χ̂ : M̂d = M̌d/Γ→ A0 = Â.

2.1. Spectral curves. Question: it seems that the spectral curve can
be defined globally over the Hitchin base ... is this true?

The simple idea of describing a polynomial by its zeroes leads to
spectral curves. Recall:

a ∈ A H0K × · · · × H0(Kn)

a = tn + a1t
n−1 + · · · + an

What should be the spectrum of such a polynomial? Look at one point
p ∈ C, there we get Φp : Ep → Ep ⊗Kp, we expect of an eigenvalue vp
of Φp to satisfy

∃v ∈ Ep − 0 : Φp(v) = vpv.

To make any sense, we need vp ∈ Kp. We do now consider all eigenval-
ues as a subset of the total space X of the bundle K → C, and want to
identify it with the complex points of a scheme. The resulting object
will be called the spectral curve corresponding to a ∈ A.

Ca
πa

''PPPPPPPPPPPPPPP ⊂ X

π

��
C

To construct this geometrical structure, note that there exists a tau-
tological section λ ∈ H0(X, π∗K) satisfying λ(x) = x. We can now
pullback the sections ai to X and obtain a section

sa ∈ H0(X, π∗Kn)

λn + a1λ
n−1 + · · ·+ an
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Clearly Ca equals the zero set of this section, i.e. Ca = s−1
a (0), which

comes naturally with a scheme structure.

2.2. Generic fibres of the Hitchin map. 1 The fibers of the Hitchin
map can get very complicated, reducible, non-reduced, etc. But for
generic a ∈ A the spectral curve Ca is smooth. We want to get a
correspondence between line bundles on Ca and Higgs bundle on C
with characteristic polynomial a. Given a line bundle L on C we do at
least know that π∗(L) is a torsion free sheaf on C, but since C is a non-
singular curve this means that it is actually a rank n vector bundle2.
Remember the canonical section λ ∈ H0(X, π∗K), this gives us

L
λ // L⊗ π∗aK

we can now push this forward to the curve C to obtain

E = π∗(L)
π∗(λ)
// π∗(L⊗ π∗aK) = π∗(L)⊗K

where we used the pull-push formula for the last step. Hence we actu-
ally get a Higgs bundle E → E ⊗K.

If Ca is moreover connected, (E,ϕ) cannot have any subobjects,
hence it is automatically stable. This way we define a map:

Picd(Ca)→Md

L 7→ (π∗(L)⊗ det(π∗(O))−1, π∗(λ))

But it is not obvious that we actually have defined something lying over
a this way. Since λn+an−1λ

n−1+· · ·+a0 = 0 holds over Ca we can push-
forward this equation to C, to obtain π∗(λ)n+an−1π∗(λ)n−1 +· · ·+a0 =
0. Densitiy and the Cayley-Hamilton theorem imply the assertion.

Theorem 2.1 (Hitchin 1987, Beauville-Narasimhan-Ramanan 1989).
For a ∈ Areg (i.e. having a non-singular and connected spectral curve
Ca) we have χ−1(a) ∼= Picd(Ca).

We need some modifications for SLn and PGLn.
In the SLn-case we have a ∈ A0, we need to find the line bundles L,

s.t. π∗(L) has the right determinant. Define Prymd(C) ⊂ Jacd(Ca).

L ∈ Prymd(Ca)⇔ detπ∗(L)⊗ det(π∗(O))−1 = Λ

∀a ∈ A0
reg, χ̌

−1(a) ∼= Prymd(Ca).

1Both notes say generic fibres for X - but X is the notation used for the total
space of the canonical bundle

2Since the local rings of a curve are discrete valuation rings, torsion free and
finitely generated modules are free.
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For PGLn we have χ̌−1(a) ∼= Prymd(Ca)/Γ. This makes sense since
for Lγ ∈ Pic(C)[n] we do have det(π∗(π

∗(Lγ)⊗L)) = det(Lγ⊗π∗(L)) =
Lnγ ⊗ det(π∗L) = det(π∗L).

Summary: Fibres of the Hitchin map

(1) For GLn: By Thm 2.1, for a ∈ Areg

Aa := χ−1(a) ' Jacd(Ca).

(2) For SLn: following the definitions it is straighforward that for
a ∈ A0

reg

Ǎa := χ̌−1(a) ' Prymd(Ca).

