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Let (R ⊂ X,R∨ ⊂ X∨) be a root datum and G ⊃ T the corresponding split
Chevalley group scheme over Z. Fix an algebraically closed field k. A funda-
mental question in representation theory is to determine the simple rational mod-
ules of Gk. Here “determine” means: Can they be parametrised? What are
their dimensions? What are their characters? Can one give a uniform construc-
tion/description? etc.

Let p denote the characteristic of k. In characteristic p = 0 there exists a
uniform construction and description. To describe it we choose a system of positive
roots R+ ⊂ R, a basis ∆ ⊂ R+ and let B ⊂ G be the Borel subgroup corresponding
to the negative roots R− = −R+. To each λ ∈ X one can associate a line bundle
L(λ) := G ×B kλ over the flag variety (G/B)k. Here kλ denotes the B-module
which is obtained by inflation from the one-dimensional T -module given by the
character λ ∈ X of T . If we set

∇(λ) = H0(G/B,L(λ))

then it is known that ∇(λ) is non-zero if and only if λ belongs to the cone of
dominant characters:

X+ = {λ ∈ X | 〈α∨, λ〉 ≥ 0 for all α ∈ ∆}.

Moreover, in the later case ∇(λ) is a simple Gk-module. One obtains in this way
a bijection

X+ ∼−→ IrrGk

where IrrGk denotes the set of isomorphism classes of simple rational Gk-modules.
Moreover, the characters are given by Weyl’s character formula.

If p > 0 the situation is more complicated. Let us assume for simplicity that k
is an algebraic closure of Fp, the finite field with p elements. It is a priori obvious
that things will be more complicated than (or at the very least different to) the
characteristic zero case. The reason is that we have a Frobenius map

Fr : Gk → Gk

obtained by elevating coordinates to the pth power. Hence given any Gk-module V ,
we can produce another Gk-module V (1) (or in fact infinitely many new modules
V (m) ) by precomposing (m times) with the Frobenius morphism. This operation
is called “Frobenius twist”. It is easy to see, for example, that it preserves simple
modules. It leads to a recursive structure on the category of rational representa-
tions of Gk which is only partly understood, and is a big part of the fascination of
the subject.

In positive characteristic one may still define the modules ∇(λ) as above, but
they are not in general simple. However they contain a unique simple module
L(λ). It turns out that L(λ) still has highest weight λ and hence the above
bijection between simple modules and X+ and IrrGk remains true. However the
dimensions and characters of L(λ) are not known. By Kempf’s vanishing theorem
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one still knows the characters of the module ∇(λ) (as in the case p = 0 they
are given by Weyl’s character formula). Much of the recent work on determining
the simple Gk modules focuses on understanding the composition series for the
modules ∇(λ).

A cornerstone of the subject are two theorems of Steinberg. Consider the set

X+
r = {λ ∈ X+ | 〈α∨, λ+ ρ〉 < pr for all α ∈ ∆}

where ρ = 1
2

∑
α∈R+ α. Steinberg’s tensor product theorem asserts that if we have

weights λ0, λ1, . . . , λm all belonging to X+
1 then the module

L(λ0)⊗ L(λ1)(1) ⊗ · · · ⊗ L(λm)(m)

is simple (and is hence isomorphic to L(λ0 + pλ1 + · · ·+ pmλm)). Hence, in order
to understand the simple representations of Gk it is enough to understand L(λ)
with λ ∈ X+

1 .
The second important theorem is Steinberg’s restriction theorem. It states that

for any λ ∈ X+
r , the restriction of L(λ) to the finite group G(Fpr ) is simple.

Moreover on obtains all simple kG(Fpr )-modules in this way. This theorem is
probably why we are discussing rational Gk-modules at a conference on finite
groups!

To get to Lusztig’s conjecture we need to recall two more pieces of structure
theory. Consider Wp, the subgroup of all affine transformations of X generated
by reflections in the hyperplanes Hα,pm = 〈α∨, λ + ρ〉 ∈ pm for all α ∈ R+ and
m ∈ Z. The linkage principle is the statement:

Ext1(L(λ), L(µ)) 6= 0⇒ λ ∈Wp · µ.
Denote by RepGk the category of all rational representations of Gk. Given

π ⊂ X+ let RepπGk denote the full subcategory of all objects whose composition
factors belong to {L(λ) | λ ∈ π}. The linkage principle implies that we have a
decomposition:

RepGk =
⊕

π∈X/Wp

Repπ∩X+Gk.