(3) For PGLn: There are two ways of thinking of the Hitchin fibre:

Âa := Prymd(C)/Γ ' Jacd(Ca)/Pic0(C),

where Pic0(C) acts on Jacd(Ca) by tensoring with the pull-back
line bundle. A short computation shows that Γ indeed acts on
Prymd(C).

2.3. Symmetries of the Hitchin fibration (Ngo’s terminology).
We will see in this subsection how natural Abelian varieties act on these
fibers, giving a torsor structure. Again, we study the GLn, SLn, PGLn
cases separately.

(1) For GLn: Fixing a ∈ Areg, tensor product gives a simply tran-
sitive action of Pic0(Ca) on Jacd(Ca), and therefore Ma is a
torsor for Pa := Pic0(Ca).

(2) For SLn: Fixing a ∈ A0
reg, we have a (ramified) cover map

π : Ca → C.

Definition 2.2. The norm map

NmCa/C : Pic0(Ca)→ Pic0(C)

is defined in any of the following three equivalent ways:
(a) Using divisors. For any divisorD, NmCa/C(O(D)) = O(π∗D),

where π : Ca → C is the projection. This definition points
out why Nm is a group homomorphism.

(b) For L ∈ Pic0(Ca) defineNmCa/C(L) = det(π∗(L))⊗det−1(π∗OCa).
(c) Using the fact that Pic0(C),Pic0(Ca) are Abelian varieties,

we can define the norm map as the dual of the pull-back
map π∗ : Pic0(C)→ Pic0(Ca), that is

NmCa/C = π̌ : Pic0(Ca) = P̌ic
0
(Ca)→ P̌ic

0
(C) ' Pic0(C).
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Let Prym0(Ca) := ker(NmCa/C) denote the kernel of the

norm map. Then Prym0(Ca) acts on Prymd(Ca) = M̌a, and
M̌a is a torsor for P̌a := Prym0(Ca).

(3) For PGLn: In this case

M̂a = M̌a/Γ =Ma/Pic0(C)

is a torsor for P̂a := P̌a/Γ = Pa/Pic0(C).

As a next step, we will show, that P̌a and P̂a are dual abelian vari-
eties.

2.4. Duality of the Hitchin fibres. Take the short exact sequence

0 → Prym0(Ca) ↪→ Pic0(Ca)
NmCa/C

� Pic(C) → 0

and dualize. Since Pic0(C) and Pic0(Ca) are isomorphic to their duals,
we get

0 ← ˇPrym
0
(Ca) � Pic0(Ca)

π∗← Pic(C) ← 0 ,

and therefore
ˇ̌Pa = Pic0(Ca)/Pic(C) = P̂a,

that is P̌a and P̂a are duals.
This is the first reflection of mirror symmetry. To summarize, we

state

Theorem 2.3. (Hausel-Thaddeus, 2003)

For a regular a ∈ A0
reg M̌a and M̂a are torsors for dual Abelian vari-

eties. (namely P̌a and P̂a. )

We can state this theorem more precisely using the language of
gerbes. To this end here is a short summary.

2.5. Gerbes on M̌ and M̂. Let A be a sheaf of Abelian groups on
a variety X. The typical examples are O∗X , ζm, U(1), where ζm is the
group of mth roots of unity. Note that ζm ⊂ O∗X and ζ ⊂ U(1).

Definition 2.4. (Rough definition of a torsor)
An A-torsor is a sheaf F of sets on X locally isomorphic to A, in
particular Γ(F,U) is a torsor for Γ(A.U) for all U ⊂ X open.

Examples:

• O∗X-torsor = line bundle
• U(1)-torsor = flat unitary line bundle
• ζm-torsor = ζm-Galois etale cover ????



MIRROR SYMMETRY, LANGLANDS DUALITY AND THE HITCHIN SYSTEM 9

Note that the natural tensor category structure on the set of torsors
TorsA(U) is a group. Moreover, the automorphism of an A-torsor is
an element of Γ(A).

Definition 2.5. An A-gerbe B is a sheaf of categories so that B|U is
a torsor for the group TorsA(U).

Let (E, φ) be the universal Higgs-bundle on M̌ × C, where φ ∈
H0(End0E⊗ π∗(KC), and Ec be the fiber over c ∈ C. that is

Ec = E|M̌×c.

Then c1(Ec) ∈ H2(M,Z) ' Z is a generator. Note that E is not
unique: it can be tensored by L ∈ Pic(M), but this property always
holds.

Let PEP → M̌ be the corresponding PGLn-bundle. Let B be the
ζm-gerbe of liftings of PE0 as an SLn-bundle. As there is no global
lifting, B is not a trivial gerbe.

But for a ∈ Areg , c1(EP )|M̌a
is 0 mod n, and EP )|M̌a

can be lifted
as an SLn-bundle, therefore B|M̌a

is a trivial gerbe.

Theorem 2.6. (Hausel-Thaddeus, 2003) Let B denote the correspond-
ing ζm ⊂ U(1)-gerbe. Then

TrivU(1)(B̌e|M̌d
a
) ' M̌e

a

as P̌a-torsors. Similarly,

TrivU(1)(B̂e|M̂d
a
) ' M̂e

a.

2.6. Topological consequences, The stringy E-polynomial of an
orbifold. Hope: Some analog of the Hodge diamond reflects the mirror
symmetry

Definition 2.7. LetX be a complex algebraic variety. The E-polynomial
(virtual Hodge polynomial) is defined as

E(X;u, v) =
∑
p,q,i

(−1)ihp,q(GrWp+qH
i(X))upvq

where GrWp+qH
i(X) is the p + qth graded piece of the weight filtration

of H i(X). This has a (pure) Hodge structure, and hp,q is the corre-
sponding Betti number.

Remark 2.8. For pure MHS hp,q 6= 0 implies that p+ q = i. The fibres
M,M̌,M̂ have pure MHS.
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Let X be smooth, and assume that a finite group Γ acts on X. Then
we can define the stringy E-polynomial of the orbifold X/Γ as follows:

(2.1) Est(X/Γ, u, v) =
∑

[γ]∈[Γ]

E(Xγ/Cγ;u, v)(uv)F (γ),

where

• [γ] is a conjugacy class of Γ, and Xγ is the fixed point set, Cγ
is the centralizer of γ in Γ, acting on Xγ.
• F (γ) is the Fermionic shift, defined as F (γ) =

∑
wi, where γ

acts on TX|Xγ with eigenvalues e2πiwi , wi ∈ [0, 1].

Let now B be a Γ-equivariant U(1)-gerbe on X. Then more generally,
we define

(2.2) EB
st(X/Γ), u, v) =

∑
[γ]∈[Γ]

E(Xγ/Cγ, LB,γ, u, v)(uv)F (γ),

where LB,γ is the local system on Xγ given by B.

2.7. Topological mirror test.

Conjecture 2.9. (Hausel-Thaddeus, 2003)
For (d, n) = (e, n) = 1

E(M̌d;u, v) = EB̌e

st (M̂e;u, v),

where B̌e is a Γ-equivariant gerbe on M̌ e, defined later.

This is a cohomological shadow of some equivalence of derived cate-
gories of sheaves on the Hitchin fibres.

Theorem 2.10. (Hausel-Thaddeus,2003) n = 2 (using Hitchin 1987),
n = 3 (using Gothen 1994).
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Recall the topological mirror symmetry test / conjecture:

E(M̌d;u, v) = EB̂
st(M̂

e;u, v)

In this lecture we will unravel what this means. For simplicity we
assume that d = e (and always assume (d, n) = 1).

Recall that Γ acts on M̌ and hence Γ also acts on H∗(M̌). We get a
decomposition

H∗(M̌) =
⊕
κ∈Γ̂

H∗κ(M̌)

and because the action of Γ on M̌ is algebraic, this leads to a decom-
position of mixed Hodge structures. Therefore we can write

E(M̌ ;u, v) = E(M̌ ;u, v)Γ + Evar(M̌ ;u, v)

where the first part is the invariants under Γ, and the second denotes
the “variant” part. The variant part decomposes further according to
non-trivial characters of Γ as follows:

Evar(M̌ ;u, v) =
∑
κ∈Γ̂∗

Eκ(M̌ ;u, v).

Here Γ̂∗ denotes the set of non-trivial irreducible linear characters of
Γ. A crucial fact is that the action of Γ on H∗(M̌) is non-trivial, and
so Evar is non-zero.