Finally, the translation principle states that, as long as p > h (so that 0, the weight
of the trivial module, lies on no hyperplane Hα,pm) we understand all multiplicities
[∇(λ) : L(µ)] as long as we understand the multiplicities [∇(x · 0) : L(y · 0)] for
x, y ∈ Wp with x · 0, y · 0 ∈ X+. Steinberg’s tensor product theorem even allows
us to assume that x · 0, y · 0 ∈ X+

1 .
Lusztig’s conjecture then expresses

[∇(x · 0) : L(y · 0)] for x · 0, y · 0 ∈ X+
1

in terms of an affine Kazhdan-Lusztig polynomial. It is important to note that
the assumption that x ·0, y ·0 ∈ X+

1 is essential: even though the statement makes
sense for any x · 0, y · 0 ∈ X+ it is certainly false in full generality (even though it
will remain true within the “Jantzen region”).

Let us pause to note that even if Lusztig’s conjecture is true this is a slightly
unsatisfactory state of affairs. For weights outside of the X+

1 there is no conceptual
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understanding of the situation: in order to calculate a character many iterations
of Steinberg’s tensor product theorem and Lusztig’s conjecture may be necessary.

It is a result due to Andersen, Jantzen and Soergel that Lusztig’s conjecture
is true for large p, and an effective (but enormous) bound has recently been pro-
vided by Fiebig. On the other hand, there is very little experimental evidence for
the validity of Lusztig’s conjecture. It is known in rank 2 (using Jantzen’s sum
formula), for a few rank 3 cases, for a few primes in higher rank ...

In the late 1990’s Soergel suggested that a useful toy-model for Lusztig’s conjec-
ture would be provided by looking “around the Steinberg weight”. To be precise,
assume from now on that p > h, let W denote the Weyl group of our root system
acting on X in the standard way and let st = (p−1)ρ denote the Steinberg weight
(the extremal vertex of the fundamental box X1). Consider the sets

Ω = {st + xρ | x ∈W}, ≤ Ω = {λ | λ ≤ pρ} and < Ω =≤ Ω \ Ω.

Now consider the quotient category

Op = Rep≤ΩGk/Rep<ΩGk.

We let

L(x) := L(st + xρ), ∇(x) := ∇(st + xρ)

denote the images in Op. Then Op is a finite length, abelian, highest weight
category and Lusztig’s conjecture predicts

[∇(x) : L(y)] = hw0y,w0x(1)

where w0 denotes the longest element of W and hw0y,w0x ∈ Z[v] is a Kazhdan-
Lusztig polynomial (this time for the finite Weyl group). Let us emphasise that
(as far as we know) the above statement is weaker than the original statement.
As we mentioned above, the above should be thought of as a toy model or “sanity
check” for Lusztig’s original conjecture.

Recently (building on the work of Soergel and Elias-Khovanov) Elias and the
author proved the existence of a Z-algebra A which is a free and finitely generated
over Z such that

i) AC −mod ∼= O0 “principal block of category O” for g = Lie GC.
ii) Ak −mod ∼= Ok “modular category O”.

Moreover, A may be described by generators and relations. Let us make the
following remakes:

a) One can think of A as interpolating between characteristic zero represen-
tation theory (O0 is where Kazhdan-Lusztig polynomials made their first
appearance “in nature”) and modular representation theory. Hence one
can think of the above result as “freeing p”.

b) A admits a grading and hence Op admits a grading Õp. With Riche and
Soergel we have recently proved a “modular Koszul duality”:

Db(Õp) ∼= ˜Db
(B∨

C )(G
∨
C/B

∨
C , k)

c) Ak is Morita equivalent to an ext algebra of parity sheaves on G∨C/B
∨
C .

3



d) By results of Fiebig there is also a version of A which controls the full
Lusztig conjecture (related to the affine Weyl group, rather than the finite
Weyl group). It is unclear to the author what this category has to do with
the whole principal block of Rep Gk.

Following the “freeing p” reasoning, one can also study the representation theory
of A in characteristics below the Coxeter number (where Op stops behaving well).
Consider the statement

(∗)p : the decomposition matrix of A is trivial.

Because of ii) above, Lusztig’s conjecture would imply that (∗)p is true for p > h.
Using the explicit description of A, we can do computer calculations to check

(∗)p in low rank. Here is a summary of the cases where (∗)p holds:

An Bn Dn F4 G2
E6

(partial)

all p for n < 6
p 6= 2 for n = 7

p 6= 2 for n < 6 p 6= 2 for n < 6 p 6= 2, 3 p 6= 2, 3 p 6= 2, 3

The entry p 6= 2 in A7 is due to Braden (2002). The exclusions p 6= 2, 3 in E6 are
due to Polo and Riche. The entries p 6= 3 for F4 and E6 give a counterexample to
Fiebig’s “GKM-conjecture”. Thanks are also due to Jean Michel for help speeding
up my programs significantly.

Recently Polo has found an example to show that (∗)p fails in A4p−1. So the
situation is more complicated than one might have thought ...
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