On the other hand, by definition of the stringy E-polynomial (and
the fact that Γ is commutative) we have

EB̂d

st (M̂ ;u, v) = E(M̌/Γ;u, v) +
∑
γ∈Γ∗

E(M̌γ/Γ;LB,γ, u, v)(uv)F (γ)

Of course E(M̌/Γ) = E(M̌)Γ and so the topological mirror symmetry
test can be rephrased in the form

variant part = stringy contributions.

Note that Γ is canonically isomorphic to H1(C,Zn), where C is our
underlying curve. It follows that Poincaré duality gives us a canonical
pairing

ω : Γ× Γ→ H2(C,Zn) = Zn

this allows us to identify ω : Γ→ Γ∗.
This leads to the refined topological mirror symmetry test :

Eκ(M̌ ;u, v) = E(M̌γ/Γ, LB̂d,γ;u, v)(uv)F (γ)

where γ = ω(κ). This conjecture has roughly the same form as Ngo’s
main formula.
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To understand M̌γ we use similar techniques to those of Narasimhan-
Ramanan (1975) and obtain the following theorem.

Theorem 2.11 (Hausel-Thaddeus 2003). Given γ ∈ Γ we obtain Lγ ∈
Pic(C)[n] of order o(γ) = m dividing n. This yields a covering

Cγ

m : 1

��
C

with Galois group Z/mZ. If a Higgs bundle (E, φ) ∈ M̌ is fixed by

tensoring with Lγ then there exists (Ẽ, φ̃) a stable rank n/m Higgs
bundle on Cγ such that

(E, φ) = (π∗Ẽ, π∗φ̃)

and hence

M̌γ =
M̌(GLn/m, Cγ)

Zm = Gal(Cγ/C)
=

“Higgs moduli space for an
endoscopic group Hγ of SLn”.

2.8. The case n = 2. Let us assume n = 2 and d = 1. Consider circle
action of U(1) ⊂ C∗ on the Higg’s moduli space by rescaling the Higgs
field (that is, λ · (E, φ) 7→ (E, λ · φ)). We can study the corresponding
Morse stratification and obtain a decomposition

H∗(M̌) =
⊕

H∗+µi(Fi)

where the sum is over the connected components of the fixed point set
M̌C∗

, and µi denotes the index of Fi with respect to the U(1)-action.
Note that this decomposition is a decomposition as Γ-modules.

The strata Fi have been described for n = 2 by Hitchen in 1987, and
by Gothen for n = 3 in 1994. The case n = 4 seems quite hard.

One obvious fixed point locus if F0, consisting of those bundles with
zero Higg’s field. However this doesn’t contribute to the variant part as
the Γ-action is trivial (recall that this was the crucial result of Harder-
Narasimhan).

The other components are labelled by i = 1, . . . , g− 1 and are those
Higgs bundles of the form

Fi = {(E, φ) | E ∼= L1 ⊕ L2, φ =

(
0 0
ϕ 0

)
, ϕ ∈ H0(L−1

1 L2K)}

now stability forces degL2 = 1 − i where i > 0 (because L2 is a sub-
bundle) and one may check that associating to (E, φ) ∈ Fi the divisor
of φ in S2g−2i−1(C) yields a 2g : 1 covering

Fi → S2g−2i−1(C)
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(clearly, if Γ0 ∈ Pic0(C) is 2-torsion then it acts on Fi, but one may
moreover check that this action is free).

The following theorem is due to Hitchin in 1987:

Theorem 2.12. The Γ action on H∗(Fi) is only non-trivial in the
middle degree 2g − 2i− 1. We have

dimH2g−2i−1
var (Fi) = (2g − 1)

(
2g − 2

2g − 2i− 1

)
Moreover, if κ ∈ Γ̂∗ then

dimH2g−2i−1
var (Fi) =

(
2g − 2

2g − 2i− 1

)
.

We now consider the stringy side. M̂ = M̌/Γ and γ ∈ Γ∗. Then Γ
leads to a connected covering

Cγ

2 : 1

��
C

with Galois group Z/2Z. Consider the commutative diagram

M̌(GL1, Cγ) = T ∗ Jacd(Cγ)
push-forward//

∼
��

Md

det
��

⊃ M̌d = det−1(Λ0)

T ∗ Jacd(Cγ)
Nm(Cγ/C)

// T ∗ Jacd(C) 3 Λ0

Then the endoscopic Higgs bundles are M̌(GL1, Cγ) = Nm(Cγ/C)−1(Λ, 0)
and we have an isomorphism

M̌γ = T ∗ Prymd(Cγ/C)/Gal(Cγ, C).

One may then calculate that

dimH2g−2i+1(M̌γ/Γ, LB̂d,γ) =

(
2g − 2

2g − 2i− 1

)
.

and is zero otherwise. (Note that the presence of the gerbe means that
we see odd degrees.)

It follows that in this case one does indeed have equality

Eκ(M̌;u, v) = E(M̌γ;LB,γ, u, v)

when γ = ω(κ).
One may give a similar proof for n = 3. The conjecture remains

open for n > 3.
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3. Topological mirror symmetry for character varieties

We give a quick sketch to see the relation between Higgs bundles
and character varieties. Given a Higgs bundle (E, φ) one obtains (dE, φ)
which solves the Hitchin self-duality equation. It follows that dE+φ+φ∗
yields a complex flat connection on E, and its monodromy yields a
representation

π1(C)→ GLn(C).

Definition 3.1. The character variety for GLn is the space

Md
B := {(A1, B1, . . . , Ag, Bg) ∈ GLn(C) | [A1, B1] . . . [Ag, Bg] = ζdnIn}//GLn

The character variety for SLn is the space

Md
B := {(A1, B1, . . . , Ag, Bg) ∈ SLn(C) | [A1, B1] . . . [Ag, Bg] = ζdnIn}//PGLn

where the action is always by simultaneous conjugation on all factors,
and ζn = e2πi/n.

Of course in the above quotient the scalar matrices act trivially,
however it turns out that the residual action of PGLn is free.

If d and n are coprime, these two varieties are non-singular.
To get the PGLn space consider Γ = Z2g

n ⊂ (C∗)2g. Then Γ acts on
M̌d

B and we define the character variety of PGLn to be

M̂d
B := M̌d

B/Γ =Md
B/(C∗)2g.

4. Lecture 6:

We start off by giving some motivation. Recall that A denotes the
Hitchin base. To each point a ∈ A one may associate a spectral curve
Ca/C. There are various important subsets of the Hitchin base:

Aell = those points where Ca is integral;

Ahyp = those points where Ca is reduced

we have Aell ⊂ Ahyp. Furthermore there is the “nilpotent cone” which
consists of the fibre over 0 ∈ A.

Ngǒ understands the decomposition theorem over Aell and this was
extended by Chaudouard and Laumon to the hyperbolic locus. (Note
that the complement of Ahyp to Aell in the Hitchin base has quite small
codimension.)

We define

M̌ell := χ−1
SLn

(Aell)

M̂hyp := χ−1
PGLn

(Aell)



MIRROR SYMMETRY, LANGLANDS DUALITY AND THE HITCHIN SYSTEM15

where χSLn (resp. χPGLn ) denotes the SLn (resp. PGLn) Hitchin
map.

At this stage it appears that Ngǒ’s results imply the topological
mirror symmetry conjecture for M̌ell and M̂hyp. It is not clear how to
“spread this out” to get the result in general.

Let us briefly point out that, if one works over appropriate versions
defined over finite fields, and a ∈ Aa denotes a point in the Hitchin
base then the number of points in the fibre over a can be expressed as
an orbital integral for SLn(Fq((t))). Hence these fibres may be thought
of as encoding “harmonic analysis for SLn(Fq((t)))”.

If one passes to the Betti picture (which replaces the total space of
the Hitchin fibration with the (diffeomorphic) character variety) then
counting points leads to “harmonic analysis for SLn(Fq)),” as we will
explain in this lecture! (Note that SLn(Fq) is now a finite group, so
one expects things to be much simpler.)

4.1. Character varieties and the topological mirror symmetry
conjecture. Recall the definitions of the various character varieties
from last lecture.

Md
B := {(A1, B1, . . . , Ag, Bg) ∈ GLn(C) | [A1, B1] . . . [Ag, Bg] = ζdnIn}//PGLn

M̌d
B := {(A1, B1, . . . , Ag, Bg) ∈ SLn(C) | [A1, B1] . . . [Ag, Bg] = ζdnIn}//PGLn

M̂d
B := M̌d

B/Γ =Md
B/(C∗)2g.

where Γ = (Zn)2g ⊂ (C∗)2g.
Recall that the non-abelian Hodge theorem asserts that we have

canonical diffeomorphisms

Md
Dol
∼=Md

DR
∼=Md

B

and similarly for the SLn and PGLn versions. Moreover, the later
“Riemann-Hilbert” map Md

DR
∼=Md

B is an analytic isomorphism.
It follows that SYZ’s mirror symmetry proposal should be true for

the Betti version also (that is, for the character variety).
This motivates the Betti-Version of the topological mirror symmetry

conjecture. (Hausel-Villegas, 2004):
Suppose (d, n) = (e, n) = 1. Then we have equality of mixed Hodge

polynomials

E(M̌d
B;u, v) = EB̂d

st (Me
B;u, v)

note that, because the complex structures are different, this really is a
different conjecture from that for the total space of the Hitchin fibra-
tion.
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4.2. An arithmetic technique to calculate E-polynomials. Re-
call the definition of the E-polynomial of a complex variety X:

E(X;u, v) =
∑
i,p,q

(−1)ihp,q(GrWk H
i
c(X))upvq

where W0 ⊆ W1 ⊆ . . . ⊆ Wi ⊆ . . . ⊆ W2k = Hk(X) is the weight
filtration.
MB has a Hodge-Tate type MHS, that is, hp,q 6= 0 unless p = q in

its MHS. In this case the E-polynomial is a polynomial of uv, i.e

(4.1) E(X;u, v) = E(X, uv) :=
∑
i,k

(−1)i dim(GrWk H
i
c(X))(uv)k,

but the MHS is not pure, i.e k 6= i when h(k/2,k/2) 6= 0.
We say that a variety X/Z is polynomial count, if

E(q) = |X(Fq)|
is polynomial in q.

Theorem 4.1 (Katz, 2006). For a polynomial count variety X/Z
E(X/C, q) = |X(Fq)|.

Example 4.2. Define C∗ = C\ {0} over Z as the subscheme {xy = 1}
of A2. Then

E(C∗; q) = |(F∗q) = q − 1|.
Since H2

c (C∗) has weight q and H1
c (C∗) has weight 1, substitution to

(4.1) gives the same result.

4.3. Arithmetic harmonic analysis forMB. By Fourier transform
on a finite group G one gets the following Frobenius-type formula:

|
{
a1, b1, . . . , ag, bg ∈ G|

∏
[ai, bi] = z

}
| =

∑
χ∈Irr(G)

|G|2g−1

χ(1)2g−1
χ(z).

Therefore assuming that ζn ∈ F∗q, i.e n|q − 1, we get

(4.2) |Md
B(Fq)| = (g − 1)

∑
χ∈Irr(GLn(Fq))

|GLn(Fq)|2g−2

χ(1)2g−2
· χ(ζdn · I)

χ(1)
.

Irr(GLn(Fq)) has a combinatorial description by Green from 1955,
and |Md

B(Fq)| can be calculated explicitely, which turns out to be a
polynomial, so Katz‘s theorem applies and (4.2) gives the E-polynomial.

The same Frobenius-type formula is valid in the SL(n)-case:

(4.3) |M̌d
B(Fq)| = (g − 1)

∑
χ∈Irr(GLn(Fq))

|SLn(Fq)|2g−2

χ(1)2g−2
· χ(ζdn · I)

χ(1)
,
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Here the character table of SLn(Fq) is much trickier! After much work
of Lusztig, the character table of Irr(SLn(Fq)) has only been completed
by Bonnafé and Shaji in 2006. For χ ∈ Irr(GLn(Fq)) the splitting

χ|SLn(Fq) =
∑

χi

is evenly spread out on ζdn · I, and using this Mereb calculated the
formula in 2009, showing that |M̌d

B(Fq)| is polynomial, and by Katz‘s
theorem this gives E(M̌d

B(Fq); q).
Recall that the topologiacal mirror test has the following form:

E(M̌d
B; q) = Einv(M̌d

B; q) +
∑
γ∈Γ∗

E(M̂d
B,γ), LB,γ, q) · qF (γ).

As we saw before the invariant part is Einv(M̌d
B; q) = E(M̂d

B; q), and

it remains to calculate the variant part, i.e the terms E(M̂d
B,γ), LB,γ, q).

An ongoing work of Hausel, Mereb and Villegas evaluates these by sim-
ilar (twisted) arithmetic techniques using Deligne’s twisted character
formula. This seems to match with Mereb’s result, which would give
the Betti version of TMS.

5. Shadows of Kapuskin-Witten’s S-duality
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